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Introduction: The human amniotic membrane (hAM) has largely been used in 
tissue regeneration and wound healing applications. A promising alternative 
to decellularized hAM or isolated cells is the usage of native viable hAM 
which contains and releases cell-derived bioactive factors that are known to 
enhance tissue regeneration. MicroRNAs (miRNAs) are known regulators of gene 
expression at post-transcriptional level and are important drivers of regeneration 
processes in several tissues. In this study, we characterized the miRNA profile of 
hAM tissue and its vesicular and non-vesicular secretome in the reflected and 
placental hAM as two spatially and physiologically distinct regions.
Methods: Extracellular vesicles were enriched from the secretome by size 
exclusion chromatography (SEC). Small RNAs were determined by Next 
Generation Sequencing in the conditioned medium and in tissue.
Results: After SEC, we identified predominantly small hAM-derived EVs 
(≤200 nm) expressing CD81. The highest percentage of miRNA relative 
to all mapped reads was found in tissue (15%–40%), while 2%–15% 
were protein-bound and 3%–6% associated with EVs. Unsupervised 
clustering revealed distinct clusters of miRNA expression according to 
sample fraction (EV-associated, protein-bound, and tissue) and amniotic 
regions (reflected, placental). Gene ontology analysis linked EV-associated 
and tissue miRNAs to (smooth) muscle proliferation, while protein-
bound miRNAs were associated with connective tissue development, 
chondrocyte differentiation and glial cell proliferation. Furthermore, correlation 
analysis of tissue miRNAs and extracellular expression identified EV-
associated and protein-bound miRNAs specifically released from the tissue.

 

Frontiers in Cell and Developmental Biology 01 frontiersin.org

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2025.1692501
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2025.1692501&domain=pdf&date_stamp=2025-10-27
mailto:asmita.banerjee@trauma.lbg.ac.at
mailto:asmita.banerjee@trauma.lbg.ac.at
https://doi.org/10.3389/fcell.2025.1692501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcell.2025.1692501/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1692501/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1692501/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Chaves-Solano et al. 10.3389/fcell.2025.1692501

Conclusion: These findings support the assumption that native viable hAM could 
serve as a miRNA source for applications in regenerative medicine.
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1 Introduction

The human amniotic membrane (hAM), a tissue of embryonic 
origin, has served as transplant material and source for cells in 
wound healing and tissue regeneration applications for more than 
100 years (Silini et al., 2015). Over the course of history, the 
hAM has been utilized in various forms, which mostly included 
decellularized, denuded, cryo-conserved, freeze-dried or powdered 
preparations (Silini et al., 2015). The bioactive factors that support 
tissue regeneration during clinical applications can originate from 
different components within the hAM. On the one hand, the 
extracellular matrix layers of the hAM retain growth factors, 
hormones (Comperat et al., 2024) and structural molecules such as 
collagens (Gunasekaran et al., 2020), fibronectin (Lockwood et al., 
1991), and hyaluronic acid (Zhu et al., 2020) even after cell removal. 
On the other hand, vital (non-decellularized or non-denuded) 
hAM contains two cell types with stem cell characteristics, human 
amniotic membrane epithelial cells (hAECs) and human amniotic 
membrane mesenchymal stromal cells (hAMSCs) (Portmann-
Lanz et al., 2006; Miki et al., 2007). Besides their demonstrated 
differentiation capacity towards all three germ layers in vitro
and in vivo (Sakuragawa et al., 1996; Kakishita et al., 2003; 
In’t Anker et al., 2004; Portmann-Lanz et al., 2006), hAM cells 
also release a variety of bioactive factors, such as nerve growth 
factor (NGF) (Zhang et al., 2019), brain-derived neurotrophic factor 
(BDNF) (Banerjee et al., 2014), glial cell-derived neurotrophic factor 
(GDNF) (Banerjee et al., 2014), angiogenic factors (Wolbank et al., 
2009; Duan-Arnold et al., 2015) and epidermal growth 
factor (EGF) (Gicquel et al., 2009) that are all known to enhance 
tissue
regeneration.

MicroRNAs (miRNAs), a class of small non-coding RNAs, are 
regulators of gene expression at post-transcriptional level by base-
pairing with the 3′UTR of the target mRNA, thereby inhibiting 
(O’Brien et al., 2018) or activating translation (Vasudevan and Steitz, 
2007). Importantly, miRNAs are involved in many cellular processes 
such as cell proliferation (Rodrigues et al., 2018) and differentiation 
(Berardi et al., 2012), apoptosis (Su et al., 2015), or in maintaining 
cellular homeostasis (van Wijk et al., 2022). Regarding their 
function, it is assumed that miRNAs act in an autocrine manner or 
are secreted into the extracellular environment participating in cell-
cell communication (Makarova et al., 2016). Intriguingly, miRNAs 
are not only involved in cell communication within a species, but 
they also seem to engage in cross-kingdom interactions (Zhang et al., 
2012). Depending on their biological function, secreted miRNAs can 

Abbreviations: hAM, human amniotic membrane; RA, reflected amnion; P, 
placental amnion, EV, extracellular vesicles.

be packed into extracellular vesicles (EVs, “EV-associated miRNA”) 
(Valadi et al., 2007; Zernecke et al., 2009) or bound to proteins 
(“protein-bound miRNA”) (Arroyo et al., 2011). EV-associated 
miRNAs are protected by the surrounding bi-lipid membrane 
(Valadi et al., 2007), protein-bound miRNAs are stabilized by 
proteins including Argonaut 2 (AGO2) complexes (Arroyo et al., 
2011; Turchinovich and Burwinkel, 2012; Geekiyanage et al., 2020), 
nucleophosmin (NPM1) (Wang et al., 2010), and/or lipoproteins 
(Vickers et al., 2011). However, non-vesicle-associated miRNAs are 
possibly more prone to degradation (Köberle et al., 2013), suggesting 
that their biological function may depend on their packaging. In 
cellular lysates lacking Ago expression, it has been shown that 
mature single-stranded miRNAs are unstable and rapidly degrade by 
endogenous nucleases, whereas in Ago-expressing lysates, miRNAs 
are significantly more stable (Park et al., 2017). In any case, 
circulating miRNAs are of high potential as biomarkers in various 
clinical settings including tissue regeneration (Grillari et al., 2021).

While several studies have investigated proteins such as growth 
factors as the main bioactive factors released from hAM, only few 
studies have reported on the miRNA composition of the hAM 
secretome. For example, it has been reported that miRNAs of 
chorioamniotic membrane (Montenegro et al., 2009) and hAM 
(Kim et al., 2011; Son et al., 2019) impact the post-transcriptional 
regulation of gene expression during human parturition. Ragni and 
colleagues isolated hAMSCs and characterized their secreted EV-
associated miRNAs (Ragni et al., 2020; 2021b; 2021a). Also, miRNA 
expression in the exosomal fraction of the conditioned medium of 
amniotic fluid stem cells was analyzed (Castelli et al., 2021).

Considering the indispensable role of miRNAs in regenerative 
processes, comprehensive insight into the miRNA profile of the 
hAM tissue and its secretory derivatives is crucial for elucidating 
the mechanisms behind its potential. In this study, we analyzed 
the miRNA profile of hAM tissue samples (tissue miRNAs) and 
their corresponding vesicular and non-vesicular secretome (secreted 
miRNAs) using an ex vivo approach (Figure 1). As there is evidence 
that different regions of the amniotic membrane may have different 
regenerative potentials (Weidinger et al., 2021), we separately 
analyzed samples of the placental and reflected region of the hAM.

2 Materials and methods

2.1 Preparation of human amniotic 
membrane

Human placentae were collected after cesarean sections 
with informed consent and approval from the local Ethics 
committee (Ethikkommission des Landes Oberösterreich, no. 200, 
Ethikkommission der Wiener Krankenhäuser der Vinzenz Gruppe, 
Ethics committee no. 1011/2022). Preparation of the hAM was 
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FIGURE 1
Experimental scheme. Human placentae were collected after cesarean sections. Reflected amnion (RA) and placental amnion (P) were separately 
peeled off the placenta and biopsy punches of 26 mm diameter were prepared. For 1 mL supernatant (conditioned medium), two biopsies each of 
reflected and placental amnion were incubated in 1.3 mL of serum-free culture medium for 72 h at 37 °C. The supernatant was subjected to size 
exclusion chromatography (SEC) to enrich extracellular vesicles (EV). Nanoparticle tracking analysis (NTA) was performed to measure EV quantity in 
RA- and P-EV preparations. Protein content was measured to separate the EV fraction from the protein fraction. MiRNA in tissue, protein 
(non-vesicular) fraction and EV fraction was analyzed by next-generation sequencing.

performed as described previously (Poženel et al., 2019). Briefly, 
reflected amnion (RA) and placental amnion (P) were separately 
peeled off the placenta and washed thoroughly with phosphate 
buffered saline (1X PBS, Sigma-Aldrich, Austria). 

2.2 Preparation of hAM conditioned 
medium

For 1 mL supernatant (conditioned medium), we prepared 
two biopsy punches of 26 mm diameter each from RA and 
P and incubated them in 1.3 mL of serum-free cell culture 
medium (Dulbecco Modified Eagle’s medium/high glucose (Sigma-
Aldrich, Austria) supplemented with 1% v/v L-glutamine (Sigma-
Aldrich, Austria), and 1% v/v penicillin/streptomycin (Sigma-
Aldrich, Austria)) at 37 °C, in a humidified atmosphere with 5% 
CO2. After 72 h, supernatants (conditioned media) were collected. 

Differential centrifugation was performed at 1,500 × g for 10 min, 
followed by a second centrifugation at 10,000 × g for 30 min. The 
supernatants were stored at – 80 °C until further processing. 

2.3 Enrichment of EVs by size exclusion 
chromatography (SEC) for characterization 
of sample preparation

1 mL of supernatant (conditioned medium) of each hAM region 
was concentrated to approximately 150 µL using Amicon 100 kDa 
MWCO ultrafiltration units (Merck Millipore, United States) and 
further subjected to SEC using qEVsingle 70 nm columns (Izon 
Science, New Zealand, 15928090) according to the manufacturer´s 
specifications. In brief, 150 µL concentrated conditioned medium 
was loaded onto SEC columns pre-equilibrated with freshly 
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filtered (filter pore size 0.22 µm) PBS (Sigma-Aldrich, United 
States, D8537).

After automatically discarding the void volume, elution fractions 
were harvested using PBS as the elution buffer. A total of 16 fractions 
(each 200 µL) were collected and analyzed for concentration and 
size distribution of nanoparticles, and protein concentration using 
nanoparticle tracking analysis (NTA) and bicinchoninic acid assay, 
respectively. Based on particle quantity, SEC fractions 1 - 8 were 
analyzed for EV marker expression by fluorescence-triggered 
flow cytometry (FT-FC), transmission electron microscopy 
(TEM) and Western blot, following MISEV2023 guidelines to the 
extent feasible (Welsh et al., 2024). 

2.4 Nanoparticle tracking analysis (NTA)

Nanoparticle tracking analysis (NTA) was performed to 
characterize nanoparticle size and quantity in RA- and P-EV 
preparations using a ZetaView 430 QUATT device (Particle Metrix, 
Germany). Samples of 3 donors (biological replicates) were analyzed 
at a constant temperature of 25 °C. The device settings were 
configured with a shutter speed of 100, sensitivity set to 75, and the 
measurement mode set to 1 cycle and 11 positions. Quality control 
parameters adhered to the manufacturer’s recommendations, 
ensuring that the average counted particles per frame ranged 
between 100 and 400, and the number of traced particles exceeded 
500. Data were acquired and exported as. txt files using ZetaView 
software version 8.05.12 (Particle Metrix GmbH, Germany). The 
exported data was analyzed with MS Excel software (Microsoft 
Inc., United States) and visualized in GraphPad Prism version 9 
(GraphPad, United States). 

2.5 Fluorescence-triggered flow cytometry 
analysis (FT-FC)

FT-FC was performed as described previously (Oesterreicher
et al., 2020). 50 μL of enriched EV fractions were mixed with 50 µL of 
CellMask Green (CMG) (Invitrogen, United States, C37608), diluted 
1:2000 with ddH2O, and incubated for 30 min at 37 °C. The staining 
of the respective antigens was performed by subsequent addition 
of 4 μL of 1:100 predilute PE-labelled antibodies for CD9 (Miltenyi 
Biotech, 130-118-865), CD63 (Miltenyi Biotech, Germany, 130-118-
077), CD81 (Miltenyi Biotech, Germany, 130-118-481), and isotype 
IgG1 (Miltenyi Biotech, Germany, 130-113-438). Samples were 
incubated in the dark for 30 min. Controls included PBS instead 
of sample, and temperature control was performed by incubating 
the samples for 10 min at 95 °C. Measurements were taken using 
a CytoFlexS flow cytometer and CytExpert software version 1.2 
(Beckman Coulter GmbH, Brea, CA, United States). Data analysis 
was performed using FlowJo software version 10 (FlowJo LLC, 
United States). 

2.6 Micro bicinchoninic acid (BCA) protein 
assay

To differentiate EV-enriched SEC fractions from free protein-
enriched SEC fractions in our preparations, the Micro BCA™ Protein 

Assay Kit (Thermo Fisher Scientific, #23235, United States) was 
performed following the manufacturer’s instructions. Briefly, 150 µL 
of each standard and 150 µL SEC-fraction samples (1:3 diluted) 
was pipetted into a microplate well (product no. 15041) and 150 µL 
of the working reagent was added to each well. After mixing 
on a shaker for 30 s, the covered plate was incubated at 37 °C 
for 2 h. Absorbance was measured at 562 nm using a microplate 
reader (BMG Labtech, Polarstar Omega, Germany) and values 
were interpolated to calculate the BSA standard concentration 
versus sample concentration in µg/mL using GraphPad Prim V.9 
(GraphPad, United States). 

2.7 Western blot

To increase the amount and concentration of sample required for 
qualitative Western blot analysis, EVs were enriched by differential 
ultracentrifugation. The RA and P tissue were incubated to end 
up in 45 mL medium each. After 72 h, supernatants were collected 
and differentially centrifuged at 1,500 × g for 10 min, followed 
by a second centrifugation at 10,000 × g for 30 min. After that, 
the supernatants were transferred into ultracentrifugation tubes 
(40PC tube, Eppendorf, Japan) and centrifuged in an ultracentrifuge 
CP100NX (Eppendorf, Japan) using a swing bucket rotor (P32ST, 
Eppendorf, Japan) at 1,000,00 × g for 2 h (excluding acceleration 
time) at 4 °C under vacuum. The pellets were resuspended in sterile-
filtered 1X PBS and stored at −80 °C until further use.

Western blot analysis was performed on EV preparations from 
RA and P, as well as corresponding RA and P tissue controls 
from the same donors (matched EV-tissue pairs, n = 3). Samples 
were lysed using RIPA buffer, and protein concentrations were 
determined using the DC Protein Assay Kit II (BioRad, United 
States, #5000112). 5 μg of protein per lane was loaded for both EV 
and tissue samples. Samples were heated to 95 °C for 8 min, and 
proteins were separated on a 10% acrylamide gel. All samples were 
run under reducing conditions, except for CD63 and CD81, which 
were run under non-reducing conditions. Electrophoresis was 
conducted at a constant current of 200 V for 50 min. Proteins were 
then transferred onto nitrocellulose membranes (BioRad, United 
States, #1620115, 0.45 µm) at 350 mA for 60 min. Membranes 
were blocked with a commercial Western blocking reagent (Roche, 
Switzerland, #11921673001) in 1X TBST (1:10) for 2 h. Primary 
antibodies were incubated on a roller at 4 °C overnight in blocking 
solution: a-CD63 mAb (Invitrogen, United States, clone Ts63, 
#10628D, 1:500), a-CD81 mAb (BD Transduction Laboratories, 
United States, clone JS-81, #555675, 1:1,000), a-LAMP1 mAb 
(Cell Signaling, United States, clone C54H11, #3243, 1:1,000), a-
TSG101 mAb (BD Transduction Laboratories, United States, clone 
51/TSG101, #612696, 1:250), a-Flot-1 mAb (Cell Signaling, United 
States, clone D2V7J, #18634, 1:1,000), a-HSP70 mAb (Antikörper-
online, Germany, clone C92F3A-5, #ABIN361708, 1:500), a-beta 
actin mAb (Santa Cruz, United States, clone C4, #sc-47778, 
1:500), and a-calnexin pAb (Sigma Aldrich, United States, #C4731, 
1:2000). After washing, membranes were incubated with HRP-
conjugated secondary antibodies (a-mouse or a-rabbit IgG, Cytiva, 
United Kingdom, #NA931 and #NA934, both 1:5,000) for 1 h 
at RT. Chemiluminescence detection was performed using ECL 
Western Blotting Detection Reagents (Cytiva, United Kingdom, 
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#RPN2209) and visualized with a BioRad ChemiDoc Station 
(BioRad, United States). 

2.8 Transmission electron microscopy 
(TEM)

2.8.1 Immunogold labeling
TEM was further used to analyze CD81 display of SEC-isolated 

RA and P amnion EVs from one donor. After SEC, 10 µL of 
RA and P-EV suspensions (adjusted to contain 1E+07 particles) 
were placed on 300 mesh hexagonal formvar/carbon-coated Ni 
grids (EMS, United States, FCF300H-Ni-50) and incubated for 
75 min at room temperature (RT). The grids were washed with 
freshly filtered (0.22 µm) PBS and dried with filter paper. Grids were 
then incubated for 15 min with freshly filtered (0.22 µm) 0.2% BSA 
(Roche, Germany, 10735078001) in filtered 1X PBS (w/o) (pH 7.4) 
to block non-specific binding. Next, the grids were incubated with 
a mouse anti-human CD81 antibody (clone JS-81; BD Biosciences, 
United States, 555,675) diluted 1:50 with 0.2% BSA in PBS (pH 
7.4) for 40 min at RT. After washing with filtered PBS, grids were 
incubated with 10 nm colloidal gold-conjugated anti-mouse IgG 
(Sigma-Aldrich, United States, G7652) diluted 1:50 with 0.2% BSA 
in filtered PBS (pH 8.0) for 20 min at RT. Unbound antibodies 
were washed away with filtered PBS. The grids were then fixed 
with 1% freshly filtered glutaraldehyde (Sigma-Aldrich, United 
States, G5882) in PBS (pH 7.4) and washed in ddH2O. Finally, 
the grids were stained with 2% freshly filtered aqueous uranyl 
acetate (Thermo Fisher Scientific, United States, 18-607-644) for 
1 min. After air drying overnight, EV samples (CD81 labeled and 
unlabeled controls) and a buffer background control were examined 
using a Zeiss EM 900 transmission electron microscope equipped 
with a slow-scan CCD 2K wide-angle dual-speed camera (TRS, 
Germany) and ImageSP software version 1.2.11.15 (TRS, Germany 
and SYSPROG, Belarus). 

2.9 Analysis of RNA profile

2.9.1 Isolation of EV and protein fraction
1 mL of cell culture supernatants (n = 4 biological replicates) 

were concentrated to 300 µL using 30 kDa Amicon tubes (Merck 
Millipore, United States). EVs and protein fractions were isolated 
with qEV single columns (70 nm, Gen2, Izon, New Zealand) in 
accordance with the manufacturer’s instructions and concentrated 
to 300 µL for miRNA analysis. 

2.9.2 RNA extraction
2.9.2.1 EV and protein SEC fraction

Total RNA was extracted from 200 μL EV or protein fraction 
using the miRNeasy Mini Kit (cat. No. 217004, Qiagen, Germany). 
Samples were homogenized with 1 mL Qiazol and rigorous mixing 
for 10 s. Then, samples were incubated at room temperature for 
5 min. 200 μL chloroform were added, lysates were mixed again, 
and left at room temperature for 3 min. Afterwards, all samples 
were centrifuged at 120,00 × g for 15 min at 4 °C. Precisely 650 µL 
aqueous phase were transferred to fresh tubes, and 7 µL glycogen 
(5 mg/mL) were added for enhanced precipitation. For binding to 

RNeasy Mini Spin Columns and washing steps, a QIAcube liquid 
handling robot was used. RNA was eluted in 30 µL nuclease-free 
water (RAtissue mean 176.0 ng/μL, Ptissue mean 315.8 ng/μL; 100 ng 
of RNA was used for library preparation) and stored at −80 °C until 
further analysis. 

2.9.2.2 Tissue
Total RNA was extracted from snap-frozen amnion tissue (n 

= 4) using the miRNeasy Mini Kit (Qiagen, Germany). Each 
sample was homogenized with 350 µL Qiazol and lysing matrix Z 
(MP Biomedicals, country) in a Bead Beater FastPrep24 5g (MP 
Biomedicals, Germany) then 350 µL Qiazol were added. Samples 
were then incubated at room temperature for 10 min 140 μL 
chloroform were added to the lysates followed by centrifugation at 
120,00x g for 15 min at 4 °C. Precisely 350 µL upper aqueous phase 
were transferred to fresh tubes. For binding to RNeasy Mini Spin 
Columns and washing steps, a QIAcube liquid handling robot was 
used. RNA was eluted in 30 µL nuclease-free water and stored at 
−80 °C until further analysis. RNA quality and concentration were 
determined with the RNA 6000 Nano Kit (Agilent, Germany). 

2.9.3 Small RNA sequencing
For both the EV and protein fraction, 8.5 µL total RNA 

were used as input for the generation of small RNA sequencing 
libraries, while for the tissue, 100 ng total RNA were used. Libraries 
were generated with the RealSeq Biofluids library preparation 
kit (RealSeq Biosciences). To each sample, 1 µL miND spike-in 
standards (TAmiRNA, Austria) were added during the first step. 
Adapter-ligated libraries were amplified (20 cycles for EV and 
protein fractions; 19 cycles for tissue) using barcoded Illumina 
reverse primers in combination with the Illumina forward primer. 
Library quality control was performed using DNA 1000 chips 
(Agilent, Germany). All samples were pooled equimolarly and 
processed with the Blue Pippin system (Sage Science, United 
States) using 3% agarose size selection cassettes, following the 
manufacturer’s instructions (size range: 130-160 bp). Sequencing 
was performed on an Illumina NovaSeq SP SR100 (Illumina, 
United States). 

2.9.4 Data analysis
2.9.4.1 Next-generation sequencing

Next-generation sequencing (NGS) data was analyzed using 
the miND® analysis pipeline (Diendorfer et al., 2022) and 
evaluated with fastQC v0.11.9 (Andrews, 2010) and multiQC v1.14 
(Ewels et al., 2016). Reads were adapter trimmed and quality filtered 
using cutadapt v3.3 (Martin, 2011). Mapping steps were performed 
with Bowtie v1.3.0 (Langmead et al., 2009) and miRDeep2 v2.0.1.2 
(Friedländer et al., 2012). Reads were initially mapped against the 
genomic reference GRCh38. p12 by Ensembl (Zerbino et al., 2018) 
allowing two mismatches and subsequently against miRBase v22.1 
(Griffiths-Jones, 2004), filtered for microRNAs of hsa, allowing one 
mismatch. For a general RNA composition, non-microRNA mapped 
reads were mapped against RNAcentral v19.0 (Sweeney et al., 2019) 
and assigned to RNA species of interest.

Statistical analysis of NGS data was conducted with R V4.0, 
pheatmap V1.0.12, pcaMethods V1.82 and genefilter V1.72. 
Differential expression analysis was done with edgeR V3.32 
(Robinson et al., 2009) using the quasi-likelihood negative binomial 
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generalized log-linear model functions. The independent filtering 
method of DESeq2 (Love et al., 2014) was adapted for use with 
edgeR to remove low abundant microRNAs. Additional NGS 
quality control and absolute quantification of microRNAs was done 
using miND® spike-ins (Khamina et al., 2022) based on a linear 
regression model. For unsupervised exploration and hierarchical 
clustering, only miRNAs that show an RPM of 5 in at least 33% of 
the samples were included in the heat map and clustering to increase 
robustness. 

2.9.4.2 Venn diagram
To compare the miRNA from each sample type of the supernatant 

(EVs from reflected amnion, EVs from placental amnion, proteins 
from reflected amnion, and proteins from placental amnion) and 
identify common and unique miRNAs among the top 20 most 
abundant miRNAs, Venn diagrams were generated using the ggplot2 
and ggvenn R packages (R version 4.4.0). 

2.9.4.3 Gene set enrichment analysis
Target genes of the top 20 abundant miRNAs were predicted with 

miRWalk database V3. Gene ontology (GO) term enrichment analysis 
was performed with the “ClusterProfiler” R package 4.0 (Wu et al., 
2021). Annotation for biological processes was derived for human 
from org. Hs.e.g.db V 3.21. Significant gene sets were calculated by 
over representation analysis and adjusting for multiple testing using 
Benjamini Hochberg (BH). Gene sets with an adjusted p-value <0.05 
were considered as significantly enriched. Based on the adjusted p-
value derived from the GO enrichment analysis, the 20 top significantly 
biological processes were visualized with ggplot2 v3.4.2 as a dot plot. 
Analyses were performed with R version 4.4.0. 

2.10 Statistics

MiRNA concentration data were analyzed using GraphPad-
Prism software (GraphPad Software 10.1.2, United States) by Mann-
Whitney test. Level of significance was set at 0.05 and is indicated 
as∗∗∗∗p < 0.0001. 

3 Results

Extracellular miRNA can be found either associated with cell-
secreted extracellular vesicles (EVs) or bound to proteins. Before 
analyzing miRNAs using next generation sequencing, we confirmed 
the presence of EVs in our preparations. EVs were enriched from the 
conditioned medium of hAM biopsies and preparations analyzed for 
EV-specific parameters. Beside the particulate SEC elution profile, 
we measured the protein elution profile in the SEC fractions (as is 
outlined in Figure 1). 

3.1 EV biomarkers confirm presence of EVs 
in hAM secretome

After SEC enrichment of placental and reflected hAM 
conditioned media, we measured the protein concentration in each 
SEC fraction to separate the fractions enriched in EVs from those 

low in particles and enriched in proteins (Supplementary Figure S1). 
Then, we tested for EV presence. NTA size distribution analysis 
revealed that most particles were sized ≤200 nm, indicating a 
predominant enrichment of small EVs (sEVs) from both hAM 
regions (Figure 2A)., The median size distribution of around 180 nm 
indicates predominantly small-sized EVs, with P showing higher 
variation (Figure 2B). FT-FC showed that 20%–35% of the lipid dye 
CMG+ events were positive for CD81 (Figure 2C), confirming the 
presence of EV characteristic proteins present on detected particles. 
These data also suggest that the sEV population is heterogeneous 
with some vesicles expressing CD81 and others not. The amount 
of CD9 positive sEVs, another member of the tetraspanin protein 
family, was markedly lower (Figure 2C), while CD63 positive events 
were almost absent (Figure 2C).

We also performed Western blot analysis on isolated sEVs 
using reflected and placental amnion tissue as controls examining 
transmembrane (CD63, CD81, LAMP1), cytosolic (TSG101, 
FLOT1, HSP70, β-actin), and intracellular compartment proteins 
(calnexin) (Figure 2D; Supplementary Figure S2A–C). CD63 and 
CD81 were more abundant in EVs than tissue, while LAMP1 showed 
inverse trends between RA and P regions. Flot-1 and TSG101 were 
higher in tissue, and HSP70 was more abundant in RA tissue, with 
slight variability in EVs. β-actin was significantly lower in EVs. 
Calnexin was highly expressed in tissue but nearly absent in EVs, 
confirming EV purity. While the immunophenotype and size of 
enriched sEVs are indicative of contributions from endosomal 
biogenesis routes, the observed inter-donor variability and 
regional differences in placental topology suggests a heterogeneous 
population, likely comprising both sEVs from endosomal and 
ectosomal origin.

EV morphology and identity were assessed by TEM combined 
with CD81 immunogold labelling. Particles exhibiting the typical 
nearly spherical morphology and negative contrast commonly 
associated with EVs in drop-on-grid stainings were observed. While 
cup-shaped structures were not detected, a subset of these negatively 
contrasted particles showed CD81 positivity (Figure 2E), confirming 
their identity as EVs. Importantly, only CD81-positive particles 
are shown in Figure 2E to demonstrate the presence of EVs in the 
conditioned medium of RA and P, without further morphological 
classification or quantification.

Taken together, these data confirm EV presence in the 
conditioned medium of RA and P. Based on these results, miRNA 
analysis was carried out separately for the “EV fraction” and the 
“protein fraction” in correlation to tissue miRNA preparations. 

3.2 Classification of small RNAs identified 
diverse RNA species in hAM-derived 
samples

Next, we determined the small RNA profile of hAM tissue, the 
EV-fraction and protein fraction of the conditioned medium of 
the placental and reflected region. We found that the main RNA 
repertoire included microRNA (miRNA), transfer RNA (tRNA), 
pivi-interacting RNA (piRNA), ribosomal RNA (rRNA), long non-
coding RNA (IncRNA), messenger RNA (mRNA), small nuclear 
RNA (snRNA), small nucleolar RNA (snoRNA), yRNA, and small 
cytoplasmic RNA (scRNA) (Figure 3A). Tissue samples exhibited 
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FIGURE 2
Characterization of hAM-derived extracellular vesicles. (A) Particle size distribution by nanoparticle tracking analysis (NTA) showed that most particles 
were ≤200 nm; n = 3, mean ± SEM. (B) Median values (X50) of particle size range from 138 nm to 211 nm after 72 h of incubation (x̄ = 177 in RA and x̄ = 
174 in P), n = 3. The majority of particles were ≤200 nm. X50 values are indicated ±SD. (C) Fluorescence-triggered flow cytometry analysis (FT-FC) 
showed that 20%–35% of the EVs were positive for CD81 (x ̄ = 19.55 in RA, x ̄ = 24.40 in P). The expression of CD9 was less pronounced n = 2. (D)
Western Blot analysis showed that CD63 and CD81 were more abundant in EVs than tissue, n = 3. (E) TEM confirmed EV morphologies and CD81 
positive particles (immuno-gold particles (black dots)) in EV preparations from RA and P. scale bar = 100 nm. Abbreviations: human amniotic membrane 
(hAM), extracellular vesicles (EV), placental amnion (P), reflected amnion (RA), flotillin-1 (Flot-1), lysosomal associated membrane protein 1 (LAMP1), 
heat shock protein 70 (HSC70), tumor susceptibility gene 101 (TSG101), cluster of differentiation (CD), transmission electron microscopy (TEM).

the highest percentage of miRNA reads relative to the total mapped 
reads specific to that sample type (15%–40%, mean 28.61 in the 
reflected region and 30.67 in the placental region, Figure 3B). In 
the conditioned medium, we found 2%–15% miRNA in protein-
bound (mean 12.25 in the reflected region and 4.31 in the 
placental region) and 0.3%–1.2% in EV-associated small RNAs 
(mean 0.51 in the reflected region and 0.70 in the placental 
region, Figure 3B). From the total extracellular miRNA pool, 3% 
were EV-associated and 97% were protein-bound from samples 
of the reflected region (Figure 3C), and 6% were EV-associated 
and 94% were protein-bound from samples of the placental 
region (Figure 3D). Comparison of miRNA concentrations of the 
conditioned medium showed significantly higher concentrations 

in the protein fraction of the reflected and the placental region 
compared to the respective EV-fraction (Figure 3E). The total 
number of identified miRNAs was 1,589 in all samples (data not 
shown). To analyze overlaps between the top 20 abundant miRNAs 
of each conditioned medium group (Supplementary Table S1), we 
created a Venn diagram (Supplementary Figure S3). A subset of 11 
miRNAs was consistently detected in both extracellular fractions 
(EV and Protein) for both regions (RA and P). EV-fraction of RA 
and EV-fraction of P share 5 miRNAs, while protein-fraction of RA 
and protein-fraction of P share 4 miRNAs. Only 1 shared miRNA 
was found when analyzing EV-fraction of RA ∩ EV-fraction of P 
∩ protein-fraction of RA or EV-fraction of P ∩ protein-fraction of 
RA ∩ protein-fraction of P or EV-fraction of RA ∩ EV-fraction of 
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FIGURE 3
Classification of small RNAs. (A) Small RNAs were determined by Next Generation Sequencing in the conditioned medium (EV-fraction and 
protein-fraction) and in tissue of the placental and reflected region of the hAM. (B) The highest percentage of miRNA reads relative to all mapped reads 
specific to that sample type was found in tissue samples (15%–40%). 2%–15% were found protein-bound in the conditioned medium, and 0.3%–1.2% 
EV-associated in the conditioned medium. (C,D) From the total extracellular miRNA reads, 3% were EV-associated and 97% were protein-bound from 
samples of the reflected region, and 6% were EV-associated and 94% were protein-bound from samples of the placental region. (E) In the conditioned 
medium, comparison of miRNA concentrations showed significantly higher concentrations in the protein fraction of the reflected and the placental 
region compared to the respective EV-fractions.∗∗∗∗p < 0.0001.

P ∩ protein-fraction of P (∩ = symbol indicating intersection). The 
number of unique miRNAs was 2 for the EV-fraction of RA, 1 for 
the EV-fraction of P, 3 for the protein-fraction of RA, and 3 for the 
protein-fraction of P (Supplementary Figure S3).

3.3 Unsupervised cluster analysis identified 
distinct miRNA profiles in tissue, EV 
fraction, and protein fraction

To detect miRNA expression patterns and to evaluate sample 
type and hAM location similarities, we performed unsupervised 
hierarchical clustering and visualized results in a heat map together 

with a dendrogram. In the heat map, 504 miRNAs are shown 
to identify three specific main clusters (Figure 4). Interestingly, 
these clusters matched according to the sample type, i.e., protein-
fraction, tissue, EV fraction. Different patterns of highly expressed 
miRNA were observed in the protein fraction, in the tissue, and 
the EV fraction. In addition, in each cluster, we found subcluster 
formation according to the region of the amniotic membrane, 
the reflected region and the placental region (Figure 4). Also, the 
dendrogram confirmed that the protein-bound miRNAs and EV-
associated miRNAs are substantially different from each other. 
In addition, the EV associated miRNA profile better reflects the 
miRNA content found in tissue compared to protein-bound miRNA 
expression profiles (Figure 4).
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FIGURE 4
miRNA heat map and dendrogram. Unsupervised hierarchical clustering of miRNA expression. Three main clusters were identified, based on the sample 
type (protein fraction, tissue, and EV fraction). High expression of specific miRNAs was found in each cluster. Subcluster formation corresponding to 
the amniotic regions (placental and reflected amnion) were also observed. n = 4. Abbreviations: extracellular vesicle (EV), placental amnion (P), 
reflected amnion (RA).

3.4 Differential miRNA expression across 
groups and amniotic regions

Next, to identify miRNAs that are over- or underexpressed 
compared to other groups, we used differential expression 
analysis (Figure 5). We found a number of significantly 
upregulated (green bar) and downregulated (purple bar) 
miRNAs when comparing different fractions of RA 
(Figures 5A–C; Supplementary Table S2A–C) and P (Figures 5D–F; 
Supplementary Table S2D–F). In addition, comparison between 
the reflected and placental region showed a number of 
differentially expressed miRNAs between these two amniotic 
regions (Figures 5G–I; Supplementary Table S2G–I). We found 
the most differentially regulated miRNAs when we compared 
protein-bound and tissue miRNAs in the reflected amnion (82 
up-regulated/123 down-regulated) and the placental amnion (51 up-
regulated/71 down-regulated). The lowest number of differentially 
regulated miRNAs was found when comparing EV-associated 
miRNAs between reflected and placental region (1 up-regulated/2 
down-regulated).

3.5 Gene ontology enrichment analysis 
reveals distinct functional pathways for 
miRNAs across sample types and regions

To evaluate possible biological functions of miRNAs identified 
in our study, we performed gene ontology enrichment analysis 
with the 20 most abundant miRNAs per fraction. On one hand, 

EV-associated and protein-bound miRNAs are of interest as 
released miRNAs can be taken up by acceptor cells. On the other 
hand, intracellular miRNAs are also of interest as they most 
likely impact the amniotic gene regulation/expression (Figure 6; 
Supplementary Table S3). Among the 20 most significantly enriched 
pathways, analyses showed predominantly ubiquitous cellular 
pathways, such as cellular senescence, response to insulin, cell 
differentiation or response to hypoxia. In addition, EV-associated 
miRNAs (Figures 6A,B) and tissue miRNAs (Figures 6E,F) are 
involved in various muscle and smooth-muscle cell related 
pathways, whereas protein-bound miRNAs (Figures 6C,D) are more 
involved in pathways related to glial cells, connective tissue, and 
chondrogenesis.

3.6 Correlation analysis revealed distinct 
secreted EV-associated/protein-bound 
miRNAs

Finally, we analyzed if the extracellular abundance of miRNAs 
correlates with the miRNA abundance in the tissue to identify 
enrichment of EV-associated or protein-bound miRNAs. (Figure 7). 
In the EV-associated fraction, we found 6 miRNAs in RA (Figure 7A; 
Supplementary Table S4A) and 5 miRNAs in P (Figure 7B; 
Supplementary Table S4B), which may specifically be loaded into 
EVs in these regions. Correlation of the protein-bound fraction 
with the tissue fraction showed 37 miRNAs in the RA (Figure 7C; 
Supplementary Table S4C) and 25 miRNAs in the P region 
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FIGURE 5
Summary of differential miRNA expression analysis. Within the groups 
of reflected (A–C) and placental amnion (D–F), miRNA expressions of 
the sample fractions (EV-associated, protein-bound and tissue) were 
compared. Additionally, miRNA expressions of the amniotic regions 
reflected (RA) versus placental amnion (RA) were compared (G–I). 
EV-associated miRNAs, protein-bound miRNAs or miRNAs of reflected 
and placental amnion showed differentially up- or downregulated 
miRNAs. Numbers of significantly up/downregulated miRNAs with a 
false discorvery rate (FDR) < 0.05 are represented in a bar chart. 
Upregulated = logFC >0; down-regulated = logFC <0.

(Figure 7D; Supplementary Table S4D), which may specifically be 
released in the extracellular space but not packed into EVs.

4 Discussion

Although the hAM plays a pivotal role during pregnancy 
and birth, there are still many open questions regarding the 
regulation of various processes in the hAM. For example, to 
this day, the interactions between the hAM, the amniotic fluid 
and the fetus during pregnancy are not well understood and 
partially unknown. Biological and secretory functions of amniotic 
cells affect the biochemical composition of the amniotic fluid 
(Kumar et al., 2006) and could play a role for the development 
of the fetus (Lemke et al., 2017; Shamsnajafabadi and Soheili, 
2022). Moreover, processes in the hAM might also contribute to 
the onset of labor (Menon and Fortunato, 2004; Menon, 2019). 
Given the substantial bioactivity of the tissue, the use of hAM, 
its cells, or its conditioned medium has been suggested for a 
number of tissue regeneration procedures, due to their high 
regenerative potential (Silini et al., 2020; Janev et al., 2023). Since 
miRNAs are known to influence physiological/pathophysiological 
signal transduction by modulating the availability of signaling 
components, we aimed at assessing a comprehensive miRNA 

profile of the hAM. We investigated the abundance of miRNAs in 
hAM tissue and hAM conditioned medium. Among the miRNAs 
found in the conditioned medium, we further differentiated 
between EV-associated (vesicular) and protein-bound miRNAs
(non-vesicular).

It is assumed that miRNAs are secreted to be taken up by 
surrounding cells (Makarova et al., 2016). One possible application 
of the hAM or its cells for therapeutic applications is the production 
of secretome preparations to make use of released factors. Therefore, 
one aim of our study was to investigate the ex vivo miRNA secretion 
behavior of the hAM. In general, we found that miRNA levels 
in the tissue were much higher compared to the fractions in 
conditioned medium (EV-associated and protein-bound). In the 
conditioned medium, we found higher levels of protein-bound 
miRNAs compared to EV-associated miRNAs. This is in line with 
studies of human blood plasma (Arroyo et al., 2011) and conditioned 
medium from MCF7 cells (Turchinovich et al., 2011). In these 
studies, most of the extracellular miRNAs were of non-vesicular 
origin and only a minority of miRNAs was associated predominantly 
with vesicles. A possible explanation has already been suggested 
by others (Geekiyanage et al., 2020). It is likely that under normal 
conditions, cells release predominantly protein-bound miRNAs 
whereas under pathological conditions, levels of EV-associated 
miRNAs increase (Geekiyanage et al., 2020). If this is the case, 
this needs to be taken into consideration for the production of 
therapeutic EVs of the hAM or its cells, including strategies such 
as inflammatory/hypoxic priming into the preparation protocol. 
This could pave the way for more specifically tailored therapy 
approaches that could be designed through specific stimulations. 
Alternatively, a maintained cell viability within the grafting material 
may allow an adapted secretory response to the local pathology upon 
transplantation.

The fact that some miRNAs are released via EVs and some 
bound to proteins suggests that the secretion of miRNAs in the 
hAM happens in a specific manner, which was also demonstrated 
by hierarchical cluster analysis. The observed miRNA expression 
patterns reveal three distinct signatures across sample types, 
suggesting that specific miRNAs may play a role in the cellular 
processes of the hAM. This also means that the choice of sample 
type could have an impact on the therapeutic effect of the hAM. 
Interestingly, when analyzing similarities, protein-bound miRNAs 
were substantially different compared to EV-associated and tissue 
miRNAs, and EV-associated miRNAs were more similar to tissue 
miRNAs. The former could be explained by the assumption that 
protein-bound extracellular miRNAs may have signaling functions 
that differ from those of vesicle-associated miRNAs. This difference 
could provide hAM cells with a flexible range of signaling 
options, again implying that the type of secretome preparation for 
therapeutic applications may have an influence on the outcome. 
In this context, Castoldi and colleagues observed that serum 
vesicular- and non-vesicular miRNAs were modulated differently 
in animals recovering from partial hepatectomy (Castoldi et al., 
2016), leading to the speculation that this may help coordinate 
responses in both close and distant cells during the various phases 
of liver regeneration (Castoldi et al., 2016). Regarding non-vesicular 
miRNAs, it has been discussed that these could be mostly by-
products of dead cells (Turchinovich et al., 2011). However, the 
fact that protein-bound miRNAs of the hAM show a specific 
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FIGURE 6
(Continued).

pattern that differs from that of the tissue, indicates that these 
miRNAs are not merely passively released from dead cells of
the hAM.

Beside cluster trees according to the sample type, we found 
two sub-trees according to the two sub-regions of the amniotic 
membrane, the reflected and the placental region, in each sample 
type. This is in accordance with previous studies, where we and 
others have shown that cells of the two amniotic sub-regions, 
reflected and placental, have different cellular and metabolic 
properties (Weidinger et al., 2021). In the light of tissue regeneration 
processes, this could be another important indicator to utilize 
the sub-regions of the hAM for different therapeutic purposes. 
Regarding metabolism, it has been shown that mitochondrial 
respiratory chain activity and intracellular adenosine triphosphate 
levels affect the exporting process of miRNAs (Wang et al., 
2010; Chatterjee et al., 2021). Of note, it has been shown that 
mitochondrial activity and ATP levels are different in the placental 

and reflected region of the hAM (Weidinger and Banerjee, 2020), 
which may influence the exportation of miRNAs.

To further identify most suitable sample types as the source 
of specific miRNAs for tissue regeneration, we also performed 
differential analysis of miRNA abundance. Regarding the amniotic 
regions, we found 75 differentially expressed miRNAs between 
the reflected and the placental amnion in the three sample types. 
For example, miR-143 and miR-145 were upregulated in the 
placental amnion and downregulated in the reflected amnion. This 
is in line with a previous study, where the authors pointed to 
a possible effect on parturition (Kim et al., 2011). Accordingly, 
miR-143 and miR-145 have recently been suggested to play an 
important role in the breakdown of the cervical epithelial barrier by 
targeting cell adhesion and anti-apoptotic genes (Anton et al., 2017). 
Furthermore, it has been shown that miR-143-3p is involved in 
vascular adaptation during pregnancy (Liu et al., 2023). This miRNA 
plays a key role in uterine spiral artery remodeling by inducing 

Frontiers in Cell and Developmental Biology 11 frontiersin.org

https://doi.org/10.3389/fcell.2025.1692501
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Chaves-Solano et al. 10.3389/fcell.2025.1692501

FIGURE 6
(Continued).

vascular smooth muscle cell apoptosis to promote the development 
of extravillous trophoblast differentiated cells (Liu et al., 2023). 
During placental development, extravillous trophoblasts remodel 
about 100–150 uterine spiral arteries, transforming them from high-
resistance, low-flow vessels to high-flow, low-resistance channels 
(Lyall, 2005). These processes involve placenta and changes are 
critical for proper placentation and fetal development (Burton et al., 
2009). In a regenerative context, it has been shown that cortisol-
induced miR-143/145 expression in monocytes suppresses M1 
macrophages and supports polarization to M2 macrophages, a 
state that has been associated with resolving inflammation and 
support of tissue regeneration (Sharma et al., 2024). This is just one 
example where miRNA, which was probably originally produced 
for the processes before and during birth, could be used for 
therapeutic purposes.

We also conducted a gene ontology enrichment analysis to 
explore the potential biological functions of the miRNAs identified 
in our study. Interestingly, among the top 20 pathways, beside 
pathways linked to broader cellular processes, we identified several 

pathways significantly associated with muscle, smooth muscle and 
cardiac muscle proliferation as target tissues of EV-associated 
miRNA and tissue miRNA. Throughout embryonic development, 
muscle formation is a continuous process. By 31–33 weeks of 
gestation, human prenatal muscle growth involves an increase 
in type I muscle fibers, and skeletal muscle cells likely become 
multinucleated (Romero et al., 2013). Three key factors appear 
to influence muscle maturation including cell fusion, alignment 
of fusing cells, and filament synthesis. Disruptions in any of 
these factors may result in muscle fiber abnormalities early in 
muscle development. Given the importance of these developmental 
processes, it is not surprising that miRNAs associated to muscle cell 
development are highly present in the EVs and tissue of hAM. These 
miRNAs likely play a regulatory role in muscle cell development and 
maturation during fetal development.

However, these data are not only interesting regarding 
the process of fetus development and pregnancy, also possible 
conclusions for tissue regeneration could be drawn. Enhancing 
cardiac muscle proliferation could transform treatments for heart 
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FIGURE 6
(Continued). Gene ontology (GO) enrichment analysis of biological processes. The 20 most abundant miRNAs from each fraction (EV-associated, 
protein-bound, or tissue) and amniotic region (reflected or placental) were analyzed. EV-associated miRNAs (A,B) and tissue miRNAs (E,F) were related 
to muscle and smooth muscle development pathways. Protein-bound miRNAs (C,D) were prominently linked to pathways connected to glial cells, 
connective tissue, and chondrogenesis. Adjusted p-value <0.05 were considered as significantly enriched. The x-axis represents the significance of 
each pathway as [-log10 (adjusted p-value)]. The size of each circle represents the number of genes associated with the GO term and the color 
indicates the adjusted p-value.

failure, a leading cause of morbidity and mortality worldwide. 
Recently, it has been shown that human amniotic fluid-derived 
stem cell EVs promote cardiac repair and stimulate regeneration by 
modulating endogenous mechanisms through paracrine signaling 
after a single intra-myocardial injection (Balbi et al., 2019). 
Integrating miRNA therapy with stem cell secretome strategies could 
further optimize cardiac repair and regeneration interventions.

When analyzing protein-bound miRNAs, we found 
pathways linked to connective tissue development, chondrocyte 
differentiation, and glial cell proliferation among the top 20 
biological functions. Gliogenesis is an important mechanism 
to maintain and regulate brain function in the late phase of 
development but also after birth (Arai and Lo, 2017). Regarding 

tissue regeneration, studies have also shown that the number of 
glial cells increases significantly in response to injury (Ardaya et al., 
2025), supporting tissue repair (Stassart et al., 2013).

It has been shown that the cell-free transcriptome (Tarca et al., 
2020) and proteome (Bhatti et al., 2022) of the amniotic fluid change 
with gestational age, supporting the speculation that the amniotic 
fluid could be a means of transportation to support the development 
of the fetus (Tong et al., 2009). In this context, miRNAs of the hAM 
released to the extracellular space are of special interest because 
these miRNAs could also play a role for tissue regeneration. We 
therefore analyzed if cells in hAM tissue secreted EV-associated and 
protein-bound miRNAs selectively. For this purpose, we performed 
correlation of extracellular abundance of miRNAs and tissue 
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FIGURE 7
(Continued).

abundance to identify miRNAs which may specifically be loaded 
into EVs or bound to proteins. Interestingly, among those found, 
many were related to neuroprotection/regeneration. In line with this, 
Castelli et al. found similar results when analyzing the exosomal 
fraction of human amniotic fluid samples (Castelli et al., 2021).

Accordingly, we identified several selectively released miRNAs 
in the EV fraction in both RA and P that are known to play roles 
in brain and peripheral nerve function and regeneration. These 
include hsa-let-7c-5p, hsa-miR-574-5p, hsa-miR-184, hsa-miR-483-
5p, and hsa-miR-423-5p. MiRNA hsa-let-7c-5p has been shown 
to support nerve regeneration by inhibiting neuroinflammation, 
reducing microglial activation (Lv et al., 2018), and promoting 
myelination through Krox20 expression (Gökbuget et al., 2015). In 
a mouse model, overexpression of miR-574-5p in the hippocampus 
reduced β-site amyloid precursor protein cleaving enzyme 1 

(BACE1 levels), restored synaptic function, and improved memory 
impaired by pollution exposure (Ku et al., 2017). Following ischemic 
stroke in rats, it has been demonstrated that miR-184 expression 
changes in the brain (Yang et al., 2021). This study also revealed 
that overexpressing miR-184 increased cell viability and reduced 
apoptosis in SH-SY5Y cells subjected to oxygen-glucose deprivation 
and reoxygenation in vitro (Yang et al., 2021). Similarly, miR-483-
5p has been shown to regulate neuronal metabolism and help 
mitigate neurological injury following cardiac arrest by decreasing 
the expression of the pro-apoptotic protein Bax, thereby inhibiting 
the release of cytochrome c from mitochondria (Zhang et al., 
2023). Finally, in a rat model of spinal cord injury, miR-423-5p 
modulated inflammation by targeting the NLRP3 inflammasome, 
preventing M1 microglial polarization, and promoting recovery
(Cheng et al., 2021).
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FIGURE 7
(Continued). Correlation of tissue miRNAs and extracellular expression. Spearman correlation of (A) EV-associated and tissue level of miRNAs of 
reflected amnion, (B) EV-associated and tissue level of miRNAs of placental amnion, (C) protein-bound and tissue level of miRNAs of reflected amnion, 
and (D) protein-bound and tissue level of miRNAs of placental amnion. miRNAs with an FDR <0.05 and an absolute logFC >2 are highlighted and labeled 
(yellow = extracellular, blue = tissue). The grey line represents a perfect correlation with a slope of 1. For the list of miRNAs see Supplementary Table S4.

In addition, we also found several miRNAs in the protein 
fraction, such as hsa-miR-21-5p, hsa-miR-340, hsa-miR-221-3p, 
and miR-210 that have been shown to be implicated in nerve 
regeneration. Hsa-miR-21-5p and hsa-miR-221-3p have been shown 
to inhibit apoptosis and enhance cell viability (Zhou et al., 2015). 
Specifically, miR-21-5p promotes axon growth in dorsal root 
ganglion (DRG) cultures (Ning et al., 2020; Kar et al., 2021) and 
inhibits nerve inflammation and neuropathic pain (Zhong et al., 
2019). MiR-21 further supports Schwann cell proliferation and 
axon regeneration by potentially targeting TGFβI, TIMP3, EPHA4, 
and caspases-3 and -9 (Ning et al., 2020). Additionally, the 
hsa-miR-221/222 cluster is reported to regulate Schwann cell 
phenotype, proliferation, and migration in vivo (Yu et al., 2012). 

Overexpression of miR-210 may support sensory axon regeneration 
and apoptosis inhibition via ephrin-A3 (Hu et al., 2016). In 
addition, inhibition of endogenous miR-210 in DRG neurons 
impairs axon regeneration both in vitro and in vivo (Hu et al., 
2016). MiR-340 influences fibrinolytic activity and enhances 
Schwann cell migration by modulating tissue plasminogen activator 
secretion (Li et al., 2017). In a rat model of chronic constriction 
injury, miR-340 overexpression also reduced inflammation as 
well as the expression levels of cyclooxygenase 2, interleukin-
1β, tumor necrosis factor α and interleukin-6. Some of the 
neuroprotective miRNAs that were selectively released, such as hsa-
miR-21-5p, hsa-miR-221-3p and hsa-miR-483-5p are also found 
among the top-most abundant miRNAs. Taken together, these 
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data suggest neuroprotective effects of the conditioned medium of
the hAM. 

5 Conclusion

The analysis of miRNAs of the hAM opens an entire new world 
for the understanding of this remarkable tissue. Many properties of 
the hAM have been thoroughly investigated and described, yet when 
it comes to the situation in utero, these properties do not quite fall 
into place. It is not clear, if miRNAs, involved in smooth muscle, 
muscle or cardiac muscle functions, are required by the fetus, the 
mother, or both. In addition, the distinct packaging of miRNAs 
seems to play an important role for the subsequent molecular 
function. Consequently, this study raised several new questions that 
will require further investigation. The analysis of the miRNA profile 
was a first step. However, miRNAs are known to act in a complex 
manner and different ways to fine-tune levels of specific proteins that 
are involved in various signaling pathways. Thus, further studies are 
necessary to investigate the actual effects of miRNAs. In addition, 
the hAM is formed very early during gestation and expires with 
childbirth. This means, our analysis is merely a snapshot in time. It is 
very likely that different miRNA profiles are expressed and secreted 
at different time points.

Further studies are also necessary to examine if amniotic 
miRNAs are active and which functions - activation or repression 
- are executed by a single miRNA or cluster of miRNAs under 
certain circumstances. This will not only help to better understand 
tissue regeneration processes but also provide more information 
about gestation, the onset of labor and the hAM in general, a tissue 
every single human life was nurtured and protected with before 
being born.
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