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A spatially resolved single-cell 
landscape of colorectal cancer 
liver metastasis reveals a 
stromal-tumor glycolytic 
signaling interaction
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Background: Colorectal cancer (CRC) remains a leading cause of cancer 
mortality, with liver metastasis being the principal determinant of poor 
prognosis, but the spatial mechanisms orchestrating metastatic niches 
remain elusive.
Method: To dissect the molecular and spatial dynamics of CRC progression, 
we constructed an integrative atlas using 35 single-cell RNA-seq datasets and 
spatial transcriptomics from primary tumors, liver metastases, and matched 
normal tissues. Malignant epithelial subpopulations were stratified via inferCNV 
and CytoTRACE analyses. Stromal-tumor interactions were dissected using 
CellChat and NicheNet, with functional validation through in vitro co-culture 
and immunohistochemistry.
Result: We identified a transcriptionally distinct epithelial subpopulation, 
termed high-malignancy CRC (High-M CRC), enriched in metastatic lesions 
and characterized by enhanced stemness, MYC-driven transcriptional activity, 
and glycolytic reprogramming. Stromal-tumor interaction analyses revealed 
that cancer-associated fibroblasts (CAFs), particularly matrix CAFs (mCAFs), 
promote malignant progression via the HGF-MET-MYC signaling axis. Spatial 
transcriptomic mapping confirmed the physical proximity and molecular co-
localization of High-M CRC cells and mCAFs, along with enriched glycolysis 
and MYC expression at the cell-cell interface. In vitro functional validation 
demonstrated that CAF-derived HGF activates MET-MYC signaling in CRC 
cells, enhancing their invasion and proliferation—effects reversible by MET 
knockdown.
Conclusion: We unveil a spatially organized metabolic niche driven by stromal-
tumor HGF-MET-MYC signaling. These findings offer novel insights into the 
stromal-tumor interaction and suggest actionable targets for therapeutic 
intervention in CRC.
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Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed 
malignancy and the second leading cause of cancer-related mortality 
worldwide, with over 1.9 million new cases and nearly 935,000 
estimated deaths annually (Matsuda et al., 2025). Metastasis, 
particularly to the liver, remains the primary determinant of CRC 
prognosis, with over 50% of patients developing liver metastases 
(CRLM) during the disease progression. Despite advances in 
systemic therapies, the 5-year survival rate for metastatic CRC 
(mCRC) remains below 20% (Zhou et al., 2022). Over the past 
decade, research has increasingly focused on the role of the tumor 
microenvironment (TME) in supporting metastatic progression, 
including the interaction between cancer cells, immune populations, 
stromal components, and their dynamic reprogramming during 
dissemination (Chu et al., 2024; Almusawi et al., 2021). 
However, traditional bulk transcriptomics often mask the cellular 
heterogeneity inherent to CRC progression and fail to capture 
the intercellular communication which is critical to metastatic 
colonization.

The advent of single-cell RNA sequencing (scRNA-seq) and 
spatial transcriptomics (ST) technologies has revolutionized 
cancer research by allowing high-resolution dissection of tumor 
ecosystems. These approaches enable the precise deconvolution 
of heterogeneous cellular populations, identification of rare or 
transitional phenotypes, and characterization of cell-specific gene 
expression profiles within their native spatial contexts (Jain and 
Eadon, 2024; Lei et al., 2021). In CRC, scRNA-seq has been 
employed to reveal hierarchies of stem-like tumor epithelial 
cells, immune evasion mechanisms, and the immunosuppressive 
landscape of the TME (Wang et al., 2023). For instance, Lin et al. 
identified distinct transcriptional states of tumor epithelial cells 
with different activity of cancer stemness, while Chu et al. mapped 
diverse T cell phenotypes and the immune evasion mechanisms 
in CRC tumors, highlighting immune cell dysfunction in tumors 
(Chu et al., 2024; Lin et al., 2024). Beyond epithelial and immune 
cells, a growing body of work has underscored the central role 
of stromal components, particularly cancer-associated fibroblasts 
(CAFs), in shaping tumor behavior (Kobayashi et al., 2022).

CAFs, a functionally diverse and phenotypically plastic 
population of stromal cells, are now recognized as key components 
of the TME. Emerging evidence highlights the active role of CAFs 
in tumorigenesis. Abundant scRNA-seq studies across multiple 
cancer types, including pancreatic, breast, and colorectal cancers, 
have revealed that CAFs can be classified into distinct subtypes 
with specialized functions, such as extracellular matrix (ECM) 
remodeling, immunomodulation, and metabolic reprogramming 
(Zhang et al., 2023; Pei et al., 2023). Beyond structural support, 

Abbreviations: CAF, Cancer-associated fibroblasts; CRC, Colorectal cancer; 
CRLM, Colorectal liver metastasis; DEGs, Differentially expressed genes; 
HGF, Hepatocyte growth factor; High-M CRC, High-malignancy colorectal 
cancer (subpopulation); IHC, Immunohistochemistry; mCAFs, Matrix 
cancer-associated fibroblasts; MET, Mesenchymal-epithelial transition 
factor; MYC, MYC proto-oncogene, bHLH transcription factor; scRNA-
seq, Single-cell RNA sequencing; ST, Spatial transcriptomics; TME, Tumor 
microenvironment; inferCNV, Inference of copy number variations; GO-BP, 
Gene Ontology-biological process.

CAFs can enhance tumor proliferation and invasiveness via 
paracrine signaling. Importantly, several studies have shown 
that CAFs can reprogram cancer cell by promoting lipid and 
glucose metabolisms, either through direct metabolite exchange 
or paracrine signaling (Zhang et al., 2022; Niu et al., 2024; 
He et al., 2025). In CRC, CAFs have been implicated in promoting 
tumor growth, mediating resistance to therapy, and facilitating 
immune evasion through secretion of cytokines, growth factors, 
and matrix components. Importantly, CAFs engage in dynamic 
crosstalk with malignant cells, contributing to the establishment 
of a tumor-promotive niche (Kobayashi et al., 2022). Despite this, 
the precise spatial and molecular mechanisms underlying CAF-
tumor interactions in metastatic CRC remain poorly understood, 
particularly within liver metastatic lesions where the stromal 
landscape is uniquely reprogrammed.

To address these knowledge gaps, we constructed an integrated 
single-cell and spatial atlas of CRC ecosystems, analyzing 35 
publicly available scRNA-seq datasets encompassing normal 
colorectal tissue, normal liver, primary CRC tumors, and matched 
liver metastases. Using a comprehensive analytic pipeline, we 
identified a transcriptionally and metabolically distinct epithelial 
subpopulation, termed High-Malignancy CRC (High-M CRC), 
that is enriched in liver metastases and characterized by 
enhanced stemness and elevated glycolytic activity. Notably, this 
subpopulation exhibited myelocytomatosis oncogene (MYC)-
driven transcriptional programming and engaged in spatially 
restricted interactions with certain subtypes of CAFs via the HGF-
MET signaling axis. Spatial transcriptomics further validated the 
co-localization of these vital cells or factors, revealing a tightly 
organized metastatic ecosystem.

The structure of this study reflects the stepwise logic of our 
investigation, beginning with a pan-tissue comparisons. We focus 
on the malignant hierarchy within the epithelial compartment, 
followed by investigation into the stromal-tumor communication. 
Finally, we integrate ST data to illustrate these interactions within 
the physical landscape of the metastatic niche. This multi-layered 
research not only strengthens our understanding of the spatial 
and cellular dynamics of CRC progression, but also provides a 
conceptual framework for identifying intervention points within 
cancer metastasis.

Materials and methods

Datasets acquisition and data 
preprocessing

A total of 35 single-cell RNA-seq (scRNA-seq) datasets and 
two spatial transcriptomics datasets of CRC were retrieved from 
the GEO database (accessions GSE231559: samples GSM7290760-
GSM7290785, GSE234804: samples GSM7474991-GSM7474999; 
GSE226997: sample P1 and P4). The scRNA-seq datasets 
encompasses CRC primary tumors (n = 9), matched liver metastases 
(n = 15), normal colorectal tissues (n = 3), and normal liver tissues (n 
= 8). Bulk RNA-seq data of CRC was collected from COAD (colon 
adenocarcinoma) dataset (n = 471) form The Cancer Genome Atlas 
(TCGA) database. We first performed stringent quality control on 
each independent sequencing library. Low-quality cells were filtered 
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out based on the following criteria: high mitochondrial gene content 
(>25%) and fewer than 3 genes detected. Furthermore, only genes 
detected in at least 200 cells were retained. We employed the Seurat 
workflow for standardizing the raw count data. The ‘NormalizeData’ 
function was used to perform library size normalization for each cell, 
followed by log-transformation. The ‘FindVariableFeatures’ function 
was used to identify the top 2000 highly variable genes. Gene 
expression values were then scaled using the ‘ScaleData’ function, 
during which we regressed out the variable of mitochondrial 
gene percentage. To remove technically driven batch effects, we 
integrated the data using the widely recognized Harmony algorithm. 
The effectiveness of batch correction was visually confirmed by 
UMAP plots colored by sample origin, demonstrating effective 
mixing of cells from different cohorts while preserving biologically 
distinct clusters (Supplementary Figure S1B). Using the R package 
“Seurat” (v4.0) in the scRNA-seq raw data processing, we performed 
unsupervised clustering at resolution = 0.2 and annotated cell 
types based on canonical lineage markers. Data normalization 
was performed using LogNormalize function with a scale factor 
of 10,000. Gene expression values were log2-transformed and 
normalized using Transcripts Per Million (TPM). Cell clusters 
were identified via Seurat’s FindClusters function, and cell types 
(e.g., fibroblast, macrophage, T cell) were annotated using well-
defined marker genes. Differentially expressed genes (DEGs) 
were determined at the cut-off values of pct = 0.25 and logFC 
= 0.25. R package “CellChat” (v1.6.0) was applied to dissect 
interaction networks between different cell types. Interaction 
weights and pathway strengths were calculated using default
parameters. 

Malignant epithelial stratification and 
fibroblast subclustering

Epithelial cells were isolated and subclustered at resolution = 
0.2 to identify 9 transcriptional states. Malignancy stratification 
integrated inferCNV chromosomal expression aberrations and 
tissue distributions. InferCNV (infer copy number variation) 
is employed to explore tumor scRNA-seq datasets to detect 
evidence of large-scale somatic chromosomal copy number 
alterations, such as gains or losses of entire chromosomes or 
large chromosomal segments. Specifically, clusters with inferCNV 
>3,300 classified as High-M CRC, inferCNV 2,300 to 3,300 
as Low-M CRC, and inferCNV <2,300 as normal epithelium. 
The R package “CytoTRACE2” was used to quantify stemness 
potentials, while pseudotemporal trajectories were reconstructed 
using R package “Monocle2” based on top 2,000 variable genes. 
Distribution validation included Fisher’s exact test significance, 
along with OR (odds ratio) and Ro/e (observed/expected) ratios by 
calTissueDist function.

Fibroblast heterogeneity was resolved through subclustering 
at resolution = 0.2 based on marker expression and tissue 
distribution, characterizing their protumorigenic metabolic 
reprogramming and pathway activities to establish the mechanistic 
foundation for stromal-tumor crosstalk in metastatic CRC. Six 
CAF subtypes (mCAFs, myCAFs, iCAFs, neuro-like CAFs, EMT-
like CAFs, and NFs) were defined based on consensus marker 
and literature-derived profiles (Lavie et al., 2022; Tsoumakidou, 

2023). The lists of top expressed genes can be referred in
Supplementary Material. 

Functional analysis and metabolic profiling

Gene functional and metabolic analyses were used to estimate 
the stemness properties, oncogenic pathway enrichment, and 
glycolytic dependencies in epithelial subpopulations and fibroblast 
subtypes. Transcriptional signatures underwent multi-method 
interrogation, including HALLMARK pathway enrichment used 
four irGSEA algorithms (AUCell, UCell, singscore, and ssGSEA). 
Gene Ontology-biological process (GO-BP) terms were analyzed 
via R package “clusterProfiler” (FDR <0.05). Metabolic flux 
quantification applied R package “scMetabolism” to KEGG and 
Reactome pathways, computing glycolysis and OXPHOS activity 
scores as gene set z-scores. Differential gene expression was 
determined using Seurat’s FindMarkers (Wilcoxon test, thresholds 
logFC = 0.25, pct = 0.25, FDR <0.05). 

Transcriptional regulator prediction

Transcriptional factor (TF) activity screening in High-M 
CRC was performed using dual computational frameworks. The 
DoRothEA algorithm employed regulon-based TF activity inference 
via VIPER scoring with normalized enrichment score (NES) 
thresholds >1.5 and permutation p-value <0.01. The Metascape tool 
leveraged integrated TF-target databases (e.g., TRRUST, ENCODE) 
to prioritize regulators using hypergeometric enrichment tests (FDR 
<0.05). TFs were ranked by combinatorial significance across both 
platforms, with spatial validation of MYC expression patterns 
through density UMAP. 

Bulk transcriptomic correlation analysis

Bulk transcriptomic correlation analysis was performed to 
validate scRNA-seq-derived ligand-receptor interactions using 
TCGA-COAD cohort data. Raw FPKM values were converted to 
TPM, log2 (TPM+1) transformed. Pairwise Pearson correlations 
between target gene pairs (e.g., MET-MYC, HGF-MYC) were 
computed using the ENCORI platform with strict filtering. 

Cell-cell and ligand-receptor interaction 
analysis

Cellular crosstalk analysis was performed to quantitatively 
resolve ligand-receptor interactions between CAF subtypes and 
epithelial subpopulations using an integrated framework combining 
R package “CellChat” and “NicheNet”. Communication probabilities 
and pathway flux quantifications established dominant senders and 
receivers. NicheNet prioritized key ligands using the fibroblast 
subtype-specific genes (logFC >1.5 vs. other fibroblasts; p < 0.05) 
against High-M CRC-specific receptors (logFC >1.5 vs. normal; pct 
≥ 0.1; p < 0.05), limiting to genes expressed in more than 10% target 
cells and requiring Pearson correlation >0.85 for target predictions. 
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Spatial expression and distribution analysis

Each spatial transcriptomics sample was independently 
normalized using the SCTransform method, which corrects for 
library size differences and technical covariates via regularized 
negative binomial regression. As the two spatial samples were 
analyzed separately, no cross-sample integration was performed. 
Spatial validation framework was performed to spatially resolve 
HGF-MET-MYC-glycolysis interactions through independent 
analysis of two CRC transcriptomics datasets (GEO: GSE226997 
P1/P4) using AddModuleScore function for region-specific cell 
state mapping (top 100 logFC-ranked markers for mCAFs and 
High-M CRC), metabolic activity quantification, and ligand-
receptor co-localization, thereby confirming juxtaposed niches 
of mCAFs and High-M CRC exhibiting spatially coupled HGF-
MET signaling, MYC activation, and glycolytic hotspots in
metastatic lesions. 

Cell culture

The cell lines utilized in this research were obtained from 
the American Type Culture Collection (ATCC, Manassas, United 
States). HCT-116 and COLO205 cells were maintained in Minimum 
Essential Medium (MEM), with each medium containing 10% 
fetal bovine serum (FBS) (Gibco, Shanghai, China). These cell 
lines were incubated at 37 °C in a 5% CO2 atmosphere within a 
humidified chamber. 

Immunohistochemistry (IHC) analysis

Immunohistochemistry (IHC) was performed to detect target 
proteins in primary CRC tissue samples. The protocol proceeded 
as follows: Tissue sections were first incubated at 55–60 °C for 2 h, 
followed by deparaffinization in xylene and gradual rehydration 
through an alcohol gradient (95%, 85%, and 75%).

For antigen retrieval, slides were immersed in EDTA buffer and 
subjected to microwave treatment - 6 min at medium-high power 
followed by 15 min at medium-low power. To block endogenous 
peroxidase activity, samples were treated with 3% hydrogen peroxide 
for 15 min, then incubated with goat serum for 30 min at room 
temperature (25 °C).

Primary antibody incubation was carried out at 4 °C overnight, 
followed by secondary antibody application at room temperature 
for 30–60 min. Finally, sections were developed using 3,3′-
Diaminobenzidine (DAB), counterstained with hematoxylin, and 
imaged using a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan). 

Enzyme-linked immunosorbent assay 
(ELISA)

The Human HGF ELISA Kit protocol was followed to quantify 
HGF levels. Briefly, culture media samples from CRC cells were 
added to the assay plates, followed by incubation with HGF 
antibody at room temperature for 1 h. After six PBST washes, TMB 
Development Solution was added for 15 min before terminating the 

reaction with 100 µL of Stop Solution. Optical density readings were 
taken at 450 nm and 570 nm. 

Lentivirus infection and cell transfection

HGF sequence was cloned into a lentiviral vector and transduced 
into HEK293T cells for viral amplification. The resulting lentiviral 
particles were then purified and used to infect CAFs, establishing 
stable overexpression cell lines. Successful transduction was 
achieved through puromycin selection over a 14-day period. 

Transwell assays

Cell suspensions were prepared in serum-free medium. The 
lower chamber of a 24-well Transwell plate (8 μm pore size; Corning, 
United States) was filled with 600 μL of medium containing 5% FBS, 
while 300 μL of cell suspension (2 × 105 cells) was added to the 
upper chamber. After 12 h of incubation at 37 °C in a humidified 
atmosphere, the cells were fixed with 4% paraformaldehyde for 
30 min and stained with crystal violet for 20 min. Invading cells were 
quantified by counting three random fields per well using ImageJ 
software based on images captured with an inverted microscope. 

CCK-8 cell viability assay

Cells were plated in 96-well plates at a density of 2,000 cells/well 
in 100 μL of complete medium. After 24 h of incubation, the 
medium was replaced with 100 μL of fresh complete medium 
containing 10 μL CCK-8 reagent. Following incubation, absorbance 
readings at 450 nm were obtained using a spectrophotometer 
(Thermo Scientific, Pittsburgh, PA, United States) to assess cell 
viability. 

Statistical analysis

All statistical analyses were conducted in R v4.1.0, with 
package dependency management handled via renv (v0.15.5). 
Continuous variable normality was assessed using the Shapiro-Wilk 
test. Normally distributed data were compared via independent 
t-tests; non-normal distributions underwent analysis with the 
Mann-Whitney U test. Categorical variables were evaluated using 
chi-square tests supplemented by Fisher’s exact tests for sparse 
contingency tables. Statistical significance was defined as p < 0.05 
(two-tailed).

Results

Single-cell atlas of CRC ecosystems reveals 
metastatic niche composition

We integrated and analyzed 35 scRNA-seq datasets from the 
GEO database, encompassing colorectal cancer primary tumors, 
matched liver metastases, normal colorectal mucosa, and normal 
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liver tissues. As the results demonstrate, the circled UMAP 
visualization resolved 10 transcriptionally distinct cell populations 
across all samples (Figure 1A). Analysis of cellular fractions across 
datasets demonstrated significant heterogeneity in the proportions 
of especially epithelial cells and major immune cell types (e.g.,
T cells, NK cells, and macrophages) (Figure 1B). When aggregated 
by tissue origin, T cell infiltration dominated liver metastases, 
whereas normal colon tissues exhibited minimal T cell presence. 
This distribution inversely correlated with epithelial abundance, 
which peaked in normal colon and reached minimal levels in 
liver metastases (Figure 1C). Original UMAPs of whole cells and 
tissue-specific cells are shown in Supplementary Figure S1. We 
also provide a UMAP visualization colored by sample origin to 
demonstrate successful batch effect correction after Harmony 
integration (Supplementary Figure S1B). Marker expression 
validation confirmed annotation robustness, with one single 
identifier for each cell type (e.g., KRT8 for epithelium, COL1A2 
for fibroblasts) exhibiting compartment-specific localization 
in UMAP space (Figure 1D). More established markers for 
cells are shown in Supplementary Figure S1. The systematic 
remodeling of cellular architecture in metastatic sites, characterized 
by immune cells accumulation, establishes liver metastases 
as immunologically privileged niches warranting mechanistic
investigation.

Epithelial subclustering identifies highly 
malignant subpopulations in CRC 
metastasis

As the epithelium is the origin and main components of 
colorectal tumor, we subclustered epithelial cells (resolution = 
0.2) into 9 transcriptionally distinct clusters (Figure 2A) and 
integrated inferCNV scores to stratify cell populations based on 
their malignancy (Figures 2B,C). Through systematic annotation 
based on canonical marker genes, we identified these clusters as: 
stress-responsive tumor cells (Cluster 0, marked by HIST1H2BG, 
JUN, EGR1, ATF3), cancer stem cell-like population (Cluster 
1, LGR5, PROM1), metabolically active tumor cells (Cluster 2, 
EIF/EEF genes, CCND1), goblet cell-like differentiated tumor 
cells (Cluster 3, MUC2, TFF3, SPDEF), G2/M-phase enriched 
highly proliferative tumor cells (Cluster 4, CDK1, CCNB1/2, PLK1, 
AURKA/B, TOP2A, MKI67), and colonocyte-like differentiated 
tumor cells (Cluster 8, KRT20, CEACAM7, FABP1/2, SLC26A3, 
HMGCS2). Notably, the cancer stem cell-like (Cluster 1) and 
highly proliferative (Cluster 4) subpopulations constituted the 
core components of the High-M CRC subtype identified through 
inferCNV scoring (Figure 2D). Based on inferCNV scores and 
tissue distribution patterns, we stratified the epithelial cells 
into high-malignancy CRC (High-M CRC), low-malignancy 
CRC (Low-M CRC), and normal epithelial cells (Figures 2E,F). 
The complete lists of differentially expressed genes for all 9 
epithelial subclusters are provided in the Supplementary Table S1, 
facilitating in-depth exploration of their transcriptional profiles. 
The distribution patterns of these three subpopulations across 
tissues confirmed the validity of re-annotation and classification, 
demonstrating that High-M exhibits the highest prevalence in 
liver metastatic lesions, whereas normal epithelial cells display 

a greater proportion in normal tissues compared to the other 
two tumor types (Figure 2G). We note that the UMAP topology 
of epithelial cells in Figure 2 differs from that in Figure 1A, as 
it results from a dedicated re-analysis of the epithelial subset, 
which more clearly reveals intra-epithelial heterogeneity. Further 
calTissueDist analysis calculated the OR (odds ratio) value and 
Ro/e (ratio of observed over expected cell numbers) value for each 
subpopulation in different tissue types, and liver metastasis obtained 
the highest values of OR and Ro/e in High-M CRC subpopulation
(Supplementary Figure S2).

Subsequently, tumor stemness was assessed by Potency score 
using CytoTRACE2 analysis, which revealed significantly enhanced 
stemness characteristics in the High-M CRC subpopulation 
(Figure 2H). Further HALLMARK pathway analysis demonstrated 
markedly and specific enrichment of six representative malignancy-
associated pathways in this subpopulation, including inflammatory 
response, TGF-β signaling, KRAS-dysregulated genes (down-
regulated and up-regulated) signaling, and Myc targets (Figure 2I). 
Subsequently, to further elucidate pathway alterations in cellular 
subpopulations, we performed another HALLMARK pathway 
enrichment analysis using the irGSEA package. Results from four 
distinct computational methods, AUCell, UCell, singscore, and 
ssgsea, were comparatively presented (Supplementary Figure S3). 
This analysis substantiated elevated enrichment levels of 
malignancy-associated pathways in High-M CRC; as well 
as revealing overlapping upregulation of the “Glycolysis” 
signaling pathway. 

Glycolytic reprogramming drives malignant 
progression in metastatic CRC

Based on the results of irGSEA analysis,we further delineated 
the integrated metabolic profiling of epithelial cells and other cell 
types using “scMetabolism” algorithm, uncovering the glycolytic 
dependency in HM-CRC (Figure 3A). The dot plots showed the 
DEGs of three subpopulations and the top-five genes were noted 
(pct = 0.25, logFC = 0.25, p = 0.01, Figure 3B). The ridgeline plot 
demonstrates findings consistent with prior analytical outcomes 
by four independent algorithms, revealing significantly enhanced 
glycolytic activity in High-M CRC group (Figure 3C).

We next intersected the upregulated genes in High-M CRC 
with the glycolysis gene set from the HALLMARK collection, 
and finally identified 27 hub genes (Figure 3D). Pseudotime 
trajectory analysis delineating developmental pathways among 
the three epithelial subpopulations revealed that High-M 
CRC originates from Low-M CRC differentiation (Figure 3E). 
Visualization of the top 2,000 differentiation-associated genes 
in a pseudotime heatmap implicated key glycolytic enzymes in 
promoting malignant progression of CRC (e.g., STMNA1, SOD1, 
MDH1/2) (Figure 3F). Finally, expression profiles of the 27 hub 
genes across epithelial subpopulations were plotted along the 
pseudotemporal continuum, demonstrating elevated expression of 
critical genes (e.g., TPI1, TXN) in High-M CRC subpopulation over 
developmental time (Figure 3G; Supplementary Figure S4). This 
pseudotemporal metabolic escalation defines a targetable axis in
metastatic evolution. 
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FIGURE 1
Single-cell landscape of colorectal cancer primary tumors, liver metastases, and normal tissues. (A) UMAP visualization colored by annotated cell types. 
Cell density-based contours have been removed for clarity, with distinct colors representing different cell types. (B) Stacked barplot showing cell-type 
proportions across scRNA-seq datasets. (C) Stacked barplot showing cell-type proportions across tissue types. (D) UMAP feature plots of cell types with 
canonical marker.

MYC transcriptionally regulates glycolysis 
in High-M CRC and interacts with fibroblast

To discover the key molecule and regulatory mechanisms in 
High-M CRC, we performed transcriptional regulator screening 
and identified MYC as the top-ranked transcription factor (TF) 
in HM-CRC (Figures 4A,B). Density plots depict expression 

profiles and spatial distribution of MYC within CRC tissues 
(Figure 4C). Subsequent single-cell analysis mapped expression 
patterns of three representative glycolysis-associated genes 
(SLC2A1, PGK1, TPI1), with co-localization analysis revealing 
significantly enriched co-expression density within the High-
M CRC subpopulation (Figure 4D). Correlation analysis was 
then performed using bulk RNA-seq data from TCGA-COAD 
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FIGURE 2
Malignant epithelial stratification, distribution and functional enrichment. (A) UMAP of nine transcriptionally distinct epithelial subclusters, annotated as: 
stress-responsive tumor cells (C0), cancer stem cell-like population (C1), metabolically active tumor cells (C2), goblet cell-like differentiated tumor 
cells (C3), G2/M-phase enriched highly proliferative tumor cells (C4), and colonocyte-like differentiated tumor cells (C8). (B) Heatmap of chromosomal 
relative expression in each subcluster via inferCNV analysis. Each row stands for a cell, and each column stands for a gene. Darker the bar is, more 
CNVs the cells have. (C) Box plot of inferCNV scores of each subcluster. (D) Tissue-specific distribution of subclusters. (E) UMAP of three re-annotated 
epithelial subpopulations. (F) Box plot of inferCNV scores of each subpopulation. (G) Tissue-specific distribution of subpopulations. (H) UMAP of 
stemness scores of subpopulations. (I) Density plots of six malignancy-associated hallmark pathways of subpopulations. CNVs, copy number 
alterations.
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FIGURE 3
Glycolytic remodeling in CRC malignant progression. (A) Metabolic activity by epithelial and other cell type. (B) Dot plots of DEGs between three 
subpopulations. (C) Ridgeline plots of glycolytic activity across three subpopulations using four algorithms. (D) Venn diagram of overlapped hub 
glycolytic genes. (E) Trajectory analysis of three subpopulations. (F) Pseudotemporal heatmap of top 2000 genes in three subpopulations.
(G) Expression of hub glycolytic gene over pseudotime.
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samples; employing the ENCORI platform, we generated positively 
expressive correlation scatter plots between MYC and these
pivotal genes.

Finally, CellChat-mediated cellular communication analysis 
identified prominent ligand-receptor interaction intensity and 
quantity between cancer-associated fibroblasts and High-M 
CRC cells (Figures 4E,F). Collectively, these findings underscore the 
regulatory role of the TF MYC in modulating glycolytic metabolism 
in High-M CRC, and highlighted the research significance of cancer-
associated fibroblasts (CAFs) as potential interaction partners for 
tumor cell. 

CAFs subclustering identifies 
malignancy-associated distribution, 
metabolism, and functional enrichment

Given the significance of CAFs-tumor crosstalk identified in 
our prior analysis, we interrogated the fibroblast heterogeneity 
by subclustering all fibroblasts (resolution = 0.1), resolving eight 
distinct subclusters (C0 to C7) (Figure 5A). Subsequent annotation 
leveraging tissue-specific markers delineated six functional 
subtypes: matrix CAFs (mCAFs), myofibroblasts (myCAFs), 
inflammatory CAFs (iCAF), EMT-like CAFs, neural-like CAFs, 
and normal fibroblasts (NFs) (Figure 5B). Dot plot visualization 
confirmed subtype-specific enrichment of canonical markers 
(Figure 5C). Subsequent distribution analysis revealed profound 
tissue-specific compartmentalization. Metastasis tissue exhibited 
dominance of protumorigenic CAFs, such as EMT-like CAFs, 
myCAFs, and neural-like CAFs. Colon tumor showed enrichment 
of iCAFs and mCAFs (Figure 5D). Volcano plots of DEGs (pct = 
0.25, logFC = 0.25, p = 0.05) highlighted the top upregulated genes 
in CAFs subtypes (Figure 5E).

To explore the associated role of CAFs in metabolism, metabolic 
profiling via scMetabolism was depicted and demonstrated 
pronounced metabolic activation in iCAFs, with especially 
elevated glycolysis and gluconeogenesis (Figure 5F). Meantime, 
GO-BP enrichment further exposed functional specialization 
of different subtypes (Figure 5G). The clustering and functional 
analyses on CAFs reflect their protumorigenic role in the TME 
of CRC. Hence, the specific interaction between CAFs and 
CRC malignancy urgently needs further investigation in the 
following research. 

CAFs-tumor crosstalk reveals activated 
HGF-MET-MYC signaling axis in High-M 
CRC

Correspondingly, we dissected stromal-epithelial 
communication building on fibroblast heterogeneity. CellChat 
analysis quantified interaction weights between fibroblast subtypes 
and epithelial subpopulations, revealing iCAFs and mCAFs as 
dominant communicators with High-M CRC cells (Figure 6A). The 
global signaling patterns further identified them as the top signal 
senders and receivers, respectively (Figure 6B).

To pinpoint key molecular interaction, we employed NicheNet 
tool to conduct ligand-receptor analysis. As the results showed, 

this prioritized hepatocyte growth factor (HGF) as the top 
ligand, with its receptor mesenchymal to epithelial transition 
factor (MET) highly expressed in High-M CRC (Figure 6C). The 
predicted targets of the HGF-MET signaling showed several glucose 
metabolism-associated genes, such as ANGPTL4, DUSP1, PCK1, 
and SPP1, which participated in the regulation of glycolysis and 
gluconeogenesis. CellChat analysis validation confirmed HGF-
MET interactions exclusively enriched in mCAFs and High-M 
CRC pairs (Figure 6D; Supplementary Figure S5), consistent with 
literature implicating HGF-MET signaling in MYC induction 
(Chu et al., 2022; Li et al., 2008). Meantime, the HGF signaling 
pathway network analysis was conducted between different cell 
types. The result further confirmed the importance of High-M 
CRC as the receiver of HGF which potentially induced the MYC
upregulation (Figure 6E).

Similarly, the correlation analysis was then performed using 
bulk RNA-seq data from TCGA-COAD samples. The positively 
correlated relationships between MET and HGF/MYC expression 
were generated (Figure 6F). Besides, the single-cell spatial density 
mapping revealed MET-MYC co-localization within High-
M CRC niches (Figure 6G). These findings establish mCAF-
derived HGF as a key regulator of MET-MYC signaling in
metastatic CRC. 

Spatial mapping validates elevated 
HGF-MET-MYC-glycolysis niches in High-M 
CRC

To spatially resolve the HGF-MET-MYC signaling-medicated 
glycolysis axis, we obtained and analyzed two CRC ST datasets 
from GEO database (GSE226997, samples P1/P4). Quality control 
confirmed high transcript coverage (Figures 7A,E). Using fibroblast 
subtype markers from scRNA-seq (logFC-ranked top 100 for 
mCAFs and High-M CRC, Supplementary Material), we applied 
AddModuleScore tool to infer spatial distributions. This revealed 
juxtaposed niches of High-M CRC subpopulation and mCAFs in 
the ST sample with direct physical adjacency (Figures 7B,F). Based 
on the transcriptomics data, we generated the spatial expression 
mapping of HGF (stroma-enriched), MET, and MYC (tumor-
enriched), and confirmed their co-localization within High-M CRC 
regions bordering mCAFs (Figures 7C,G).

Finally, the glycolytic activity was spatially resolved according to 
glycolysis Hallmark genes as well. The results demonstrated precise 
overlap of elevated glycolysis, MYC expression, and MET hotspots 
within High-M CRC regions adjacent to mCAFs (Figures 7D,H). 
These spatially resolved ecosystems revealed highly activated HGF-
MET-MYC-glycolysis signaling in High-M CRC, and define is as a 
fundamental unit of CRC metastasis. 

CAFs activate the malignant phenotype of 
CRC through the HGF/MET/MYC signaling 
axis

To explore the potential signaling axis (HGF/MET/MYC) 
between CAFs and CRC, we conducted further validation using 
colon cancer cell lines HCT-116 and COLO205. By isolating primary 
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FIGURE 4
MYC regulation on glycolysis and stromal crosstalk. (A,B) Heatmaps of TF prioritization generated by DoRothEA algorithm (A) or Metascape toole (B).
(C) MYC expression density of three subpopulations. (D) MYC-glycolytic gene co-expression and expression correlation. (E) Cell-cell interaction 
weights between CRC cells and other cells. (F) Dot plot of income and outgoing interaction strengths of cellchat analysis.
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FIGURE 5
CRC-associated fibroblast subtypes characterization and functional analysis. (A) UMAP of fibroblast subclustering. (B) UMAP of fibroblast functional 
annotation. (C) Dot plot of CAFs marker. (D) Tissue distribution of different fibroblast subclusters and subtypes. (E) DEG volcano plot of different CAFs.
(F) Metabolic profiling of different CAFs. (G) GO-BP enrichment of CAFs. GO-BP, Gene Ontology-biological process.
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FIGURE 6
Stromal-tumor crosstalk drives MYC activation via HGF-MET signaling. (A) CellChat interaction weights between fibroblast subtypes and epithelial 
subpopulations. (B) Outgoing and incoming signal strengths across major cell types. (C) Heatmap of ligand-receptor analysis between CAFs and 
High-M CRC cells. (D) HGF-MET interaction network between CAFs and CRC cells. (E) HGF signaling pathway network analysis. (F) Correlation analysis 
of MET and MYC expression in TCGA-COAD cohort. (G) Single-cell co-expression density of MET and MYC in High-M CRC. COAD, colon 
adenocarcinoma; CRC, colorectal cancer; HGF, hepatocyte growth factorl; MET, mesenchymal to epithelial transition factor; MYC, 
myelocytomatosis oncogene.
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FIGURE 7
Spatial architecture of HGF signaling-mediated glycolytic niches in CRC metastasis. (A,E) Quality metrics nFeature and log (nCount) of ST dataset 
GSE226997 P1 and P4. (B,F) Spatial mapping of High-M CRC cell and mCAFs probabilities in two datasets. (C,G) Spatial expression maps of HGF, MET, 
and MYC in two datasets. (D,H) Predicted spatial activity maps of glycolysis in two datasets.

CAF cells, we co-cultured them with colon cancer cell lines in vitro
(Figure 8a). Correspondingly, CAFs capable of stable passage were 
further treated with HGF overexpression (Figure 8b). At the protein 

level, we observed that knockdown of MET expression significantly 
reversed the upregulation of MYC expression in CRC cells co-
cultured with HGF-overexpressing CAFs (Figure 8c). Through 
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Transwell assay, we found that knockdown of MET expression 
significantly reversed the invasive ability of CRC cells co-cultured 
with HGF-overexpressing CAFs (Figures 8d,e). Additionally, in the 
CCK-8 assay, we also observed that knockdown of MET expression 
significantly reversed the proliferative trend of CRC cells co-cultured 
with HGF-overexpressing CAFs (Figure 8f). The above experimental 
results suggest that the HGF/MET/MYC signaling axis plays a 
crucial role in the interaction between CAFs and CRC. Finally, 
through immunohistochemical experiments, we observed that the 
expression level of MYC was higher in the MET high-expression 
group compared to the MET low-expression group. This suggests a 
positive correlation (Figure 8g).

Discussion

Clarifying the cellular and molecular pathways underpinning 
CRC metastasis remains a major challenge in oncology. While 
prior studies have delineated several signaling cascades central 
to metastatic spread and TME remodeling (Li et al., 2024; 
Zhan et al., 2017; Liu et al., 2023), a spatially resolved single-
cell atlas capturing the dynamic evolution of CRC across 
primary and metastatic sites has been lacking. To address 
this gap, we integrated 35 high-quality scRNA-seq datasets 
with spatial transcriptomics and pathway enrichment analyses, 
constructing a comprehensive landscape of cell-type-specific 
changes and intercellular communication in both primary 
CRC and liver metastases. Our approach revealed significant 
transcriptional heterogeneity across epithelial, stromal, and immune 
compartments, underscoring the architectural complexity of 
CRC progression. A key finding was the identification of a 
transcriptionally and metabolically distinct subpopulation of highly 
malignant CRC epithelial cells (termed High-M CRC), defined by 
elevated MYC-driven glycolytic activity and spatial coordination 
with metabolically active CAFs, particularly mCAFs, via the 
HGF-MET signaling axis.

Our integrated analysis, utilizing UMAP-based clustering, 
revealed robust inter- and intra-tumoral heterogeneity in both 
normal and malignant colorectal tissues, especially within epithelial 
and immune compartments (Chen et al., 2021). Notably, liver 
metastases exhibited significantly higher T cell infiltration compared 
to primary tumors and adjacent normal tissues, which inversely 
correlated with epithelial cell abundance. This suggests that 
epithelial attrition and immune cell recruitment may be tightly 
linked processes during metastatic colonization (Massagué and 
Ganesh, 2021). The elevated immune presence at metastatic sites 
aligns with the concept of metastases as “immune-modulated” or 
“immune-privileged” niches, a paradigm supported by findings in 
numerous cancers, where immune composition has been shown to 
regulate metastatic potential (Quah et al., 2023; Kim et al., 2021). The 
consistent marker expression and cluster-specific transcriptional 
profiles across datasets validate the robustness of our annotations, 
and underscore the reproducibility of cell state dynamics across 
diverse tissue contexts.

To dissect malignant heterogeneity within the epithelial 
compartment, we applied subclustering and inferCNV scoring, 
stratifying cells into normal, low-malignancy (Low-M), and 
high-malignancy (High-M) subtypes. High-M CRC cells were 

predominantly enriched in liver metastases, signifying both 
spatial and functional divergence from their normal and Low-M 
counterparts. These cells displayed elevated CytoTRACE scores, 
suggesting a proliferative, stem-like phenotype associated with 
aggressive oncogenic behavior (Gkountela and Aceto, 2016; 
Cañellas-Socias et al., 2022). For instance, Yao et al. found that 
SCF-FBXL8 axis contributes to liver metastasis and stem-cell-
like features of CRC cells (Yao et al., 2023). Next, the Hallmark 
pathway enrichment across multiple scoring algorithms revealed 
consistent activation of malignancy-associated pathways such as 
TGF-β, KRAS, and MYC signaling (Hao et al., 2019; Guo et al., 2025; 
Meškytė et al., 2020). Strikingly, glycolytic reprogramming emerged 
as a defining feature of High-M cells, with bulk and single-cell 
metabolic profiling confirming marked upregulation of glycolysis-
related genes. Differential expression analysis identified 27 glycolytic 
hub genes, including STMN1, SOD1, and TPI1, many of which are 
previously implicated in CRC metabolism and therapy resistance 
(Shi et al., 2020; Chen et al., 2022).

In cancer biology, glycolysis, the metabolic pathway that 
converts glucose into pyruvate, and the MYC oncogene are 
frequently reprogrammed to support the rapid proliferation 
and survival of cancer cells. This phenomenon, often termed 
the Warburg effect, describes the preferential reliance of cancer 
cells on aerobic glycolysis even in the presence of oxygen, 
distinguishing them from normal cells that primarily use 
oxidative phosphorylation for energy production (Koppenol et al., 
2011). The precise mechanisms and clinical implications of 
this metabolic shift are critical areas of ongoing research in 
oncology. In CRC, the interplay between glycolysis and MYC-
driven regulation is particularly significant for disease progression 
and metastasis. Recent studies highlight how highly malignant 
CRC epithelial cells, especially those found in metastatic sites, 
exhibit elevated MYC-driven glycolytic activity (Zhao et al., 2024). 
This metabolic adaptation not only provides the necessary energy 
and building blocks for rapid growth but also contributes to the 
aggressive, stem-like phenotype associated with advanced disease 
(Zhou et al., 2023; Liu et al., 2024).

Meantime, the pseudotime trajectory analysis delineated a 
continuous transition from Low-M to High-M states, characterized 
by progressive upregulation of glycolytic gene signatures. These 
findings suggest that metabolic adaptation not only accompanies 
but actively drives malignant progression in CRC. Transcription 
factor enrichment pinpointed MYC as the central regulator of 
this metabolic phenotype. Co-expression and spatial mapping 
further confirmed MYC’s tight spatial colocalization with key 
glycolysis genes. MYC, a powerful transcription factor, plays 
a central role in orchestrating this metabolic reprogramming 
by directly upregulating the expression of numerous glycolysis-
related genes, such as SLC2A1 (encoding GLUT1, a glucose 
transporter) and HK2 (Zeng et al., 2024; Han et al., 2022). This 
direct transcriptional control by MYC ensures a sustained supply 
of glycolytic intermediates, fueling both energy production and 
biosynthetic pathways essential for tumor growth and invasion 
(Yeung et al., 2008). The following TCGA-based correlation analyses 
supported this relationship, reinforcing its dual role as both a 
downstream effector of oncogenic signaling and a vital driver of 
glycolytic reprogramming in CRC metastasis (Jing et al., 2022). 
The robust and recurrent MYC-glycolysis axis across spatial and 
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FIGURE 8
CAFs activate the malignant phenotype of CRC through the HGF/MET/MYC signaling axis. (a) Schematic diagram of co-culture between CAF and CRC.
(b) The efficiency of HGF overexpression in CAF cells was detected by ELISA assay. (c) WB analysis confirmed that knockdown of MET expression could 
reverse the promoting effect of HGF overexpression on MYC expression. (d,e) Transwell assay demonstrated that knockdown of MET expression could 
reverse the promoting effect of HGF overexpression on the invasive phenotype of CRC. scale bar: 50 μm (f) CCK-8 assay confirmed that knockdown of 
MET expression could reverse the promoting effect of HGF overexpression on the proliferative phenotype of CRC. (g) The expression levels of MET and 
MYC in CRC samples and their correlation were detected by immunohistochemical experiments.

single-cell modalities positions MYC as a promising therapeutic 
target, especially when considered in combination with glycolysis 
inhibitors or agents that disrupt stromal-epithelial crosstalk.

Beyond epithelial compartments, our study uncovered 
substantial heterogeneity among CAFs, revealing eight 
transcriptionally distinct subtypes. Pro-tumorigenic CAF subsets, 
particularly mCAFs and EMT-like CAFs, were enriched in 

metastatic samples, consistent with their proposed roles in fostering 
metastasis-supportive niches (Xu et al., 2022; Yao et al., 2024; 
Hu et al., 2019). Metabolic profiling indicated heightened glycolytic 
and gluconeogenic activity in iCAFs and mCAFs, suggesting a 
metabolically reprogrammed stromal environment that favors 
tumor progression. Using CellChat, we identified mCAFs as 
the dominant interactor with High-M epithelial cells and major 
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producers of HGF, implicating them as key facilitators of the 
HGF-MET signaling axis. These findings reinforce mCAFs as 
regulators of spatially resolved metabolic and mitogenic signaling 
in metastatic tissues. Our integrative analysis highlights the 
HGF-MET-MYC pathway as a central mechanism underlying 
stromal-epithelial communication in CRC metastasis. The HGF-
MET signaling has been extensively reported to participate in 
the tumorigenesis, metabolism and metastasis of various cancers, 
and multiple HGF-MET pathway inhibitors exhibited potent anti-
cancer role by preventing tumor metastasis (Huang et al., 2019; 
Yin et al., 2019; Shi et al., 2021). Spatial transcriptomic validation 
confirmed this spatially structured interaction, with co-localization 
of mCAFs, HGF, MET, and MYC targets within specific tumor 
regions. These “metabolic hubs” appear to serve as focal points for 
tumor growth and niche remodeling. Similar spatially constrained 
interactions have been observed in hepatocellular carcinoma 
and lung adenocarcinoma, suggesting that such tumor-stromal 
metabolic units may represent a common mechanism across cancer 
types (Liu et al., 2025; Jain et al., 2023).

Despite the depth of our multi-omics integration, several 
limitations warrant consideration. First, our conclusions 
regarding malignancy trajectories and pathway activity are 
based on computational approaches, without direct experimental 
confirmation. Future studies incorporating lineage tracing or in 
vivo validation could provide stronger evidence. Second, while 
our dataset integration strategy accounted for batch effects and 
technical noise, the potential influence of patient heterogeneity, 
including treatment history and genetic background, remains a 
concern (Huang et al., 2023). Besides, while spatial transcriptomics 
enabled the mapping of cell-cell interactions, current technologies 
do not offer true single-cell resolution, potentially obscuring finer-
scale spatial dynamics. Finally, although MYC and glycolysis 
represent potential therapeutic targets, direct inhibition of 
transcription factors like MYC remains a major pharmacological 
challenge. Indirect strategies, such as targeting upstream effectors 
(e.g., HGF) or modulating CAFs behaviors, may offer more 
feasible therapeutic avenues. Employing patient-derived organoids, 
xenografts, and CRISPR-based perturbation systems could validate 
these insights and identify actionable vulnerabilities in CRC 
metastasis (Michels et al., 2020).

Conclusion

This study advances our understanding of mCRC by offering 
a high-resolution view of stromal-tumor interactions within the 
metastases. By integrating single-cell and spatial transcriptomic 
data, we uncover not only cellular diversity but also the spatial logic 
that governs malignant progression. The identification of MYC-
driven metabolic reprogramming, mediated by fibroblast-derived 
signals, highlights the crucial role of the TME in shaping cancer 
cell behavior. These findings underscore the potential of targeting 
metabolic and stromal signaling pathways as therapeutic strategies. 
Looking forward, translating these insights into functional models 
and clinical contexts is promising to discover potential targets and 
guide precision oncology in CRC metastasis.
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SUPPLEMENTARY FIGURE S1
Identification of the single-cell constitution of the 35 scRNA-seq datasets. (A)
UMAP depicting the cell subclustering. (B) UMAP visualization colored by sample 

origin, demonstrating effective batch effect correction after Harmony integration.
(C) UMAP depicting the cell type distribution across tissues. (D) Established 
markers for 10 major cell types.

SUPPLEMENTARY FIGURE S2
Functional and developmental characterization of CRC subpopulations. (A) The 
OR (odds ratio) value and Ro/e (ratio of observed over expected cell numbers) 
value for each subpopulation in different tissue types. (B) The results of GO-BP 
analysis for each cell type. (C,D) The cancer stemness of different subpopulations 
by CytoTRACE2 analysis. (E) The developmental trajectory of subpopulations by 
Vector algorithm.

SUPPLEMENTARY FIGURE S3
Multi-algorithm Hallmark pathway enrichment in epithelial compartments. (A-D)
This figure shows the HALLMARK pathway enrichment using R package “irGSEA” 
across normal epithelium, Low-M CRC, and High-M CRC using four independent 
algorithms.

SUPPLEMENTARY FIGURE S4
Pseudotemporal expression analysis of the rest 21 hub genes. This figure shows 
the pseudotime-dependent expression of the rest 21 hub genes across normal 
epithelium, Low-M CRC, and High-M CRC.

SUPPLEMENTARY FIGURE S5
Distribution of HGF-MET signaling in the stromal-tumor crosstalk of CRC. (A)
Cellchat analysis of ligand-receptor communication between CAFs and CRC 
cells. (B) Density UMAP of HGF in fibroblasts. (C-F) Integrative cell-cell interaction 
analyses of HGF-MET signaling in CRC.
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