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Background: Colorectal cancer (CRC) remains a leading cause of cancer
mortality, with liver metastasis being the principal determinant of poor
prognosis, but the spatial mechanisms orchestrating metastatic niches
remain elusive.

Method: To dissect the molecular and spatial dynamics of CRC progression,
we constructed an integrative atlas using 35 single-cell RNA-seq datasets and
spatial transcriptomics from primary tumors, liver metastases, and matched
normal tissues. Malignant epithelial subpopulations were stratified via inferCNV
and CytoTRACE analyses. Stromal-tumor interactions were dissected using
CellChat and NicheNet, with functional validation through in vitro co-culture
and immunohistochemistry.

Result: We identified a transcriptionally distinct epithelial subpopulation,
termed high-malignancy CRC (High-M CRC), enriched in metastatic lesions
and characterized by enhanced stemness, MYC-driven transcriptional activity,
and glycolytic reprogramming. Stromal-tumor interaction analyses revealed
that cancer-associated fibroblasts (CAFs), particularly matrix CAFs (mCAFs),
promote malignant progression via the HGF-MET-MYC signaling axis. Spatial
transcriptomic mapping confirmed the physical proximity and molecular co-
localization of High-M CRC cells and mCAFs, along with enriched glycolysis
and MYC expression at the cell-cell interface. In vitro functional validation
demonstrated that CAF-derived HGF activates MET-MYC signaling in CRC
cells, enhancing their invasion and proliferation—effects reversible by MET
knockdown.

Conclusion: We unveil a spatially organized metabolic niche driven by stromal-
tumor HGF-MET-MYC signaling. These findings offer novel insights into the
stromal-tumor interaction and suggest actionable targets for therapeutic
intervention in CRC.

colorectal cancer liver metastasis, single-cell and spatial transcriptomics, high-
malignancy CRC subpopulation, HGF-MET-MYC signaling axis, spatial stromal-tumor
co-localization
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Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed
malignancy and the second leading cause of cancer-related mortality
worldwide, with over 1.9 million new cases and nearly 935,000
estimated deaths annually (Matsuda et al, 2025). Metastasis,
particularly to the liver, remains the primary determinant of CRC
prognosis, with over 50% of patients developing liver metastases
(CRLM) during the disease progression. Despite advances in
systemic therapies, the 5-year survival rate for metastatic CRC
(mCRC) remains below 20% (Zhou et al., 2022). Over the past
decade, research has increasingly focused on the role of the tumor
microenvironment (TME) in supporting metastatic progression,
including the interaction between cancer cells,immune populations,
stromal components, and their dynamic reprogramming during
2024; Almusawi 2021).
However, traditional bulk transcriptomics often mask the cellular

dissemination (Chu et al, et al,
heterogeneity inherent to CRC progression and fail to capture
the intercellular communication which is critical to metastatic
colonization.

The advent of single-cell RNA sequencing (scRNA-seq) and
spatial transcriptomics (ST) technologies has revolutionized
cancer research by allowing high-resolution dissection of tumor
ecosystems. These approaches enable the precise deconvolution
of heterogeneous cellular populations, identification of rare or
transitional phenotypes, and characterization of cell-specific gene
expression profiles within their native spatial contexts (Jain and
Eadon, 2024; Lei et al., 2021). In CRC, scRNA-seq has been
employed to reveal hierarchies of stem-like tumor epithelial
cells, immune evasion mechanisms, and the immunosuppressive
landscape of the TME (Wang et al., 2023). For instance, Lin et al.
identified distinct transcriptional states of tumor epithelial cells
with different activity of cancer stemness, while Chu et al. mapped
diverse T cell phenotypes and the immune evasion mechanisms
in CRC tumors, highlighting immune cell dysfunction in tumors
(Chu et al., 2024; Lin et al.,, 2024). Beyond epithelial and immune
cells, a growing body of work has underscored the central role
of stromal components, particularly cancer-associated fibroblasts
(CAFs), in shaping tumor behavior (Kobayashi et al., 2022).

CAFs, a functionally diverse and phenotypically plastic
population of stromal cells, are now recognized as key components
of the TME. Emerging evidence highlights the active role of CAFs
in tumorigenesis. Abundant scRNA-seq studies across multiple
cancer types, including pancreatic, breast, and colorectal cancers,
have revealed that CAFs can be classified into distinct subtypes
with specialized functions, such as extracellular matrix (ECM)
remodeling, immunomodulation, and metabolic reprogramming
(Zhang et al., 2023; Pei et al., 2023). Beyond structural support,

Abbreviations: CAF, Cancer-associated fibroblasts; CRC, Colorectal cancer;
CRLM, Colorectal liver metastasis; DEGs, Differentially expressed genes;
HGF, Hepatocyte growth factor; High-M CRC, High-malignancy colorectal
cancer (subpopulation); IHC, Immunohistochemistry; mCAFs, Matrix
cancer-associated fibroblasts; MET, Mesenchymal-epithelial transition
factor; MYC, MYC proto-oncogene, bHLH transcription factor; scRNA-
seq, Single-cell RNA sequencing; ST, Spatial transcriptomics; TME, Tumor
microenvironment; inferCNV, Inference of copy number variations; GO-BP,
Gene Ontology-biological process.
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CAFs can enhance tumor proliferation and invasiveness via
paracrine signaling. Importantly, several studies have shown
that CAFs can reprogram cancer cell by promoting lipid and
glucose metabolisms, either through direct metabolite exchange
or paracrine signaling (Zhang et al, 2022; Niu et al, 2024;
He et al., 2025). In CRC, CAFs have been implicated in promoting
tumor growth, mediating resistance to therapy, and facilitating
immune evasion through secretion of cytokines, growth factors,
and matrix components. Importantly, CAFs engage in dynamic
crosstalk with malignant cells, contributing to the establishment
of a tumor-promotive niche (Kobayashi et al., 2022). Despite this,
the precise spatial and molecular mechanisms underlying CAF-
tumor interactions in metastatic CRC remain poorly understood,
particularly within liver metastatic lesions where the stromal
landscape is uniquely reprogrammed.

To address these knowledge gaps, we constructed an integrated
single-cell and spatial atlas of CRC ecosystems, analyzing 35
publicly available scRNA-seq datasets encompassing normal
colorectal tissue, normal liver, primary CRC tumors, and matched
liver metastases. Using a comprehensive analytic pipeline, we
identified a transcriptionally and metabolically distinct epithelial
subpopulation, termed High-Malignancy CRC (High-M CRC),
that is enriched in liver metastases and characterized by
enhanced stemness and elevated glycolytic activity. Notably, this
subpopulation exhibited myelocytomatosis oncogene (MYC)-
driven transcriptional programming and engaged in spatially
restricted interactions with certain subtypes of CAFs via the HGF-
MET signaling axis. Spatial transcriptomics further validated the
co-localization of these vital cells or factors, revealing a tightly
organized metastatic ecosystem.

The structure of this study reflects the stepwise logic of our
investigation, beginning with a pan-tissue comparisons. We focus
on the malignant hierarchy within the epithelial compartment,
followed by investigation into the stromal-tumor communication.
Finally, we integrate ST data to illustrate these interactions within
the physical landscape of the metastatic niche. This multi-layered
research not only strengthens our understanding of the spatial
and cellular dynamics of CRC progression, but also provides a
conceptual framework for identifying intervention points within
cancer metastasis.

Materials and methods

Datasets acquisition and data
preprocessing

A total of 35 single-cell RNA-seq (scRNA-seq) datasets and
two spatial transcriptomics datasets of CRC were retrieved from
the GEO database (accessions GSE231559: samples GSM7290760-
GSM7290785, GSE234804: samples GSM7474991-GSM7474999;
GSE226997: sample P1 and P4). The scRNA-seq datasets
encompasses CRC primary tumors (n = 9), matched liver metastases
(n=15), normal colorectal tissues (n = 3), and normal liver tissues (n
= 8). Bulk RNA-seq data of CRC was collected from COAD (colon
adenocarcinoma) dataset (n = 471) form The Cancer Genome Atlas
(TCGA) database. We first performed stringent quality control on
each independent sequencing library. Low-quality cells were filtered
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out based on the following criteria: high mitochondrial gene content
(>25%) and fewer than 3 genes detected. Furthermore, only genes
detected in at least 200 cells were retained. We employed the Seurat
workflow for standardizing the raw count data. The ‘NormalizeData’
function was used to perform library size normalization for each cell,
followed by log-transformation. The ‘FindVariableFeatures’ function
was used to identify the top 2000 highly variable genes. Gene
expression values were then scaled using the ‘ScaleData” function,
during which we regressed out the variable of mitochondrial
gene percentage. To remove technically driven batch effects, we
integrated the data using the widely recognized Harmony algorithm.
The effectiveness of batch correction was visually confirmed by
UMAP plots colored by sample origin, demonstrating effective
mixing of cells from different cohorts while preserving biologically
distinct clusters (Supplementary Figure S1B). Using the R package
“Seurat” (v4.0) in the scRNA-seq raw data processing, we performed
unsupervised clustering at resolution = 0.2 and annotated cell
types based on canonical lineage markers. Data normalization
was performed using LogNormalize function with a scale factor
of 10,000. Gene expression values were log2-transformed and
normalized using Transcripts Per Million (TPM). Cell clusters
were identified via Seurat’s FindClusters function, and cell types
(e.g., fibroblast, macrophage, T cell) were annotated using well-
defined marker genes. Differentially expressed genes (DEGs)
were determined at the cut-off values of pct = 0.25 and logFC
0.25. R package “CellChat” (v1.6.0) was applied to dissect
interaction networks between different cell types. Interaction

weights and pathway strengths were calculated using default
parameters.

Malignant epithelial stratification and
fibroblast subclustering

Epithelial cells were isolated and subclustered at resolution =
0.2 to identify 9 transcriptional states. Malignancy stratification
integrated inferCNV chromosomal expression aberrations and
tissue distributions. InferCNV (infer copy number variation)
is employed to explore tumor scRNA-seq datasets to detect
evidence of large-scale somatic chromosomal copy number
alterations, such as gains or losses of entire chromosomes or
large chromosomal segments. Specifically, clusters with inferCNV
>3,300 classified as High-M CRC, inferCNV 2,300 to 3,300
as Low-M CRC, and inferCNV <2,300 as normal epithelium.
The R package “CytoTRACE2” was used to quantify stemness
potentials, while pseudotemporal trajectories were reconstructed
using R package “Monocle2” based on top 2,000 variable genes.
Distribution validation included Fisher’s exact test significance,
along with OR (odds ratio) and Ro/e (observed/expected) ratios by
calTissueDist function.

Fibroblast heterogeneity was resolved through subclustering

at resolution 0.2 based on marker expression and tissue
their

reprogramming and pathway activities to establish the mechanistic

distribution, characterizing protumorigenic metabolic
foundation for stromal-tumor crosstalk in metastatic CRC. Six
CAF subtypes (mCAFs, myCAFs, iCAFs, neuro-like CAFs, EMT-
like CAFs, and NFs) were defined based on consensus marker

and literature-derived profiles (Lavie et al,, 2022; Tsoumakidou,
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2023). The lists of top expressed genes can be referred in
Supplementary Material.

Functional analysis and metabolic profiling

Gene functional and metabolic analyses were used to estimate
the stemness properties, oncogenic pathway enrichment, and
glycolytic dependencies in epithelial subpopulations and fibroblast
subtypes. Transcriptional signatures underwent multi-method
interrogation, including HALLMARK pathway enrichment used
four irGSEA algorithms (AUCell, UCell, singscore, and ssGSEA).
Gene Ontology-biological process (GO-BP) terms were analyzed
via R package “clusterProfiler” (FDR <0.05). Metabolic flux
quantification applied R package “scMetabolism” to KEGG and
Reactome pathways, computing glycolysis and OXPHOS activity
scores as gene set z-scores. Differential gene expression was
determined using Seurat’s FindMarkers (Wilcoxon test, thresholds
logFC = 0.25, pct = 0.25, FDR <0.05).

Transcriptional regulator prediction

Transcriptional factor (TF) activity screening in High-M
CRC was performed using dual computational frameworks. The
DoRothEA algorithm employed regulon-based TF activity inference
via VIPER scoring with normalized enrichment score (NES)
thresholds >1.5 and permutation p-value <0.01. The Metascape tool
leveraged integrated TF-target databases (e.g., TRRUST, ENCODE)
to prioritize regulators using hypergeometric enrichment tests (FDR
<0.05). TFs were ranked by combinatorial significance across both
platforms, with spatial validation of MYC expression patterns
through density UMAP.

Bulk transcriptomic correlation analysis

Bulk transcriptomic correlation analysis was performed to
validate scRNA-seq-derived ligand-receptor interactions using
TCGA-COAD cohort data. Raw FPKM values were converted to
TPM, log2 (TPM+1) transformed. Pairwise Pearson correlations
between target gene pairs (e.g., MET-MYC, HGF-MYC) were
computed using the ENCORI platform with strict filtering.

Cell-cell and ligand-receptor interaction
analysis

Cellular crosstalk analysis was performed to quantitatively
resolve ligand-receptor interactions between CAF subtypes and
epithelial subpopulations using an integrated framework combining
R package “CellChat” and “NicheNet”. Communication probabilities
and pathway flux quantifications established dominant senders and
receivers. NicheNet prioritized key ligands using the fibroblast
subtype-specific genes (logFC >1.5 vs. other fibroblasts; p < 0.05)
against High-M CRC-specific receptors (logFC >1.5 vs. normal; pct
>0.1; p < 0.05), limiting to genes expressed in more than 10% target
cells and requiring Pearson correlation >0.85 for target predictions.
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Spatial expression and distribution analysis

Each spatial transcriptomics sample was independently
normalized using the SCTransform method, which corrects for
library size differences and technical covariates via regularized
negative binomial regression. As the two spatial samples were
analyzed separately, no cross-sample integration was performed.
Spatial validation framework was performed to spatially resolve
HGF-MET-MYC-glycolysis interactions through independent
analysis of two CRC transcriptomics datasets (GEO: GSE226997
P1/P4) using AddModuleScore function for region-specific cell
state mapping (top 100 logFC-ranked markers for mCAFs and
High-M CRC), metabolic activity quantification, and ligand-
receptor co-localization, thereby confirming juxtaposed niches
of mCAFs and High-M CRC exhibiting spatially coupled HGF-
MET signaling, MYC activation, and glycolytic hotspots in
metastatic lesions.

Cell culture

The cell lines utilized in this research were obtained from
the American Type Culture Collection (ATCC, Manassas, United
States). HCT-116 and COLO205 cells were maintained in Minimum
Essential Medium (MEM), with each medium containing 10%
fetal bovine serum (FBS) (Gibco, Shanghai, China). These cell
lines were incubated at 37 °C in a 5% CO, atmosphere within a
humidified chamber.

Immunohistochemistry (IHC) analysis

Immunohistochemistry (IHC) was performed to detect target
proteins in primary CRC tissue samples. The protocol proceeded
as follows: Tissue sections were first incubated at 55-60 °C for 2 h,
followed by deparaffinization in xylene and gradual rehydration
through an alcohol gradient (95%, 85%, and 75%).

For antigen retrieval, slides were immersed in EDTA buffer and
subjected to microwave treatment - 6 min at medium-high power
followed by 15 min at medium-low power. To block endogenous
peroxidase activity, samples were treated with 3% hydrogen peroxide
for 15 min, then incubated with goat serum for 30 min at room
temperature (25 °C).

Primary antibody incubation was carried out at 4 °C overnight,
followed by secondary antibody application at room temperature
for 30-60 min. Finally, sections were developed using 3,3'-
Diaminobenzidine (DAB), counterstained with hematoxylin, and
imaged using a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan).

Enzyme-linked immunosorbent assay
(ELISA)

The Human HGF ELISA Kit protocol was followed to quantify
HGEF levels. Briefly, culture media samples from CRC cells were
added to the assay plates, followed by incubation with HGF
antibody at room temperature for 1 h. After six PBST washes, TMB
Development Solution was added for 15 min before terminating the
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reaction with 100 pL of Stop Solution. Optical density readings were
taken at 450 nm and 570 nm.

Lentivirus infection and cell transfection

HGF sequence was cloned into a lentiviral vector and transduced
into HEK293T cells for viral amplification. The resulting lentiviral
particles were then purified and used to infect CAFs, establishing
stable overexpression cell lines. Successful transduction was
achieved through puromycin selection over a 14-day period.

Transwell assays

Cell suspensions were prepared in serum-free medium. The
lower chamber of a 24-well Transwell plate (8 pm pore size; Corning,
United States) was filled with 600 uL of medium containing 5% FBS,
while 300 pL of cell suspension (2 x 10° cells) was added to the
upper chamber. After 12 h of incubation at 37 °C in a humidified
atmosphere, the cells were fixed with 4% paraformaldehyde for
30 min and stained with crystal violet for 20 min. Invading cells were
quantified by counting three random fields per well using Image]
software based on images captured with an inverted microscope.

CCK-8 cell viability assay

Cells were plated in 96-well plates at a density of 2,000 cells/well
in 100 uL of complete medium. After 24h of incubation, the
medium was replaced with 100 uL of fresh complete medium
containing 10 uL. CCK-8 reagent. Following incubation, absorbance
readings at 450 nm were obtained using a spectrophotometer
(Thermo Scientific, Pittsburgh, PA, United States) to assess cell
viability.

Statistical analysis

All statistical analyses were conducted in R v4.1.0, with
package dependency management handled via renv (v0.15.5).
Continuous variable normality was assessed using the Shapiro-Wilk
test. Normally distributed data were compared via independent
t-tests; non-normal distributions underwent analysis with the
Mann-Whitney U test. Categorical variables were evaluated using
chi-square tests supplemented by Fisher’s exact tests for sparse
contingency tables. Statistical significance was defined as p < 0.05
(two-tailed).

Results

Single-cell atlas of CRC ecosystems reveals
metastatic niche composition

We integrated and analyzed 35 scRNA-seq datasets from the
GEO database, encompassing colorectal cancer primary tumors,
matched liver metastases, normal colorectal mucosa, and normal
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liver tissues. As the results demonstrate, the circled UMAP
visualization resolved 10 transcriptionally distinct cell populations
across all samples (Figure 1A). Analysis of cellular fractions across
datasets demonstrated significant heterogeneity in the proportions
of especially epithelial cells and major immune cell types (e.g.,
T cells, NK cells, and macrophages) (Figure 1B). When aggregated
by tissue origin, T cell infiltration dominated liver metastases,
whereas normal colon tissues exhibited minimal T cell presence.
This distribution inversely correlated with epithelial abundance,
which peaked in normal colon and reached minimal levels in
liver metastases (Figure 1C). Original UMAPs of whole cells and
tissue-specific cells are shown in Supplementary Figure S1. We
also provide a UMAP visualization colored by sample origin to
demonstrate successful batch effect correction after Harmony
Marker
validation confirmed annotation robustness, with one single
identifier for each cell type (e.g., KRT8 for epithelium, COL1A2
for fibroblasts) exhibiting compartment-specific localization
in UMAP space (Figure 1D). More established markers for
cells are shown in Supplementary Figure S1. The systematic

integration  (Supplementary Figure S1B). expression

remodeling of cellular architecture in metastatic sites, characterized
by immune cells accumulation, establishes liver metastases
as immunologically privileged niches warranting mechanistic
investigation.

Epithelial subclustering identifies highly
malignant subpopulations in CRC
metastasis

As the epithelium is the origin and main components of
colorectal tumor, we subclustered epithelial cells (resolution =
0.2) into 9 transcriptionally distinct clusters (Figure 2A) and
integrated inferCNV scores to stratify cell populations based on
their malignancy (Figures 2B,C). Through systematic annotation
based on canonical marker genes, we identified these clusters as:
stress-responsive tumor cells (Cluster 0, marked by HISTIH2BG,
JUN, EGRI, ATF3), cancer stem cell-like population (Cluster
1, LGR5, PROMI), metabolically active tumor cells (Cluster 2,
EIF/EEF genes, CCNDI1), goblet cell-like differentiated tumor
cells (Cluster 3, MUC2, TFF3, SPDEF), G2/M-phase enriched
highly proliferative tumor cells (Cluster 4, CDK1, CCNB1/2, PLK1,
AURKA/B, TOP2A, MKI67), and colonocyte-like differentiated
tumor cells (Cluster 8, KRT20, CEACAM7, FABP1/2, SLC26A3,
HMGCS2). Notably, the cancer stem cell-like (Cluster 1) and
highly proliferative (Cluster 4) subpopulations constituted the
core components of the High-M CRC subtype identified through
inferCNV scoring (Figure 2D). Based on inferCNV scores and
tissue distribution patterns, we stratified the epithelial cells
into high-malignancy CRC (High-M CRC), low-malignancy
CRC (Low-M CRC), and normal epithelial cells (Figures 2E,F).
The complete lists of differentially expressed genes for all 9
epithelial subclusters are provided in the Supplementary Table S1,
facilitating in-depth exploration of their transcriptional profiles.
The distribution patterns of these three subpopulations across
tissues confirmed the validity of re-annotation and classification,
demonstrating that High-M exhibits the highest prevalence in
liver metastatic lesions, whereas normal epithelial cells display
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a greater proportion in normal tissues compared to the other
two tumor types (Figure 2G). We note that the UMAP topology
of epithelial cells in Figure 2 differs from that in Figure 1A, as
it results from a dedicated re-analysis of the epithelial subset,
which more clearly reveals intra-epithelial heterogeneity. Further
calTissueDist analysis calculated the OR (odds ratio) value and
Ro/e (ratio of observed over expected cell numbers) value for each
subpopulation in different tissue types, and liver metastasis obtained
the highest values of OR and Ro/e in High-M CRC subpopulation
(Supplementary Figure S2).

Subsequently, tumor stemness was assessed by Potency score
using CytoTRACE2 analysis, which revealed significantly enhanced
stemness characteristics in the High-M CRC subpopulation
(Figure 2H). Further HALLMARK pathway analysis demonstrated
markedly and specific enrichment of six representative malignancy-
associated pathways in this subpopulation, including inflammatory
response, TGF-B signaling, KRAS-dysregulated genes (down-
regulated and up-regulated) signaling, and Myc targets (Figure 2I).
Subsequently, to further elucidate pathway alterations in cellular
subpopulations, we performed another HALLMARK pathway
enrichment analysis using the irGSEA package. Results from four
distinct computational methods, AUCell, UCell, singscore, and
ssgsea, were comparatively presented (Supplementary Figure S3).
This
malignancy-associated pathways in High-M CRC; as well
“Glycolysis”

analysis substantiated elevated enrichment levels of
as revealing overlapping upregulation of the

signaling pathway.

Glycolytic reprogramming drives malignant
progression in metastatic CRC

Based on the results of irGSEA analysis,we further delineated
the integrated metabolic profiling of epithelial cells and other cell
types using “scMetabolism” algorithm, uncovering the glycolytic
dependency in HM-CRC (Figure 3A). The dot plots showed the
DEGs of three subpopulations and the top-five genes were noted
(pct = 0.25, logFC = 0.25, p = 0.01, Figure 3B). The ridgeline plot
demonstrates findings consistent with prior analytical outcomes
by four independent algorithms, revealing significantly enhanced
glycolytic activity in High-M CRC group (Figure 3C).

We next intersected the upregulated genes in High-M CRC
with the glycolysis gene set from the HALLMARK collection,
and finally identified 27 hub genes (Figure 3D). Pseudotime
trajectory analysis delineating developmental pathways among
the three epithelial subpopulations revealed that High-M
CRC originates from Low-M CRC differentiation (Figure 3E).
Visualization of the top 2,000 differentiation-associated genes
in a pseudotime heatmap implicated key glycolytic enzymes in
promoting malignant progression of CRC (e.g., STMNAI, SODI,
MDH1/2) (Figure 3F). Finally, expression profiles of the 27 hub
genes across epithelial subpopulations were plotted along the
pseudotemporal continuum, demonstrating elevated expression of
critical genes (e.g., TPI1, TXN) in High-M CRC subpopulation over
developmental time (Figure 3G; Supplementary Figure S4). This
pseudotemporal metabolic escalation defines a targetable axis in
metastatic evolution.
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FIGURE 1

canonical marker.

Single-cell landscape of colorectal cancer primary tumors, liver metastases, and normal tissues. (A) UMAP visualization colored by annotated cell types.
Cell density-based contours have been removed for clarity, with distinct colors representing different cell types. (B) Stacked barplot showing cell-type
proportions across scCRNA-seq datasets. (C) Stacked barplot showing cell-type proportions across tissue types. (D) UMAP feature plots of cell types with

MYC transcriptionally regulates glycolysis
in High-M CRC and interacts with fibroblast

To discover the key molecule and regulatory mechanisms in
High-M CRC, we performed transcriptional regulator screening
and identified MYC as the top-ranked transcription factor (TF)
in HM-CRC (Figures 4A,B). Density plots depict expression
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profiles and spatial distribution of MYC within CRC tissues
(Figure 4C). Subsequent single-cell analysis mapped expression
patterns of three representative glycolysis-associated genes
(SLC2A1, PGK1, TPI1), with co-localization analysis revealing
significantly enriched co-expression density within the High-
M CRC subpopulation (Figure 4D). Correlation analysis was
then performed using bulk RNA-seq data from TCGA-COAD
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samples; employing the ENCORI platform, we generated positively
expressive correlation scatter plots between MYC and these
pivotal genes.

Finally, CellChat-mediated cellular communication analysis
identified prominent ligand-receptor interaction intensity and
quantity between cancer-associated fibroblasts and High-M
CRC cells (Figures 4E,F). Collectively, these findings underscore the
regulatory role of the TF MYC in modulating glycolytic metabolism
in High-M CRC, and highlighted the research significance of cancer-
associated fibroblasts (CAFs) as potential interaction partners for
tumor cell.

CAFs subclustering identifies
malignancy-associated distribution,
metabolism, and functional enrichment

Given the significance of CAFs-tumor crosstalk identified in
our prior analysis, we interrogated the fibroblast heterogeneity
by subclustering all fibroblasts (resolution = 0.1), resolving eight
distinct subclusters (CO to C7) (Figure 5A). Subsequent annotation
leveraging tissue-specific markers delineated six functional
subtypes: matrix CAFs (mCAFs), myofibroblasts (myCAFs),
inflammatory CAFs (iCAF), EMT-like CAFs, neural-like CAFs,
and normal fibroblasts (NFs) (Figure 5B). Dot plot visualization
confirmed subtype-specific enrichment of canonical markers
(Figure 5C). Subsequent distribution analysis revealed profound
tissue-specific compartmentalization. Metastasis tissue exhibited
dominance of protumorigenic CAFs, such as EMT-like CAFs,
myCAFs, and neural-like CAFs. Colon tumor showed enrichment
of iCAFs and mCAFs (Figure 5D). Volcano plots of DEGs (pct =
0.25, logFC = 0.25, p = 0.05) highlighted the top upregulated genes
in CAFs subtypes (Figure 5E).

To explore the associated role of CAFs in metabolism, metabolic
profiling via scMetabolism was depicted and demonstrated
pronounced metabolic activation in iCAFs, with especially
elevated glycolysis and gluconeogenesis (Figure 5F). Meantime,
GO-BP enrichment further exposed functional specialization
of different subtypes (Figure 5G). The clustering and functional
analyses on CAFs reflect their protumorigenic role in the TME
of CRC. Hence, the specific interaction between CAFs and
CRC malignancy urgently needs further investigation in the
following research.

CAFs-tumor crosstalk reveals activated
HGF-MET-MYC signaling axis in High-M
CRC

Correspondingly, we dissected stromal-epithelial
communication building on fibroblast heterogeneity. CellChat
analysis quantified interaction weights between fibroblast subtypes
and epithelial subpopulations, revealing iCAFs and mCAFs as
dominant communicators with High-M CRC cells (Figure 6A). The
global signaling patterns further identified them as the top signal
senders and receivers, respectively (Figure 6B).

To pinpoint key molecular interaction, we employed NicheNet

tool to conduct ligand-receptor analysis. As the results showed,

Frontiers in Cell and Developmental Biology

10.3389/fcell.2025.1687485

this prioritized hepatocyte growth factor (HGF) as the top
ligand, with its receptor mesenchymal to epithelial transition
factor (MET) highly expressed in High-M CRC (Figure 6C). The
predicted targets of the HGF-MET signaling showed several glucose
metabolism-associated genes, such as ANGPTL4, DUSP1, PCK1,
and SPP1, which participated in the regulation of glycolysis and
gluconeogenesis. CellChat analysis validation confirmed HGEF-
MET interactions exclusively enriched in mCAFs and High-M
CRC pairs (Figure 6D; Supplementary Figure S5), consistent with
literature implicating HGF-MET signaling in MYC induction
(Chu et al,, 2022; Li et al., 2008). Meantime, the HGF signaling
pathway network analysis was conducted between different cell
types. The result further confirmed the importance of High-M
CRC as the receiver of HGF which potentially induced the MYC
upregulation (Figure 6E).

Similarly, the correlation analysis was then performed using
bulk RNA-seq data from TCGA-COAD samples. The positively
correlated relationships between MET and HGF/MYC expression
were generated (Figure 6F). Besides, the single-cell spatial density
mapping revealed MET-MYC co-localization within High-
M CRC niches (Figure 6G). These findings establish mCAF-
derived HGF as a key regulator of MET-MYC signaling in
metastatic CRC.

Spatial mapping validates elevated
HGF-MET-MYC-glycolysis niches in High-M
CRC

To spatially resolve the HGF-MET-MYC signaling-medicated
glycolysis axis, we obtained and analyzed two CRC ST datasets
from GEO database (GSE226997, samples P1/P4). Quality control
confirmed high transcript coverage (Figures 7A,E). Using fibroblast
subtype markers from scRNA-seq (logFC-ranked top 100 for
mCAFs and High-M CRC, Supplementary Material), we applied
AddModuleScore tool to infer spatial distributions. This revealed
juxtaposed niches of High-M CRC subpopulation and mCAFs in
the ST sample with direct physical adjacency (Figures 7B,F). Based
on the transcriptomics data, we generated the spatial expression
mapping of HGF (stroma-enriched), MET, and MYC (tumor-
enriched), and confirmed their co-localization within High-M CRC
regions bordering mCAFs (Figures 7C,G).

Finally, the glycolytic activity was spatially resolved according to
glycolysis Hallmark genes as well. The results demonstrated precise
overlap of elevated glycolysis, MYC expression, and MET hotspots
within High-M CRC regions adjacent to mCAFs (Figures 7D,H).
These spatially resolved ecosystems revealed highly activated HGF-
MET-MYC-glycolysis signaling in High-M CRC, and define is as a
fundamental unit of CRC metastasis.

CAFs activate the malignant phenotype of
CRC through the HGF/MET/MYC signaling
axis

To explore the potential signaling axis (HGF/MET/MYC)

between CAFs and CRC, we conducted further validation using
colon cancer cell lines HCT-116 and COLO205. By isolating primary
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CAF cells, we co-cultured them with colon cancer cell lines in vitro  level, we observed that knockdown of MET expression significantly
(Figure 8a). Correspondingly, CAFs capable of stable passage were  reversed the upregulation of MYC expression in CRC cells co-
further treated with HGF overexpression (Figure 8b). At the protein ~ cultured with HGF-overexpressing CAFs (Figure 8c). Through
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Transwell assay, we found that knockdown of MET expression
significantly reversed the invasive ability of CRC cells co-cultured
with HGF-overexpressing CAFs (Figures 8d,e). Additionally, in the
CCK-8 assay, we also observed that knockdown of MET expression
significantly reversed the proliferative trend of CRC cells co-cultured
with HGF-overexpressing CAFs (Figure 8f). The above experimental
results suggest that the HGF/MET/MYC signaling axis plays a
crucial role in the interaction between CAFs and CRC. Finally,
through immunohistochemical experiments, we observed that the
expression level of MYC was higher in the MET high-expression
group compared to the MET low-expression group. This suggests a
positive correlation (Figure 8g).

Discussion

Clarifying the cellular and molecular pathways underpinning
CRC metastasis remains a major challenge in oncology. While
prior studies have delineated several signaling cascades central
to metastatic spread and TME remodeling (Li et al, 2024;
Zhan et al., 2017; Liu et al., 2023), a spatially resolved single-
cell atlas capturing the dynamic evolution of CRC across
primary and metastatic sites has been lacking. To address
this gap, we integrated 35 high-quality scRNA-seq datasets
with spatial transcriptomics and pathway enrichment analyses,
constructing a comprehensive landscape of cell-type-specific
changes and intercellular communication in both primary
CRC and liver metastases. Our approach revealed significant
transcriptional heterogeneity across epithelial, stromal, and immune
compartments, underscoring the architectural complexity of
CRC progression. A key finding was the identification of a
transcriptionally and metabolically distinct subpopulation of highly
malignant CRC epithelial cells (termed High-M CRC), defined by
elevated MYC-driven glycolytic activity and spatial coordination
with metabolically active CAFs, particularly mCAFs, via the
HGF-MET signaling axis.

Our integrated analysis, utilizing UMAP-based clustering,
revealed robust inter- and intra-tumoral heterogeneity in both
normal and malignant colorectal tissues, especially within epithelial
and immune compartments (Chen et al., 2021). Notably, liver
metastases exhibited significantly higher T cell infiltration compared
to primary tumors and adjacent normal tissues, which inversely
correlated with epithelial cell abundance. This suggests that
epithelial attrition and immune cell recruitment may be tightly
linked processes during metastatic colonization (Massagué and
Ganesh, 2021). The elevated immune presence at metastatic sites
aligns with the concept of metastases as “immune-modulated” or
“immune-privileged” niches, a paradigm supported by findings in
numerous cancers, where immune composition has been shown to
regulate metastatic potential (Quah etal., 2023; Kim etal., 2021). The
consistent marker expression and cluster-specific transcriptional
profiles across datasets validate the robustness of our annotations,
and underscore the reproducibility of cell state dynamics across
diverse tissue contexts.

To dissect malignant heterogeneity within the epithelial
compartment, we applied subclustering and inferCNV scoring,
stratifying cells into normal, low-malignancy (Low-M), and
high-malignancy (High-M) subtypes. High-M CRC cells were
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predominantly enriched in liver metastases, signifying both
spatial and functional divergence from their normal and Low-M
counterparts. These cells displayed elevated CytoTRACE scores,
suggesting a proliferative, stem-like phenotype associated with
aggressive oncogenic behavior (Gkountela and Aceto, 2016;
Canellas-Socias et al.,, 2022). For instance, Yao etal. found that
SCF-FBXL8 axis contributes to liver metastasis and stem-cell-
like features of CRC cells (Yao et al., 2023). Next, the Hallmark
pathway enrichment across multiple scoring algorithms revealed
consistent activation of malignancy-associated pathways such as
TGEF-B, KRAS, and MYC signaling (Hao et al., 2019; Guo et al., 2025;
Meskyte et al., 2020). Strikingly, glycolytic reprogramming emerged
as a defining feature of High-M cells, with bulk and single-cell
metabolic profiling confirming marked upregulation of glycolysis-
related genes. Differential expression analysis identified 27 glycolytic
hub genes, including STMN1, SOD1, and TPI1, many of which are
previously implicated in CRC metabolism and therapy resistance
(Shi et al., 2020; Chen et al., 2022).

In cancer biology, glycolysis, the metabolic pathway that
converts glucose into pyruvate, and the MYC oncogene are
frequently reprogrammed to support the rapid proliferation
and survival of cancer cells. This phenomenon, often termed
the Warburg effect, describes the preferential reliance of cancer
cells on aerobic glycolysis even in the presence of oxygen,
distinguishing them from normal cells that primarily use
oxidative phosphorylation for energy production (Koppenol et al.,
2011). The precise mechanisms and clinical implications of
this metabolic shift are critical areas of ongoing research in
oncology. In CRC, the interplay between glycolysis and MYC-
driven regulation is particularly significant for disease progression
and metastasis. Recent studies highlight how highly malignant
CRC epithelial cells, especially those found in metastatic sites,
exhibit elevated MYC-driven glycolytic activity (Zhao et al., 2024).
This metabolic adaptation not only provides the necessary energy
and building blocks for rapid growth but also contributes to the
aggressive, stem-like phenotype associated with advanced disease
(Zhou et al., 2023; Liu et al., 2024).

Meantime, the pseudotime trajectory analysis delineated a
continuous transition from Low-M to High-M states, characterized
by progressive upregulation of glycolytic gene signatures. These
findings suggest that metabolic adaptation not only accompanies
but actively drives malignant progression in CRC. Transcription
factor enrichment pinpointed MYC as the central regulator of
this metabolic phenotype. Co-expression and spatial mapping
further confirmed MYC’s tight spatial colocalization with key
glycolysis genes. MYC, a powerful transcription factor, plays
a central role in orchestrating this metabolic reprogramming
by directly upregulating the expression of numerous glycolysis-
related genes, such as SLC2A1 (encoding GLUTI, a glucose
transporter) and HK2 (Zeng et al.,, 2024; Han et al., 2022). This
direct transcriptional control by MYC ensures a sustained supply
of glycolytic intermediates, fueling both energy production and
biosynthetic pathways essential for tumor growth and invasion
(Yeung et al., 2008). The following TCGA-based correlation analyses
supported this relationship, reinforcing its dual role as both a
downstream effector of oncogenic signaling and a vital driver of
glycolytic reprogramming in CRC metastasis (Jing et al., 2022).
The robust and recurrent MYC-glycolysis axis across spatial and
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FIGURE 8
CAFs activate the malignant phenotype of CRC through the HGF/MET/MYC signaling axis. (@) Schematic diagram of co-culture between CAF and CRC.
(b) The efficiency of HGF overexpression in CAF cells was detected by ELISA assay. (c) WB analysis confirmed that knockdown of MET expression could
reverse the promoting effect of HGF overexpression on MYC expression. (d,e) Transwell assay demonstrated that knockdown of MET expression could
reverse the promoting effect of HGF overexpression on the invasive phenotype of CRC. scale bar: 50 um (f) CCK-8 assay confirmed that knockdown of
MET expression could reverse the promoting effect of HGF overexpression on the proliferative phenotype of CRC. (g) The expression levels of MET and
MYC in CRC samples and their correlation were detected by immunohistochemical experiments.

single-cell modalities positions MYC as a promising therapeutic

target, especially when considered in combination with glycolysis

inhibitors or agents that disrupt stromal-epithelial crosstalk.
Beyond epithelial compartments,

our study uncovered

substantial  heterogeneity among CAFs, revealing eight

transcriptionally distinct subtypes. Pro-tumorigenic CAF subsets,
particularly mCAFs and EMT-like CAFs, were enriched in
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metastatic samples, consistent with their proposed roles in fostering
metastasis-supportive niches (Xu et al, 2022; Yao et al, 2024;
Hu et al,, 2019). Metabolic profiling indicated heightened glycolytic
and gluconeogenic activity in iCAFs and mCAFs, suggesting a
metabolically reprogrammed stromal environment that favors
tumor progression. Using CellChat, we identified mCAFs as
the dominant interactor with High-M epithelial cells and major
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producers of HGE implicating them as key facilitators of the
HGF-MET signaling axis. These findings reinforce mCAFs as
regulators of spatially resolved metabolic and mitogenic signaling
in metastatic tissues. Our integrative analysis highlights the
HGF-MET-MYC pathway as a central mechanism underlying
stromal-epithelial communication in CRC metastasis. The HGF-
MET signaling has been extensively reported to participate in
the tumorigenesis, metabolism and metastasis of various cancers,
and multiple HGF-MET pathway inhibitors exhibited potent anti-
cancer role by preventing tumor metastasis (Huang et al., 2019;
Yin et al., 2019; Shi et al., 2021). Spatial transcriptomic validation
confirmed this spatially structured interaction, with co-localization
of mCAFs, HGE MET, and MYC targets within specific tumor
regions. These “metabolic hubs” appear to serve as focal points for
tumor growth and niche remodeling. Similar spatially constrained
interactions have been observed in hepatocellular carcinoma
and lung adenocarcinoma, suggesting that such tumor-stromal
metabolic units may represent a common mechanism across cancer
types (Liu et al., 2025; Jain et al., 2023).

Despite the depth of our multi-omics integration, several
First,
regarding malignancy trajectories and pathway activity are

limitations warrant consideration. our conclusions
based on computational approaches, without direct experimental
confirmation. Future studies incorporating lineage tracing or in
vivo validation could provide stronger evidence. Second, while
our dataset integration strategy accounted for batch effects and
technical noise, the potential influence of patient heterogeneity,
including treatment history and genetic background, remains a
concern (Huang et al., 2023). Besides, while spatial transcriptomics
enabled the mapping of cell-cell interactions, current technologies
do not offer true single-cell resolution, potentially obscuring finer-
scale spatial dynamics. Finally, although MYC and glycolysis
represent potential therapeutic targets, direct inhibition of
transcription factors like MYC remains a major pharmacological
challenge. Indirect strategies, such as targeting upstream effectors
(e.g., HGF) or modulating CAFs behaviors, may offer more
feasible therapeutic avenues. Employing patient-derived organoids,
xenografts, and CRISPR-based perturbation systems could validate
these insights and identify actionable vulnerabilities in CRC

metastasis (Michels et al., 2020).

Conclusion

This study advances our understanding of mCRC by offering
a high-resolution view of stromal-tumor interactions within the
metastases. By integrating single-cell and spatial transcriptomic
data, we uncover not only cellular diversity but also the spatial logic
that governs malignant progression. The identification of MYC-
driven metabolic reprogramming, mediated by fibroblast-derived
signals, highlights the crucial role of the TME in shaping cancer
cell behavior. These findings underscore the potential of targeting
metabolic and stromal signaling pathways as therapeutic strategies.
Looking forward, translating these insights into functional models
and clinical contexts is promising to discover potential targets and
guide precision oncology in CRC metastasis.
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