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Traditional bone substitute materials primarily employ a strategy centered on the
direct modulation of osteoblast differentiation. However, this strategy, to some
extent, overlooks the pivotal regulatory role of the immune microenvironment
in the process of bone regeneration. With the continuous advancement
of bone biology research, the significant regulatory role of the immune
microenvironment in the osteogenic process has gradually been substantiated.
Osteoimmunology studies reveal that immune cells dynamically coordinate
the osteoblast-osteoclast balance through shared signaling networks. The
“immune-silent” characteristic of traditional bone substitute materials often
leads to fibrous encapsulation and failure of osseointegration at the surgical
site. Conversely, the research focus of the new generation of bone substitute
materials is centered on dynamic immune interaction strategies: by optimizing
surface topology to guide macrophages toward a reparative polarization;
leveraging the temporal release of bioactive ions to precisely regulate the
balance between inflammation and regeneration; and integrating intelligent
response systems to dynamically adapt to changes in the pathological
microenvironment. Through the synergistic effects of these multifaceted
approaches, the ultimate goalis to effectively promote bone tissue regeneration.
Against this backdrop, this paper proposes a transition strategy from “immune
silence” to “immune dialogue,” which emphasizes the active and effective
modulation of immune responses through meticulous material design, thereby
reshaping the bone microenvironment to create favorable conditions for bone
tissue repair and reconstruction. This innovative concept breaks through the
limitations of traditional unidirectional osteogenic modulation, successfully
establishing a two-way dialogue bridge between bone substitute materials
and the immune system, significantly improving the efficiency of clinical
bone defect repair, while also greatly enhancing patient satisfaction. This
review systematically outlines the latest advancements in the fields of
osteoimmunology and biomaterials, focusing on the key scientific issue of
“osteogenic differentiation regulated by the osteoimmune microenvironment,”
and provides an in-depth analysis of biomaterial design strategies based

01 frontiersin.org


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2025.1685907
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2025.1685907&domain=pdf&date_stamp=2025-10-24
mailto:zhaozifan@whu.edu.cn
mailto:zhaozifan@whu.edu.cn
https://doi.org/10.3389/fcell.2025.1685907
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685907/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685907/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685907/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685907/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685907/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685907/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Zhao et al.

10.3389/fcell.2025.1685907

on the dynamic balance of the immune microenvironment. The aim is
to elucidate the immune-metabolic modulation mechanisms mediated by
materials, thereby enhancing the clinical translation efficacy of biomaterials,
and provide theoretical support and technical pathways for the precise repair

of bone defects.
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1 Introduction

Bone defects represent a complex clinical pathological condition
that poses significant medical challenges in their repair and
treatment. Epidemiological data indicate a continuous upward trend
in the global incidence of large segmental bone defects, primarily
caused by trauma, tumor resection, infection, and congenital
developmental anomalies (Zhang and Wang, 2020; Ouyang and
Di, 2024). Maxillofacial bone defects not only severely impair
patients’ physiological functions, such as mastication and speech,
but also lead to abnormal facial contours, significantly affecting
patients’ social and psychological wellbeing (Tu et al., 2023). In
current clinical practice, while autologous bone grafting is widely
recognized as the gold standard for treatment, it is inherently limited
by donor site morbidity and restricted graft availability. Conversely,
allogeneic bone grafting is associated with risks such as immune
rejection and potential pathogen transmission (Schmidt, 2021;
Yang et al., 2020). Therefore, the development of bone substitute
materials with excellent biocompatibility and osteoinductive activity
to facilitate the functional regeneration of bone tissue has emerged
as a significant scientific challenge in the field of biomedical
engineering. Although substantial progress has been made in
optimizing the composition, structural design, and preparation
processes of bone substitute materials, their clinical applications
continue to face numerous limitations. Firstly, the accelerated
aging process of the population has resulted in a sharp increase
in cases of osteoporotic fractures and alveolar bone resorption,
which raises higher demands on the mechanical properties and
biological activity of these materials (Albuquerque-Souza et al,
2022). Secondly, Metabolic diseases, such as diabetes, can induce
chronic low-grade inflammatory responses that inhibit the
osteogenic differentiation potential of bone marrow mesenchymal
stem cells while simultaneously activating osteoclast functions.
This ultimately disrupts the homeostasis of the bone repair
microenvironment (Zhu et al., 2025). Notably, although traditional
bone substitute materials demonstrate good biocompatibility
and osteoconductivity, their inability to precisely regulate host
immune responses often results in foreign body reactions or fibrous
encapsulation, which adversely affects angiogenesis and new bone
formation (Barbeck et al., 2015; Chen et al., 2015). These limitations
underscore the urgent need to explore the molecular mechanisms
of osteoimmunomodulation in greater depth and to develop a new
generation of smart bone substitute materials accordingly.

In recent years, significant advancements in bone immunology
research have revealed the central regulatory role of the immune
system in maintaining bone homeostasis and promoting bone
regeneration. This provides a revolutionary theoretical basis for the
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design of bone substitute materials (Qiu etal., 2020). Studies indicate
that the immune system not only participates in the inflammatory
response during the initial phase of implantation but, more
importantly, regulates the entire bone regeneration process through
a sophisticated cell-cytokine network. Immune cells, in conjunction
with other cells in the local microenvironment, jointly determine
the ultimate outcome of bone repair through complex interactions.
Based on these findings, the paradigm for the development
of bone substitute materials has shifted from a mere immune
evasion strategy to an active strategy of immune microenvironment
modulation. By precisely controlling the physicochemical properties
of materials, conducting specific functional modifications, and
optimizing degradation performance, it is possible to effectively
guide the host immune response towards promoting tissue repair
(Chen K. et al,, 2024; Li C. et al,, 2024; Yang Y. et al., 2025). This
review will systematically outline the development history of bone
defect repair materials, deeply analyze the key role of immune cells
in the bone repair process, detail design strategies for bone substitute
materials based on immune modulation principles, and anticipate
future directions in this field, aiming to provide a solid theoretical
foundation and innovative ideas for the development of ideal bone
substitute materials.

2 The evolution of bone defect repair
materials: from “immune silence” to
“immune dialogue”

2.1 The evolution and limitations of the
“immune silence” strategy

Excessive immune responses can lead to chronic inflammation
and the formation of a fibrous capsule around the implant. This
fibrous encapsulation may hinder direct contact between the bone
marrow and the implant, adversely affecting the attachment of
bone cells and the generation of new bone, ultimately resulting
in the failure of osseointegration (Wegener et al, 2021; Dewey
and Harley, 2021). To mitigate adverse immune responses, the
development of traditional bone substitute materials has primarily
focused on achieving “bioinertness,” aiming for an “immune
silence” effect (He et al., 2025). These “immune silent” bone
substitute materials are engineered to modulate the bone immune
microenvironment, thereby reducing inflammatory responses
and excessive activation of immune cells, which constructs
a stable microenvironment conducive to bone tissue repair
(Liu D. et al., 2024; Wang et al., 2023).
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2.1.1 Autologous bone: the clinical gold standard
with natural “immune-silent” characteristics

Autologous bone grafting has long been regarded as the “gold
standard” for the repair of bone defects since its clinical introduction
in the late 19th century, attributed to its osteoconductive,
osteoinductive, and osteogenic properties, alongside the absence
of immune rejection risks (Schmidt, 2021). The primary advantage
of this technique lies in the preservation of natural bone matrix
components, including collagen and growth factors, as well as
viable cells that actively participate in the bone regeneration
process. However, autologous bone grafting is not without
complications, such as donor site pain and infection, significant
limitations on the quantity of material that can be harvested,
and elevated postoperative resorption rates. These challenges
considerably limit its clinical applicability, particularly in cases
involving large bone defects or the necessity for multiple surgeries
(Ronnerfalk et al., 2023; O’Malley et al, 2014). As a result,
researchers have begun to explore alternative materials that can
fulfill clinical requirements for bone defect repair.

2.1.2 Allogeneic bone: exploration of alternative
materials for artificially induced “immune silence”

Allogeneic bone grafts are sourced from the bone tissue of
different individuals within the same species. Since Macewen
successfully performed the first allogeneic tibial transplantation
in a 4-year-old boy with a humeral defect in 1880 (Chen et al,
2010), the field of allogeneic bone transplantation has evolved
significantly over more than a century of clinical practice and
technological advancements, establishing itself as a vital option to
address the limitations of autologous bone (Zhang et al., 2019).
Compared to autologous bone transplantation, allogeneic bone
grafts provide a wider array of donor sources, encompassing
both living and cadaveric donors. This effectively addresses
the limitations associated with the scarcity of autologous bone.
Furthermore, allogeneic grafts offer considerable advantages in
terms of ease of procurement, bone volume, and morphological
plasticity. These factors facilitate the rapid reconstruction of
blood circulation in bone tissue after implantation, thereby
highlighting their significant clinical application prospects (Yang,
2020). Despite the advancements in processing techniques such as
deep cryopreservation, freeze-drying, and demineralization aimed
at reducing the immunogenicity of allogeneic bone (Liu Z. et al,
2023), this therapy continues to encounter several challenges. These
challenges include the presence of residual antigens that may
trigger delayed-type rejection reactions, a relatively slow rate of
bone healing, the potential risk of disease transmission, and high
costs associated with preparation, processing, and storage (Polo-
Corrales et al., 2014). Collectively, these factors contribute to
a higher failure rate of bone integration in allogeneic bone
transplantation, thereby somewhat limiting its further clinical
application.

2.1.3 Xenogeneic bone: balancing bioactivity and
immunogenicity

Xenogeneic bone materials refer to bone substitute materials
derived from non-human species, primarily including bone
substitute materials sourced from mammals such as pigs and
cattle, as well as corals and algae (Gorski et al,, 2025). Among
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these, porcine and bovine bones have become the most extensively
studied xenogeneic bone materials due to their accessibility.
After
immunogenicity, xenogeneic bone materials generally exhibit

undergoing physicochemical treatment to eliminate
good biocompatibility. Their porous structure provides physical
support for host cell migration and vascular ingrowth, thereby
promoting osteoconduction (Aleynik et al., 2024). Additionally,
by compounding with polymers or adjusting the calcination
temperature, the degradation rate of xenogeneic bone materials
can be precisely regulated to align with the new bone formation
cycle post-implantation, thereby enhancing the success rate
of osseointegration (Zhou et al., 2018). Currently, xenogeneic
bone materials are widely utilized in clinical applications for
the repair of oral and maxillofacial bone defects. For instance,
deproteinized bovine bone mineral (DBBM) combined with
collagen membranes is employed in guided bone regeneration
(GBR) to effectively achieve alveolar ridge augmentation (Sanz-
Martin et al., 2018). Furthermore, particulate xenografts, such as
deproteinized bovine bone (DBBP), have become popular materials
in sinus lift procedures due to their excellent biocompatibility and
osteoconductivity (Carmagnola et al, 2024). Their particle size
range of 0.25-1 mm not only provides adequate support to the
surgical site but also facilitates the formation and integration of new
bone (Carmagnola et al., 2024; Wang X. et al., 2016). However,
xenogeneic bone materials still exhibit several insurmountable
limitations. One significant limitation is the lack of osteoinductivity;
due to the absence of active growth factors, such as BMP-2, their
osteogenesis process heavily relies on the migratory capacity of
host cells. This reliance leads to delayed material absorption, slow
new bone formation, and potential failure of osseointegration,
particularly in areas with low vascularization (Yao et al., 2022;
Chen et al., 2023). Another notable limitation is the insufficient
mechanical properties of these materials. Those treated through
calcination and oxidant deproteinization display markedly increased
brittleness, rendering them inadequate for load-bearing applications
within the body (Yang et al., 2018). Consequently, the development
of xenogeneic bone materials has yet to fully address the dual
challenges of “quality” (mechanical strength) and “quantity”
(osteoinductive/osteogenic capacity) that arise during clinical bone
defect repair.

In the development process of traditional bone substitute
materials, reducing immunogenicity effectively decreases acute
rejection reactions; however, it is challenging to avoid chronic
inflammation and fibrous capsule formation resulting from long-
term foreign body reactions. More importantly, this strategy of
“immune silence” compromises the inherent bone regeneration-
related bioactivity of these materials, leading to a diminished
capacity to regulate the bone immune microenvironment, which
ultimately limits the efficiency of bone defect repair. As research
in bone immunology has advanced, the academic community has
increasingly recognized that ideal bone substitute materials should
not only facilitate immune evasion but also possess the ability to
actively regulate host immune responses. This understanding has
prompted a paradigm shift in research from “immune silence” to
“immune modulation’, establishing an immune-osteogenic coupling
microenvironment that promotes bone regeneration and enables
active control over the bone repair process. This strategy not only
overcomes the limitations of traditional materials but also provides
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a theoretical foundation for the development of a new generation
of bone substitute materials that exhibit both immunocompatibility
and bone-inducing activity.

2.2 “Immune dialogue”: a new
development trend in bone substitute
materials

Currently, the research strategy for bone substitute materials
is shifting from “immune silence” to “immune dialogue” The
term “Immune Dialogue” refers to a bidirectional and dynamic
communication process between materials and the host immune
system. Specifically, materials can actively regulate the behavior
and polarization types of immune cells through their surface
ion release,

properties, degradation products, and

other physicochemical characteristics. Concurrently, immune

among

cells can influence the degradation rate, surface stability, and
release of bioactive substances from materials by secreting
cytokines, enzymes (such as MMPs and cathepsins), and ROS.
For instance, the acidic environment and proteases secreted
by MI macrophages can facilitate the degradation of certain
materials, thereby altering their ion release behavior and bioactivity.
Conversely, components such as lactic acid or magnesium ions
produced during material degradation can induce the polarization
of macrophages towards the M2 phenotype, thus creating a
positive feedback loop that collectively enhances the bone repair
This bidirectional
distinguishes “immune dialogue” from traditional unidirectional

microenvironment. interaction mechanism
modulatory strategies, more accurately simulating the interplay
between the immune system and the microenvironment during
natural bone regeneration.

This fundamental transition arises from a deeper understanding
within the academic community regarding the physiological
processes of bone regeneration. The repair of bone defects is
a dynamic process that involves complex interactions among
various cells and cytokines, with the immune response playing a
central regulatory role (Chen Z. et al., 2017). Studies have shown
that indiscriminately suppressing the immune system can hinder
bone regeneration. In contrast, early transient pro-inflammatory
microenvironments induced by materials such as calcium
silicate—characterized by the activation of M1 macrophages—can
significantly enhance the osteogenic differentiation and matrix
mineralization of bone marrow mesenchymal stem cells (BMSCs).
This occurs despite the accompanying increase in reactive oxygen
species (ROS), calcium overload, and mitochondrial dysfunction, as
it upregulates autophagy-related proteins and pro-inflammatory
factors, such as TNF-a (Yu et al., 2024; Luo et al, 2022).
Furthermore, TNF-a can upregulate the expression of CD73
in the exosomes of mesenchymal stem cells, enhancing their
immunosuppressive function and subsequently promoting the
polarization of M2 macrophages. This process coordinates the later
stages of the bone healing process (Lu T. et al., 2022). These findings
underscore the core concept of immune dialogue: implanted
materials must dynamically interact with the host immune system
and bone cells to precisely regulate the balance of the inflammatory
factor network. This involves suppressing excessive inflammation
to prevent fibrous encapsulation and failure of bone integration
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while providing moderate immune stimulation to induce bone
regeneration.

From the perspective of the development history of materials
science, the evolution of this concept has progressed through
three distinct stages. The first generation of materials, such as
hydroxyapatite (HA) and beta-tricalcium phosphate (B-TCP),
primarily focused on their fundamental role as bone defect fillers,
emphasizing the materials” biocompatibility and mechanical
properties (Zhao et al., 2021; Ye et al, 2022). The objective was
to restore the defect morphology and provide mechanical support.
However, this approach overlooked the dynamic changes occurring
in the bone regeneration microenvironment, resulting in limited
repair effects that often failed to meet clinical needs (Tran et al.,
2025). In contrast, the design philosophy of second-generation
materials, including bioactive glass (BG) and calcium phosphate
cements (CPCs), shifted towards “biological responsiveness” This
new approach aims to promote bone tissue repair and regeneration
more effectively by enhancing the bioactivity of the materials
(Dai Q. etal., 2024). The research and development strategy for these
materials primarily targets osteoblasts, with the goal of achieving
bone regeneration by directly stimulating the differentiation
of osteogenic stem cells (Dai Q. et al., 2024; Zha et al, 2015).
Nevertheless, osteogenic differentiation is not a process involving
a single cell type; it necessitates the collaborative construction
of a suitable bone microenvironment by multiple systems
(Zhang S. et al., 2025; Hao et al., 2023). In fact, the key to regulating
osteogenic differentiation lies in the new microenvironment formed
by the interaction between materials and multi-system cells, rather
than solely in the role of the materials themselves (Hao et al., 2023;
Birmingham et al., 2012). If the importance of other system cells and
the microenvironment is overlooked, the developed materials may
improperly regulate the microenvironment, potentially hindering
or even preventing successful bone regeneration (Campana et al.,
2014). Due to the limitations inherent in the development concepts
of the first two generations of bone substitute materials, the
design of third-generation materials has transitioned towards
a strategy of “biological guidance” (Bongio et al, 2010). This
approach aims to precisely regulate the release of chemical signals
and actively direct cellular behaviors through various means,
including surface topology, ion release profiles, and biomolecular
modifications, thereby shaping the regenerative microenvironment
(Hu D. etal., 2024; Lyu et al., 2025; Zhang S. et al., 2023). This multi-
target, multi-scale regulatory strategy enables these materials to
effectively circumvent potential “osteoimmunomodulation defects”

<

and establish an “immune dialogue” with host tissues, offering
new insights to overcome the current efficacy bottleneck in bone

regeneration materials.

3 The theoretical basis of
osteoimmunology and the role of
immune activation in bone repair

3.1 Theoretical framework of
osteoimmunology

Bone immunology, as a cutting-edge interdisciplinary field that
integrates immunology and bone biology, reveals the complex
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bidirectional regulatory mechanisms between the immune
system and the skeletal system (Takayanagi, 2015). Specifically, a
moderately activated immune response is essential for initiating
and sustaining the process of bone tissue repair. The bone immune
microenvironment constitutes a highly complex and dynamic
system, where precise homeostasis is crucial for maintaining the
normal physiological functions of bone tissue. The core mechanisms
for maintaining this balance lie in the shared molecules (such
as key transcription factors, signaling molecules, and membrane
receptors) between the immune system and the skeletal system,
which functionally depend on one another (Takayanagi, 2015;
Takayanagi, 2021). During the process of bone defect repair, the
immune system plays a critical role in the fine modulation of
the regenerative microenvironment through multidimensional
interactions, where the intricate and orderly dialogues between
immune cells and matrix cells collectively determine the repair
process of bone defects (Figure 1). This chapter will outline the
roles and mechanisms of various immune cells in bone defect
repair, aiming to depict a multi-layered regulatory network of

immune-bone metabolism coupling.

3.2 The regulatory role of immune cells in
bone regeneration

Research has demonstrated that immune cells play a
pivotal role in regulating the synthesis and release of various
bioactive substances, including growth factors, chemokines, and
inflammatory mediators (Speeckaert et al., 2023). This coordination
is essential for key events in the bone repair process, such
as regulating osteoblast differentiation, maintaining a balance
in osteoclast activity, suppressing fibrosis, and facilitating the
construction of a neovascular network (Zha et al., 2018).
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3.2.1 Neutrophils

As the most abundant leukocytes in mammalian blood,
neutrophils play a crucial role in immune modulation during bone
repair. Their functions extend well beyond the initial inflammatory
response, significantly influencing various aspects of tissue
regeneration and repair (Zhan et al., 2024). In the early phase of bone
injury, neutrophils, as the first infiltrating immune cells, effectively
clear damage-associated molecular patterns (DAMPs), including
necrotic cells and bone debris, by releasing extracellular traps
(NETs). This action alleviates excessive inflammatory responses and
lays the groundwork for subsequent repair (Carmona-Rivera et al.,
2024). Concurrently, they secrete chemokines such as IL-8 and
NAP-2 to recruit monocytes and macrophages, actively shaping
the inflammatory microenvironment (Liu Z. et al., 2022; Liu et al.,
2025). During the bone regeneration phase, neutrophils directly
recruit bone marrow-derived mesenchymal stem cells (BMSCs)
to the injury site by secreting stromal cell-derived factor-1 (SDF-
1). Additionally, they produce ROS and matrix metalloproteinases
(MMPs) to facilitate tissue remodeling and angiogenesis, thereby
providing essential support for bone regeneration (Cai et al., 2021;
Poh et al., 2022). The immunomodulatory functions of neutrophils
are mediated through various interactions. Neutrophils secrete
factors, such as IL-6 and neutrophil gelatinase-associated lipocalin
(NGAL), which drive macrophages to polarize towards the pro-
repair M2 phenotype, thereby enhancing osteogenic differentiation
and bone matrix deposition (Wang et al., 2019; Xu et al,, 2015).
Additionally, neutrophil extracellular traps (NETs) can optimize
the phagocytic function of macrophages, further coordinating
2022).
immunometabolism, lactate produced by the glycolytic pathway of

the repair microenvironment (Fang et al, In terms of
neutrophils activates the HIF-1a and mTORCI pathways, inhibiting
the expression of pro-inflammatory factors and significantly
promoting M2 polarization of macrophages, which enhances
2025;
Caslin et al., 2021). Notably, neutrophil function may be impaired

osseointegration and promotes angiogenesis (Luo et al,
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under pathological conditions, such as chronic inflammation.
Targeting the inflammatory site with the immunomodulator
FTY720 through surface modification or local delivery strategies
can restore neutrophils” bactericidal and pro-repair activities
(Michael et al., 2025; Byun et al., 2025). In summary, neutrophils
construct an immune microenvironment conducive to bone
regeneration through multiple mechanisms, including the clearance
of damaged substances, directional cell recruitment, modulation of
macrophage polarization, mediation of metabolic reprogramming,
and promotion of vascular-tissue remodeling. Their precise
modulation provides critical targets for optimizing bone repair
strategies.

3.2.2 Macrophage

Macrophages, as a crucial component of innate immunity, are
primarily categorized into two polarization types: pro-inflammatory
(M1) and anti-inflammatory (M2). These two types function
independently yet are interrelated, playing distinct roles at various
stages of bone regeneration.

M1 macrophages are predominant during the early phase
of bone injury repair, where they clear foreign bodies and bone
fragments while secreting pro-inflammatory factors such as TNEF-
a, IL-1, and IL-6 to regulate bone metabolism (Li Y. et al., 2025).
In the bone microenvironment, TNF-a inhibits osteogenesis
by suppressing the activity of ALP in osteoblasts and the
expression of Runx2 protein (Wang et al, 2018). Concurrently,
TNF-a and IL-1 work synergistically to downregulate OPG
and promote the expression of receptor activator of RANKL,
thereby stimulating osteoclast formation and bone resorption
(Zha et al, 2018). Additionally, IL-6 significantly reduces ALP
activity, inhibits osteogenic gene expression and mineralization
efficiency, and negatively regulates osteogenic differentiation by
activating the SHP2/MEK2/ERK and SHP2/PI3K/Akt2 pathways
(Kaneshiro et al., 2014). Although sustained M1 inflammation
inhibits bone formation, studies have demonstrated its essential
role in initiating bone regeneration. The VEGF secreted by
M1 cells promotes angiogenesis, which is critical for restoring
blood supply, facilitating cell homing, and releasing factors
(Schlundt et al., 2018). Furthermore, M1 cells can enhance the
osteogenesis of BMSCs through direct contact, the secretion of
factors, and exosomes, such as those rich in miR-21a-5p, which
can induce osteogenic differentiation of BMSCs (Vallés et al., 2020;
Xiaetal, 2020; Liu K. et al,, 2022). Therefore, M1 macrophages play
a dual role in bone remodeling.

M2 macrophages play a dominant role in the middle and
late stages of bone healing. They secrete IL-10 and TGF-f, which
suppress inflammation and promote tissue repair (LuY. et al,
2022; Hosseini et al., 2024). Additionally, they are involved in
vascular remodeling through the action of VEGF and induce
osteogenic differentiation and bone formation in BMSCs via
BMP-2 (Sun X. et al, 2021). Research indicates that inducing
macrophage polarization towards M2 after 72h of co-culture
with M1 macrophages and osteogenic precursor cells (MC3T3)
significantly enhances osteogenesis, highlighting the importance of
the sequential polarization of macrophages from M1 to M2 for
effective bone regeneration (Loi et al., 2016).

In summary, M1 and M2 macrophages collaboratively regulate
bone repair: M1 initiates early inflammation and repair, while
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M2 predominates in the later stages of anti-inflammation and
tissue remodeling. However, persistent activation of M1 can lead
to chronic inflammation and fibrous encapsulation, which hinders
regeneration and may induce rheumatoid arthritis-like lesions
(Chang et al.,, 2023). Conversely, prolonged activation of M2 may
increase the secretion of pro-fibrotic factors, resulting in excessive
scar formation and delayed healing (Meng et al., 2025). Therefore,
precisely regulating the temporal polarization of macrophages to
achieve early transient M1 activation followed by a timely transition
to M2 is crucial for optimizing bone regeneration outcomes and
represents an important direction for the future development of
bone substitute materials.

3.2.3 T lymphocyte

T cells are essential lymphocytes in the adaptive immune
system. Numerous studies have confirmed that various cytokines
and growth factors secreted by T cells play a significant role in the
bone repair process. Moreover, the regulatory effects of T cells on the
balance between osteogenesis and osteoclastogenesis display notable
differences due to the distinct functions of their subsets.

Th1 and Th2 cells are two major subsets of CD4* T cells. Thl
cells primarily exert their functions through the secretion of IFN-
y and TNEF-a, while Th2 cells play a role in immune modulation
by secreting IL-4 and IL-10. The roles of Thl and Th2 cells
in bone repair remain controversial. Early studies suggested that
Thl cells promote osteoclast differentiation and bone resorption
by expressing RANKL (Kotake et al, 2005). In contrast, Th2
cells enhance the osteogenic differentiation of BMSCs through
IL-4 secretion and inhibit Thl-mediated inflammation, thereby
optimizing the microenvironment for bone regeneration (Li R. etal.,
2024). However, subsequent research has revealed a more complex
regulatory mechanism. Researchers Sato et al. (2006) discovered that
both IFN-y and IL-4, secreted by Thl and Th2 cells, can inhibit
osteoclast differentiation and reduce pathological bone resorption
under inflammatory conditions by promoting the degradation of
tumor necrosis factor receptor-associated factor 6 (TRAF-6), a key
adaptor protein in the RANKL/RANK signaling pathway, thereby
blocking the activation of this pathway. This finding indicates that
the function of Thl cells is dualistic; their ultimate manifestation
as pro-bone resorption or anti-bone resorption may depend on the
state of the local microenvironment.

In terms of regulatory T cells (Treg), this immunosuppressive
subpopulation directly inhibits the differentiation of osteoclast
precursors by secreting cytokines such as IL-4 and TGEF-p.
Simultaneously, it activates the Wnt/p-catenin signaling pathway
through the upregulation of WNTI10b expression, thereby
promoting the expression of osteogenesis-related genes and
achieving bidirectional modulation (Tyagi et al., 2018). Studies
have demonstrated that Treg can not only directly inhibit
the differentiation of peripheral blood mononuclear cells into
osteoclasts (Luo et al, 2011), but also indirectly optimize
the bone repair microenvironment by regulating macrophage
polarization (Aurora et al., 2014).

The traditional view posits that Th17 cells, a significant subset
of CD4" T cells, not only directly promote osteoclast formation
through the expression of RANKL in synergy with Thl cells
(Bhattacharya et al., 2023), but also play a crucial role via the
secretion of IL-17. On one hand, IL-17 significantly upregulates
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RANKL expression on the surfaces of osteoclast precursor cells and
osteoblasts, thereby promoting osteoclastogenesis while inhibiting
osteoblastic differentiation (Li et al., 2019). On the other hand,
IL-17 recruits and activates other immune cells, elevating levels
of IL-1 and TNF-a in bone tissue, which creates an osteoclast-
activating microenvironment that directly impedes new bone
formation (Adamopoulos and Bowman, 2008; Li et al., 2022). This
dual effect of “promoting osteoclasts while inhibiting osteoblasts”
positions Th17 cells as key regulators in inflammatory bone diseases.
However, some studies have indicated that IL-17 can synergistically
stimulate the proliferation, migration, and osteogenic differentiation
of mesenchymal stem cells in conjunction with BMP-2, thereby
facilitating new bone formation (Croes et al.,, 2018; Croes et al.,
2016). Consequently, the role of Th17 cells in bone regeneration
remains contentious and warrants further investigation.

3.2.4 B lymphocyte

B cells originate from hematopoietic stem cells in the bone
marrow and migrate to the spleen and lymph nodes upon
maturation. As a crucial component of adaptive immunity, B
cells primarily combat pathogens by synthesizing and secreting
antibodies. In addition to their immune functions, B cells play
a significant role in bone repair. Research indicates that B
cells inhibit osteoclast differentiation by secreting OPG, which
antagonizes the RANKL signaling pathway (Titanji, 2017).
Moreover, they induce osteoclast apoptosis through the release of
TGEF-B (Weitzmann et al., 2000), thereby exerting a protective role
in maintaining physiological bone homeostasis. Furthermore, B
cells support the differentiation of BMSCs by interacting with them
within the bone microenvironment (Zegallai et al., 2022). However,
In pathological conditions such as rheumatoid arthritis, activated
B cells can secrete pro-inflammatory factors, including TNF-a and
CCL3, as well as inhibitory molecules like sclerostin (SOST) and
Wnt signaling pathway inhibitor 1 (DKK1). These factors inhibit
the osteogenic differentiation of BMSCs by directly suppressing
the activity of the key osteogenic transcription factor RUNX2 or
by interfering with the Wnt signaling pathway (Wagner et al.,
2017; Katoh and Katoh, 2017; Colucci et al., 2011; Gunn et al.,
2006; Zhang et al., 2015). Furthermore, studies have demonstrated
that in a periodontitis model, the Gram-negative anaerobic
bacterium Tannerella forsythia can induce B cells to significantly
upregulate RANKL expression, thereby promoting osteoclastic bone
resorption (Settem et al., 2021). In summary, the dual regulatory
effect of B cells on osteogenesis is highly dependent on the state of
the local microenvironment; an imbalance in this homeostasis may
lead to inflammatory bone destruction or metabolic bone disease.

3.2.5 Dendritic cells

Dendritic cells (DCs) are currently recognized as the
most potent antigen-presenting cells and play a crucial
immunomodulatory role in bone repair. DCs significantly
influence the outcomes of bone repair by inducing an immune-
tolerant microenvironment, coordinating cellular interactions, and
transmitting tissue regeneration signals. Research indicates that DCs
can be activated by the local microenvironment, such as magnesium
ions via the TRPM7 channel, which triggers the MAPK/HIF-
1a/TGF-p signaling axis. The upregulation of HIF-la promotes

TGEF-p secretion, subsequently suppressing effector T cell function
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and expanding regulatory T cells, thereby effectively alleviating
bone inflammation and creating a pro-repair microenvironment
(DaiY. et al, 2024). Additionally, the extracellular vesicles
(EVs) secreted by DCs carry signaling molecules, including
osteopontin (OPN) and matrix metalloproteinase- 9 (MMP-9),
which actively recruit BMSCs to the injury site and directly
promote bone regeneration (Silva et al, 2017). Recent studies
have further revealed that the protein adsorption behavior on
the surface of implant materials, particularly the formation of a
biomolecular layer dominated by fibronectin (Fn) and HMGBI,
can regulate the immune recognition process of DCs, thereby
influencing the osteoinductive process mediated by these cells
(Zhao et al., 2024; Zhao et al., 2023).

The DCs
microenvironment cells finely regulate the balance of bone
repair. Under the stimulation of RANKL and M-CSE DCs
can differentiate into osteoclasts, thereby participating in bone

dynamic interactions between and bone

remodeling (Puchner et al., 2024). Conversely, in conditions
characterized by infection or chronic inflammation, TGF- secreted
by DCs can inhibit osteoblast differentiation (Wu et al., 2025;
Yang et al., 2024). However, during the immune-suppressed state
prevalent in the bone repair phase, TGF- can mitigate pathological
bone destruction, such as by inhibiting the pro-inflammatory effects
of the Th17/IL-17 axis in rheumatoid arthritis, thus promoting bone
repair (Dai Y. et al., 2024). Notably, DCs exhibit significant potential
in tissue engineering: BMSCs differentiated into cartilage do not
induce DC maturation or provoke immunogenic responses when
co-cultured with DCs, indicating a reduced risk of immune rejection
in allogeneic transplantation (Kiernan et al., 2018). Furthermore,
the mechanism by which DCs recruit BMSCs through EVs offers
valuable insights for the development of novel tissue regeneration
strategies (Silva et al., 2017).

3.2.6 Other immune cells

Other innate immune cells also play significant roles in
the process of bone repair. For instance, mast cells exhibit
spatiotemporal distribution characteristics that are closely related
to their functions (Banovac et al, 1995). Following trauma or
fracture, mast cells rapidly respond by releasing mediators such
as cytokines and chemokines, which initiate and modulate the
early inflammatory response, recruit endothelial cells to promote
angiogenesis, and provide support for repair (Fischer et al., 2020;
Ramirez-GarciaLuna et al.,, 2017). However, the activity of mast
cells must be precisely controlled; excessive activation, as seen in
cases of multiple trauma or estrogen deficiency, can exacerbate
inflammation, promote the formation of fibrotic scars (Fischer et al.,
2020; Ragipoglu et al,, 2022), and inhibit osteoblast differentiation
while enhancing osteoclast activity through the release of specific
mediators such as Midkine and CXCL10 (Fischer et al., 2020). This
impairment can negatively affect the quality of bone formation and
remodeling. The dual role of mast cells in promoting repair, such
as angiogenesis, and inducing disorders, including inflammation,
fibrosis, and disruption of bone metabolism, positions them as a
highly potential therapeutic target (Zhang et al., 2017). Targeted
modulation of mast cell activity is anticipated to optimize bone
repair outcomes, particularly in cases of osteoporosis-related bone
repair disorders.
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Natural killer (NK) cells are pivotal immune regulators in
the initial phases of bone repair, primarily by modulating the
behavior of mesenchymal stem cells (MSCs) and inflammatory
responses. Research indicates that NK cells significantly enhance the
invasive capacity of MSCs, promoting their recruitment to injury
sites. This process can be optimized through biomaterial design;
for instance, functionalized chitosan membranes adsorbed with
fibrinogen (Fg) can enhance NK cell adhesion, thereby improving
MSC recruitment efficiency (Almeida et al., 2012). Regarding
inflammation modulation, early activation of NK cells serves as
a “double-edged sword”: moderate activation can coordinate the
inflammatory microenvironment to support regeneration, while
overactivated NK cells may directly damage normal tissues by
releasing substantial amounts of cytotoxic granules (such as
perforin and granzymes), which can hinder the repair process
(Almeida et al,, 2012; Thacker et al, 2023). Notably, in an
immunosuppressive environment, the cytotoxic ability of NK
cells may be constrained; nevertheless, their role in bone repair
remains significant. For example, studies have shown that in
immunodeficient mice lacking T cells, MSCs can successfully induce
ectopic bone formation, suggesting that the role of NK cells in
immune modulation may compete with that of other immune cells,
such as T cells (Dighe et al., 2013). Furthermore, when the activities
of both IFN-y and T cells are suppressed, the regulatory role of
NK cells becomes more pronounced, enhancing the osteogenic
differentiation capability of MSCs. In summary, the design of
functional biomaterials targeting the interaction between NK cells,
MSCs, and inflammatory regulatory pathways offers new strategies
for bone regeneration therapy.

4 Design strategy for bone substitute
materials based on immune
modulation

4.1 Design and control of material
physicochemical properties

In recent years, a substantial body of research has focused

on the immunomodulatory properties of bone substitute
materials. The central concept of designing “immunomodulatory”
materials involves endowing bone substitute materials with
osteoimmunomodulatory  characteristics ~ through  various
modification strategies. This enables effective intervention and
precise manipulation of the osteoimmune microenvironment within
the host, thereby fostering a bone microenvironment conducive to
tissue regeneration (Zhou et al., 2024). The diverse physicochemical
properties of the materials, including surface characteristics,
mechanical properties, and morphology, significantly influence the

local immune responses they elicit.

4.1.1 Surface properties
After
tissue,

into
the with
the surrounding immune environment, leading to various

a bone substitute material is implanted

its surface comes into direct contact
reactions. The surface properties of the material, including
hydrophilicity/hydrophobicity, ~ roughness,  microtopography,

surface charge, and functional groups, significantly influence the
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host immune response following implantation by modulating
protein adsorption, cell adhesion, and immune cell activation
(Figure 2) (Zhou et al., 2024; Ishihara et al., 2020).

Generally, hydrophilic surfaces form dense hydration layers that
significantly reduce non-specific protein adsorption (Zheng et al.,
2010; Kim et al, 2005). Conversely, hydrophobic surfaces
promote protein enrichment through hydrophobic interactions
(Guo et al,, 2016). The synergistic effect of surface charge and
hydrophilicity/hydrophobicity further determines the composition
of proteins adsorbed on the material surface. For instance, positively
charged hydrophilic surfaces tend to adsorb Fn, while hydrophobic
surfaces are inclined to enrich albumin (Alb) (Arima and Iwata,
2007; Wei et al., 2009). In terms of cell adhesion, moderately
hydrophilic surfaces have been shown to be the most conducive to
cell spreading and adhesion. Taking the self-assembled monolayer
(SAM) of alkanethiol as an example, surfaces with hydroxyl
(OH) and methyl (CH;) groups exhibit optimal cell adhesion
performance within a water contact angle range of 40°-50° (Arima
and Twata, 2007; Hasan et al., 2018a). This enhancement is partly
due to the ability of hydrophilic surfaces to specifically adsorb
cell adhesion proteins (such as Fn) and maintain their suitable
conformation (Wei et al., 2009; Hasan et al., 2018a). In contrast,
highly hydrophobic surfaces (such as nano-PTFE) severely inhibit
the adsorption of cell adhesion proteins, resulting in limited
cell spreading and spherical deformation of cell morphology
(Zheng et al., 20105 Ainslie et al., 2007). In the realm of immune
modulation, hydrophilic surfaces demonstrate superior efficacy in
modulating the recruitment of Tregs, diminishing the adhesion
of immune cells, and facilitating the polarization of macrophages
towards the M2 phenotype. This process significantly reduces the
release of pro-inflammatory factors, such as TNF-a and IL-1(,
thereby alleviating local inflammatory responses and fostering a
microenvironment conducive to bone regeneration (Rmaidi et al,,
2021; Zhang et al., 2020). The low immunogenicity associated with
hydrophilic surfaces is partially attributed to their capacity to inhibit
non-specific protein adsorption. In contrast, hydrophobic surfaces
markedly enhance immune cell activation and inflammatory
responses, primarily due to their promotion of the adhesion of
a substantial number of proteins, including immunoglobulins
and platelets (Hu et al., 2016). Notably, the application of surface
engineering strategies to impart superhydrophilicity to hydrophobic
materials, such as the introduction of zwitterionic groups, can
effectively mitigate their immunogenicity and significantly enhance
biocompatibility (Chen S-H. et al., 2017).

The surface roughness and microtopography of materials are
critical factors in modulating the bone immune microenvironment.
Typically, rough surfaces enhance protein adsorption by increasing
the contact area between the material and the microenvironment,
thereby providing a foundation for cell adhesion (Asadullah et al.,
2021). Research has demonstrated that the incorporation of
hydroxyapatite (HA) particles onto the surface of polylactic
acid (PLA) composites significantly improves cell spreading, the
formation of actin stress fibers, and the expression of focal
adhesion proteins, all of which are essential markers of cell
adhesion (Persson et al., 2014). Similarly, polyetherketoneketone
(PEKK) materials embedded with silicon nitride (SN) and tantalum
(Ta) microparticles also markedly enhance the adhesion and
proliferation of BMSCs by increasing surface roughness and
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and functional groups, can modulate the bone immune environment.

The surface properties of bone substitute materials, such as hydrophilicity/hydrophobicity, roughness, micro-morphology, as well as surface charge

hydrophilicity (Hu et al., 2021). Furthermore, the roughness of
the material surface can influence macrophage polarization. For
instance, researchers such as Hamlet et al. (2019). Found that
titanium implants modified to have rough surfaces significantly
accelerate the healing process and greatly enhance the success rate
of implantation. This is primarily due to the fact that roughened
titanium surfaces more effectively promote the polarization of
macrophages towards the M2 phenotype, thereby increasing the
expression of anti-inflammatory factors IL-4 and IL-10, and
creating a microenvironment conducive to bone regeneration. This
effect may arise from the ability of rough surfaces to facilitate
extracellular matrix (ECM) deposition and remodeling, or to
activate specific signaling pathways (such as the TGF-B and IL-
10 pathways) (Persson et al, 2014; Miguel et al., 2010). The
microscopic morphology of material surfaces plays a crucial role
in influencing the bone immune microenvironment, primarily
due to factors such as crystal structure, particle distribution,
size, and surface texture. On one hand, the crystal structure
significantly affects protein adsorption behavior. For instance, the
nanoscale roughness of a silica surface can alter the adsorption
orientation of fibrinogen, enhancing its prominence in solution
and increasing its bioavailability (Hyltegren et al., 2020). On the
other hand, particle distribution and size profoundly influence
cell behavior by determining surface roughness and porosity. For
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example, the microporous structure of P-tricalcium phosphate
(B-TCP) particles significantly promotes cell adhesion and bone
regeneration (Piccinini et al., 2016). Additionally, surface texture
primarily regulates immune responses indirectly. For instance,
nanostructured surfaces can effectively reduce bacterial adhesion,
thereby lowering the risk of infection (Bhattacharjee et al,
2023). Furthermore, PVA/EPB composites with specific textures
exhibit anti-inflammatory and antibacterial properties through their
nanofiber structures, further demonstrating the potential of surface
textures in immune modulation (Allafchian et al., 2025).

The design of surface charges and functional groups on materials
represents a crucial regulatory strategy. Generally, cationic particles
on charged surfaces are more likely to induce inflammatory
responses compared to anionic particles. This phenomenon may
be attributed to the propensity of cationic particles, owing to
their positive charge, to engage in electrostatic interactions with
negatively charged biomolecules (Valverde-Mendez et al., 2025).
For instance, a study revealed that positively charged nanoparticles
exhibit a significantly higher binding capacity with NETs than their
negatively charged or neutral counterparts, which may exacerbate
inflammatory responses and lead to tissue damage (Raghavan et al.,
2025). Furthermore, an in vitro investigation into the influence
of surface charge on cytokine secretion, utilizing a co-culture of
monocytes and macrophages, demonstrated (Brodbeck et al., 2002)
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that the expression of the anti-inflammatory factor IL-10 secreted
by these cells was significantly upregulated on anionic surfaces,
whereas it was downregulated on cationic surfaces. The technique of
modifying functional groups, such as amino and hydroxyl groups,
on scaffold surfaces through molecular grafting is an emerging
surface modification approach. Functional groups present on the
material surface can significantly influence protein adsorption
behavior, thereby modulating surrounding cell responses and
promoting new bone formation (Hasan et al., 2018b). For example,
in vitro experiments have confirmed that carboxyl-modified surfaces
can encourage the polarization of macrophages towards the M2
phenotype, stimulate anti-inflammatory responses, and significantly
enhance the osteogenic differentiation of BMSCs (Buck et al., 2022).

4.1.2 Mechanical properties

The stiffness and elastic modulus of bone substitute materials
serve as critical mechanical signals that profoundly reshape
the immune microenvironment through mechanotransduction
pathways, directly regulating the bone regeneration process.

Research indicates that material stiffness exhibits a biphasic
threshold effect on macrophage polarization (Xu et al, 2022;
Dutta et al., 2020): when the elastic modulus is within the low
modulus range (e.g., 76 kPa collagen hydrogel), an increase in
stiffness significantly promotes the dominant expression of the anti-
inflammatory M2 phenotype, thereby enhancing the angiogenic
capacity of endothelial cells and the osteogenic differentiation ability
of BMSCs (Zhang et al., 2024; Sridharan et al., 2021). In contrast,
high modulus matrices (e.g., 295 kPa materials) strongly induce pro-
inflammatory M1 polarization (Zhang et al., 2024), which not only
exacerbates the secretion of pro-inflammatory factors like TNE-
a and IL-6 but also promotes macrophage fusion to form foreign
body giant cells (FBGCs), triggering a chronic inflammatory cascade
that adversely affects the material”s performance and long-term
integration (Meli et al., 2021). However, due to inherent limitations
in the material’s properties, the range of stiffness effects, and the
heterogeneity of experimental models, the mechanism by which
stiffness regulates macrophage polarization remains significantly
complex, necessitating quantitative analysis through cross-scale in
vivo and in vitro studies (Tang et al., 2021).

4.1.3 Material morphology

The morphological modification strategies of bone substitute
materials, particularly those focusing on porous structure, pore
size, and connectivity, are crucial for enhancing bone regeneration
and biocompatibility (Figure 3). The porous structure provides
three-dimensional cell attachment sites and migration channels,
significantly promoting cell infiltration and osseointegration
(Liu et al, 2016). For instance, magnesium phosphate cement
(MPC) with high porosity, constructed using a citric acid/calcium
carbonate (CaCO;/CA) foaming agent, effectively enhances the
osteogenic differentiation activity of human periodontal ligament
stem cells (hPDLSCs) (Chen et al., 2025). This enhancement
is primarily due to the optimized pores that facilitate nutrient
diffusion and provide a larger space for cell infiltration (Chou et al.,
2013). Furthermore, the porous structure not only regulates
cell infiltration behavior but also plays a pivotal role in bone
regeneration by mediating immune responses. Research indicates
that the porous structure serves as a physical foundation for
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macrophage adhesion and migration, significantly modulating the
intensity of inflammation, osteoclast activity, and the secretion of
osteogenic factors, such as BMP-2, by activating key components
of the autophagy pathway (LiuJ. et al, 2023). Additionally,
the moderately hypoxic microenvironment induced by porous
structures and large-pore scaffolds can synergistically promote M2
polarization of macrophages and angiogenesis, thereby remodeling
the pro-regenerative immune microenvironment (Wan et al., 2025).

Pore size directly influences cell behavior: larger pores (e.g.,
100-150 pum) significantly enhance deep infiltration and promote
a homogeneous distribution of fibroblasts, whereas smaller pores
(e.g., <50 um) hinder cell surface adhesion (Vieira et al., 2024). By
incorporating glucose crystals to increase pore size, PLA electrospun
membranes achieve uniform fibroblast colonization throughout
the scaffold (Vieira et al., 2024), while simultaneously enhancing
angiogenesis and extracellular matrix deposition (Guan et al., 2025).

Furthermore, optimizing pore size can alleviate inflammatory
responses and extend the functional lifespan of implants
(Li et al., 2015). For example, the bredigite scaffold, characterized
by an ordered 3D-printed structure and uniform pore size
distribution, promotes M2 macrophage polarization, thereby
fostering an immune microenvironment conducive to bone
regeneration (Xuan et al., 2023).

Porosity connectivity significantly influences the efficiency
of material transport; scaffolds with high connectivity, such
as microporous cross-linked particle structures, can establish a
continuous network for nutrient and cell transport. A notable
example is the microporous scaffold loaded with heparin micro-
islands, which markedly enhanced cell infiltration and angiogenesis
after 1 month of implantation (Nicklow et al., 2025).

However, it is essential to note that optimizing material
morphology requires a careful balance with mechanical property
requirements. While increasing porosity and pore size benefits cell
infiltration and macrophage polarization phenotypes, it inevitably
compromises the mechanical strength of the scaffold. Therefore, the
advantages and disadvantages must be thoroughly evaluated in the
design process.

4.2 Modulation of immunity by material
degradation components

4.2.1 Bioactive ions

Bioactive ions released from bone substitute materials, such as
Ca®*, Mg?, Si**, Zn?*, and Cu?*, play a crucial role in modulating
immune cell functions. These ions reshape the local immune
microenvironment by influencing the phenotype, migration,
differentiation, and cytokine release of immune cells, thereby
synergistically promoting bone regeneration and enhancing the
biocompatibility of implants.

Ca®*, as a major component of the bone matrix, play a
critical role not only in the osteogenesis process but also in the
modulation of immune responses via the calcium-sensing receptor
(CaSR). An optimal concentration of Ca®* activates the Wnt/ B-
catenin pathway and works synergistically with the PI3K/AKT
and cAMP-PKA signaling pathways to promote the polarization of
macrophages towards the M2 anti-inflammatory phenotype, thus
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(a) Porous structures can provide three-dimensional cell attachment sites and migration pathways, significantly promoting cell infiltration. The
moderate hypoxic microenvironment induced by these structures can synergistically enhance the polarization of macrophages to the M2 phenotype
and promote angiogenesis. (b) Larger pore sizes facilitate the deep infiltration and homogeneous distribution of fibroblasts, and they enhance
angiogenesis and extracellular matrix deposition. (c) Highly interconnected scaffolds can establish a continuous nutrient/cell transport network.

inhibiting the release of pro-inflammatory factors such as TNE-
a and IL-1PB (Zhang et al., 2021; Shi et al., 2024). Furthermore,
Ca®* mimics the electrical properties of bone collagen fibers within
a nanoscale heterogeneous electrical microenvironment, which
modulates calcium ion channels, enhances the anti-inflammatory
polarization of macrophages, and stimulates the secretion of
factors such as FGF2. This process couples angiogenesis with
immune regulation, thereby creating favorable conditions for bone
regeneration (Tang et al., 2025).

Mg?*" plays a unique role in osteoimmunomodulation by
synergistically modulating the immune microenvironment through
multiple pathways to promote osseointegration. On one hand,
Mg?" antagonizes the activation of the NLRP3 inflammasome,
inhibiting caspase-1 activation and the maturation of IL-1f,
thereby alleviating local inflammatory responses (Wang et al,
2024; Ginsberg et al,, 2017). The specific mechanism by which
Mg?" antagonizes NLRP3 inflammasome activation may involve
the regulation of intracellular potassium efflux or the inhibition of
mitochondrial reactive oxygen species; however, further research
is needed (Wang et al., 2024). On the other hand, Mg>" promotes
the polarization of macrophages towards the M2 phenotype,
enhancing angiogenesis and the release of anti-inflammatory factors
through the PI3K/AKT signaling pathway, thereby improving
the bone healing environment (Cheng et al., 2022; Wang et al.,
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2022). Moreover, Mg?* demonstrates particularly pronounced
effects under hyperglycemic pathological conditions. It alleviates
oxidative stress by activating SESN2 expression in endothelial
cells and promoting nuclear factor erythroid 2-related factor
2 (Nrf2) nuclear translocation, thus enhancing endothelial cell
function and accelerating vascularization and bone repair in
diabetic states (Liu L. et al., 2024). Collectively, these mechanisms
endow Mg?* with significant immunomodulatory and osteogenic
potential.

Si** collaboratively modulates the immune microenvironment
and the process of bone regeneration through multiple pathways.
It not only promotes the secretion and adsorption of ECM
components, such as Fn, but also facilitates the binding
of Fn to integrin av (Hung et al, 2014). This interaction
induces conformational changes in the transmembrane receptor,
adhesion kinase (FAK) and
initiating downstream signaling cascades, including MAPK

subsequently activating focal

and PI3K/Akt. These cascades drive macrophage polarization
towards the M2 phenotype and promote osteogenic differentiation.
(Hung et al, 2014; ChenY. et al, 2024). Additionally, Si*"
significantly inhibits NF-kB activation and the expression of
downstream pro-inflammatory factors, such as TNF-a, IL-
1B, and IL-6, effectively alleviating inflammatory responses
(Hosseinpour et al., 2021; Peanlikhit et al., 2022). Furthermore,

frontiersin.org


https://doi.org/10.3389/fcell.2025.1685907
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Zhao et al.

Si4+

the formation of endothelial cell tubular structures (He et al,

enhances angiogenesis by promoting VEGF secretion and

2018). It synergizes with active components, such as Mg**, to
optimize vascularization and osteogenesis processes (Liu G. et al.,
2024).
including bioactive glass and BCP scaffolds, demonstrate excellent

In material applications, silicon-doped biomaterials,
performance in inhibiting inflammation, promoting osteogenesis,
and enhancing angiogenesis through the controlled release of Si**
(Cheng et al., 2022; Lu et al., 2024).

7Zn**, a prevalent bioactive ion, not only exhibits antibacterial
properties but also promotes bone regeneration by coordinating
immune homeostasis through various pathways. Firstly, as a
crucial component of antioxidant enzymes such as superoxide
dismutase (SOD) (Lokesha et al., 2025), Zn?* effectively scavenges
ROS and maintains intracellular zinc homeostasis by regulating
metallothionein (MT) expression (Yang et al, 2022), thereby
protecting immune cells from oxidative damage. Secondly,
Zn** significantly inhibits the secretion of pro-inflammatory
factors, including TNF-a and IL-6, which reduces inflammatory
marker levels and alleviates pathological inflammatory responses
(Lokesha et al., 2025; Giacconi et al., 2017). At the level of immune
cell modulation, Zn?* enhances the expression of osteogenesis-
related genes by activating the transcription factor NF-kB, facilitates
T cell proliferation and differentiation, improves the antigen-
presenting capacity of DCs (Deng et al, 2024), and optimizes
the synergistic efficacy of innate and adaptive immune responses
(Schuhladen et al., 2020). It is noteworthy that the surface
modification of Zn-Li alloys through calcium plasma immersion
ion implantation (PIII) technology significantly promotes the
release of Zn?* ions and accelerates material degradation, thereby
enhancing its osteogenic and angiogenic properties (Li X. et al,
2025). This systematic modulation, ranging from molecular
antioxidant protection to cellular function activation, provides
critical immunoregulatory targets for the design of bone substitute
materials.

Cu?* plays a crucial immunomodulatory role in bone substitute
materials, particularly regarding its antibacterial, anti-inflammatory,
and pro-angiogenic properties. Generally, low concentrations
of Cu?* (100 uM) induce macrophage polarization towards the
M1 phenotype, exacerbating inflammatory responses (Diez-
Tercero et al., 2021; Huang et al,, 2019). Notably, while this M1
polarization induced by high concentrations of Cu®* and its
accompanying pro-inflammatory state is generally detrimental
to tissue repair, it can be actively utilized to enhance the
antibacterial efficacy of the material by combating early-stage
infections and eliminating pathogens. For instance, the Cu-doped
micro/nano-topological structured surface (Cu-Hier-Ti) induces
M1 polarization by activating copper transport signals (CTR1
and ATP7A), synergistically enhancing the material’s antibacterial
and anti-inflammatory efficacy (Huang et al,, 2019). Regarding
angiogenesis, Cu®" significantly upregulates the expression of
angiogenic factors such as VEGF and bFGE, promoting endothelial
cell proliferation and migration, and accelerating the construction
of functional vascular networks (Li et al, 2023). Additionally,
the time-sequenced release of Cu®' enables dynamic immune
modulation. In the Cu-Sr bilayer bioactive glass nanoparticles (CS-
BGNs) system, the early rapid release of Cu?* effectively controls
inflammation and infection, while the later sustained release of Sr**
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shifts towards promoting osteointegration. This spatiotemporally
precise ion delivery provides an innovative solution for optimizing
bone repair (Wu et al., 2023).

Bioactive ions such as Ca®*, Mg2+, Si**, Zn**, and Cu**
have demonstrated significant potential in modulating immune
cell functions and optimizing the microenvironment for bone
regeneration. However, their clinical translation faces critical
challenges. The primary challenge is the insufficient in-depth
analysis of molecular mechanisms, particularly the unclear signal
transduction pathways through which Mg?* antagonizes the NLRP3
inflammasome (Wang et al., 2024), Additionally, the release of
ions lacks precise spatiotemporal control, and fluctuations in
local concentration—such as the pro-inflammatory risks induced
by high concentrations of Cu?**—can lead to uncontrollable
immunomodulatory effects (Huang et al., 2019). Furthermore, there
is a notable gap in research regarding the mechanisms of synergistic
effects among multiple ions, exemplified by the lack of evidence
for the synergistic immunomodulatory effects of combinations like
Zn>*/Sr*t (Zhong et al., 2022). To address these bottlenecks, future
research should prioritize: the in-depth elucidation of the intricate
molecular mechanisms through which ions regulate immune cell
polarization via key signaling pathways such as NF- kB and
PI3K-AKT-mTOR (Liang et al, 2024; Sun H. et al, 2021); the
development of intelligent responsive delivery systems to achieve
dynamic optimization of local ion concentrations and on-demand
release (Li et al., 2023); and the systematic exploration of synergistic
regulatory strategies involving multiple ions such as Mg**/Cu?*
(Zhong et al., 2022; Lourenco et al., 2019). Breakthroughs in these
areas will drive the design of a new generation of bone substitute
materials, ultimately enhancing bone repair efficacy and long-
term stability through the synergistic optimization of the immune
microenvironment.

4.2.2 Material degradation products

The degradation products of bone substitute materials, such as
lactic acid (LA) released by PLA, play a crucial role in modulating
immune responses and promoting tissue regeneration (Figure 4).
These degradation products not only directly influence the
microenvironment at the implantation site but also systemically
regulate immune cell functions, thereby affecting the outcomes of
tissue repair and regeneration. Studies have demonstrated that they
modulate immunity through various mechanisms:

Firstly, LA can inhibit the antigen-presenting capacity of DCs
and attenuate T cell activation through the GPR81 receptor,
thereby modulating immune tolerance and reducing the risk
of immune rejection after material implantation (Llibre et al.,
2025). Additionally, it can significantly influence the phenotypic
polarization of immune cells. For instance, metabolites such as LA
can effectively induce the polarization of macrophages towards the
M2 phenotype, which exhibits anti-inflammatory and pro-repair
functions. This process is accompanied by the upregulation of anti-
inflammatory cytokines, such as IL-10, which suppresses excessive
inflammatory responses and promotes tissue healing (Ryma et al.,
20215 Negi et al.,, 2024). It is particularly noteworthy that LA can
also promote the expression of anti-inflammatory factors such as
IL-10 and enhance M2 macrophage polarization through histone
lactylation modification (Choi et al., 2025).
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FIGURE 4
LA can effectively induce the polarization of macrophages towards the M2 type, inhibit the activity of inflammatory cells and the release of their

pro-inflammatory mediators, directly stimulate the differentiation and mineralization of osteoblasts, and regulate the functions of immune cells,
thereby enhancing the body's systemic resistance to infections.

Secondly, the modulation of inflammatory responses by It is important to note that the immunomodulatory
degradation products is of paramount importance. LA effectively ~ effects of degradation products extend beyond localized areas.
inhibits the inflammatory response through the following  Certain metabolites can enter the bloodstream and influence
mechanisms: Firstly, it enhances the activity of SOD, which systemic immune status by modulating the functions of
accelerates the clearance of superoxide anions. Secondly, it immune cells, such as lymphocytes (YangB. et al, 2025),
improves the mitochondrial membrane potential and promotes potentially enhancing the body’s overall anti-infection capabilities

ATP production, thereby reducing the leakage of mitochondrial (Lietal, 2016).

ROS and inhibiting ROS production (Gu et al., 2024; Bustamante- Finally, the biocompatibility and long-term safety of degradation

Barrientos et al, 2025). These effects collectively suppress the products are fundamental prerequisites for the successful

activity of inflammatory cells and the release of pro-inflammatory application of materials. An ideal bone substitute material

mediators, ultimately leading to a significant alleviation of the should - promote - cell - proliferation and - differentiation - while
inflammatory response (Chor et al., 2022; Liu H. et al., 2023). At

the metabolic level, LA reprograms immune cells by influencing

inducing only minimal and controllable immune responses,
thereby ensuring the long-term safety of the products (Tseng and
Fang, 2023; Kacerova et al., 2023).

glycolysis and mitochondrial function. It inhibits CD8" T cell In summary, the degradation products of bome substitute

function while promoting the proliferation of Tregs, thereby further materials, particularly LA, modulate the transition of macrophages

enhancing the processes of immunosuppression and tissue repair to the M2 phenotype, inhibit local inflammation, promote

(Choi et al., 2025; Tozzo et al., 2025). the
Moreover, these immunomodulatory effects are directly linked

balance between osteoblasts and osteoclasts, stimulate
angiogenesis, and influence systemic immune status through
to and promote the bone regeneration process. Metabolites such multiple mechanisms. These include the GPR81 signaling pathway,
as LA not only create a favorable regenerative microenvironment  histone lactylation, and cellular metabolic reprogramming.
through the aforementioned immunomodulation but also directly  Collectively, these mechanisms form the core immunomodulatory
stimulate osteoblast differentiation and mineralization, inhibit  framework that facilitates bone tissue repair and regeneration.
osteoclast activity (Hong et al., 2023), and release angiogenic factors A deeper understanding of these mechanisms not only provides
to facilitate the growth of new blood vessels, providing essential ~ critical theoretical foundations for optimizing the design of

nutritional support for bone regeneration (Kong et al., 2024). bone substitute materials but also establishes an important
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basis for their clinical safety and efficacy. Future research
should further elucidate the precise molecular pathways of
interactions between degradation products and the immune
system to guide the development of a new generation of
bone substitute materials with enhanced immunomodulatory
properties.

4.3 Biofunctionalization of material
surfaces

The strategy of biofunctional modification on the surface of
bone substitute materials has been demonstrated as an effective
method to optimize the interaction between the material and host
interface, precisely regulate local and systemic immune responses,
and thus promote bone regeneration and integration. By introducing
specific bioactive molecules or constructing functional topological
structures on the material surface, the immune compatibility and
osteoinductive properties of the materials can be significantly
enhanced. It is noteworthy that these strategies possess considerable
clinical significance in addressing the challenges associated with
bone defect repair in patients exhibiting high-risk factors, such as
metabolic diseases (e.g., diabetes) or infections. Specifically, the
immobilization of proteins (such as bovine serum albumin) or
growth factors on the material surface in a non-covalent manner,
for instance, utilizing gelatin wet granulation technology to modify
the surface of poly (methyl methacrylate) (PMMA), facilitates the
sustained release of these biomolecules. This release effectively
modulates the local immune microenvironment, suppresses
excessive inflammation, and promotes osteoblast adhesion and
the bone healing process (Oliveira et al., 2008). This strategy is
particularly effective for repairing bone defects in diabetic patients.
The diabetic microenvironment is frequently characterized by
chronic inflammation and impaired angiogenesis. Controlled
release of growth factors, such as VEGF and BMP-2, can effectively
mitigate these pathological conditions. This approach synergizes
with immunomodulatory effects to overcome the barriers to bone
healing in diabetic conditions (Zheng et al., 2024). Similarly,
the incorporation of bioactive substances (such as p-TCP) into
hydrogel coatings (e.g., methacrylated gelatin, GelMA) or their
immobilization onto substrates (such as 3D-printed polyether ether
ketone, PEEK) through sulfonation treatment not only significantly
enhances the adhesion, proliferation, and osteogenic differentiation
of BMSCs but also actively modulates the phenotype and function
of immune cells, such as macrophages, thereby establishing an
immune homeostasis conducive to bone regeneration (Lin et al.,
2025). This type of composite coating technology provides the
potential for developing biomimetic implants with heterogeneous
structures that more accurately mimic the chemical and physical
properties of natural bone tissue. This advancement facilitates
host tissue integration and mitigates the risk of implantation
failure (Chen J. et al., 2024). Secondly, nanoscale surface structure
engineering can significantly enhance the biological activity of
materials. For instance, the construction of a nano-oxide layer
on the surface of titanium particles through electrochemical
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anodization and heat treatment results in a nanostructured surface
that can induce the formation of HA when immersed in simulated
body fluid. The formed HA can regulate the recruitment and
function of immune cells through its surface chemical properties
and topological structure, thereby promoting osseointegration by
optimizing the immune microenvironment (Ozcolak et al., 2024;
Karaji et al., 2016). This regulation is crucial for enhancing the long-
term stability of load-bearing implants, such as joint replacements
and dental implants (Lee et al., 2025). Additionally, the integration
of glycosaminoglycans (such as heparin) into the material matrix
(such as mineralized collagen) allows for precise control over protein
adsorption behavior, influencing the fate of mesenchymal stem cells
(MSCs) and the local immune microenvironment (Konig et al,
2014). Photofunctionalization technology effectively improves the
hydrophilicity and biological activity of materials, promoting the
response of bone regeneration-related cells. For example, ultraviolet
treatment can create a titanium dioxide coating on the surface of
HA, achieving biological functionalization of the material surface.
When combined with advanced technologies such as tannic acid
antibacterial coating and RNA interference, this approach can
also impart significant anti-infective capabilities to the material,
clearing pathogens while mitigating the excessive immune response
triggered by infection, thus creating a clean microenvironment
for osseointegration (Liu Z. et al., 2024; Kim et al., 2019). This
surface treatment technology, which integrates both antibacterial
and immunomodulatory functions, presents a novel solution for
addressing challenging clinical issues, such as infectious nonunion
and osteomyelitis (Zhang H. et al., 2025). Furthermore, fluorinated
surface modification has been demonstrated to significantly enhance
the osseointegration performance of implants, such as by increasing
the bone-implant contact rate and stability, with a mechanism partly
attributed to its favorable modulation of local immune responses
(Dasmah et al., 2014).

In summary, the surface biofunctionalization modifications
of bone substitute  materials—including  biomolecular
coating, nanostructure design, glycosaminoglycan integration,
photofunctionalization, and antibacterial/fluorination
treatment—constitute the core strategy to enhance their efficacy in
osteoimmunomodulation. These modifications collectively create an
immune microenvironment that is conducive to bone tissue repair
and regeneration by precisely intervening in immune cell behavior,
modulating inflammatory processes, promoting osteoblast activity,
and inhibiting infections. These strategies hold significant promise
in addressing critical clinical bottlenecks, including the modulation
of abnormal bone healing microenvironments in systemic diseases
such as diabetes, the prevention and treatment of implant-related
infections, and the enhancement of long-term stability of load-
bearing implants in osteoporotic bone matrices. A comprehensive
understanding and optimization of these surface engineering
strategies are crucial for the development of a new generation
of bone substitute materials with intelligent immune modulation
capabilities. Future research should prioritize the evaluation of
the long-term in vivo effects of these modification techniques, the
dynamic changes in immune responses, and their translational
potential in complex clinical scenarios.
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4.4 Intelligent delivery of
immunomodulatory factors

The osteoimmune microenvironment comprises a diverse array
of signaling molecules and cytokines that directly influence the
processes of osteogenesis and osteoclastogenesis by regulating
the immune system. Consequently, bone substitute materials can
effectively modulate local immune responses through the loading
and delivery ofimmunomodulatory factors, thereby enhancing bone
tissue regeneration and functional reconstruction.

The surface loading of cytokine coatings on materials represents
a common and effective strategy for osteoimmunomodulation
(Gong et al., 2020). Once the material is implanted in the body, the
cytokines released from the coating directly or indirectly regulate
the osteogenesis process by modulating macrophage polarization
and the RANK/RANKL signaling pathway (Xie et al, 2020).
For example, Kara’s team developed an osteoimmunomodulatory
scaffold with sequential release properties of IFN-y and IL-4 in a
mouse subcutaneous implantation model (Wang M. et al., 2016).
This scaffold achieved precise modulation of angiogenesis by rapidly
releasing IFN-y to induce macrophage polarization towards the M1
phenotype, followed by the sustained release of IL-4 to promote
the transformation to the M2 phenotype. Notably, in addition to
its role in macrophage polarization, IL-4 can synergize with IL-
33 to inhibit osteoclast function (Amarasekara et al., 2018): both
cytokines promote the differentiation of monocytes into DCs and
macrophages, thereby downregulating the differentiation potential
of osteoclast precursor cells and interfering with osteoclastogenesis
(Zaiss et al., 2011). In addition to the aforementioned cytokines, IL-
10, IL-12, and the interferon family also play significant roles in the
modulation of bone metabolism. IL-10 effectively inhibits the bone
resorption process by suppressing the expression of nuclear factor of
activated T cells cytoplasmic 1 (NFATc1), a core regulatory element
of osteoclast differentiation (Tanaka et al., 2019). Members of the
IFN family, including IFN-a, IFN-p, and IFN-y, exhibit inhibitory
effects on osteoclast differentiation: IFN-a/( primarily participates
in the modulation of innate immunity (Hu et al., 2023), while IFN-
y, in addition to activating macrophage functions, can also inhibit
osteoclast differentiation through the negative modulation of the
RANK/RANKL/OPG signaling pathway (Takayanagi et al., 2000). In
summary, the modulation of the bone immune microenvironment
through the combination of various cytokines and time-controlled
release to promote osteogenesis has become an important research
strategy for the development of novel bone substitute materials.

Pharmacological studies have demonstrated that various small-
molecule drugs can modulate the osteogenic process through
their osteoimmunomodulatory functions. With advancements in
biomaterial processing technologies, these drugs can be endowed
with osteoimmunomodulatory properties via surface modifications.
A notable example is the zinc finger-inspired peptide-metal-
phenolic nanocoating developed by researchers, including Xu
etal. (Xu et al, 2024). This system utilizes zinc ion-phenolic
coordination to achieve stable loading of the small-molecule
drug Abaloparatide (ABL) and enables a sustained release for
over 7 days. Experiments have confirmed that the ABL-loaded
zinc-phenolic network (ABL@ZnTA) significantly enhances the
polarization of macrophages towards the M2 phenotype compared
to the unloaded control group. This shift induces an immune
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microenvironment conducive to bone regeneration and promotes
the osteogenic differentiation of BMSCs. Furthermore, rapamycin
has been shown to facilitate M2 polarization of macrophages by
inducing autophagy, thereby alleviating inflammatory responses and
enhancing osteogenesis (Yurube et al., 2024; Huang X-R. et al,,
2025). Building on this, the rapamycin-loaded virus-like hollow
silica nanoparticles (R@HSNs) developed by Zhang etal. were
found to be phagocytosed by macrophages and transported to
lysosomes, triggering autophagy-mediated M2 polarization, which
significantly promoted bone regeneration in a mouse calvarial
defect model (Zhang Q. et al., 2023). This system also optimized the
osteoimmune microenvironment by synergistically downregulating
pro-inflammatory factors (IL-6, IL-1B, TNF-a) and upregulating
anti-inflammatory markers (CD163, CD206, IL-10).

Natural small molecule substances, such as chitosan and
hyaluronic acid, have been extensively utilized in the surface
due to their
remarkable biocompatibility and immunomodulatory properties.

functionalization of bone substitute materials

Chitosan, a natural polysaccharide, has been shown to inhibit
inflammation and promote repair by driving macrophage
polarization towards the anti-inflammatory M2 phenotype
(Guo et al,, 2018). Concurrently, hyaluronic acid interacts with
receptors such as CD44 on the surface of immune cells, inhibiting
neutrophil migration and promoting M2 polarization, thereby
regulating inflammation levels and facilitating tissue repair
(Guo et al., 2024; Luo et al,, 2024; Salathia et al., 2023). Notably,
the combination of chitosan and hyaluronic acid can synergistically
inhibit the expression of pro-inflammatory factors TNF-a and IL-
6 while promoting the secretion of the anti-inflammatory factor
IL-10, thus remodeling the inflammatory microenvironment.
Furthermore, hyaluronic acid modification can significantly reduce
the immunogenicity of chitosan nanoparticles by decreasing
serum protein adsorption, thereby mitigating excessive immune
responses (Almalik et al., 2017; Ciolek et al, 2024). In bone
repair applications, this composite system not only enhances the
osteogenic differentiation capacity of BMSCs, as evidenced by
increased ALP activity and calcium deposition, but also significantly
promotes bone defect repair in animal models, particularly when
combined with MSCs, demonstrating a synergistic effect on bone
regeneration (Abazari et al., 2019).

In summary, current research on the regulatory mechanisms
of bone metabolism emphasizes the targeted delivery of
osteoimmunomodulatory factors, such as cytokines, small molecule
drugs, and natural polysaccharides, through material design. This
approach aims to coordinate macrophage polarization states and
regulate the RANK/RANKL/OPG signaling pathway. While this
strategy significantly enhances the construction of the osteoimmune
microenvironment, critical knowledge gaps persist regarding the
underlying molecular mechanisms, highlighting the need for
further research.

4.5 Bionic and intelligent responsive
materials

Bionic and intelligent responsive bone substitute materials
provide a more efficient and precise solution for bone repair
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by mimicking the structure and function of natural bone while
integrating intelligent response mechanisms.

The design of bionic bone substitute materials fundamentally
revolves around the accurate simulation of the microstructure and
biomechanical properties of natural bone (Hsu et al, 2025). To
achieve this, 3D printing technology can be employed to control
the porosity and topological configuration of scaffolds, thereby
facilitating structural bionics. Specifically, regarding pore structure
design, triangular pore structures exhibit superior mechanical
stability, outperforming rectangular, honeycomb, and diamond
configurations (Lv et al, 2023). In terms of material selection,
HA and polycaprolactone (PCL) composites demonstrate excellent
biocompatibility and mechanical properties due to their bone-
like chemical composition (Rezaei and Mohammadi, 2013). At
the functional bionic level, the integration of tea polyphenol-
magnesium (TP-Mg) nanoparticles into o/p-tricalcium phosphate
(a/B-TCP) scaffolds can simultaneously achieve antibacterial,
anti-inflammatory, and osteoinductive effects, significantly
promoting the repair of infectious bone defects (HuX. et al,
2024). A more in-depth functional simulation is exemplified by
the periosteum biomimetic strategy, which involves using pre-
osteoblast-derived matrix (pODM) to coat the hydrogel system,
effectively reconstructing the bone formation microenvironment
and enhancing bone regeneration efficacy (Yu et al, 2020).
Currently, biomimetic bone substitute materials exhibit great
potential in clinical applications; for instance, 3D printing
technology can rapidly fabricate biomimetic bone scaffolds
with complex internal structures, thereby meeting the needs of
personalized treatment (Bisht et al., 2021).

Intelligent responsive bone substitute materials represent a
class of advanced materials capable of automatically adjusting
their functions in response to specific environmental stimuli,
such as pH, enzyme activity, and ROS. These materials exhibit
significant potential in the fields of bone tissue engineering and
drug delivery, particularly in the treatment of bone infections,
tumors, and inflammation-related diseases (Chaudhari et al,
2024). pH-responsive bone substitute materials achieve precise
immune modulation through intelligent release mechanisms
The

principle involves modulating drug release kinetics based on local

and microenvironment-responsive characteristics. core
pH variations; for instance, HA nanocrystals remain stable at
physiological pH but accelerate dissolution and release therapeutic
agents in acidic microenvironments, such as inflammatory or tumor
sites, thereby achieving targeted effects and reducing systemic
toxicity (Lelli et al., 2016). Similarly, vancomycin-loaded ZIF8
nanocrystals (ZIF8/VAN) demonstrate a significantly higher release
rate at pH 5.4 compared to pH 7.4 conditions. This characteristic
facilitates precise targeting of the acidic environment at infection
sites, effectively inhibiting the proliferation of Staphylococcus aureus
(Karakecili et al., 2019). At the level of immune modulation, pH-
responsive materials can further optimize the microenvironment
by scavenging ROS and inhibiting the generation of inflammatory
mediators. For instance, biomimetic nanosystems can release anti-
inflammatory agents on demand through pH sensing, significantly
alleviating the inflammatory response of human periodontal
ligament stem cells and promoting tissue repair (Chen et al,
2022). Moreover, surface engineering significantly enhances the
functional diversity of materials. The surface of the Ti6Al4V alloy,
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when subjected to chemical-thermal treatment, demonstrates pH-
dependent wettability and adhesion properties. This characteristic
enables efficient loading of synthetic peptides, facilitating controlled
drugrelease and antibacterial functions (Rodriguez et al., 2020). This
multifunctional feature, which integrates targeted delivery, immune
modulation, and interface optimization, offers an innovative
solution for the treatment of bone infections and the repair
of defects.

The core design concept of enzyme activity-responsive bone
substitute materials revolves around their capacity to specifically
detect changes in the activity of crucial enzymes, such as MMPs,
cathepsins, and other enzymes associated with inflammation
and remodeling, within the bone repair microenvironment
(Zong et al., 2024). This sensing capability allows for the dynamic
modulation of their behavior. For example, through the cleavage
of enzyme-sensitive bonds, these materials can facilitate on-
demand degradation or the precise release of encapsulated
immunomodulatory factors (Zong et al., 2024; Dong et al., 2024).
This enzyme-responsive intelligent release mechanism empowers
the material to react to increased specific enzyme activity during
the inflammatory phase, thereby delivering immunomodulatory
signals in a timely and localized manner. Consequently, it actively
intervenes in macrophage phenotype polarization, mitigates
excessive inflammatory responses, and fosters the development
of a reparative microenvironment. Ultimately, it achieves a
spatiotemporally specific immunomodulatory function that aligns
more closely with the dynamic requirements of bone regeneration,
significantly differentiating it from the static drug release or
degradation mechanisms of traditional materials.

Extensive bone defects, particularly those resulting from trauma
or infection, necessitate the use of bone substitute materials due to
the limited natural healing capacity of bone. However, persistent
inflammatory responses and elevated levels of ROS at the defect
site significantly impede the bone regeneration process (He et al.,
2024). To address this challenge, researchers have developed
an injectable dynamic hydrogel matrix (HAC). This hydrogel
is composed of hyaluronic acid-functionalized dopamine, a 4-
formylphenylboronic acid crosslinker, and carboxymethyl chitosan.
The innovation of this system lies in its incorporation of dimethyl
fumarate (DMF), which exhibits anti-inflammatory and antioxidant
properties, thereby forming a ROS-responsive hydrogel (DHAC).
The borate ester bonds in DHAC can specifically cleave in response
to high ROS microenvironments, enabling the precise and on-
demand release of DMF (Huang Q. et al., 2025). Physicochemical
characterization reveals that DHAC possesses excellent injectability
and self-healing capabilities, allowing it to form stable three-
dimensional scaffolds at defect sites while precisely releasing DMF
in response to local ROS levels. In terms of immune modulation,
DHAC effectively reverses the polarization of M1 macrophages by
scavenging intracellular ROS and inhibiting the secretion of pro-
inflammatory factors such as TNF-a and IL-6. This significantly
alleviates the inflammatory cascade and creates a favorable immune
microenvironment for bone regeneration. Through an integrated
“sensing-release-modulation” design, this ROS-responsive hydrogel
system simultaneously addresses three core challenges in bone
regeneration: inflammation control, oxidative stress elimination,
and osteogenesis promotion. It offers a novel strategy that combines
intelligence and functionality for the treatment of complex bone
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defects. Notably, in complex clinical cases, like the post-surgical
defect after resection of osteosarcoma, a material able to inhibit the
recurrence of the tumour and stimulate bone regeneration is needed.
Zn-based porous scaffolds made by additive manufacturing which
are biodegradable, like Zn-0.8Li IPC scaffolds with a Gyroid unit, are
an important improvement. The scaffolds released Zn>* and Li* ions
in a suitable ratio during degradation while showing a noteworthy
anti-tumor effect. Namely, they impaired the proliferation and
migration of osteosarcoma cells while enhancing apoptosis. They
also enhanced osteogenic differentiation in vitro and promoted
bone regeneration in vivo. Transcriptomic analyses suggest the
dual functionality occurs via downregulation of the PI3K/Akt
signaling pathway, indicating the intelligent responsiveness of the
scaffold towards the tumor microenvironment and its substantial
translational potential against postoperative osteosarcoma along
with the repair of related bone defect (Lu et al., 2025).

In summary, the research in this field is continuously advancing
bone tissue engineering, from biomimetic design to intelligent
response mechanisms and clinical applications. In the future, with
technological advancements, these materials are expected to play
a significant role in more complex scenarios of bone defect repair,
providing better treatment outcomes for patients (Yu et al., 2025).

5 Conclusions and future perspectives

The development of bone substitute materials grounded in
the concept of osteoimmunomodulation continues to encounter
multifaceted challenges in both fundamental science and clinical
translation. At the level of immunomodulatory mechanisms, the
host’s response to implanted materials is characterized by a high
degree of complexity, arising from the cascade reactions of the
innate and adaptive immune systems, the plasticity of immune
cell subsets, and significant variations in genetic backgrounds
and immune states among individuals. Regarding material-host
interactions, the dynamically changing local microenvironmental
parameters—including, but not limited to, pH gradients, oxidative
stress levels, mechanical stimuli, and fluctuations in cytokine
concentrations—collectively influence the degradation kinetics and
immunomodulatory efficacy of the materials. The long-term safety
evaluation system remains incomplete, particularly due to a lack
of systematic research on the long-term biocompatibility of novel
immunomodulators such as exosomes, cell membrane coatings,
and genetically modified materials. Numerous obstacles hinder the
clinical translation pathway, including the development of large-
scale production processes compliant with GMP standards, the
long-term maintenance of material stability, the establishment of
stringent quality control systems, and the validation of clinical
efficacy through multicenter clinical trials. These challenges
represent critical translational barriers from basic research to clinical
application.

To address the aforementioned challenges and advance
the transformation process, we recommend prioritizing the
following categories of smart osteoimmunomodulation materials,
which already have strong preclinical evidence, for multi-center
clinical trials: (1) multifunctional bioceramic composites with
sequential ion release capabilities, such as combinations of
Mg**/Si** and Cu?*/Sr**; (2) hydrogel systems loaded with specific
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immunomodulatory factors, including IL-4, IL-10, and TGF-
B, that exhibit inflammation-responsive release characteristics;
(3) 3D-printed polymer composite scaffolds that are specifically
biofunctionalized on the surface, incorporating biomimetic coatings
and specific topological structures. Concurrently, there is an
urgent need to establish a standardized evaluation system for
bone immune materials, which should encompass: (i) standardized
characterization processes for the physicochemical properties and
degradation behaviors of materials; (ii) standardized evaluation
models for in vitroimmunomodulatory efficacy, such as quantitative
analysis of macrophage polarization profiles and lymphocyte
subgroup co-culture systems; (iii) multimodal evaluation standards
for the bone immune microenvironment and regenerative effects
in large animal bone defect models, including histology, micro-
CT, immunohistochemistry, and cytokine profiling; (iv) a tracking
assessment plan for systemic immune responses and biosafety after
long-term implantation.

The development of future bone substitute materials is expected
to exhibit an innovative trend characterized by interdisciplinary
integration. The concept of precision medicine will guide the design
of individualized materials, allowing for precise analysis of patient-
specific immune microenvironments through the integration of
single-cell multi-omics analysis, spatial transcriptomics, and Al-
assisted modeling. This approach will facilitate the creation of
customized immune modulation strategies. Intelligent responsive
materials are anticipated to emerge as a research hotspot,
particularly in the development of four-dimensional printed
scaffolds that can sense and adapt to changes in the local
microenvironment. These materials are capable of dynamically
regulating immune cell polarization and stem cell differentiation
in accordance with the biological requirements of various stages of
bone repair. Cell engineering technology is poised for significant
breakthroughs, the
polarization protocols in vitro, the development of CRISPR-based

including optimization of macrophage
gene editing techniques for immune cells, and the establishment
of a controllable cytokine sustained-release system. In terms
of manufacturing technology, microfluidic-assisted bioprinting
will enable the precise construction of vascularized bone tissue,
while organ-on-a-chip technology will provide a high-throughput
platform for material screening. The synergistic development of
these innovative directions will advance bone substitute materials
from passive structural replacements to active immune modulation
and functional regeneration, ultimately achieving true bone tissue
engineering reconstruction.

In summary, research on bone substitute materials that leverage
osteoimmunomodulatory properties is experiencing a paradigm
shift from passive “immune silence” to active “immune dialogue”
This review systematically elucidates the fundamental principles
of osteoimmunology, highlights the core regulatory role of the
immune system in bone repair, and comprehensively summarizes
the latest advancements in achieving precise modulation of the
immune microenvironment through strategies such as modulation
of material physicochemical properties, surface functionalization,
and the delivery of bioactive factors. Despite challenges related to
the complexity of immune responses, long-term material safety, and
clinical translation, the development of cutting-edge technologies
such as single-cell techniques, smart responsive materials, and
cell engineering is poised to enable the next-generation of
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bone substitute materials with immunomodulatory functions
to transition from mere structural replacement to functional
regeneration. Future research should prioritize the establishment
of standardized evaluation systems, foster deep interdisciplinary
integration, accelerate the development of innovative materials with
clinical translation potential, and offer more effective treatment
strategies for bone defect repair. Breakthroughs in this field will
not only propel advancements in bone regenerative medicine but
also provide valuable insights for the development of other tissue
engineering materials.
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