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prostate cancer: from molecular
mechanisms to translational
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Prostate cancer, ranking among the most prevalent malignancies in males
worldwide, is undergoing a significant evolution in therapeutic paradigms
from conventional approaches to precision medicine, with recent advances in
targeted therapies offering novel strategic insights. This review delineates the
molecular foundations of prostate carcinogenesis, elucidating pivotal domains
including genetic mutations, hormonal regulation, tumor microenvironment
dynamics, cell cycle dysregulation, epigenetic modifications, and tumor
heterogeneity. Furthermore, we evaluate the clinical translation of targeted
strategies such as AR signaling axis inhibition, PI3K/AKT/mTOR pathway
modulation, DNA damage repair machinery exploitation, prostate-specific
membrane antigen -directed interventions, and combinatorial immunotherapy.
Concurrent challenges—AR-driven heterogeneity, adaptive drug resistance
mechanisms, spliceosomal vulnerabilities, and scarcity of selective molecular
targets—are critically analyzed. Notwithstanding these obstacles, targeted
therapies exhibit considerable potential to enhance therapeutic efficacy while
mitigating systemic toxicities, paving the way for more personalized and
precision-oriented oncologic care. By underscoring the imperative to decode
prostate cancer’'s molecular architecture, this work outlines future research
priorities and advances a robust scientific framework for innovation in
therapeutic development.

KEYWORDS

prostate cancer, targeted therapy, PROTACs, androgen receptor, tumor
microenvironment, molecular mechanisms

01 frontiersin.org


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2025.1685857
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2025.1685857&domain=pdf&date_stamp=2025-11-11
mailto:zwb1054@126.com
mailto:zwb1054@126.com
mailto:1423440039@qq.com
mailto:1423440039@qq.com
mailto:wang3169332@163.com
mailto:wang3169332@163.com
https://doi.org/10.3389/fcell.2025.1685857
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685857/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685857/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685857/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1685857/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Wu et al.

10.3389/fcell.2025.1685857

Tumor
Heterogeneity

Hormonal
Regulation &
Tumor Growth

Metabolic
Reprogramming

Epigenetic
Regulation

GRAPHICAL ABSTRACT

immune
evasion

Genetic
Mutations &
Genetic
Susceptibility

Cellular
Dysregulation &
Proliferation

Tumor
microenvironment

Highlights

o PROTAC:s degrade resistant AR variants-Novel AR degraders
(e.g., ARV-110) overcome castration resistance in clinical
trials.

« PSMA theranostics redefine mCRPC management—22>Ac-
J591 achieves 46.9% PSAS50 response with targeted alpha
therapy.

Abbreviations: AAP, Abiraterone acetate/prednisone; AbEzSvGNPs,
Abiraterone-enzalutamide bioconjugated survivin-encapsulated gold
nanoparticles; ADT, Androgen Deprivation Therapy; ARSls, Androgen
receptor signaling inhibitors; CRPC, Castration-resistant prostate cancer;
DDR, DNA damage repair; DHT, Dihydrotestosterone; HRR, Homologous
recombination repair; ICls, Immune checkpoint inhibitors; MMR, Mismatch
repair; MSI, Microsatellite instability; NIRA, Niraparib; NK, Natural killer;
ORR, Objective response rates; OS, Overall survival; PCa, Prostate cancer;
PROTACs, Proteolysis-targeting chimeras; PSA, Prostate-specific antigen;
PSMA, Prostate-specific membrane antigen; RP2D, Recommended phase
Il dose; TAMs, Tumor-associated macrophages; TILs, tumor-infiltrating
lymphocytes; TME, Tumor microenvironment; Tregs, Regulatory T cells.
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o PARP-ICI synergy exploits DDR defects—Olaparib/durvalumab
combinations induce immunogenic death in HRR-deficient
tumors.

o Molecular stratification guides precision therapy-BRCA2
(56.6%), MSI-H, and AR-V7 serve as actionable biomarkers.

« TME immunosuppression—-AR
inhibition synergizes with ICIs by downregulating PD-
L1/Tregs.

reprogramming  reverses

1 Introduction

Prostate cancer (PCa), one of the most prevalent solid
malignancies among men worldwide, represents a leading cause of
male cancer-related mortality (Sung et al., 2021; Bergengren et al.,
2023). For localized early-stage PCa, therapeutic options include
radical prostatectomy, external beam radiotherapy, and androgen
deprivation therapy (ADT), while advanced or metastatic disease
typically necessitates multimodal approaches combining ADT
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with chemotherapy and radiation (Li et al, 2024). ADT has
remained the cornerstone of PCa management for over seven
decades, demonstrating unparalleled efficacy in disease control
(Nabavi et al,, 2023; Wang et al., 2023). However, both surgical
and pharmacological castration inevitably culminate in therapeutic
resistance (Vigneswaran et al., 2021). Castration-resistant prostate
cancer (CRPC) emerges as the terminal trajectory for most patients,
characterized by dismal clinical outcomes, with metastatic CRPC
(mCRPC) exhibiting a median overall survival (OS) of less than
2 years (Lowrance et al., 2018). A significant proportion of patients
with CRPC develop resistance to prior ADT or chemotherapy
and experience systemic toxicities, accompanied by rising prostate-
specific antigen (PSA) levels, AR mutations, and aberrant RNA
transcription. Consequently, their survival benefit is typically
less than six months—a stark imperative for novel therapeutic
interventions (Jones et al., 2020; Kour et al, 2023; Carranza-
Aranda et al., 2024; Lv et al., 2024).

Targeted therapy, an innovative oncologic strategy, operates
through precise identification and engagement of tumor-
targets,
therapies that indiscriminately affect rapidly dividing cells.

specific  molecular diverging from conventional
This approach offers superior selectivity, minimized off-target
toxicity, and enhanced therapeutic precision (Qian et al., 2020;
Pham et al, 2021; Viktorsson et al, 2023). The advent of
targeted therapies has contributed to a shift in oncology—from
traditional histology-driven chemoradiotherapy paradigms to
molecularly informed personalized approaches. Building on this
framework, this review synthesizes recent advancements in PCa-
targeted therapeutics, encompassing molecular pathogenesis,
contemporary pharmacologic agents, and innovative strategies,
while providing a critical appraisal of persistent challenges and

emerging countermeasures in this rapidly evolving field.

2 Molecular pathogenesis of prostate
cancer

PCa represents a multifactorial disorder driven by intricate
genetic and molecular alterations, as illustrated in Figure 1. A
comprehensive understanding of its molecular underpinnings is
pivotal for advancing targeted therapeutic strategies.

2.1 Genetic mutations and hereditary
predisposition

Genetic mutations and hereditary susceptibility serve as
critical determinants in PCa pathogenesis. Table | summarizes
the frequency of gene mutations closely associated with PCa.
Among these, BRCA1/2 mutations—originally linked to breast and
ovarian cancers—have emerged as significant risk amplifiers for PCa
(Abida et al., 2020; Boussios et al., 2022; Fettke et al., 2023). These
genes encode proteins essential for homologous recombination
repair (HRR) of DNA double-strand breaks; their dysfunction leads
to genomic instability and carcinogenesis. Chen et al. characterized
BRCA germline mutations in Chinese PCa cohorts, analyzing
172 patients with BRCA1/2 alterations (Chen et al., 2022). The
cohort exhibited a median diagnosis age of 67 (range: 34—89), with
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54.65% (94/172) presenting metastatic castration-resistant disease,
indicative of aggressive biology. Frameshift, missense, and splice
variants predominated, with BRCA2 mutations surpassing BRCA1
in frequency. Notably, HOXB13, MSH2, and MSH6 mutations
further contribute to PCa susceptibility.

HOXB13,
embryogenesis and tissue homeostasis, harbors pathogenic
variants strongly associated with hereditary PCa (Nyberg et al.,
2019). Mechanistically, Lu etal. demonstrated that HOXB13
recruits HDAC3 to suppress de novo lipogenesis and metastasis,

a homeobox transcription factor critical in

while its loss or mutation drives lipid accumulation, enhancing
tumor cell motility and metastatic potential (Lu et al., 2022).
These findings suggest therapeutic utility of lipogenic pathway
inhibitors in HOXB13-deficient PCa. MSH2 and MSHS6, core
of DNA mismatch (MMR),
replication fidelity. Their inactivation induces microsatellite

components repair safeguard
instability (MSI), a biomarker of immunotherapy responsiveness.
Wyvekens etal. evaluated 19 MMR-deficient PCa cases,
identifying MSH2/MSH6 loss as the predominant defect, with
distinct histopathological features aiding diagnostic recognition

(Wyvekens et al., 2022).

2.2 Hormonal regulation and neoplastic
progression

Androgen signaling, mediated via the androgen receptor
(AR), remains central to PCa biology (Figure 2). Testosterone
and its potent metabolite dihydrotestosterone (DHT) bind
AR, a steroid receptor comprising four domains: N-terminal
transcriptional regulation, DNA-binding, hinge, and ligand-
binding. In unliganded states, AR resides in the cytoplasm,
chaperoned by HSP90/70 complexes (Likos et al., 2022; Knerr et al.,
2023). Ligand binding triggers conformational changes, nuclear
translocation, dimerization, and DNA binding to androgen response
elements, driving transcription of genes that promote proliferation,
survival, and metastasis (Xie et al., 2022; Ozturan et al., 2022;
Sun et al., 2023).

Early-stage PCa exhibits androgen dependence, making AR
pathway inhibition a cornerstone of therapy for locally advanced
or metastatic disease. However, adaptive mechanisms—AR
ampliﬁcation, gain-of-function mutations, splice variant generation
(e.g., AR-V7), and downstream signaling rewiring—culminate
in CRPC (Formaggio et al., 2021; Isebia et al., 2023). Beyond
intrinsic tumor cell effects, androgens modulate the tumor
(TME)
macrophages, activating cancer-associated fibroblasts, suppressing

microenvironment by polarizing tumor-associated
immune surveillance, and stimulating angiogenesis (Hahn et al.,
2023). Deciphering these multidimensional interactions is critical
for identifying novel therapeutic vulnerabilities in PCa’s evolving

landscape.

2.3 Tumor microenvironment and immune
evasion

The TME and immune evasion mechanisms play pivotal
roles in PCa progression. The TME constitutes a dynamic
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FIGURE 1

metastasis).

Biological mechanisms underlying prostate carcinogenesis and progression (Legend: Red circular dashed line: The location of PCa. Arrows: Activating
or promoting effects. From top to bottom: (1) Tumour heterogeneity arises through clonal selection, generating sub-populations with distinct
genomic/epigenomic profiles. (2) Immune evasion mechanisms allow tumour cells to escape immune surveillance. (3) Hormonal regulation centred
on AR signalling supports tumour cell survival and proliferation. (4) Inherited genetic susceptibility and sporadic mutations destabilise the genome. (5)
Metabolic reprogramming (aerobic glycolysis, lipid synthesis) fuels biomass production and redox balance. (6) Cellular Dysregulation and Proliferation
is driven by cell-cycle checkpoint loss that trigger unchecked prostate-cancer cell division. (7) Epigenetic alterations (DNA methylation, histone
modifications) silence tumour-suppressor genes and activate oncogenes. (8) The altered tumour microenvironment further promotes growth and
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TABLE 1 The proportion of important gene mutations related to
prostate cancer.
AR+

TP53+  FOXALl+

BRCA1+

BRCA2+

17.46%
(11-63)

56.55%
(82/145)

15% (9/59) 15% (9/59) 34% (20/59)

ecosystem comprising cancer cells, immune cells (e.g., tumor-
associated macrophages (TAMs), regulatory T cells (Tregs), natural
killer (NK) cells), stromal fibroblasts, vascular networks, and
extracellular matrix components. This milieu not only sustains
tumor survival but also orchestrates immune evasion through
multifaceted interactions (Kwon et al., 2021; Wong et al., 2022;
Hirz et al, 2023). TAMs, particularly lipid-laden subsets, drive
PCa invasiveness via IL-1B-mediated upregulation of MARCO,
which reciprocally triggers CCL6 secretion to enhance cancer cell
migration (Masetti et al., 2022). Tregs amplify immunosuppression
by releasing TGF-f and IL-10, establishing an immune-tolerant
niche linked to elevated recurrence risk (Karpisheh et al., 2021).
Paradoxically, NK cells and tumor-infiltrating lymphocytes
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(TILs) exhibit dual roles—suppressing tumor growth or being
co-opted to facilitate immune escape (Pasero et al., 2016;
Ocana et al.,, 2017).

PCa cells employ multifaceted immune-editing mechanisms
to evade immune surveillance, fostering clonal selection of
immunoresistant ~ subpopulations. immunosuppressive
strategies involve the secretion of specific ligands and
cytokines—such as PD-L1, TGF-B, and IL-10—which inhibit
T-cell activation and promote Tregs expansion (Zhu et al,
2023). Additionally, PCa cells

cells including myeloid-derived suppressor cells and M2-

Key

recruit inhibitory immune

polarized TAMs via chemokine signaling (Wu et al, 2022).
These cells further amplify through
arginase-1, iNOS, and reactive oxygen species production,

immunosuppression

effectively dampening cytotoxic T-cell responses. Concurrently,
downregulation of major histocompatibility complex class I
molecules impairs antigen presentation, enabling tumor cells
to evade CD8" T-cell recognition. These processes collectively
establish an immunosuppressive TME that shields tumors from
cytotoxic immune responses, posing formidable therapeutic
challenges.
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The AR signaling pathway in prostate cancer pathogenesis.

2.4 Cell cycle dysregulation and
proliferative signaling

Dysregulated cell cycle control is a hallmark of PCa
pathogenesis. Normally governed by stringent checkpoints
to ensure genomic fidelity, the cell cycle becomes hijacked
in PCa through aberrant activation of proliferative pathways
suppressors. PTEN,
phosphatase, constrains PI3K/AKT/mTOR signaling to inhibit

and inactivation of tumor a critical

uncontrolled growth. TIts frequent loss in PCa leads to
constitutive AKT activation, NF-kB-driven stemness, and
evasion of growth suppression (Dubrovska et al, 2009;
Kim et al, 2014). Concurrently, p53 dysfunction—via

mutation or epigenetic silencing—compromises DNA damage
response, enabling survival of genomically unstable clones
(Macedo-Silva et al., 2023).

MYC proto-oncogene overexpression further disrupts cell
cycle governance by antagonizing AR-mediated transcriptional
programs and bypassing AR-dependent transcriptional pausing.
This drives S-phase entry through upregulation of ribosome
biogenesis genes and cyclin-dependent kinases, accelerating
proliferation while fostering genomic instability (Qiu et al,
2022). The interplay between PTEN/PI3K/AKT, p53, and MYC
pathways creates a complex regulatory nexus, complicating

therapeutic  targeting and underscoring the need for
combinatorial ~strategies to address convergent oncogenic
networks.
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2.5 Epigenetic regulation and metabolic
reprogramming

Epigenetic =~ mechanisms—including DNA  methylation,
RNA-mediated

regulation—orchestrate PCa pathogenesis by modulating gene

histone  modifications, and non-coding
expression patterns without altering genomic sequences. These
processes drive tumor progression, metastasis, and therapeutic
resistance through transcriptional silencing or activation of
critical pathways. Hypermethylation of tumor suppressor genes,
exemplified by GSTP1 inactivation in PCa, disrupts detoxification
mechanisms and potentiates carcinogen-induced DNA damage,
as evidenced by a meta-analysis of 15 studies (Zhou et al., 2019;
Zhao et al., 2020). Concurrently, histone acetylation/methylation
dynamically remodels chromatin architecture to either enhance
oncogenic transcription or repress tumor-suppressive programs
(Metzger et al., 2019; Topchu et al., 2022; Nguyen et al., 2023).
Metabolic reprogramming represents an adaptive strategy for
PCa cells to meet biosynthetic and energetic demands. Unlike
normal prostate epithelium, PCa exhibits heightened lipogenesis
and a pronounced Warburg effect—preferential glycolysis despite
oxygen availability—to fuel rapid proliferation and therapy
resistance (Lai et al., 2023). This metabolic shift is bidirectionally
linked to epigenetic regulation: epigenetic modifiers directly
control metabolic enzyme expression, while metabolites such as
a-ketoglutarate and S-adenosylmethionine serve as cofactors for
histone/DNA-modifying enzymes. Such crosstalk enables dynamic
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adaptation to microenvironmental stressors, fostering tumor
survival and dissemination.

2.6 Tumor heterogeneity and evolutionary
dynamics
multidimensional

PCa  progression is

heterogeneity—interpatient

defined by

(intertumoral), intratumoral, and
cellular—arising from clonal evolution under selective pressures.
This diversity, driven by stochastic mutations, epigenetic plasticity,
metabolic adaptations, gradients,

underpins therapeutic failure and relapse (Haffner et al., 2021;

and microenvironmental

Chakraborty et al, 2023). Exome sequencing of 37 samples
from 16 PCa patients revealed recurrent alterations in DNA
damage repair (DDR) genes, RTK/RAS pathway components,
and autophagy regulators, with copy number variation burden
correlating with metastatic potential (Wu et al., 2020). Spatial
heterogeneity in oxygen tension and nutrient availability further
selects for clones optimized for survival in hypoxic or nutrient-
deprived niches (Peitzsch et al., 2022).

The TME acts as both a driver and consequence of heterogeneity,
fostering competitive interactions between clones with divergent
genetic, epigenetic, and metabolic profiles. This evolutionary
arms race necessitates polytherapeutic strategies targeting core
vulnerabilities across heterogeneous subpopulations to mitigate
adaptive resistance.

3 Current targeted therapeutics and
clinical strategies

Targeted therapies have revolutionized the management of PCa,
offering patients more precise and effective treatment options. By
specifically targeting key molecules and pathways driving tumor
growth and dissemination, these therapies minimize damage to
normal cells, achieving superior therapeutic efficacy and reduced
systemic toxicity compared to conventional approaches. In PCa,
therapeutic focus centers on critical biomarkers such as the AR,
proliferative signaling cascades, and DNA repair mechanisms.
Advances in basic research and clinical trials continue to expand the
pipeline of targeted agents and combination strategies, heralding a
new era of innovation in PCa therapeutics. Current investigational
agents under clinical evaluation are summarized in Table 2.

3.1 Targeting the androgen receptor
signhaling pathway

3.1.1 Clinical applications of second-generation
antiandrogens and emerging agents

The AR signaling axis plays a central role in PCa initiation
and progression. While ADT remains a mainstay by suppressing
AR activity, long-term treatment inevitably leads to resistance
(Obinata et al., 2024). Recent discoveries of novel AR-associated
targets have spurred the development of next-generation
antiandrogens. Second-generation agents such as enzalutamide

and abiraterone inhibit AR signaling through distinct mechanisms,
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demonstrating robust antitumor activity and improved clinical
outcomes in mCRPC (Mitsogianni et al., 2023; Obinata et al., 2024).
Nevertheless, resistance persists in a subset of patients, driving
exploration of novel AR-targeted strategies.

A phase I trial evaluated GT0918, a novel AR antagonist, in 16
patients with mCRPC across five escalating dose cohorts (Zhou et al.,
2020). Ten and two patients completed three and six treatment
cycles, respectively. Six patients achieved 230% PSA decline, with
two attaining >50% reduction. Stable disease was observed in all 12
patients with metastatic soft tissue lesions. GT0918 demonstrated
high AR binding affinity, downregulation of AR protein expression,
and favorable tolerability, suggesting promising antitumor activity
in the CRPC population.

Combination strategies leveraging multi-target inhibition
are gaining momentum. ODM-204, CYP17A1/AR
inhibitor, was tested in a clinical trial where 13% of
patients achieved >50% PSA reduction by week 12, with
60.9% experiencing mild treatment-related adverse events
(Peltola et al, 2020). ODM-204 was well-tolerated, with
preliminary antitumor activity observed in mCRPC. In a preclinical

a dual

study, Baker etal. developed a combinatorial nanotherapeutic

platform—abiraterone-enzalutamide  bio-conjugated  survivin-
encapsulated gold nanoparticles (AbEzSvGNPs)—for targeted
PCa therapy (Baker et al, 2023). Compared to free abiraterone
and enzalutamide, AbEzSvGNPs exhibited enhanced cytotoxicity
against DU145(IC5y = 4.21uM) and PC-3(IC;, = 5.58 uM)
cells while showing no significant toxicity in normal rat kidney

cells.

3.1.2 Advances in PROTAC-Based targeted
therapies

Proteolysis-targeting chimeras (PROTACs) represent a novel
therapeutic modality in PCa, leveraging the ubiquitin-proteasome
system to selectively degrade pathogenic proteins—a mechanism
distinct from traditional small-molecule inhibition (Wang et al.,
2025). PROTACs are heterobifunctional molecules comprising
three components: a target protein ligand, an E3 ubiquitin ligase
recruiter, and a linker. By bridging the target protein with
an E3 ligase, PROTACs induce ubiquitination and subsequent
proteasomal degradation of the target (Zeng et al., 2021). This
approach has garnered significant attention in oncology, particularly
for addressing resistant AR variants and castration-resistant AR
signaling in PCa.

ARV-110 (bavdegalutamide), the first PROTAC to enter clinical
trials, is currently in phase II evaluation for mCRPC. ARV-110,
an orally bioavailable, CRBN-based AR degrader developed by
Arvinas, Inc., demonstrated promising efficacy in a phase I/II
trial. It reduced PSA levels by > 50% in 40% of patients with
mCRPC harboring specific genetic alterations. Furthermore, in
initial clinical studies, biopsy data from one patient showed a
70%-90% reduction in AR levels (Liu et al.,, 2022). Malarvannan
etal. highlighted the potential of PROTACs to overcome drug
resistance and target “undruggable” proteins, citing ARV-110 and
ARV-766 (another AR-directed PROTAC in phase II trials for
CRPC) as exemplars (Malarvannan et al., 2025). Omar etal
reviewed advancements in PROTAC design, proposing the use of
heterocyclic compounds as warheads to optimize binding affinity,
selectivity, and pharmacokinetic properties (Omar et al., 2025).
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TABLE 2 List of drug information during clinical trials.

Trial identification Drug name Trial phase  No. of patients Target disease (prior
therapy)
CTR20150501 GT0918 AR phase I 16 CRPC (Chemotherapy failure)
NCT02861573 Pembrolizumab PD-1 phase Ib/1I 102 CRPC (ADT failure)
NCT02361086 ODM-204 CYP17A1/AR phase I 23 CRPC (ADT failure)
NCT02709889 Rovalpituzumab tesirine AR phase IT 99 CRPC (ADT failure)
(SC16LD6.5)

NCT03888612 Bavdegalutamide AR phase I/IT 195 mCRPC (ADT failure)
NCT02121639 Capivasertib AKT phase IT 150 CRPC (Chemotherapy failure)
NCT04087174 Capivasertib PI3K/AKT/mTOR phase Ib 27 nmCRPC (ADT failure)
NCT02407054 Samotolisib PI3K and mTOR phase Ib/II 13/129 mCRPC (ADT failure)
NCT03017833 Sapanisertib mTORC1/2 phase I 30 PCa (ADT failure)

(CB-228/TAK-228)

NCT02215096 GSK2636771 PI3KPB phase I 37 CRPC (ADT failure)
NCTO03317392 Olaparib PARP phase I 12 mCRPC (ADT failure)
NCT04169841 Olaparib PARP phase IT 213 PCa (ADT failure)
NCT03431350 Niraparib PARP phase IT 24 mCRPC (ADT failure)
NCT02924766 Niraparib PARP1/2 phase Ib 33 mCRPC (ADT failure)
NCT02854436 Niraparib PARP1/2 phase IT 289 mCRPC (ADT failure)
NCT03276572 25 Ac-J591 PSMA phase IT 32 mCRPC (Chemotherapy or

ADT failure)
NCT03999749 JNJ-63898081 PSMA phase I 39 mCRPC (Chemotherapy or

ADT failure)
NCT02484404 Olaparib + durvalumab PARP + PD-L1 phase IT 17 mCRPC (Chemotherapy or

ADT failure)
NCT03016312 Enzalutamide + Atezolizumab AR + PD-L1 phase IIT 759 mCRPC (ADT failure)
NCT03805594 177Lu-PSMA- PSMA + PD-1 phase I 43 mCRPC (ADT failure)

617+pembrolizumab

This structural refinement enhances PROTAC efficacy, positioning ~ mTOR inhibitors have entered clinical trials, demonstrating

them as promising tools for addressing persistent challenges in  variable antitumor efficacy. Emerging next-generation inhibitors

PCa therapy. aim to enhance therapeutic precision while minimizing adverse
effects.

Capivasertib, a pan-AKT inhibitor, exhibits synergistic activity

32 Ta rg eti ng the PI3K/AKT/mTOR with docetaxel in mCRPC. In a randomized phase II trial involving

signa[ing axis 150 mCRPC patients receiving up to 10 cycles of docetaxel (21-

day cycles), capivasertib combined with chemotherapy prolonged

The PI3K/AKT/mTOR pathway, a critical oncogenic ~ OS, though these findings require prospective validation to address

cascade, drives PCa progression by promoting tumor potential biases (Crabb et al., 2021). A phase Ib study further

cell proliferation, migration, and therapeutic resistance  evaluated capivasertib (400 mg twice daily, 4 days on/3 days off)

through aberrant activation (Pungsrinont et al, 2021;  combined with abiraterone acetate (1,000 mg daily) and prednisone

Wylaz et al., 2023; Yi et al, 2023). Multiple PI3K, AKT, and (5 mg twice daily) in mCRPC. Nine patients (33%) achieved >20%
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PSA decline, with no dose-limiting toxicities observed, supporting
further investigation of this regimen (Shore et al., 2023).

dual PI3K/mTOR inhibitor employing
intermittent target suppression, demonstrated enhanced tolerability

Samotolisib, a
and delayed resistance in a blinded, placebo-controlled
Ib/II trial (Sweeney et al., 2022). Phase Ib (n = 13) revealed no dose-
limiting toxicities, while phase IT (n = 129) showed significantly
prolonged median progression-free survival (PFS) and radiographic
PFS(rPES) in the samotolisib/enzalutamide arm versus placebo. This
underscores the feasibility of combining PI3K/mTOR inhibition
with AR-targeted therapy.

Subbiah etal. explored sapanisertib, an ATP-competitive
mTORCI1/2 inhibitor, combined with metformin in patients
with mTOR/AKT/PI3K pathway-altered advanced malignancies
(Subbiah et al., 2024). The combination exhibited tolerable safety
and antitumor activity, particularly in PTEN-mutated cohorts.
Metformins AMPK-mediated mTOR suppression may potentiate
sapanisertibs efficacy, offering a rationale for dual metabolic-
oncogenic targeting in PCa. A phase I dose-escalation study
of GSK2636771(PI3Kp inhibitor) with enzalutamide in PTEN-
deficient mCRPC(n = 37) reported a 50% non-progression rate at
12 weeks with the recommended 200 mg dose, though objective
responses remained limited (1 patient with 36-week partial
response) (Sarker et al., 2021). These data highlight modest activity
despite acceptable safety, emphasizing the need for biomarker-
driven patient selection. In addition, bioactive phytochemicals,
including flavonoids, terpenoids, alkaloids, lignans, phenolic acids,
and polysaccharides, exhibit preclinical efficacy in PCa through
selective modulation of the PI3K/AKT/mTOR pathway. These
natural agents regulate downstream effectors to suppress tumor
proliferation, induce apoptosis, and reverse therapeutic resistance,
positioning them as promising candidates for adjunctive therapeutic
modalities or complementary strategies in PCa management
(Luetal., 2020; Leén-Gonzalez et al., 2021; Jeong et al., 2023; Elsayed
and Fahim, 2025; Filippi et al., 2025).

3.3 Targeting DNA damage repair pathways

Dysregulation of DDR mechanisms is a hallmark of prostate
carcinogenesis. Therapeutic strategies targeting these pathways
have demonstrated clinical promise, particularly in genetically
defined subsets of PCa. PARP inhibitors, such as olaparib
and rucaparib, exploit synthetic lethality by impairing base
excision repair in tumors with homologous recombination
deficiency, notably those harboring BRCA1/2 mutations
(Teyssonneau et al., 2021; Stracker et al., 2023).

A phase I dose-escalation study evaluated olaparib combined
with radium-223 in mCRPC patients with bone metastases,
establishing a recommended phase II dose (RP2D) of 200 mg
twice daily for olaparib when administered with radium-223
(Pan et al., 2023). Niraparib (NIRA), a selective PARP1/2 inhibitor,
was investigated in a phase II trial combining it with abiraterone
acetate and prednisone in mCRPC patients progressing on androgen
receptor signaling inhibitors (ARSIs) and taxanes (Chi et al,
2023). The regimen showed measurable antitumor activity and
manageable toxicity, supporting further exploration. A phase Ib
trial further assessed NIRA paired with apalutamide or abiraterone
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acetate/prednisone (AAP) in mCRPC, confirming tolerability and
identifying NIRA 200 mg as the RP2D for combination with
AAP (Saad et al, 2021). In a multicenter phase II study (n
289), niraparib exhibited clinical activity in heavily pretreated
mCRPC patients with DDR defects, particularly BRCA-mutated
cohorts, reinforcing its therapeutic potential in biomarker-selected

populations (Smith et al., 2022).

3.4 PSMA-targeted therapeutic innovations

Prostate-specific membrane antigen (PSMA), a transmembrane
glycoprotein overexpressed in PCa with expression levels correlating
to tumor aggressiveness, has emerged as a cornerstone for precision
theranostics. Current PSMA-directed strategies encompass
radioligand therapies (e.g., 177Lu-PSMA-617, 225Ac-PSMA-RLT),
antibody-drug conjugates (MLN2704, PSMA-MMAE), cellular
immunotherapies (PSMA-CAR-T, BiTEs), and experimental
modalities such as photodynamic therapy and ultrasound-mediated
nanobubble ablation. Radioligand therapies, characterized by high
tumor specificity and reduced off-target toxicity, are increasingly
prioritized for their ability to overcome tumor heterogeneity
(Parghane and Basu, 2023; Desai et al.,, 2024; Ling et al., 2024;
Nakajima, 2024; Ye et al., 2024; Belabaci et al.,, 2025). A phase
I dose-escalation trial of 225Ac-J591, an a-emitting anti-PSMA
monoclonal antibody, demonstrated preliminary efficacy in 32
patients with progressive mCRPC, with 46.9% achieving >50% PSA
decline (34.4% confirmed) and 59.1% exhibiting circulating tumor
cell control, alongside a manageable safety profile (Tagawa et al.,
2024). At the final follow-up, disease progression and/or death
had occurred in nearly all patients (29 out of 32). The median
PFS was 5.6 months (95% CI, 3.7-7.9), and the median OS was
10.7 months. Similarly, a phase I study of JNJ-63898081 (JNJ-
081), a PSMA-targeted agent, explored intravenous (0.3-3.0 ug/kg)
and subcutaneous (3.0-60 pg/kg) administration in 39 mCRPC
patients. While dose-limiting toxicities occurred in four cases,
transient PSA reductions were observed at subcutaneous doses
>30 pg/kg, suggesting therapeutic potential despite challenges such
as cytokine release syndrome at higher doses (Lim et al., 2023).
The integration of PSMA-PET/CT into clinical workflows has
revolutionized diagnostic staging and restaging, enabling precise
patient stratification for PSMA-directed therapies. However, the
synergistic potential of combining PSMA-targeted approaches
with standard treatments remains underexplored, necessitating
further investigation to optimize combinatorial efficacy and
safety. Advances in radiopharmaceutical engineering and imaging
technologies are poised to refine therapeutic precision, offering
renewed hope for metastatic PCa management through tumor-
selective targeting and minimized systemic toxicity.

3.5 Combinatorial targeted and
immunotherapeutic strategies in prostate
cancer

The integration of targeted therapies with immunomodulatory
agents represents an important strategy in PCa management.
Targeted therapies disrupt oncogenic signaling by selectively
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of
immunotherapies harness the host immune system to eradicate

inhibiting  molecular  drivers tumorigenesis, ~ while
residual disease. This synergy is amplified by the ability of targeted
agents to remodel the TME, enhance tumor antigen presentation,
and potentiate immune effector cell activity, thereby overcoming
limitations of monotherapy and improving therapeutic efficacy and

tolerability (Zhu et al., 2021).

3.5.1 PARP inhibitors and immune checkpoint
blockade

The combination of PARP
checkpoint inhibitors

immune
of
synthetic lethality and immune activation. PARP inhibitors

with
(ICIs) exploits dual mechanisms

inhibitors

impair DNA repair via PARP enzyme blockade, inducing lethal
DNA damage in homologous recombination repair (HRR)-
deficient tumors (e.g., BRCA1/2-mutated PCa) (Wu et al, 2021).
Concurrently, ICIs such as anti-PD-1/PD-L1 or anti-CTLA-4 agents
reinvigorate T-cell-mediated antitumor responses, which are often
suppressed in PCa(Catalano et al., 2022).

Crucially, the efficacy of this combinatorial strategy is highly
dependent on the specific underlying DDR defect. A growing body
of clinical evidence indicates that tumors harboring “BRCA1/2”
mutations derive the greatest benefit. For instance, in the phase I/1I
Study study (n = 17), the combination of olaparib and durvalumab
in mCRPC demonstrated a higher objective response rate (ORR) in
patients with “BRCA1/2” alterations compared to those with other
HRR gene mutations (Karzai et al., 2018).

A phase II trial evaluating durvalumab (anti-PD-L1) and
tremelimumab (anti-CTLA-4) with olaparib in HRR-deficient
solid tumors demonstrated synergistic immunogenic cell death
and disease stabilization, supporting further exploration in PCa
cohorts (Fumet et al., 2020). Meta-analyses of clinical trials reveal
superior ORR, prolonged median progression-free survival, and
significant PSA reductions with PARP-ICI combinations compared
to monotherapy, alongside acceptable toxicity profiles (Mateo et al.,
2015; Karzai et al., 2018; Antonarakis et al, 2020). However,
increased risks of hematologic abnormalities, gastrointestinal
toxicity, and immune-related adverse events necessitate vigilant
monitoring and refined, biomarker-guided patient selection,
prioritizing those with “BRCA1/2” mutations for the most robust
clinical benefit (Hunia et al., 2022).

3.5.2 AR pathway inhibition and immunotherapy
synergy

AR inhibitors modulate the immunosuppressive TME by
downregulating PD-L1 expression, reducing Tregs infiltration, and
enhancing CD8" T-cell functionality (Cordes et al., 2018; Dib et al.,
2019). Preclinical studies demonstrate that AR blockade mitigates
T-cell exhaustion and augments interferon-y signaling, sensitizing
tumors to PD-1/PD-L1 inhibition (Guan et al., 2022). Clinical trials,
however, yield mixed outcomes. The KEYNOTE-365 Cohort C trial
(Ib/1I phase) reported limited antitumor activity for enzalutamide
combined with pembrolizumab in chemotherapy-naive mCRPC
patients post-abiraterone failure, though safety profiles aligned
with individual agent characteristics (Yu et al., 2024). Conversely,
a phase III trial (n = 759) showed improved PFS in mCRPC
patients with high PD-L1(IC2/3) and CD8" gene expression treated
with enzalutamide plus atezolizumab, though OS benefits were
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not observed (Powles et al, 2022). These findings underscore
the need for biomarker-driven stratification and optimized dosing
to address heterogeneous responses and mitigate immune-related
toxicities.

3.5.3 PSMA-targeted and immunotherapeutic
convergence

PSMA-directed therapies synergize with immunotherapies
through multimodal mechanisms: 1. Radioligand-induced
immunogenic cell death: 177Lu-PSMA-617 and 225Ac-PSMA-
RLT trigger tumor apoptosis and neoantigen release, enhancing
immune recognition and dendritic cell activation (Pouget et al.,
2023). 2. TME reprogramming: Radiation-induced DNA damage
stimulates STING pathway activation and pro-inflammatory
cytokine secretion, augmenting ICI efficacy (Bellavia et al., 2022;
Pouget et al., 2023). 3. Antibody-drug conjugate precision: PSMA-
MMAE and similar agents deliver cytotoxic payloads directly to
tumor cells while sparing normal tissues, concurrently promoting
immune cell infiltration and activation (Lanka et al., 2023).

Early-phase trials demonstrate enhanced ORR and manageable
toxicity with 177Lu-PSMA-617 plus PD-1 inhibitors in mCRPC,
including a phase I study where pembrolizumab combination
therapy achieved superior activity and reduced adverse events
compared to monotherapy (Prasad et al, 2021; Aggarwal et al,
2023). These data highlight the potential of PSMA-immune
combinatorial strategies to redefine metastatic PCa treatment
paradigms.

4 Challenges and strategic
countermeasures in targeted therapy

While targeted therapies have revolutionized PCa management,
inherent challenges—including clonal heterogeneity, adaptive
resistance, and tumor evolution—persist, necessitating innovative
solutions to optimize therapeutic outcomes.

4.1 AR heterogeneity and therapeutic
resistance

The AR, a master regulator of male reproductive physiology,
exhibits profound heterogeneity across patients and tumor
subclones, driven by genetic mutations (e.g., AR-V7 splice variants),
post-translational modifications (phosphorylation, acetylation),
and epigenetic rewiring (Zamagni et al., 2019; Jaiswal et al., 2022;
Kim et al.,, 2022; Wasim et al., 2022). This variability underpins
divergent responses to ADT, with subsets of patients developing
resistance through mechanisms such as AR amplification, ligand-
independent activation, or glucocorticoid receptor crosstalk
(Germain et al., 2020). Paradoxically, AR remains the dominant
oncogenic driver in CRPC, yet ARSIs—clinically deployed for
over seven decades—yield transient benefits, as most patients
progress to CRPC within 12-18 months (Germain et al., 2020).
Emerging strategies to circumvent resistance include: 1. Next-
generation PROTACs: Advancing beyond first-generation AR
degraders, novel dual-target PROTACs are being engineered
to simultaneously degrade AR and other key resistance-driving
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proteins, such as epigenetic regulators (e.g., BRD4) or kinases
(e.g., CDK9). This polypharmacological approach can more
comprehensively dismantle the oncogenic network and overcome
compensatory pathways that lead to single-agent resistance. 2.
AR splice variant-specific inhibitors: The AR-V7 variant, which
lacks the ligand-binding domain, is a major driver of resistance to
conventional antiandrogens. New therapeutic modalities, including
small-molecule inhibitors specifically designed to target the
unique constitutive activation domain of AR-V7, and monoclonal
antibodies that selectively recognize and neutralize AR-V7, are
under active investigation to address this critical vulnerability. 3.
Subtype-selective AR targeting: Beyond splice variants, development
of agents targeting other AR isoforms or specific post-translationally
modified AR states. 4. Multimodal combination regimens:
Integrating ADT with chemotherapy, radiotherapy, or immune
checkpoint inhibitors to exploit synthetic lethality and delay
resistance. 5. Epigenetic modulation: Targeting AR co-regulators
(e.g., FOXA1l, HOXB13) to dismantle compensatory signaling
networks. Prospective research must prioritize longitudinal genomic
profiling to map AR evolutionary trajectories and identify predictive
biomarkers for stratified therapeutic interventions.

4.2 Vulnerabilities in alternative splicing
and hereditary predisposition

Hereditary predisposition accounts for 10%-20% of PCa cases,
with germline mutations in genes such as BRCA2, HOXB13, and
MMR pathways contributing to familial clustering (Brandao et al.,
2020; Rosellini et al, 2021). Multigene panel testing has
identified conserved signaling pathways across hereditary cancers,
providing insights into pan-cancer susceptibility mechanisms and
enabling molecular stratification to reduce patient heterogeneity
(Rosellini et al., 2021). Alternative splicing, a process frequently
dysregulated in tumors, disrupts critical pathways involved in
drug metabolism, nuclear receptor activation, apoptosis regulation,
and immunotherapy response, thereby promoting therapeutic
resistance (Ku et al., 2019; Sciarrillo et al., 2020; Li et al., 2023;
Seltzer et al., 2023). Clinically, genetic counseling, germline testing,
and systematic PSA screening are recommended for high-risk
individuals and families to guide early intervention and personalized
management (Celik et al, 2021; Timar and Uhlyarik, 2022).
Addressing splicing-related vulnerabilities and hereditary risk
stratification may enhance precision oncology strategies in PCa.

4.3 Challenges in selective therapeutic
target identification

The development of effective targeted therapies relies on
identifying selective molecular targets—proteins or enzymes with
which drugs can interact to exert therapeutic effects. However, the
complexity and redundancy of biological systems complicate the
discovery of such targets, often leading to off-target interactions,
unintended systemic effects, and reduced therapeutic efficacy
(Dong et al., 2021). Non-selective drug activity not only diminishes
clinical outcomes but also poses safety risks, prolongs drug
development timelines, and escalates costs. Recent advances
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have uncovered potential targets through mechanistic studies of
prostate carcinogenesis. For instance, circTENM3 suppresses PCa
progression by upregulating RUNX3 expression (Janik et al., 2020),
while the circSMARCA5/miR-432/PDCD10 axis emerges as a
promising therapeutic node via modulation of apoptotic pathways
(Lu et al., 2023). Computational approaches, including molecular
docking and Al-driven database mining, now accelerate target
prediction and drug candidate screening, optimizing preclinical
workflows (Ling et al., 2020; Vietri et al, 2021). Additionally,
polypharmacological strategies—designing agents that engage
multiple targets—may address pathway redundancy while balancing
efficacy and toxicity (Chang et al., 2025). These innovations
underscore ongoing efforts to overcome target identification barriers
and expand precision therapeutic options.

4.4 Management of targeted
therapy-related adverse effects

The management of adverse effects remains a critical challenge
in PCa targeted therapy. While these therapies demonstrate
precision in suppressing tumor growth, they often induce systemic
toxicities such as gastrointestinal disturbances, immune-related
complications, fatigue, hypertension, and hepatotoxicity, which can
significantly compromise patient quality of life (Sandhu et al., 2021;
Vietri et al., 2021; Zhang et al., 2023). PSMA-targeted radioligand
therapies, now established for mCRPC, are under evaluation
in earlier disease states, necessitating vigilant monitoring of
hematologic and renal parameters (Germain et al., 2020). Similarly,
novel ARSIs improve survival in non-castration-resistant metastatic
and non-metastatic CRPC but are associated with metabolic and
cardiovascular side effects. Optimizing treatment regimens through
dose adjustment, preemptive management of predictable toxicities,
and enhanced real-time surveillance can mitigate adverse event
incidence. Future advancements will rely on prospective clinical
trials to refine therapeutic sequencing and combinatorial strategies,
aiming to delay resistance while minimizing toxicity. Continued
research into molecular mechanisms of drug-related toxicity will
further enable the development of safer, more selective agents,
ultimately improving the therapeutic index in PCa management.

5 Conclusion

Targeted therapies have emerged as a cornerstone of precision
oncology in PCa, marked by significant advancements in
modulating the AR signaling axis, PI3K/AKT/mTOR pathway,
DNA damage repair machinery, and PSMA-directed theranostics.
However, the clinical translation of these strategies faces formidable
challenges, including AR heterogeneity, spliceosome-driven
adaptive resistance, limited target selectivity, and the management
of treatment-related adverse events. Addressing these obstacles will
require interdisciplinary collaboration, leveraging technologies such
as CRISPR-based gene editing, polypharmacological agent design,
and artificial intelligence-driven drug discovery to refine therapeutic
precision and overcome biological complexity.

Future progress in PCa treatment will depend on integrating

mechanistic insights with technological innovation. Future progress
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will depend on elucidating tumor heterogeneity, optimizing multi-
targeted therapeutic regimens, and integrating computational
approaches for accelerated drug development. As scientific
understanding deepens and translational pipelines mature, the
goal of highly personalized, durable PCa management becomes
increasingly attainable, potentially enabling metastatic progression
to be managed as a chronic condition rather than a terminal
diagnosis.
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