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Sepsis is an infection-induced syndrome driven primarily by dysregulated
host inflammatory responses. This process induces complex physiological
changes that provoke systemic inflammation and multi-organ dysfunction,
severely threatening survival in advanced cases. N6-methyladenosine (m°A),
the most prevalent eukaryotic RNA modification, orchestrates crucial
regulatory functions across biological processes and is a focal point in
epigenetics. This modification is dynamically controlled by three protein classes:
writers that catalyze m®A deposition, erasers that mediate its removal, and
readers that decode modification signals. Substantial evidence implicates
mBA dysregulation in sepsis-induced multi-organ damage, encompassing
cardiovascular dysfunction, acute lung injury, and acute kidney injury. This
review synthesizes current mechanistic insights into m®A’s role in sepsis
pathogenesis. By delineating how m®A governs inflammatory cascades and
organ injury pathways, we evaluate its therapeutic targeting potential, providing
translational frameworks for future research.
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1 Introduction

Sepsis is currently defined as a life-threatening organ dysfunction caused by
a dysregulated host response to infection (Singer et al, 2016). It poses a critical
threat to patients due to its high potential to progress to multiple-organ dysfunction
syndrome (MODS) and other lethal complications (Wheeler and Bernard, 1999).
Globally, sepsis accounts for 20% of annual deaths. (Rudd et al, 2020).Its high
mortality rate correlates strongly with heterogeneous manifestations, primarily involving
damage to the heart, lungs, kidneys, and other organs. (Wheeler and Bernard, 1999;
Borges and Bento, 2024; Gustot et al, 2009; Ricci et al, 2011). The pathogenesis
of sepsis is now understood as a dysregulated host response to infection. This
response is characterized by a complex and often concurrent interplay between
an initial hyperinflammatory phase (frequently manifesting as a “cytokine storm”
(Nedeva, 2021) and a subsequent protracted immunosuppressive state. A critical
component of this immunosuppression is the development of immune tolerance, a
state of lymphocyte hyporesponsiveness and innate immune paralysis. Key mechanisms
include extensive apoptosis of immune cells, T-cell exhaustion, and reprogramming
of monocytes/macrophages with diminished antigen-presentation capacity and
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cytokine production. (Hotchkiss et al., 2013a; Arora et al., 2023). It
is precisely this bimodal and dysregulated immune response—the
with
immunosuppression and tolerance—that distinguishes sepsis from

uncontrolled  inflammation  coupled compensatory
an uncomplicated infection, however serious, and underlies the
heightened vulnerability to secondary nosocomial infections and
later mortality. Consequently, elucidating the pathogenesis of
sepsis and identifying targets for early diagnosis and therapeutic
intervention have significant clinical implications for improving
patient prognoses.

A key clinical indicator of sepsis severity and tissue
hypoperfusion is hyperlactatemia, which is particularly prominent
in septic shock and strongly correlates with poor outcomes (Garcia-
Alvarezetal., 2014). Beyond its role as a metabolic byproduct, lactate
is increasingly recognized as a signaling molecule that can influence
gene expression through novel epigenetic modifications, such as
histone lactylation (Xiong et al., 2022). Gene expression is regulated
through heritable,

across multiple levels. Epigenetic modifications, such as DNA

non-DNA-sequence-changing mechanisms

methylation, histone modification, chromatin remodeling, and non-
coding RNA (ncRNA)-based regulation, modulate gene activity by
altering chromatin accessibility and function (Dai et al., 2024; Bollati
and Baccarelli, 2010). In parallel, epitranscriptomic modifications,
which refer to post-transcriptional chemical alterations to RNA,
represent another critical regulatory layer. Notably, among the >170
identified RNA modifications, m®A methylation regulates all phases
of the RNA lifecycle (Zaccara et al., 2019)—such as processing,
degradation, nuclear export, and translation—thereby modulating
RNA expression and function. This modification is dynamically
controlled by three protein classes: “writer” (methyltransferases),
“eraser” (demethylases), and “reader” (reader proteins) (An and
Duan, 2022).

m®A methylation has been implicated in diverse pathologies,
including acute promyelocytic leukemia, (Wu et al., 2025), ischemic
brain injury (Xu et al, 2020), and clear-cell renal carcinoma
(Strick et al., 2020; Alhammadi et al., 2025). Recent studies
suggest its involvement in sepsis pathogenesis. Analysis of gene-
expression datasets from 479 sepsis patients by Zhang etal
revealed three sepsis subtypes characterized by heterogeneity
in m®A methylation-regulated genes, indicating a link between
m®A dysregulation and sepsis heterogeneity (Zhang$. et al,
2020). The link between lactate and m°®A adds another layer of
complexity. For instance, Xiong et al. demonstrated that in tumor-
infiltrating myeloid cells, lactate induces METTL3 expression
via H3KI18 lactylation (Galle et al, 2022), and this METTL3-
mediated m®A modification promotes immunosuppression via
JAK/STAT signaling (Xiong et al., 2022) connection suggests a
potential mechanism whereby lactate-driven METTL3 induction
and subsequent m®A deposition may contribute to the dysregulated
immune observed in
septic patients.

This review synthesizes recent advances in m°®A modification

response and immunosuppression

within the context of sepsis, outlining its fundamental biology,
examining its mechanistic roles in sepsis-induced MODS, and
evaluating its potential as a therapeutic target—ultimately aiming
to open novel diagnostic or therapeutic avenues for improving
sepsis outcomes.
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2 m®A methylation: molecular
mechanisms and functions

Among over 100 identified RNA chemical modifications,
m®A represents the most prevalent and abundant modification
mRNA. This
N6 position of adenosine residues.

modification occurs at the
XuZ. et al, 2025;
Cappannini et al., 2024). Research confirms its conservation

in eukaryotic

across diverse species—including plants, humans, Drosophila, and
other mammals. (Oerum et al., 2021).

Criticall, m®A  modification levels undergo rapid,
reversible reprogramming in response to environmental stimuli
(Furci et al., 2024; Dierks et al., 2025; Zhang et al, 2025),
developmental stages (Li et al., 2022), and RNA metabolic
states (Furci et al., 2024; Dierks et al, 2025). This dynamic
regulation enables m®A to participate extensively in RNA-
related

reprogramming—thereby highlighting its broad relevance to disease

cellular  processes—particularly differentiation and
pathogenesis (Jiang et al., 2021a).

m®A  modification is reversible and participates in
eukaryotic cell differentiation, proliferation, and apoptosis
(Zhang H. et al, 2020). Its regulatory factors fall into three
categories:
in Table 1).

The writers recognize and bind to m°A-modified RNA,

writers, erasers, and readers (as summarized

regulating mRNA stability, translation efficiency, splicing, and
nuclear export. This group primarily includes the methyltransferase-
like proteins methyltransferase-like 3 (METTL3),METTL14
and Wilms' tumor Il-associating protein (WTAP). Within this
complex, METTL3 serves as the catalytic subunit, while METTL14
provides structural support at the active site (Wang et al,
2016). The readers decode the m®A marks and regulate
mRNA metabolism through distinct mechanisms. Key examples
include YTH domain-containing family proteins (YTHDFI-3
and YTHDCI-2) and eukaryotic translation initiation factor
3 subunit A (eIF3), which recognize mCA sites to modulate
target RNA function. The erasers remove m°®A modifications
from RNA (32), dynamically controlling modification levels and
participating in cell development and stress responses. Major
erasers include fat mass and obesity-associated protein (FTO) and
alkB homolog 5 (ALKBHS5), which mediate m®A demethylation
(Kapadia et al., 2025).

These regulatory factors cooperate to determine m°A
homeostasis within cells and ensure the precision of m°A
methylation, thereby influencing RNA functionality and biological
behavior (as illustrated in Figure 1). Research indicates that
m°A  methylation exhibits dynamic regulatory properties,
meaning that its regulatory mechanisms may differ across
cell types (Ivanova et al, 2017) and physiological states
(Li et al, 2022), thus offering new scientific perspectives
(Yang B. et al., 2021).

m®A methylation critically regulates diverse biological processes
(Jiang et al, 202la). First, it influences gene expression by
modulating RNA stability and translation efficiency. For example,
m®A methylation can dynamically regulate mRNA stability—either
promoting degradation or enhancing stability—in a context-
dependent manner (Wei, 2024; Bi et al., 2023). Additionally, m°A
governs the RNA lifecycle through its impact on RNA splicing
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TABLE 1 m6A methyltransferase and organ damage in sepsis.

10.3389/fcell.2025.1682283

Type ’ Factor Function ’ Organ damage in sepsis ’ Reference
SCM Shen et al. (2023), Wang et al. (2023),
Wang et al. (2024), Tang et al. (2024),
Shen et al. (2022)
METTL3 Catalyzes m6A modification
ARDS/ALI (Chen et al., 2022)
SAE (Wang et al., 2022b)
SCM (Wang et al., 2023)
Form heterodimer with METTL3 to
METTL14 catalyze m6A ARDS/ALI (Lai et al., 2025)
Modification
m6A Writer AKI Adedoyin et al. (2018), Yang et al. (2024)
WTAP Combine the METTL3-METTL14 AKI (Huang et al., 2024)
catalytic subunits and anchoring them at
the nuclear speckle
KIAA1429 m6A writer, Recruits and mediates the — —
binding of methyltransferase and specific
RNA site
METTL16 Modify mRNA and non-coding RNA — —
RBM15B Binds uridine-rich regions to enable — —
selective methylation
FTO Stepwise oxidative demethylation; AKI Yang et al. (2024), Yang et al. (2021b),
regulates mRNA stability Tan et al. (2020)
MG6A Erasers ALKBHS5 Direct demethylation; modulates mRNA SAE (Ye et al., 2025)
nuclear export
ALKBH1 Demethylates noncoding RNAs — —
YTHDF1 Promotes mRNA translation SCM (Zhang et al., 2022a)
YTHDF2 Promotes mRNA degradation — —
YTHDEF3 Interacts with YTHDF1 to promote — —
mRNA translation or interacts with
YTHDEF2 to promote mRNA degradation
YTHDC1 Regulates pre-mRNA splicing and nuclear — —
export
YTHDC2 Improves the translation efficiency oftarget — —
m6A readers
mRNA
elF3 Promotes mRNA translation — —
ARDS/ALI (Cao et al., 2024)
IGE2BP1/2/3 Promotes the stability and translation of SAE (Ding et al,, 2022)
mRNA
Sepsis liver injury (Sun et al., 2024)
HNRNPA2B1 Promotes primary miRNA processing and — —
mRNA splicing

and nuclear export. In immune responses, m®A modifications
regulate the effector functions of immune cells, ultimately shaping
systemic immunity. Critically, dysregulated m®A methylation is
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mechanistically linked to multiple pathologies, including cancer,
cardiovascular disease, and neurodegenerative disease (An and

Duan, 2022).
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The schematic diagram presents the biological process of m6A modification. m®A methylation is a dynamic and reversible modification regulated by
three types of factors: Writers, Readers, and Erasers. Writers are responsible for adding methyl groups; Readers recognize the chemical modification
and regulate mRNA metabolism through diverse mechanisms; Erasers remove m®A modifications from RNA, dynamically modulating m®A levels to
participate in cellular development and stress responses. These components collectively maintain cellular m®A homeostasis and ensure precision in

/"

3 m®A methylation regulates sepsis
progression through
Immune-inflammatory networks

Sepsis is a multisystem disorder characterized by high mortality
and complex multidimensional clinical and biological features
(Singer et al,, 2016). Its heterogeneity stems from diverse factors
including host genetics, infection etiology, dysregulated host
responses, and multi-organ dysfunction (W et al., 2023). Emerging
evidence indicates that m®A methylation plays a critical role in
sepsis pathogenesis. (Zhu et al., 2024). Ge et al. demonstrated that
elevated WTAP protein and m°A levels correlate strongly with
hyperinflammatory responses. Under inflammatory stress, WTAP
is upregulated under the regulation of nuclear factor kappa-B(NF-
kB) and accelerates the inflammatory response by promoting the
expression of numerous pro-inflammatory cytokines in response to
various inflammatory stimuli (Ge et al., 2024).

m®A methylation governs sepsis progression by modulating
pro-inflammatory cytokine expression and regulating immune-

cell activation and cytokine secretion (Shen et al, 2023). The
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interdependence between m°A methylation and inflammatory
response is well-established (Song et al., 2023; Luo et al.,, 2021a).
The NOD-like receptor family pyrin domain containing 3(NLRP3)
inflammasome has been mechanistically linked to septic pathology
(Zhang W. et al., 2023). Using Lipopolysaccharide (LPS)-induced
septic shock models, Luo etal. showed that FTO inhibition
suppresses NLRP3 inflammasome activation through the forkhead
box protein O1(FoxO1)/NF-kB signaling pathway in macrophages
(Luo et al,
modulating FTO-mediated m®A methylation regulates pyroptosis

2021b). Correspondingly, Wang et al. revealed that
in sepsis (WangB. et al, 2022)—a key mechanism driving
m°A methylation not only
contributes significantly to septic pathogenesis but also represents

uncontrolled inflammation. Thus,

a promising immunomodulatory target (Figure 2).
Hotchkiss’
immunological disorder is supported by autopsy evidence

Furthermore, proposition of sepsis as an

demonstrating immune-cell depletion via apoptosis in deceased
patients (Hotchkiss et al., 2013b). Importantly,
impairs macrophage phagocytic function and disrupts neutrophil

m°A dysregulation

chemotaxis, representing critical factors in septic pathology
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Organ damage associated with sepsis
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Organ damage associated with sepsis. Severe sepsis is frequently accompanied by organ damage, primarily involving injury to the heart, lungs, kidneys,
and brain. Research indicates that sepsis-induced organ damage is driven by aberrant RNA modifications and their regulatory factors, manifested as
endothelial cell injury and ferroptosis. The figure above illustrates the role of m®A modification in organ damage during sepsis.

progression (Qian and Cao, 2022). Experimental studies in
severe sepsis models indicate that YTHDF1 knockdown alleviates
macrophage paralysis and endothelial damage. Mechanistically,
YTHDF1 functions as an m®A reader that recognizes m°A
modifications on JAK2/STAT3 mRNA and promotes its translation,
thereby enhancing JAK-STAT signaling activity. When YTHDF1
is knocked down, its translational enhancement of JAK2/STAT3
mRNA is weakened, resulting in reduced JAK2/STAT3 protein
expression (including phosphorylated forms) (Xing et al., 2021).
Additionally, m®A methylation mediates negative regulation of
serine protease inhibitor 2A (Spi2a) in macrophages, consequently
inhibiting the release of pivotal pro-inflammatory cytokines such as
tumor necrosis factor-a(TNF-a) and interleukin-6(IL-6), which are
central to septic inflammatory cascades (Wang et al., 2023).

4 Role of m°A methylation in
sepsis-induced organ dysfunction

MODS represents a severe dysregulated systemic inflammatory
state triggered by sepsis, and is characterized by progressive
functional deterioration or failure of two or more vital organ systems
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(Shi et al, 2019) (e.g., heart, lungs, kidneys). As the terminal
stage of sepsis, MODS carries a mortality rate of 28%-56% upon
diagnosis (Zou et al., 2022). Emerging evidence indicates that
m®A methylation modulates sepsis progression through multiple
pathways, playing a pivotal role in MODS development (Shen et al.,
2023; Zhang S. et al,, 2022) (Figure 3). Consequently, elucidating
m®A’s functions in sepsis-induced organ dysfunction is crucial for
optimizing clinical management and developing novel therapeutics.

4.1 m®A methylation and myocardial injury

Septic cardiomyopathy (SCM), a non-ischemic cardiac
dysfunction in sepsis, features impaired left/right ventricular systolic
or diastolic function, accompanied by cardiomyocyte damage and
inflammation-driven pathophysiological alterations (Beesley et al.,
2018). Inflammatory cytokines (e.g., IL-6, TNF-a) directly induce
cardiomyocyte dysfunction through oxidative stress, calcium
mishandling, and mitochondrial damage, leading to hemodynamic
instability—manifested as tachycardia, reduced cardiac output,
and impaired contractility. These changes exacerbate myocardial
ischemia-hypoxia, creating a vicious cycle of injury (Bi et al., 2023).
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mPA modification plays a critical role in sepsis-associated organ injury, primarily involving sepsis-induced cardiomyopathy (SCM), acute lung injury
(ALI), sepsis-associated encephalopathy (SAE), and acute kidney injury (AKI). In SCM, METTL3 exacerbates multi-organ dysfunction by promoting
cardiomyocyte ferroptosis and NF-kB activation. In AL, METTL3 augments m®A-IGF2BP2-dependent mitochondrial metabolic reprogramming to
intensify ferroptosis while simultaneously regulating endothelial function through Trim59-mediated NF-kB inactivation, demonstrating high diagnostic
and therapeutic value. In SAE, ALKBHS5 inhibits NF-«xB pathway activation to mitigate microglia-mediated neuroinflammation; IGF2BP1 may regulate
microglial inflammatory responses by enhancing m®A methylation and stabilizing Gbp11/Cp mRNAs, emerging as a potential therapeutic target for
microglial hyperactivation. In AKI, FTO ameliorates renal injury by suppressing autophagy, reducing RNA stability, and downregulating SNHG14
expression, whereas WTAP promotes LPS-induced inflammation and renal damage in HK-2 cells via NF-kB and JAK2/STAT3 pathway regulation. These
findings highlight the significance of m®A regulators as potential therapeutic targets for combating sepsis-induced organ damage.
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Recent studies reveal that m®A methylation regulates septic
myocardial injury by modulating inflammation and apoptosis.
Wang etal. demonstrated METTL3’s protective role in murine
sepsis models, where METTL3 inhibition exacerbated multi-
organ damage (Wang et al., 2024). Shen etal. further validated
METTL3’s interaction with solute carrier family seven member
11 (Slc7all) via RIP-qPCR and MeRIP-qPCR, showing elevated
METTL3 expression and methylation levels in LPS-treated rat
cardiomyocytes. METTL3 promotes Slc7all mRNA degradation
through m®A-dependent mechanisms, intensifying sepsis-induced
cardiomyocyte ferroptosis—an iron-dependent, lipid per oxidation-
mediated cell death strongly implicated in sepsis pathogenesis. This
establishes the METTL3/YTHDEF2/Slc7all axis as central to septic
myocardial injury (Shen et al., 2023).

Supporting this, Tangs team found that METTL3 silencing
suppressed ferroptosis in septic rat cardiomyocytes via Slc7all
m°A methylation (Tang et al, 2024). Complementarily, Zhang

Frontiers in Cell and Developmental Biology

reported that in a mouse model of sepsis, YTHDF1 can inhibit
pyroptosis of cells and alleviate the damage caused by sepsis
by promoting the ubiquitination of NLRP3 and upregulating
the WW domain-containing E3 ubiquitin ligase 1 (Wwpl)
(Zhang S. et al, 2022). Wang etal. Identified Spi2a as a novel
negative feedback regulator that suppresses cytokine production and
myocardial injury in macrophages post LPS challenge by inhibiting
inhibitor of kappa B kinase (IKK) complex formation and NF-
kB activation. Critically, they proved Spi2a’s m°®A methylation
sustains macrophage feedback control. Through comprehensive
experiments (on cellular, animal, molecular, and clinical specimens),
According to Wang etal, the METTL3/METTL14 complex
synergistically enhances Spi2a mRNA stability and translation
through m®A modification. METTL3 provides the catalytic activity
for methylation, while METTL14 stabilizes the complex and
enhances substrate recognition. The m®A-modified Spi2a mRNA
is then recognized by YTHDF1, which promotes its translational
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efficiency. This mechanism leads to increased SPI2A expression,
subsequently suppressing IKKB/NF-kB-mediated inflammation
(Wang et al, 2023). This indicates that m®A orchestrates SCM
pathology at multicellular levels through distinct targets (e.g.,.Spi2a
in macrophages), uncovering novel therapeutic avenues that target
mC®A modifiers (e.g., METTL3, METTLI14, or SPI2A). Additionally,
Shen etal. implicated METTL3 in septic rat myocardial injury
via the METTL3/IGF2BP1/m°A/HDAC4 axis (Shen et al.,
2022). Collectively, METTL3 and YTHDF1 emerge as promising
diagnostic and therapeutic targets.

4.2 m®A methylation and lung injury

The lungs are highly susceptible to sepsis, and acute respiratory
distress syndrome (ARDS) and acute lung injury (ALI) serve
as critical prognostic indicators (Wu et al., 2024). ARDS affects
10.4% of ICU patients and 23.4% of mechanically ventilated cases,
with overall mortality at 40% (mild: 34.9%; moderate: 40.3%;
severe: 46.1%) (Wick et al, 2024). Pathologically, ARDS/ALI
features endothelial damage and dysregulated innate immunity.
Polymorphonuclear neutrophils (PMNs) and platelets play pivotal
roles: recruited PMNs eliminate pathogens via degranulation,
phagocytosis, and neutrophil extracellular trap (NET) formation.
NETs—extracellular networks of DNA, histones, myeloperoxidase
(MPO), cathepsin G, and antimicrobial proteins—neutralize
pathogens but paradoxically propagate inflammation and tissue
damage when overproduced (Silva et al, 2021; Ma et al,
2017). Studies indicate that enhanced formation of NETs in
sepsis-associated ALI/ARDS activates METTL3-mediated m6A
modification in alveolar epithelial cells, which regulates the
stability of HIF-la, thereby inducing mitochondrial metabolic
reprogramming and ferroptosis, ultimately leading to lung injury.

Mounting evidence implicates METTL3 in sepsis-induced
ALIL Ferroptosis (Zhang H. et al, 2023; Lai et al, 2025)—an
lipid
peroxidation—emerges as a key mechanism (Jiang et al., 2021b).

iron-dependent cell death driven by uncontrolled
Zhang etal. demonstrated elevated NETs in cecal ligation and
puncture (CLP)-induced ALI mice, and showed that NET inhibitors
reversed ferroptosis. Integrated RNA-seq and MeRIP-seq revealed
that NET-induced METTL3 upregulation exacerbates ferroptosis in
alveolar epithelium via m®A-Insulin Like Growth Factor 2 MRNA
Binding Protein 2(IGF2BP2)-dependent mitochondrial metabolic
reprogramming, thereby offering therapeutic targets to mitigate
lung injury and systemic inflammation (Zhang H. et al., 2023).
Experiments in Zhang etal's laboratory further corroborated
this phenomenon (Zhang H. et al, 2022). Chen etal. initially
detected reduced global m®A levels in septic patients through
colorimetric ELISA assays. Subsequent Western blotting analysis
revealed significantly diminished METTL3 expression in the lung
tissues of these patients compared to healthy controls, suggesting
a potential association between METTL3 dysregulation and
sepsis pathogenesis. The team conducted in vivo experiments
using  METTL3-knockdown murine models versus wild-type
that METTL3 deficiency
exacerbated endothelial barrier disruption, amplified sepsis-

counterparts, and demonstrated

induced inflammatory responses, and consequently aggravated
pulmonary injury. For in vitro validation, they employed
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transfection techniques to inhibit METTL3 in LPS-stimulated
HULEC-5a cells across multiple time points, and observed impaired
endothelial permeability and intensified barrier dysfunction.
METTL3 was found to modulate endothelial
function in sepsis-induced acute lung injury by inactivating NF-
kB through Tripartite Motif Containing 59 (Trim59)-mediated
mechanisms (Chen et al., 2022).

Wau et al. validated that histone lactylation induces METTL3-
mediated m®A modification to promote ferroptosis (Wu et al.,

Furthermore,

2024), identifying METTL3 targeting as a viable strategy against
septic lung injury. Notably, this regulatory axis exemplifies a
broader and highly significant “epigenetic hierarchical network”
in sepsis pathogenesis, where upstream histone post-translational
modifications (PTMs)orchestrate downstream RNA epigenetic
modifications (like m®A) to coordinately amplify the inflammatory
response. For instance, metabolic reprogramming during sepsis
leads to lactate accumulation, which drives histone lactylation
to upregulate METTL3 expression; the increased METTL3 then
deposits m®A marks on pro-inflammatory transcripts, enhancing
their stability and translation efficiency and further fueling
inflammation and lactate production. This creates a positive
feed-forward loop that potently exacerbates the cytokine storm
and organ damage. Recognizing such multi-layered epigenetic
crosstalk not only deepens our mechanistic understanding of
septic inflammation but also opens new avenues for therapeutic
intervention. Similarly,Lai etal. established an LPS-stimulated
human pulmonary microvascular endothelial-cell (HPMEC) model
showing that METTL14/IGF2BP2-mediated m°®A modification
of STEAPI aggravates ALI (62). Complementarily, Xian et al.
reported macrophage NLRP3 inflammasome hyperactivation
during ALI/ARDS progression (Xian et al., 2021; Cao et al., 2024).
Building on this, Caos team identified Nirp3 as a METTL14
target. They demonstrated that knockdown of IGF2BP2 reduces
LPS-induced ALI by downregulating Nirp3 expression, achieved
through a decrease in NIrp3 transcript stability and inhibition
of the Nirp3 inflammasome activation, thereby highlighting
METTLI14’s therapeutic potential. Collectively, these findings have
transformative potential for advancing diagnostic biomarkers,
therapeutic strategies, and prognostic evaluation in sepsis
management (Cao et al., 2024).

4.3 m®A methylation and brain injury

Sepsis-associated (SAE),
neurological complication of sepsis, manifests as brain dysfunction

encephalopathy a  frequent
and neuronal damage during systemic inflammation, characterized
by delirium, disturbances of consciousness, and cognitive
impairment (Bircak-Kuchtova et al., 2023). Emerging evidence
implicates m®A methyltransferases in SAE pathogenesis (Ye et al.,
2025; Wang H. etal., 2022; Ding et al., 2022; Li et al., 2021; Mittal and
Coopersmith, 2014). Wang and colleagues detected serum markers
using the enzyme-linked immunosorbent assay method. They found
that compared with non-SAE patients, the expression of METTL3
was significantly increased in SAE patients, while the expression of
FTO was significantly decreased. (Wang H. et al., 2022).

While microglia in the resting state primarily maintain normal
central nervous system function, their excessive activation may
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contribute to the onset and pathology of SAE. Ye et al. demonstrated
through both mechanistic and clinical validation that in a
murine model of sepsis, ALKBH5-mediated m°A demethylation
stabilizes NF-«B inhibitor alpha (Nfkbia) mRNA, thereby elevating
NFKBIA protein levels, suppressing p65 phosphorylation and
nuclear translocation, inhibiting the NF-«xB signaling pathway,
and ultimately alleviating microglia-mediated neuroinflammation;
furthermore, in human sepsis patient samples, ALKBH5 expression
was found to correlate with disease severity. (Ye et al, 2025).
Complementarily, Ding et al. identified IGF2BP1 as a regulator of
microglial inflammation in mouse primary microglia through m®A-
dependent stabilization of Guanylate Binding Protein 1 (Gbp11) and
Cp mRNAs. They proposed IGF2BP1 inhibition as a strategy to
mitigate microglial hyperactivation (Ding et al., 2022). Li et al., using
primary microglia isolated from newborn (<24 h) Sprague-Dawley
(SD) rat brains, further mapped differential m®A modifications
in MO-like (resting), M1-like (pro-inflammatory), and M2-like
(anti-inflammatory) microglial subtypes, establishing m°A as a
key modulator during microglial immune responses. (Li et al,
2021). These collective findings underscore m®As role in regulating
microglial inflammatory states, and clarify its direct impact on SAE
progression and outcomes.

Intriguingly, Wang et al. integrated LC-MS/MS metabolomics
and 16S rDNA sequencing to identify gut microbiota dysbiosis
in SAE, and detected the expression of serum markers and IL-6
by enzyme-linked immunosorbent assay (ELISA). Comparative
analysis of gut microbiota between SAE and non-SAE cohorts
revealed a positive correlation between Acinetobacter abundance
and METTL3 upregulation. This that
METTL3 modulation could restore microbial homeostasis,
thereby ameliorating or even therapeutically resolving SAE
pathology (Wang H. et al., 2022).

indicated targeted

4.4 m®A methylation and kidney injury

Acute kidney injury (AKI) frequently complicates sepsis
through pathological mechanisms including microcirculatory
dysfunction, dysregulated immune responses, coagulation
activation, and renal tubular epithelial damage (Adedoyin et al.,
2018). Clinically manifested as abrupt loss of kidney function
with oliguria and elevated serum creatinine, sepsis associated-
acute kidney injury (SA-AKI) affects >40% of septic patients
and represents a major independent risk factor for ICU
mortality (Martin et al.,, 2016; Naime et al., 2018; Alanazi et al.,
2024). Current therapeutic strategies—including antimicrobial
fluid

replacement therapy—demonstrate limited efficacy. Emerging

therapy, resuscitation, vasoactive agents, and renal
research implicates m®A methylation in regulating ferroptosis
during AKI pathogenesis, with METTL14 appearing to be a
pivotal regulator of ferroptosis in renal disease progression
(Adedoyin et al., 2018; Yang et al., 2024).

Small nucleolar RNA host gene 14(SNHGI14) exacerbates renal
injury by activating microglia and modulating the miR-373-
3p/ATG7 axis in LPS-stimulated HK-2 cells (Yang et al., 2024;
Yang N. et al., 2021; Tan et al., 2020). Yang et al. demonstrated that
FTO confers nephroprotection in sepsis patients with acute kidney

injury (AKI) by suppressing autophagy through RNA destabilization
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and reduced SNHG 14 expression, thus mitigating LPS-induced renal
damage. (Yang et al, 2024). Huang etal., using an AKI mouse
model established by cecal ligation and puncture (CLP) and an AKI
cell model established by treating HK-2 cells with LPS, reported
that Wtap knockdown promotes inflammation, ferroptosis, and
cellular injury in LPS-treated HK-2 cells by upregulating lamin
Bl (Lmnbl) expression while activating NF-kB and JAK2/STAT3
signaling pathways. (Huang et al., 2024). Complementary to these
findings, Xu et al,, using TCMK-1 cells to establish in vitro AKI
models and LPS-treated mice for in vivo AKI models, observed rapid
m°A elevation in LPS-challenged murine renal epithelial (TCMK-
1) cells. Notably, METTL14 knockdown counteracts LPS-aggravated
ferroptosis in these in vivo murine models. (Xu L. et al., 2025).

Collectively, inhibition of METTL14 alleviates both renal injury
and ferroptosis in LPS-induced AKI, establishing m®A methylation
as a pivotal therapeutic target for future AKI interventions.

4.5 m®A methylation and other organ
injuries

The liver critically regulates systemic immune responses during
sepsis by means of bacterial clearance, cytokine production, and
metabolic adaptations to inflammation (Sun et al., 2020). However,
sepsis-induced ischemic hepatic injury, shock-related damage, and
secondary sclerosing cholangitis collectively establish the liver as a
primary target of sepsis-mediated secondary injury (Strnad et al.,
2017). As an independent predictor of ICU outcomes, identifying
therapeutic targets for septic liver injury is imperative (Wang et al.,
2025). Sun et al. demonstrated that in septic mice,IGF2BP3 interacts
with GLI family zinc finger 2 (GLI2) mRNA to stabilize mCA-
modified transcripts. Upregulated Gli2 transcriptionally promotes
synoviolin 1 (Syvnl) expression, which subsequently enhances
degradation of peroxisome proliferator-activated receptor alpha
(PPARa). This cascade ultimately exacerbates septic liver injury both
in vitro and in vivo by suppressing PPARa-mediated autophagy,
establishing the IGF2BP3/GLI2/Syvn1/PPARa axis as a potential
therapeutic target (Sun et al., 2024).

In summary, current research demonstrates that m®A RNA
methylation—orchestrated through the dynamic interplay of
Writers, Erasers, and Readers—precisely regulates key signaling
pathways involved in inflammation, apoptosis, and autophagy. This
epigenetic mechanism serves as a central driver of inflammatory
amplification, tissue-barrier disruption, and cellular dysfunction
during sepsis-induced secondary organ injury (Table2). These
findings establish critical targets and pathways for therapeutic
intervention while opening novel directions for clinical translation.

5 Conclusion and perspectives

Sepsis-induced multi-organ injury involves complex pathogenic
networks. This review has examined mechanisms underlying sepsis-
mediated organ damage and delineated the regulatory roles of
m®A methylation: Writer, Eraser, and Reader proteins participate
dynamically in critical biological processes by post-transcriptionally
modulating cellular gene expression, thereby propagating secondary
organ injury. These modifications influence RNA fate through
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splicing, transport, translation, stabilization, and degradation,
profoundly impacting sepsis progression.

mRNA methylation and its regulators exhibit broad biological
functions. Notably, certain regulators such as METTL3/YTHDEF2
exacerbate cellular damage by amplifying inflammatory pathways,
while FTO/ALKBH5 confer protective effects by destabilizing
pro-inflammatory cytokine mRNAs. Interactions with non-
coding RNAs further form regulatory networks influencing
sepsis progression. These discoveries provide novel therapeutic
insights into organ-specific damage in sepsis. The therapeutic
potential of targeting the m°®A machinery could be realized
through several strategic approaches: 1) Developing small-molecule
inhibitors against “Writer” complexes (e.g., METTL3/METTL14)
or “Erasers” (e.g., FTO, ALKBH5) to globally reduce or selectively
reshape the m®A epitranscriptome; 2) Designing compounds that
disrupt the interaction between specific “Reader” proteins (e.g.,
YTHDEF2) and their pro-inflammatory target mRNAs, offering
a more precise intervention; 3) Exploiting upstream regulatory
cues, such as modulating the lactate-induced histone lactylation
that drives METTL3 expression, to indirectly influence m®A
deposition; 4) Exploring combination therapies where m°®A-
targeting agents are used alongside conventional antibiotics or
specific pathway inhibitors to achieve synergistic effects and
overcome immunosuppression.

We recognize that targeting ubiquitously expressed enzymes
like METTL3 presents a specificity challenge, which is reflected
in their context-dependent roles across different organs. For
instance, METTL3 exacerbates injury in cardiomyocytes and
alveolar epithelial cells by promoting ferroptosis, whereas in
pulmonary endothelial cells and the gut, it exhibits protective effects
by maintaining barrier integrity and modulating inflammatory
responses. This apparent contradiction is not a paradox but can be
explained by an emerging paradigm: m°®A regulates sepsis through
several evolutionarily conserved, cross-organ pathways—primarily
by amplifying inflammatory signaling, programmed cell death, and
metabolic reprogramming, which collectively drive the pathological
process. The key insight is that the same pathway (e.g., NF-
kB or ferroptosis) may produce opposing outcomes in different
tissues due to cell-type-specific molecular targets. For example,
METTL3-mediated m®A modification promotes NF-kB activation
in macrophages (Wang et al., 2023), yet suppresses it in pulmonary
endothelial cells via Trim59 (65). Similarly, while ferroptosis is
universally pathogenic, its triggering mechanisms vary significantly.
This paradigm reveals that the core pathways are shared, but the
cellular context determines the final, organ-specific effects.

Our understanding of METTL3 and METTLI4 in sepsis is
currently confined to their m®A-dependent functions, this emerging
paradigm from other fields highlights a critical, non-canonical
dimension of their functionality. The findings by Dou etal. and
Liu et al. provide a foundational rationale for hypothesizing that
METTL3 may act as a transcriptional co-activator on inflammatory
gene promoters, (Liu et al., 2021), while METTL14 may engage
in direct chromatin regulation, as exemplified by its interaction
with H3K27me3 and recruitment of KDM6B (Dou et al., 2023),
provides a mechanistic precedent for METTL14 acting beyond the
Methyltransferase Complex (MTC).
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As a pivotal RNA modification, m®A methylation has garnered
substantial research interest in sepsis-related organ injury in recent
years. Despite extensive investigations into its roles in sepsis, the
precise regulatory mechanisms remain incompletely elucidated,
which presents ongoing challenges. Key knowledge gaps include:
undefined interactions among m®A regulatory factors during sepsis;
potential organ-specific regulatory factors within m®A networks
that may explain injury heterogeneity (with such factors potentially
serving as novel biomarkers for sepsis severity, organ-injury risk,
and treatment prognosis); Translating these findings into clinical
applications faces significant hurdles. Currently, no clinical trials
are specifically investigating m®A-targeted therapies for sepsis or
infectious diseases, underscoring the nascent stage of this field. The
path to clinical translation is fraught with challenges, primarily due
to the context-dependent nature of m®A function, which varies by
cell type, pathological phase, and target gene, raising concerns about
therapeutic specificity and potential off-target effects. Furthermore,
achieving organ- or cell-selective drug delivery remains a major
pharmacological bottleneck. Lastly, the essential physiological roles
of m®A regulators necessitate a careful assessment of the safety
profile and a narrow therapeutic window in critically ill septic
patients. Crucially, most current conclusions are derived from
murine and in vitro models, which means that clinical studies in
sepsis patients are needed to validate the relationships between m®A
dysregulation and secondary organ damage.

In summary, targeting m°A regulators holds great potential
for sepsis diagnosis, treatment, and prognosis, yet comprehensive
research remains essential to fully harness their therapeutic
capabilities.
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