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Hypoxic culture (1–5% O2) significantly enhances the biological activity and 
therapeutic potential of mesenchymal stromal cells (MSCs) by activating the 
HIF-1α signaling pathway. This activation promotes stemness maintenance, 
enhances proliferative capacity, and improves immunomodulatory functions, 
such as upregulating the secretion of indoleamine 2,3‒dioxygenase (IDO) and 
prostaglandin E2 (PGE2). Furthermore, hypoxia optimizes paracrine effects 
through modulating the release of vascular endothelial growth factor (VEGF) 
and hepatocyte growth factor (HGF), while also improving cell homing and 
post-transplantation survival rates. Under hypoxic conditions, MSCs primarily 
rely on glycolytic metabolism, resulting in lactate accumulation. This lactate 
serves not only as a metabolic byproduct but also as a precursor for lactylation, 
a novel form of epigenetic modification. Given the limited research on MSC-
specific metabolic mechanisms driven by lactylation, investigating lactylation 
modifications‒such as histone H3 lysine 18 lactylation (H3K18la)‒and their 
impact on MSCs function is crucial. We propose that the ‘hypoxia-lactate-
lactylation’ axis represents a key metabolic-epigenetic mechanism that may 
further enhance immunomodulatory and tissue‒repair capabilities via epigenetic 
regulation, offering novel targets for metabolic intervention in clinical cell 
therapy. This approach could maximize the therapeutic potential of MSCs 
in clinical applications, with a high safety profile that avoids risks such as 
tumorigenicity, donor-dependent variability, and senescence.
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 1 Introduction

Mesenchymal stromal cells (MSCs) hold significant therapeutic value in 
immunomodulatory functions and cell-based therapies due to their remarkable paracrine 
capacity, multipotent differentiation potential, and immunomodulatory properties. 
However, conventional in vitro expansion under ambient oxygen tension (21% O2) 
often leads to loss of stemness and functional impairment, limiting clinical efficacy. 
Studies demonstrate that hypoxic culture (1–5% O2) recapitulates the physiological 
microenvironment by activating hypoxia‒inducible factor‒1α (HIF‒1α). This activation 
enhances key MSCs properties, including stemness maintenance, proliferative capacity, 
differentiation potential, migratory ability, and paracrine activity, while simultaneously 
optimizing their immunomodulatory functions (Sun et al., 2020; Kanichai et al., 2008;
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Xu et al., 2019; Lan et al., 2015; Noronha et al., 2019; Zhu et al., 
2023). While the tumor-promoting roles of MSCs had also 
been reported previously (Melze et al., 2016). However, hypoxia 
triggers metabolic reprogramming in MSCs, shifting from 
oxidative phosphorylation to glycolysis and results in substantial 
lactate accumulation. Established evidence indicates that lactate 
serves as a key mediator in the immunomodulatory effects of 
human umbilical cord MSCs (huc-MSCs) (Selleri et al., 2016). A 
novel immunosuppressive pathway in MSCs was first described 
in 2023, which functions independently from the classical 
immunomodulatory mechanism that relies on glycolysis-derived 
lactate metabolites (Pradenas et al., 2023). This phenomenon not 
only impacts the cellular microenvironment but may also regulate 
MSCs functionality through a novel post‒translational modification: 
lactylation.

Lactylation is a recently discovered epigenetic regulatory 
mechanism wherein lactate acts as a substrate to covalently 
modify histones (e.g., H3K18la) or non‒histone proteins, 
thereby modulating gene expression (Zhang et al., 2019). In 
tumor and immune cells, lactylation regulates inflammatory 
responses, metabolic adaptation, and cell fate determination. 
However, research on lactylation’s modulation of MSCs biological 
functions under hypoxic remains nascent. Current evidence 
suggests that lactylation may enhance MSCs therapeutic 
potential by upregulating immunomodulatory molecules, 
promoting tissue‒repair factor secretion, and improving homing 
and engraftment efficiency (Xie et al., 2023). Furthermore, 
aberrant lactylation accumulation may induce metabolic 
stress and compromise MSCs safety. Precise regulation of 
lactylation levels is therefore critical for optimizing cell‒based 
therapeutic strategies. This review aims to explore the emerging 
role of the ‘hypoxia-lactate-lactylation’ axis in modulating
MSCs biology. 

1.1 Background introduction

1.1.1 Definition, origin, and primary functions of 
MSCs

In 2025, Yan et al. revealed the difference for the first time 
between MSCs and stem cells through single‒cell transcriptomic 
analysis (Yan et al., 2025). This study redefined biomarkers to 
discriminate these populations and laid the foundation for updating 
MSCs standards. Subsequently, the Delphi study was used to 
reformulate the definition of MSCs, resulting in the retention 
of nine items as core criteria after multiple deliberation rounds 
(Renesme et al., 2025). At its 2025 annual meeting, the International 
Society for Cellular Therapy (ISCT) published revised MSC 
identification criteria, explicitly defining MSCs as mesenchymal 
stromal cells (Renesme et al., 2025). The defining markers now 
must include positive markers (CD73+, CD90+, CD105+) and 
negative markers (CD45‒), while eliminating the 2006 criteria 
for demonstrating trilineage differentiation potential and adherent 
growth under standard culture conditions (Renesme et al., 2025; 
Dominici et al., 2006). The ability to differentiate is a key part of 
their functional identity, even if it's not used solely for definition 
anymore. Furthermore, the updated standards emphasizes the need 
to indicate the source of the organization. Critically, use of the term 

“stem” (i.e., mesenchymal stem cells) requires experimental evidence 
demonstrating stemness (Renesme et al., 2025).

MSCs can be isolated from diverse tissue sources, including 
bone marrow, adipose tissue, umbilical cord blood, fetal 
blood, placenta, dental pulp, Wharton’s jelly, skeletal muscle, 
dermis, and menstrual blood‒derived endometrial tissue, etc 
(Thirumala et al., 2009; Zuk et al., 2001; Erices et al., 2000; 
Campagnoli et al., 2001; In 't Anker et al., 2004; Gronthos et al., 
2000; Wang et al., 2004; Kita et al., 2010; Fernández-Santos et al., 
2022). The Delphi study further identifies dental follicle as an 
MSCs source (Renesme et al., 2025). These cells exhibit robust 
and critical functions in tissue homeostasis, injury repair, and 
immunomodulation (Miao et al., 2006). Their therapeutic efficacy in 
tissue injury repair, homeostasis maintenance, anti‒inflammatory 
responses, immunomodulation, and regenerative medicine stem 
from their multi-potent differentiation capacity and paracrine 
activity. Recent studies reveal their trans‒lineage differentiation 
potential: under specific in vitro culture conditions, MSCs undergo 
ectodermal differentiation (e.g., neural lineage cells expressing 
βIII‒tubulin and microtubule-Associated Protein 2 [MAP2]) and 
endodermal differentiation (e.g., hepatocyte‒like cells exhibiting 
albumin secretion and cytochrome P450 family three subfamily 
a polypeptide 4 [CYP3A4] activity) (Ababneh et al., 2022). 
Capitalizing on these distinctive properties, MSCs have emerged 
as a leading cellular therapeutic strategy in clinical applications
(Alwohoush et al., 2024). 

1.1.2 Functional properties and mechanisms of 
MSCs

The functional properties of MSCs are attributed to their 
paracrine effect, immunomodulatory properties, and tissue 
regenerative functions. These cells exert their therapeutic effects 
through multiple mechanisms, including: paracrine signaling, 
cell‒cell interactions, mitochondrial transfer and epigenetic 
regulation.

MSCs’ classical capacity for trilineage differentiation–
encompassing ostegenic, chondrogenic, and adipogenic lineages 
(mesodermal derivatives)–is pivotal for tissue regeneration. 
Experimental evidence demonstrates that directed in vitro
differentiation for 1–3 weeks induced MSCs commitment to 
chondrocytes, osteoblasts, and adipocytes. Notably, extended 
culture (three to four weeks) reveals trans‒lineage plasticity through 
differentiation into functional cardiomyocyte‒like cells, which 
express troponin T and contract spontaneously (Zhidu et al., 
2024; Pittenger et al., 1999). A seminal 2008 study identified key 
signaling pathways governing MSCs differentiation, identifying 
activin‒mediated transforming growth factor–β (TGF–β) signaling, 
platelet‒derived growth factor (PDGF) receptor cascades, and 
fibroblast growth factor (FGF) mitogenic pathways as critical 
regulators of lineage commitment (Ng et al., 2008).

In addition, extracellular vesicles and exosomes are 
now recognized as key mediators of the regenerative and 
immunomodulatory functions of MSCs. MSCs mediate repair and 
regeneration of damaged cells and tissues through two principal 
mechanisms (Sun et al., 2020): lineage‒specific differentiation into 
tissue‒resident cell types to replace damaged cells (Kanichai et al., 
2008). Membrane fusion‒mediated cytoprotection via direct 
cell‒cell contact, facilitating organelle/cytoplasmic transfer to rescue 
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compromised or apoptotic cells (Tao et al., 2016; Watt et al., 
2013; Spees et al., 2016). Furthermore, MSCs paracrine activity 
orchestrates regeneration through bioactive molecules that 
promote: (i) angiogenesis (e.g., VEGF, angiopoietin-1 [ANG‒1]), 
(ii) extracellular matrix remodeling (e.g., HGF, insulin-like 
growth factor-1 [IGF‒1]), (iii) anti‒fibrotic responses (e.g., tumor 
necrosis factor-inducible gene six protein [TSG‒6]), and (iv) 
immunoregulation (e.g., stromal cell-derived factor-1/C-X-C 
motif chemokine ligand 12 [SDF‒1/CXCL12]) (Ong and Dilley, 
2018; Mihaylova et al., 2018; Hamid et al., 2022; Zacharek et al., 
2007; Keshavarz et al., 2019; Meng et al., 2021; Katagiri et al., 
2017). Beyond direct differentiation, MSCs facilitate repair via: 
(i) intercellular organelle transfer (notably mitochondria) and 
(ii) tunneling nanotube (TNT)‒mediated molecular trafficking 
(Figeac et al., 2014; Feng et al., 2019). Additionally, their intrinsic 
homing capacity enables targeted migration to injury through 
chemokine receptor‒dependent sensing of inflammatory mediators 
(Song and Li, 2011; Imitola et al., 2004).

Under pathological conditions, MSCs regulate immunity 
through dual mechanisms: (Sun et al., 2020): paracrine 
signaling mediated by extracellular vesicles and soluble 
factors, which suppresses pro‒inflammatory T cells/natural 
killer (NK) cells while promoting regulatory T cells (Tregs) 
expansion; (Kanichai et al., 2008); direct cell‒contact interactions 
that modulate B cell maturation and drive macrophage 
polarization toward anti‒inflammatory (alternatively activated 
macrophage [M2]) phenotypes (Li et al., 2021). Mechanistically, 
MSC-derived extracellular vesicles, particularly exosomes, 
together with secreted immunomodulatory factors, collectively 
establish an immunosuppressive niche. These vesicles transfer 
a variety of bioactive molecules, including: interleukin-10 
(IL‒10) (anti‒inflammatory cytokine), interleukin-11 (IL‒11) 
(tissue‒protective signaling), PGE2 (myeloid suppression), 
TGF‒β (Treg induction), programmed cell death ligand 1/2 
(PD‒L1/2) (T cell exhaustion induction), and IDO (tryptophan 
catabolism‒mediated suppression). These collectively dampen 
excessive immune activation (Li et al., 2021; Cho et al., 2024; 
Kulesza et al., 2023; Huang et al., 2024; Putra et al., 2018; 
Davies et al., 2017; Su et al., 2014).

The therapeutic value of MSCs stems from their dual capabilities: 
robust proliferative capacity in vitro and multipotent differentiation 
into clinically relevant cell lineages, enabling tissue maintenance 
and regeneration. Furthermore, their potent immunomodulatory 
properties make them as promising therapeutic agents for treating 
various diseases.

In hepatic disorders, huc‒MSCs exert therapeutic effect by 
suppressing hepatic stellate cell (HSC) activation, delivering 
cytoprotective factors via exosome, and counteracting oxidative 
stress‒induced hepatocyte injury (Shi et al., 2024; Xie et al., 
2020). For systemic lupus erythematosus (SLE), huc-MSCs 
immunotherapy demonstrate clinical efficacy through immune 
tolerance restoration, reduced auto-antibody production, and 
attenuated end‒organ damage, with reported survival rates 
exceeding 80% (Wang et al., 2018). In the treatment of 
inflammatory arthritis, huc‒MSCs mediate disease‒modifying 
effects via osteochondral differentiation, micro-environment 
reprogramming through anti‒inflammatory cytokines secreting. 
(Ma et al., 2019; Gu et al., 2015; Dao et al., 2019). For the 

treatment of cerebrovascular diseases (stroke, traumatic brain 
injury), huc‒MSCs mitigate injury through VEGF‒mediated 
revascularization, trophic factor induction (glial cell line-derived 
neurotrophic factor [GDNF], brain-derived neurotrophic factor 
[BDNF]) reducing neuronal apoptosis, synaptic plasticity support, 
pro‒inflammatory cytokines suppression to restore neural 
circuitry and motor function (Peng et al., 2015; Wang et al., 
2013; Qi et al., 2018). In cardiovascular diseases, huc‒MSCs 
drive cardiac repair by promoting cardiomyocyte regeneration, 
enhancing neovascularization, modulating cytokine storm
(Lim et al., 2018).

Variability in MSCs clinical efficacy is attributed to 
donor‒related factors, including tissue source and intrinsic 
biological differences. Proteomic analysis of equine MSCs 
secretomes (314 identified proteins) revealed that donor age 
and tissue origin significantly influence protein composition, 
potentially impacting therapeutic outcomes (Turlo et al., 2023). 
Bone marrow‒derived MSCs (BMSCs) and adipose‒derived MSCs 
(ADSCs) are extensively utilized in cell‒based therapies due to their 
compatibility with both autologous and allogeneic applications 
(Liu Y. et al., 2024). Key clinical advantages include accessibility, 
therapeutic versatility, and regulatory progress evidenced by 
> 500 registered clinical trials. BMSCs were the first MSCs 
population used clinically. However, donor age significantly reduces 
BMSC yield, cellular quality, and multipotent differentiation 
capacity (Kern et al., 2006; Bagge et al., 2022). Furthermore, the 
highly invasive nature of bone marrow aspiration often causes 
significant patient morbidity (Thirumala et al., 2009). Suboptimal 
therapeutic efficacy has contributed to BMSC failures in several 
Phase III clinical trials (Liao et al., 2017). While tissue origin 
drives MSCs heterogeneity, donor‒specific factors (age, metabolic 
status) and ex vivo manipulations (prolonged culture‒induced 
senescence, oxygen tension shifts) further amplify their therapeutic 
potential diversity (Turlo et al., 2023; Liu Y. et al., 2024). Thus, 
fine‒tuning MSCs phenotypes through preconditioning strategies, 
epigenetic modulation, or biomechanical priming represents a 
promising approach to overcome current limitations in cell‒
based therapies. 

1.2 Reasearch meaning

Hypoxic preconditioning (1–5% O2) recapitulates physiological 
O2 tension in native stem cell niches (e.g., bone marrow, 
umbilical cord), inducing HIF‒1α‒mediated transcriptional 
reprogramming that enhances MSCs therapeutic efficacy. 
Mechanistically, hypoxia stabilizes HIF‒1α by inhibiting prolyl 
hydroxylase (PHD)‒dependent degradation. This stabilization 
upregulates pluripotency markers (Oct4, Nanog), suppresses 
differentiation‒related genes, maintains MSCs in an undifferentiated 
state. HIF‒1α further enhances proliferative capacity through 
dual regulation of metabolic reprogramming and cell cycle 
progression. Regarding immunomodulation, HIF‒1α potentiates 
MSC‒mediated immunosuppression by activating immune 
checkpoints and enhancing paracrine activity. Specifically, 
HIF‒1α upregulates IDO and PGE2 via the cyclooxygenase-
2/prostaglandin E2 (COX‒2/PGE2) pathway, depleting local 
tryptophan while increasing immunosuppressive kynurenines. 
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This inhibits T‒cell proliferation and polarizes macrophages 
toward regulatory phenotypes. Besides, HIF‒1α drives the 
secretion of VEGF and HGF to facilitate tissue repair. Hypoxic 
preconditioning also upregulates homing receptors (e.g., C-X-C 
motif chemokine receptor 4 [CXCR4]), and modulates apoptotic 
pathways to enhance the therapeutic efficacy of MSCs. Specifically, 
Hypoxia induces CXCR4 expression throutgh HIF‒1α binding 
to the CXCR4 promoter, potentiating SDF‒1/CXCR4‒mediated 
chemotaxis. Anti‒apoptotic programming occurs via upregulating 
the expression of B‒cell lymphoma‒2 (Bcl‒2) and downregulating 
the expression of pro‒apoptotic Bcl‒2 Associated X‒protein (Bax) 
(Feng and Wang, 2017). This dual regulation significantly improves 
post‒transplantation cell survival. However, severe hypoxia can 
impair the in vitro therapeutic efficacy of MSCs and promote their 
senescence and apoptosis (Jaraba-Álvarez et al., 2025; Khasawneh 
and Abu-El-Rub, 2022). 

2 Hypoxic culture: principles and 
impacts

2.1 Description of hypoxic culture 
conditions

Hypoxia is defined as a pathophysiological state and 
characterized by inadequate oxygen supply to tissues/cells or 
excessive oxygen consumption, resulting in subphysiological 
oxygen tension (typically <5% O2 in most tissues) (MacIntyre, 
2014; Wang X. et al., 2022). Hypoxia can be classified into 
three principal categories: systemic hypoxia, localized hypoxia, 
and functional hypoxia. The underlying mechanisms involve 
(Sun et al., 2020): hypoxemia (reduced arterial oxygen saturation); 
(Kanichai et al., 2008); impaired tissue oxygen delivery (due to 
circulatory insufficiency or hemoglobin dysfunction) (Xu et al., 
2019); defective cellular oxygen utilization (Hypoxemia vs. hypoxia, 
1966; Mallat et al., 2022; Østergaard et al., 2015). In stem 
cell biology, oxygen concentration critically regulates biological 
properties through hypoxia‒inducible factor (HIF)‒mediated 
pathways, influencing pluripotency maintenance, differentiation 
potential, and metabolic reprogramming (glycolytic shift)
(Xin et al., 2023). 

2.2 Hypoxic conditioning of MSCs: 
Mechanisms and therapeutic implications

The hypoxic environment shifts the metabolic process of MSCs 
toward glycolysis, leading to excessive lactate production. It is 
well established that lactate derived from MSCs serves as a key 
mediator in regulating immune function. Furthermore, hypoxic 
preconditioning modulates MSCs proliferation, differentiation, 
migration, and angiogenesis while also enhancing homing 
potential, suppressing apoptosis and inflammation, improving 
post‒transplantation survival, increasing stress tolerance, and 
augmenting therapeutic efficacy (Pouikli et al., 2022; Rosová et al., 
2008; Gupta et al., 2022; Yang Y. et al., 2022; Tang et al., 
2005). Furthermore, hypoxia reduces reactive oxygen species 
(ROS) generation, mitigating cellular damage and necrosis 

in MSCs (Bertram and Hass, 2008). Mechanistically, whether 
lactate acts as a primary mediator influencing these functional 
alterations remains debatable. What is certain, however, is that 
hypoxia (1–5% O2) upregulates key angiogenesis and vasoactivity 
regulators including: angiopoietin (ANG), VEGF, basic fibroblast 
growth factor (bFGF), transforming growth factor‒β1 (TGF‒β1), 
monocyte chemoattractant protein‒1 (MCP‒1), tissue inhibitor 
of metalloproteinase‒1 (TIMP‒1), matrix metallopeptidase‒9 
(MMP‒9), and chemokine ligand 20 (CCL20) (Chen et al., 2014; 
Xia et al., 2018; Quade et al., 2020). Hypoxic preconditioning 
further elevates the expression of VEGF, TGF‒β1, IGF‒1, fibroblast 
growth factor 10 (FGF10), and epidermal growth factor (EGF). 
These factors synergize with exsome-contained miRNA to activate 
(Sun et al., 2020): the phosphatidylinositol 3-kinase/protein kinase 
B (PI3K/AKT) pathway to promote cell survival, proliferation, and 
migration (Kanichai et al., 2008); the transforming growth factor-
beta/mothers against decapentaplegic homolog 2 (TGF‒β/SMAD2) 
pathway to regulate anti‒apoptotic and pro‒regenerative responses 
(Vizoso et al., 2017; Jung et al., 2007; Chang et al., 2013). Critically, 
hypoxic’s modulation of MSCs function is a double‒edged sword, 
with effects determined by oxygen concentration (hypoxia severity) 
and exposure duration.

Extensive studies document hypoxia‒induced alterations 
in MSCs biological functions across varying oxygen 
tensions.Hypoxia‒inducible miR‒486 enhances PI3K/AKT 
signaling activity via targeted phosphatase and tensin homolog 
(PTEN) suppression, promoting BMSC proliferation and survival 
(Shi et al., 2016). Normoxia (21% O2) irreversibly impairs MSCs 
functionality and osteogenic differentiation capacity, promoting 
exploration of hypoxic conditioning (Pouikli et al., 2022). Acute 
hypoxia (1% O2) significantly enhances BMSC migration and 
angiogenesis, while hypoxic preconditioning robustly stimulates 
proliferation and multilineage differentiation (Annabi et al., 2003; 
Ren et al., 2006; Xie et al., 2006). Moderate hypoxia (5% O2) 
elicts a biphasic proliferative response: reduced cell numbers 
in primary cultures but enhanced expansion in passaged cells 
(Ejtehadifar et al., 2015). hMSCs under moderate hypoxia (2% 
O2) exhibit prolonged lag phases but sustained proliferation, with 
elevated colony‒forming unit (CFU) capacity and stemness‒related 
gene expression (Grayson et al., 2006). Mechanistically, hypoxia 
induces MSCs proliferation via activation of the PI3K/AKT 
signaling (evidenced by elevated p‒AKT levels) (Sheng et al., 
2017), further potentiated by: angiotensin II type 1 (AT1) 
receptor‒mediated PI3K activation in murine MSCs under hypoxia 
(3% O2) (Zhang et al., 2015) and SNHG16 lncRNA modulation 
in human placenta‒derived MSCs (hP‒MSCs) (Feng et al., 
2022). However, contrasting findings were reported that severe 
hypoxia (1% O2) transiently reduces induced MSCs (iMSCs) 
proliferation/viability, yet prolonged exposure (50 h) yields superior 
iMSC growth compared to normoxic cultures (Alwohoush et al., 
2024). These collective results suggest that the proliferative 
response of MSCs to hypoxia is multifactorial, governed by oxygen 
concentration gradient, exposure duration and cell type‒specific
adaptations.

The multipotent differentiation potential of MSCs is 
significantly modulated by hypoxic conditions. Substantial evidence 
indicates that hypoxia consistently promotes chondrogenic 
differentiation in MSCs (Yang Y. et al., 2022). In contrast, its 
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effects on adipogenic and osteogenic differentiation demonstrate 
context‒dependent regulation, with either stimulatory or inhibitory 
outcomes depending on specific experimental conditions. 
Mechanistically, hypoxic treatment of BMSCs enhances citrate 
carrier (CiC) activity, which prevents acetyl‒Coenzyme A (CoA) 
accumulation in mitochondria and subsequently promotes 
histone acetylation. Additionally, hypoxia reduces chromatin 
condensation at osteogenic gene promoter and enhancer. 
These coordinated epigenetic modifications collectively enhance 
osteogenic differentiation capacity under hypoxic conditions
(Pouikli et al., 2022).

Hypoxic conditioning significantly enhances the paracrine 
activity of MSCs. Moreover, under hypoxic conditions, MSCs 
extensively use exosomes for intercellular communication. These 
vesicles deliver miRNAs and proteins to modulate the relevant 
cytokines expression (Yuan et al., 2025; Pulido-Escribano et al., 
2022), thereby orchestrates long-distance cellular responses that 
promote angiogenesis, cell survival, and tissue regeneration. 
The hypoxia‒induced MSCs secretome plays crucial roles in 
promoting angiogenesis, suppressing inflammatory responses, 
and providing cytoprotective effects against apoptosis. Regarding 
angiogenic mechanisms, MSCs contribute to neovascularization 
through two principal pathways: (Sun et al., 2020): direct 
differentiation into vascular smooth muscle cells (SMCs) and 
endothelial cells (ECs), (Kanichai et al., 2008), paracrine regulation 
via intercellular communication with ECs and secretion of 
pro‒angiogenic factors (Hegde et al., 2024). At the molecular level, 
hypoxia triggers HIF‒1α stabilization and nuclear accumulation 
in endothelial cells. Activated HIF‒1α binds to VEGF promoters, 
up-regulating its transcription and subsequent pro‒angiogenic 
activity (Ahluwalia and Tarnawski, 2012). 24‒hour hypoxic 
preconditioning (1.5% O2) significantly increases the expression 
of erythropoietin receptor (EPOR) and VEGF in mouse-derived 
MSCs (mdMSCs) compared to versus controls (Lan et al., 2015). 
Current research demonstrate that hypoxic preconditioning 
activates HIF‒α signaling, coordinates the expression of VEGF 
and its cognate receptors vascular endothelial growth factor 
receptor 1/2 (VEGFR1/2), EPOR, and ANG-1 (Hu et al., 2008). 
This HIF‒mediated transcriptional program represents the 
fundamental mechanism underlyig hypoxia‒induced angiogenic
potentiation in MSCs.

Li et al. (2023) demonstrated that 24‒hour hypoxic 
preconditioning (2% O2) significantly enhances the 
immunosuppressive properties of huc-MSCs, particularly 
their anti‒inflammatory capacity (Li et al., 2023). Regarding 
cytoprotective mechanisms, Li et al. reported that hypoxia‒treated 
MSCs (1% O2) elevated the expression of pro‒survival factors (AKT 
kinase and p‒AKT, hypoxia-inducible factor-alpha [HIF‒α]) and 
activated key cytoprotective mediators in target cells (anti‒apoptotic 
proteinsBcl‒2, Caspase‒3 inhibitors, metallothionein-2 [MTP‒2], 
TGF‒β1) (Li et al., 2017). As noted, lactate produced by 
MSCs has been reported to regulate the immunosuppressive 
functions via a novel alternative pathway (Pradenas et al., 2023). 
Furthermore, hypoxia‒preconditioned MSCs exhibit enhanced 
antioxidant capacity. These findings collectively establish hypoxic 
preconditioning as an effective strategy to enhance MSC‒mediated 
cytoprotection against various stressors. 

3 Concept and biological significance 
of lactylation modification

3.1 Definition of lactylation modification

Post‒translational modifications (PTMs) critically regulate 
protein conformation, activity, and function, participating nearly all 
cellular pathways. These modifications drive diverse physiological 
and pathological processes while maintaining cellular homeostasis. 
Histones‒core structural components of nucleosomes‒consist of 
five major classes (H1, H2A, H2B, H3, and H4). Characterized 
by structured globular domains and flexible N‒terminal tails, 
histones are particularly susceptible to modifications at their 
tail regions, with the N‒terminus serving as the primary 
modification site. Enzymatic PTMs of histones are essential 
regulators of gene expression, chromatin architecture, and cellular 
functions. Common histone PTMs include methylation, acetylation, 
phosphorylation, ubiquitination, lactylation, and carboxylation.

Lactylation is a recently discovered, functionally significant 
PTMs. In 2019, Yingming Zhao’s research group (University of 
Chicago) first identified lysine lactylation (Kla) as a novel histone 
mark induced by lactate (Zhang et al., 2019). Their seminal work 
mapped 28 lactylation sites on core histones in both human 
and murine cells. Histone lactylation predominantly involves 
L‒lactate covalently modifying lysine residues through lactyl group 
addition, thereby regulating gene transcription (Wang N. et al., 
2022; Zhan et al., 2021). Emerging evidence indicates histone 
acetyltransferase p300 participates in H3 lactylation modification 
(Hu et al., 2024). Both knockdown and overexpression experiments 
in mouse bone marrow‒derived macrophages and germinal vesicle 
(GV) oocytes demonstrate P300’s regulatory role in histone 
lactylation dynamics (Cui et al., 2021; Lin et al., 2022). This 
PTMs establishes a molecular link between lactate metabolism, 
transcriptional regulation, and epigenetics (Yu et al., 2024). 
Current research reveals that protein lactylation plays crucial 
roles in metabolic regulation, cell cycle control, protein function 
and stability, signal transduction, cellular stress responses, 
and tumor microenvironment (TME) modulation (Liu et al., 
2023; Niu et al., 2021; Izzo and Wellen, 2019). Furthermore, 
lactylation modifications are implicated in various pathological 
conditions, including malignancies, inflammatory disorders, 
psychiatric diseases, infectious diseases, neurodegenerative 
conditions, and metabolic dysregulation (Sun et al., 2023; 
Yao et al., 2024; Li et al., 2022). Therefore, investigating lactylation 
deepens our understanding of fundermental cellular regulatory 
mechanisms. Under hypoxic or hyperglycemic, cells adapt to 
hypoxia through glycolytic reprogramming, increasing lactate 
production. Subsequent histone lactation then links metabolic states 
to gene regulation.

Lactate, a key metabolic intermediate, functions both as a 
post‒translational modification mediator and a metabolic regulator. 
In mammalian systems, lactate transport is primarily mediated by 
monocarboxylate transporters (MCTs), with distinct functional 
properties. monocarboxylate transporter 1 (MCT1) exhibits 
the highest affinity for lactate and functions as a bidirectional 
transporter dependent on substrate concentration gradients. In 
contrast, monocarboxylate transporter 4 (MCT4) is predominantly 
expressed in highly glycolytic tissues (e.g., tumors), specialized 
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FIGURE 1
Lactate transport, intracellular accumulation, and global cellular effects.

for lactate efflux despite its bidirectional transport capability 
(Beloueche-Babari et al., 2020). Intracellular lactate accumulation 
in lysosomes, mitochondria, and nuclei regulates multiple cellular 
processes through transcriptional modulation, signal transduction 
regulation, and metabolic reprogramming (Ivashkiv, 2020). Elevated 
lactate levels exert pleiotropic effect on cellular metabolism and 
immune responses via orchestrating inflammatory progression, 
modulating tumor immune tolerance, and activating critical 
signaling cascades (Zha et al., 2024), as summarized in Figure 1. 
While acute inflammation serves as a protective host response, 
its dysregulation may progress to tissue necrosis and chronic 
pathologies.

As shown in Figure 2, protein lactylation are mediated by two 
distinct mechanisms: enzymatic and non‒enzymatic pathways. 
While both utilize lactate as a common substrate, they differ in 
chiral specificity and biochemical requirements (He et al., 2024). 
Enzymatic lactylation primarily utilizes L‒lactate and occurs via 
two distinct pathways. The first pathway converts L‒lactate into 
L‒lactyl‒CoA, which serves as the direct substrate for lactylation. 
This activated intermediate facilitates lactyl group transfer to 

lysine residues on target proteins (Zhang et al., 2019). The second 
pathway is mediated by aminoacyl‒tRNA synthetases (alanyl-tRNA 
synthetase 1 [AARS1] and alanyl-tRNA synthetase 2 [AARS2]), 
which directly couple L‒lactate with adenosine triphosphate 
(ATP) to generate lactyl‒adenosine monophosphate (AMP). This 
high‒energy intermediate subsequently donates the lactyl group 
to lysine residues, yielding lactylation (Mao et al., 2024; Ju et al., 
2024; Zong et al., 2024). In contrast, non‒enzymatic lactylation is 
mediated by D‒lactate, a intermediate of glycolysis. This process 
utilizes methylglyoxal (MGO) that reacts with glutathione to 
produce lactylglutathione, the direct substrate for non‒enzymatic 
lactylation. Unlike enzymatic lactylation, this mechanism operates 
independently of specific transferases, depending instead on 
spontaneous chemical modifications. Several enzymes regulate 
histone lactylation, including EP300 and its homolog CREB‒binding 
protein (CBP), lysine acetyltransferases (lysine acetyltransferase 
7 [KAT7] and lysine acetyltransferase 8 [KAT8]), histone 
deacetylases (histone deacetylase 1, 2, 3 [HDAC1–3] and histone 
deacetylase 8 [HDAC8]), and sirtuins (sirtuin 1, 2, 3 [SIRT1–3]) 
(Zhang et al., 2019; He et al., 2024; Yang K. et al., 2022), which 

Frontiers in Cell and Developmental Biology 06 frontiersin.org

https://doi.org/10.3389/fcell.2025.1678282
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhao et al. 10.3389/fcell.2025.1678282

FIGURE 2
Lactic acid transport and protein lactylation modification mechanism.

collectively link metabolic flux to epigenetic regulation through
lactylation control.

3.2 Lactylation mechanisms in 
physiological contexts

As described in Figure 3, emerging evidence establishes 
lactylation as a key regulator of physiological processes including 
embryonic development, cell division, cellular differentiation, 
angiogenesis, and memory formation under normal physiological 
conditions (Li et al., 2022; Wang J. et al., 2024; Yang et al., 2021). 

Yang et al. (2021) first characterized the dynamic pattens of histone 
lactylation (histone H3 lysine 23 lactylation [H3K23la], H3K18la, 
and pan‒histone lactylation) during mouse oocyte maturation 
and preimplantation embryonic development (Yang et al., 2021). 
Their works revealed that these modifications were enriched in 
germinal vesicle (GV)‒stage oocytes but declined post‒fertilization, 
with oxygen tension identified as a critical modulator (Yang et al., 
2021). In embryonic stem cells (ESCs), lactate supplementation 
upregulates germline and zygotic genome activation (ZGA)‒related 
genes (particularly Zscan4) through H3K18la accumulation at 
these loci, where lactylated co-factors promote transcriptional 
elongation (Tian and Zhou, 2022; Xie et al., 2022). Conversely, 
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FIGURE 3
The bidirectional regulatory role of lactylation in physiological and pathological processes.

Lin et al. demonstrated that in mouse oocytes, Tfap2α over-
expression elevates p300 expression, increasing global histone 
lactylation levels‒such as H3K18la, histone H4 lysine 12 lactylation 
(H4K12la) and pan‒Kla‒and impairing spindle assembly and 
chromosomal alignment (Lin et al., 2022). Beyond histones, 
lactylation regulates non‒histone proteins like Yin Yang‒1 (YY1). 
Wang et al. reported hypoxia‒induced YY1‒lysine 183 lactylation 
(K183la) activates fibroblast growth factor 2 (FGF2) transcription to 
drive retinal neovascularization (Wang X. et al., 2023). Additionally, 
Descalzi’s et al. (2019) revealed that astrocyte‒derived lactate 
mediates memory consolidation by enhancing neuronal mRNA 
translation and Arc/Arg3.1 expression (Descalzi et al., 2019). 
It should be noted that the molecular mechanisms by which 
hypoxia-induced histone lactylation influences MSCs function 
remain insufficiently explored. A study by Chen et al. reported 
that chronic intermittent hypoxia (CIH) enhances glycolysis and 
lactate production in mouse BMSCs, leading to increased H3K18la 
levels at the proliferator‒activated receptor gamma (PPARγ) 
promoter region. This epigenetic modification promotes PPARγ 
transcription and subsequently impairs osteogenic differentiation 
(Chen et al., 2025). In contrast, another study demonstrated that 
a 3D-printed polycaprolactone/nano-hydroxyapatite (PCL/nHA) 
scaffold enabling sustained lactate release (mimicking hypoxia 
conditions) promotes signal transducer and transcription 1, 
lysine 193 (STAT1-K193) lactylation, which in turn releases runt-
related transcription factor 2 (Runx2) and enhances osteogenic 
transcription in human BMSCs (Zeng et al., 2025).

3.3 Lactylation mechanisms in cancer cells 
and the TME

Figure 3 has shown that the Warburg effect, a hallmark of 
cancer metabolism, describes tumor cells’ preferential use of 
glycolysis over oxidative phosphorylation for energy production, 
even under oxygen‒rich conditions (Hanahan and Weinberg, 
2011; Koppenol et al., 2011; Yu et al., 2021). This metabolic 
reprogramming results in substantial lactate accumulation, 
which functions as both a key metabolic intermediate and a 
signaling molecule within the TME. Throuth its regulation of gene 
transcription and protein function, lactylation drives metabolic 
reprogramming that enables tumor adaption to nutrient deprivation 
and sustains proliferative capacity (He et al., 2024). This suggests 
histone lactylation is frequently dysregulated in cancer, representing 
a promising therapeutic target. Within the TME, abundant lactate 
serves as the substrate for lactylation modifications in both tumor 
and infiltrating immune cells. Lactate is known to modulate immune 
cell behavior, including cytotoxic T-lymphocyte-associated protein 
4 (CTLA‒4) upregulation in T cells, macrophage polarization, and 
dendritic cell immunosuppression. Pharmacologically, sodium 
dichloroacetate (DCA) and oxamate suppress lactate production 
by inhibiting the activity of pyruvate dehydrogenase (PDH) and 
lactate dehydrogenase (LDH), thereby reducing intracellular lactate 
and Kla (lysine lactylation) modifications (Zhang et al., 2019). In 
contrast, rotenone enhances glycolysis by blocking mitochondrial 
respiration, increasing both lactate and Kla levels (Zhang et al., 
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2019). Zhang et al. first elucidated the impact of histone lactylation 
on macrophage polarization, showing lactate dehydrogenase A 
(LDHA)‒knockout reduces lactate production, histone Kla levels, 
and M2 marker Arg1, while lactate supplementation increases 
Arg1 and Vegfa (both M2‒like macrophage associated genes) 
(Zhang et al., 2019). These findings indicate histone lactylation 
promotes Arg‒1 and wound‒healing gene expression, facilitating 
the pro‒inflammatory classically activated macrophage (M1) 
to immunosuppressive M2 macrophage phenotypic switch. In 
malignancy, lactate and the TME critically promote tumorigenisis 
throuth angiogenesis, invasion, metastasis, and immune evasion 
(Chen et al., 2022). Importantly, histone Kla contributes to immune 
suppression by reinforcing M2‒like macrophage polarization, 
thereby inhibiting anti‒tumor immune responses. Together, these 
findings highlight the lactate‒lactylation axis as a critical regulator 
of TME immunosuppression and a viable target for anti‒cancer 
therapies (Chen et al., 2022; Ngwa et al., 2019).

Current research on lactylation modification primarily focuses 
on TME and immune cells. These findings provide a critical 
conceptual framework and mechanistic insights for understanding 
the potential role of lactylation in MSCs biology. However, it is 
crucial to emphasize the differences arising from cell type and 
metabolic status in this process. 

3.4 Impact of protein lactylation on disease 
pathogenesis

Recent studies have delineated how Kla contributes to disease 
pathogenesis, demonstrating its capacity to either directly alter 
cellular signaling pathways or indirectly regulate downstream 
effects through upstream signaling cascades. These findings provide 
promising novel therapeutic targets and offer innovative approaches 
for modulating disease‒relevant pathways.

A 2023 study using liver biopsies from cirrhosis patients 
revealed that huc‒MSCs therapy significantly alters protein 
lactylation profiles, particularly affecting glucose metabolic 
enzymes, suggesting glucometabolic pathways may mediate 
huc‒MSCs’ therapeutic effects in cirrhosis (Xie et al., 2023). 
This finding demonstrates that the immunomodulatory and 
regenerative functions of MSCs are closely associated with metabolic 
reprogramming and lactylation modification. 

3.5 Biological significance of lactylation

3.5.1 Histone lactylation in gene expression 
regulation

Histone lactylation regulates gene expression through altering 
chromatin architecture, controlling transcription factor/cofactor 
recruitment, and directly modulating specific target gene expression. 
As chromatin’s fundamental structural units, histones coordinate 
genomic organization and transcriptional regulation through 
interactions with deoxyribonucleic acid (DNA) and non‒coding 
ribonucleic acid (nc RNA). At the molecular level, lactylation 
influences gene expression by altering histone charge state, 
interfering with transcription factor binding, and modulating 
transcriptional initiation and elongation. MSCs may utilize 

these mechanisms to regulate the expression of key functional 
genes. Additionally, growing evidence indicates lactylation may 
indirectly modulate gene expression by influencing other PTMs 
status, particularly histone acetylation, forming a multi‒layered 
regulatory system. 

3.5.2 Lactylation couples cellular metabolism 
with gene expression

Lactylation represents a crucial epigenetic mechanism 
that bridges cellular metabolic states (e.g., hypoxia, enhanced 
glycolysis) with transcriptional regulation, effectively coupling 
metabolic flux with gene expression reprogramming. Furthermore, 
lactylation regulates the expression of metabolic pathway 
genes (including glycolysis and oxidative phosphorylation 
components), enabling cellular adaptation to metabolic stress. 
Hypoxic preconditioning enhances glycolytic activity in MSCs, 
leading to lactate accumulation and subsequent lactylation that 
regulates gene expression. Conversely, lactylation may further 
potentiate the glycolytic pathway in MSCs, thereby forming a 
metabolic–epigenetic cycle that promotes their adaptation to the 
surrounding microenvironment. Fei Li et al. found that histone 
lactylation promotes glycolysis by activating the transcription and 
expresssion of metabolic regulators. Their work in pancreatic 
ductal adenocarcinoma (PDAC) also revealed that H3K18la 
enrichment at promoter regions enhances the transcription 
of TTK protein kinase (TTK) and BUB1 mitotic checkpoint 
serine/threonine kinase B (BUB1B), which upregulates the histone 
acetyltransferase p300 and subsequently enhances glycolytic 
upregulation (Li et al., 2024a). Within the TME, this histone 
lactylation‒driven metabolic reprogramming further promotes 
oncogenesis and cancer progression. Such epigenetic regulation 
enables cancer cells to maintain their proliferative capacity and 
survival advantage under metabolic constraints. 

3.5.3 Lactylation in immunomodulation
Growing evidence highlights the pivotal role of lactylation 

in immune regulation, particularly in controlling macrophage 
polarization and T‒cell function. In microglia and macrophages, 
histone lactylation serves as a key modulator of the M1/M2 
polarization balance, thereby influencing inflammatory responses 
and immune homeostasis. Mechanistically, lactate‒induced 
histone lactylation simultaneously suppresses pro‒inflammatory 
M1‒associated signaling pathways while promoting the 
transcriptional activation of anti‒inflammatory M2 phenotype 
genes (Ivashkiv, 2020; Xin et al., 2022). These immunomodulatory 
effects are further confirmed in the TME, where lactate exposure 
upregulates M2 markers while downregulates M1 markers 
in microglia (Longhitano et al., 2023). Beyond macrophages, 
lactylation exerts broad immunosuppressive effects by impairing 
cytotoxic immune cell function, which compromises both CD8+ T 
cell and natural killer T (NKT) cell anti‒tumor activity (Hao et al., 
2024). Wang et al. demonstrated that in malignant pleural effusion 
(MPE), H3K18la promotes forkhead box protein P3 (FOXP3) 
expression in peripheral blood mononuclear cells (PBMCs), 
simultaneously enhancing the immunosuppressive function of 
Tregs while inhibiting NKT cell‒mediated anti‒tumor responses 
(Wang ZH. et al., 2023). Similarly, in glioblastoma (GBM) stem 
cells, histone lactylation drives immunosuppression through 
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two coordiated mechanisms: CD47 upregulation to attenuate 
phagocytic activity and signal transducer and transcription 3 
(STAT3) activation to reduce microglial/macrophage infiltration 
and impair immune surveillance (Wang S. et al., 2024). Together, 
these findings position lactylation as a critical epigenetic regulator 
that reprograms immune responses in pathological conditions.

Growing evidence demonstrates histone lactylation as a 
key epigenetic regulator of inflammatory gene expression 
that critically modulates immune cell activation and 
function. In GBM, lactate‒induced histone lactylation in 
monocyte‒derived macrophages upregulates IL‒10 expression, 
leading to T‒cell suppression and impaired anti-tumor immune 
responses (De Leo et al., 2024). Lactylation plays a critical role in 
M2 polarization and Treg-induced immunosuppression, providing 
valuable insights into its role in mediating the immunomodulatory 
functions of MSCs and supporting the safety of anticancer therapies. 

3.5.4 Lactylation dictates cellular fate
Lactylation functions as a crucial metabolic‒epigenetic 

regulator that governs cell lineage specification and reprogramming 
pathways. The transition between cellular states, particularly direct 
reprogramming (transdifferentiation) that bypasses pluripotent 
intermediates, is precisely regulated by coordinated metabolic 
remodeling and chromatin plasticity (Wang et al., 2021). This 
sophisticated process is regulated by an integrated network of 
transcription factors, RNA‒binding proteins, and chromatin 
remodelers that interact with metabolic pathways to determine 
cell fate (Ryall et al., 2015). CIH impairs osteogenesis and long 
bone growth in mouse BMSCs by modulating histone lactylation 
(Chen et al., 2025). In contrast, both exercise-mediated mechanical 
stress and sustained lactate release via 3D-printed PCL/nHA 
scaffolds (mimicking hypoxia condition) enhance lactylation levels, 
thereby promoting osteogenic differentiation in both mouse and 
human BMSCs (Zeng et al., 2025; Dai et al., 2025). These findings 
highlight the dual and the context-specific regulatory functions of 
lactylation in celluar reprogramming and self-renewal ability.

To provide a clear distinction between direct evidence 
from MSCs studies and indirect inferences from other 
cell systems, Table 1 summarizes the key findings on lactylation 
in MSCs, including study type, MSC source, lactylation target, and 
observed biological effects.

4 Hypoxia‒Driven lactylation 
modulates MSC functionality

Hypoxic conditioning triggers HIF‒α‒mediated transcriptional 
activation of glycolytic enzymes and hypoxia‒responsive 
genes, thereby enhancing lactate production and lactylation 
modification (Li Y. et al., 2024). This process profoundly influences 
MSCs morphology, functional adaptability, and therapeutic 
potential, particularly in tissue regeneration applications. 

4.1 Morphological adaptations

Lactate‒mediated PTMs coordinate cytoskeletal remodeling 
through three distinct but interconnected mechanisms: (1) Direct 

lactylation of cytoskeletal components (including actin filaments 
and microtubule‒related proteins) alters their polymerization 
kinetics, promoting morphological transition in hypoxia‒primed 
MSCs from spindle‒shaped to flattened/stellate configurations that 
facilitate enhanced MSCs migration capacity; (2) Histone Kla at 
pro‒inflammatory and differentiation‒related gene loci activates 
epithelial-mesenchymal transition (EMT)‒related transcriptional 
programs, resulting in secondary cytoskeletal reorganization; and 
(3) Lactate‒induced lactylation of membrane surface receptors 
disrupts focal adhesion kinase (FAK) signaling pathways, thereby 
reducing substrate adhesion and modulating microenvironmental 
navigation. 

4.2 Functional regulation of lactylation in 
hypoxic microenvironments

Hypoxia induces the Warburg effect, resulting in lactate 
accumulation that subsequently promotes histone lactylation 
through increased substrate availability. This metabolic‒epigenetic 
coupling regulates cellular proliferation via modulating the 
expression of proliferation‒associated genes and integration 
of key signaling pathways, including HIF‒1α and mechanistic 
target of rapamycin (mTOR) pathways. In various cell types, 
including glioma, non-small cell lung cancer (NSCLC), and 
esophageal cancer cells, lactylation has been shown to promote 
cell proliferation by regulating signaling axes such as HIF-1α 
and YTHDF2-BNIP3, implying a potentially similar role in 
MSCs (Dong et al., 2025; Chen et al., 2023; Zang et al., 2024;
Yan et al., 2024).

Hypoxia‒induced lactylation differentially regulates MSCs 
proliferation in a time‒ and dose‒dependent manner. Acute hypoxia 
(≤48 h) enhances proliferation capacity via lactylation‒mediated 
Ki‒67 upregulation (Kastner et al., 2020). On the contrary, sustained 
hypoxia (>72 h) promotes ROS accumulation, leading to DNA 
damage and cell cycle arrest. This biphasic regulation is mirrored by 
lactate concentration effects: low‒dose lactate promotes mitotic 
activity, while high‒dose lactate induces gap 2/mitosis (G2/M) 
phase arrest via extracellular acidification. Therefore, elevating 
lactylation levels in MSCs via hypoxic preconditioning may 
represent a potential strategy to optimize their homing efficiency to
injury sites.

Hypoxia‒induced lactylation coordinates MSCs migration 
through three complementary mechanisms (Selleri et al., 2016). 
First, lactylated transcription factors directly promote cell 
motility. As demonstrated by Yan et al. (2024), hypoxia‒mediated 
SRY-box transcription factor 9 (SOX9) lactylation enhanced 
stemness, migratory capacity, and invasiveness in NSCLC cells by 
activating EMT pathways (Yan et al., 2024). Secondly, lactylation 
dynamically modulates the SDF‒1/CXCR4 signaling axis, thereby 
amplifying chemotactic responses to injury‒associated chemokine 
gradients. Third, lactate increases matrix metalloproteinase 
(matrix metalloproteinase-2 [MMP‒2] and MMP‒9 activity), 
promoting extracellular matrix degradation and tissue barrier 
penetration (Wang CY. et al., 2022; Meng et al., 2024;
Lin et al., 2016).

Hypoxic‒induced lactylation precisely modulates MSCs 
secretome via exosomal cargo modification and cytokine profile 
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TABLE 1  Summary of direct evidence on lactylation modification in MSCs.

References Study type MSCs source Lactylation target Biological effect

Chen et al. (2025) Experimental study (in vitro) Mouse BMSCs H3K18la at PPARγ promoter region Impairs osteogenic differentiation

Zeng et al. (2025) Experimental study (in vitro) Human BMSCs STAT1-K193 lactylation Enhances osteogenic differentiation

Xie et al. (2023) Clinical study (patient samples) Huc-MSCs Protein lactylation on metabolic 
enzymes

Alters lactylation profiles; mediates 
therapeutic effects in cirrhosis

Kastner et al. (2020) Experimental study (in vitro) Human BMSCs Lactylation-mediated signaling Enhances proliferation capacity

Selleri et al. (2016) Experimental study (in vitro) Huc-MSCs Lactate secretion Enhances M2-macrophage 
differentiation

Wu et al. (2023) Experimental study Mouse BMSCs H3K18la Promotes osteogenic differentiation

Kolodziej et al. (2019) Experimental study (in vitro) Human ADSCs Lactylation activates PPARγ Drives adipocyte differentiation

polarization. Specifically, lactylated proteins (including heat shock 
protein 90 [HSP90] and miR‒21‒5p) within exosomes significantly 
enhance their anti‒inflammatory and pro‒angiogenic capacities. 
Additionally, this metabolic‒epigenetic regulation promotes 
increased secretion of regenerative factors (including VEGF 
and interleukin-6 [IL‒6]) while suppressing pro‒inflammatory 
mediators expression at the transcriptional level (Selleri et al., 2016; 
Liu X. et al., 2024; Lopez et al., 2022).

Growing evidence demonstrates that lactylation exhibits 
distinct lineage‒specific regulatory effects in MSCs. Under hypoxic 
conditions, lactylation promotes osteogenic differentiation through 
wingless/integrated - beta-catenin (Wnt/β‒catenin) signaling 
potentiation and direct modification of osteogenesis‒related genes 
(Wu et al., 2023; Wu et al., 2024). Conversely, in adipogenic 
commitment, hyperglycemia‒induced lactate accumulation 
activates PPARγ via lactylation, driving lipid droplet formation 
and adipocyte differentiation (Kolodziej et al., 2019).

Futhermore, lactate metabolites function as key 
immunometabolic regulators that orchestrate immune cell 
polarization through distinct mechanisms: (1) promoting 
macrophage polarization via signal transducer and transcription 
6/arginase 1 (STAT6/ARG1) pathway activation, and (2) suppressing 
T cell function via coordinated PD‒L1 upregulation and 
tryptophan depletion, collectively creating an immunosuppressive 
microenvironment (Pradenas et al., 2023; Chen et al., 2022). 

5 Translation perspectives: targeting 
lactylation to enhance MSCs therapy

Accumulating evidence establishes lactylation as a pivotal 
regulator in disease pathogenesis, highlighting its dual potential as 
both a diagnostic biomarker and therapeutic target, particularly for 
cancer and metabolic disorders. Current therapy strategies focus 
on two primary approaches: (1) modulation of lactate metabolism 
through MCTs inhibition, and (2) direct targeting of histone 
lactylation. The MCT1 inhibitor AZD3965, currently in Phase I/II 
trials, demonstrates synergistic effects with immune checkpoint 
inhibitors (ICIs) by reducing TME lactate levels and potentiating 

anti‒tumor immunity (Beloueche-Babari et al., 2020). Similarly, 
MCT4 inhibition improves programmed cell death protein 1 
(PD‒1) blockade efficacy in hepatocellular carcinoma (HCC) 
models, suggesting a potential therapeutic strategy for ICI‒resistant 
HCC patients (Chen et al., 2022). Studies have demonstrated 
that targeting lactylation-related pathways can effectively reverse 
therapeutic resistance in multiple malignancies, including colorectal 
cancer and bladder cancer (Li W. et al., 2024; Li et al., 2024d). 
Therefore, leveraging strategies from oncology that modulate lactate 
metabolism or directly inhibit lactylation could be applied in the 
MSCs field to enhance specific therapeutic functions.

Following strategies have revealed promising translational 
avenues for targeting lactylation in clinical applications, 
including personalized immunotherapy, chemoresistance 
reversal, anti‒angiogenic therapy, and cancer stem cell (CSC) 
targeting (He et al., 2024). By leveraging therapeutic strategies from 
the field of oncology, novel tools may be developed to optimize 
MSC-based therapies. 

6 Discussion and future perspectives

6.1 Critial challenges and current research 
focus

Recent studies define a hypoxia‒MSC‒lactylation regulatory 
axis, revealing a coordinated metabolic‒epigenetic‒functional 
cascade that critically governs MSCs therapeutic efficacy. Several 
critical challenges remain unsolved in lactylation research. First, it 
is essential to acknowledge the current limitations in the MSCs 
field, particularly the scarcity of studies directly investigating 
lactylation in MSCs themselves. Many current mechanistic insights 
are extrapolated from cancer or immune cell models. Second, the 
technological challenges in detecting lactylation, such as the lack of 
highly specific, site-specific anti-lactylation antibodies, it hampers 
the precise mapping and validation of lactylation events. Third, the 
potential crosstalk among lactylation, acetylation, and methylation 
in disease progression demands systematic investigation. Finally, it 
remains exceptionally difficult to distinguish whether observed 

Frontiers in Cell and Developmental Biology 11 frontiersin.org

https://doi.org/10.3389/fcell.2025.1678282
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhao et al. 10.3389/fcell.2025.1678282

lactylation modifications are drivers of functional changes or 
merely correlative epiphenomena, necessitating the development 
of more sophisticated genetic and pharmacological tools for causal 
inference. Addressing these gaps will help elucidate lactylation’s role 
in pathogenesis and facilitate therapeutic development. Current 
research efforts primarily focused on two key areas: (1) mechanistic 
characterization through comprehensive lactylation site mapping 
via integrated metabolomic and epigenomic analyses, coupled with 
functional validation using gene editing or targeted pharmacological 
inhibition; and (2) preclinical development, involving systematic 
assessment of lactylation‒modulated MSCs functional modulation 
in established murine disease models.

Future research should focus on three key priorities to advance 
MSC‒based therapies: (1) network elucidation‒comprehensive 
mapping of tissue‒specific lactylation interactomes in MSCs 
to identify origin‒dependent regulatory networks; (2) 
clinical‒translation‒establishment of standardized lactylation 
levels as a critical quality attribute (CQA) during MSCs 
production to ensure batch consistency; and (3) combinatorial 
approaches‒strategic integration of lactylation modulation with 
biomaterial scaffolds or cytokine priming to synergistically enhance 
therapeutic efficacy. 

6.2 Future perspectives: bridging discovery 
to therapy

Research on lactylation has reached a critical 
preclinical‒to‒clinical transition phase, with four transformative 
research directions emerging: (1) Mechanistic elucidation: 
Employing single‒cell multi‒omics to delineate spatio-temporal 
lactylation dynamics accross MSCs subpopulations and conducting 
clustered regularly interspaced short palindromic repeats 
(CRISPR)‒based functional genomics screens to identify 
lactylation‒modifying enzymes (“writers” and “erasers”); (2) 
Technological innovation: Developing lactylation‒specific 
fluorescent biosensors for real‒time visualization in living MSCs 
and creating artificial intelligence (AI)‒powered predictive models 
of lactylation‒mediated gene regulatory networks; (3) Clinical 
standardization: establishing quantitative lactylation thresholds as 
critical release criteria for MSC‒based products and implementing 
longitudinal lactylation biomarker tracking in clinical trial 
protocols; and (4) Epigenetic crosstalk: systematically investigating 
the interplay between lactylation, acetylation, and methionine 
metabolism in MSCs fate determination and engineering 
next‒generation “smart MSCs” with lactylation‒responsive genetic 
circuits for microenvironment‒adaptive tissue repair.

Outstanding Questions and Future Directions.
Technology and Specificity: How can we develop next-

generation tools to overcome current detection limitations?
Causality and Correlation: What innovative experimental 

approaches can establish lactylation as a functional driver rather 
than a passive correlate in MSCs biology?

Epigenetic crosstalk: How can we deconvolute the 
interconnected regulation of lactylation and other PTMs?

Therapy window: How can we achieve cell-type or context-
specific lactylation targets to ensure safety for MSC-based products? 

7 Conclusion

Hypoxic preconditioning has emerged as an effective approach 
to enhance the therapeutic potential of MSCs, primarily through 
glycolytic reprogramming and subsequent lactate accumulation. 
Beyond its conventional role as a metabolic byproduct, lactate 
is now recognized as a key signaling molecule that regulates 
cellular functions via lactylation‒mediated PTMs‒a novel 
metabolic‒epigenetic regulatory axis. This hypoxia‒lactylation 
crosstalk critically regulates MSCs functionality through two key 
dimensions: mechanistic regulation and therapeutic application. 
At the mechanistic level, hypoxia‒lactylation crosstalk: (1) 
directs immunomodulatory polarization via lactylation‒dependent 
PD‒L1/IL‒10 upregulation, (2) enhances tissue repair capacity 
by activating pro‒angiogenic factors and extracellular matrix 
remodeling pathways, and (3) maintains stemness properties via 
SRY-box transcription factor 2/octamer-binding transcription 
factor 4 (SOX2/OCT4) lactylation‒mediated pluripotency network 
stabilization. Furthermore, the metabolic‒epigenetic synergy 
plays a pivotal role in modulating these mechanisms. Clinically, 
current therapeutic strategies targeting this axis encompass: (1) 
lactylation‒specific agents (e.g., small‒molecule inhibitors against 
LDH or MCTs to modulate lactylation dynamics), (2) combination 
therapies (e.g., integrating hypoxic preconditioning with biomaterial 
scaffolds), and (3) safety evaluation parameters (e.g., establishing 
lactylation thresholds as CQA).
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