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Integrated machine learning
analysis of 30 cell death patterns
identifies a novel prognostic
signature in glioma

Minhao Huang®, Kai Zhao'!, Yongtao Yang®, Kexin Mao?*',
Hangyu Ma?, Tingting Wu?, Guolin Shi*, Wenhu Li*, Yan Li*,
Ruigi Peng?, Ying Cheng?** and Ninghui Zhao'*
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Background: Glioma heterogeneity and therapeutic resistance are closely linked
to dysregulated programmed cell death (PCD). While individual PCD pathways
have been studied, the integrated network of multi-modal PCD interactions and
their clinical implications in glioma remain poorly understood. This study aims
to decipher the interplay between 30 distinct PCD modalities and the immune
microenvironment, developing a robust prognostic signature to guide therapy.
Methods: This study integrated 2,743 glioma samples from TCGA, CGGA,
and GEO databases, encompassing RNA-seq, single-cell transcriptomic
(GSE167960), and mutational data. Through literature mining and GeneCards
database screening, 30 programmed cell death (PCD)-related gene sets (total
11,681 genes) were curated, identifying 428 differentially expressed genes (DEGs;
[log,FC|>1, p < 0.05). A pan-death prognostic signature (Cell-Death Score, CDS)
was constructed using 114 machine learning algorithm combinations, refined
via CoxBoost to select 25 key genes. CIBERSORT quantified the abundance of
22 immune cell subsets, while ssGSEA assessed functional activity of 28 immune
celltypes. Drug sensitivity predictions employed GDSC database, with single-cell
trajectory analysis validating molecular mechanisms and therapeutic strategies.
In vitro, differential expression profiles of key genes were first examined
between human normal astrocyte cell lines (SVG-P12) and three glioma cell lines
(U87, U251, LN229). Subsequently, RNA-seq and qRT-PCR validated expression
patterns of 25 key genes in tumor/adjacent non-tumorous tissues from 7 glioma
patients. Finally, spatial transcriptomic data from 4 glioma tissue samples in our
cohort (including two paired tumor-adjacent non-tumorous samples and two
tumor-only samples) were integrated to delineate spatial expression patterns
of key genes.

Results: Integrated analysis of 2,743 public gliomas samples identified 428
cell death-associated differentially expressed genes, enriched in neuroactive
ligand-receptor interactions and extracellular matrix regulation. Unsupervised
clustering revealed distinct immune-activated and immune-silent patient
subtypes. A pan-death prognostic signature (Cell-Death Score, CDS),
constructed via multi-algorithm machine learning and optimized using
CoxBoost to incorporate 25 key genes, demonstrated robust performance
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in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index
= 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001).
High-CDS patients displayed elevated tumor mutational burden, homologous
recombination deficiency, and immune checkpoint expression, alongside
enhanced sensitivity to 11 therapeutic agents, including gemcitabine. Single-cell
trajectory analysis confirmed significant activation of model genes during glioma
progression. A clinical nomogram integrating CDS, WHO grade and radiotherapy
further improved prognostic utility. Based on in vitro cell line experiments, the
expression profiles of 25 key genes demonstrated significant heterogeneity,
with partial genes undetectable by gRT-PCR due to expression levels falling
below detection thresholds. Among seven genes consistently detected across
all 4 cell lines, tumor cell lines exhibited significantly upregulated expression
relative to normal astrocyte counterparts. RNA-seq analysis revealed effective
detection of 24/25 key genes in seven paired tumor/adjacent tissue samples,
with 20 genes showing higher mean expression in tumor tissues. gRT-PCR
validation confirmed upregulated trends for 12 detectable genes in tumor
tissues. Spatial transcriptomic analysis further corroborated tumor region-
specific overexpression of all 25 key genes compared to adjacent non-
tumorous areas.

Conclusion: The CDS signature unravels the molecular interplay between
glioma cell death heterogeneity, immune dysregulation, and therapeutic
resistance. This biomarker system provides both prognostic and therapeutic
insights for precision oncology, paving the way for personalized combination

therapies in glioma management.
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glioma, programmed cell death, machine learning, immune microenvironment, drug
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Introduction

Gliomas represent the most prevalent primary tumors of the
human central nervous system (CNS), with current evidence
suggesting their origin in neural stem or progenitor cells (Yang et al.,
2022). According to the latest WHO classification of CNS tumors,
gliomas are classified from WHO 1 to 4 based on malignancy,
where glioblastoma constitutes the most aggressive subtype
(Louis et al., 2021). Surgical resection remains the primary
therapeutic intervention; nevertheless, complete resection is often
unattainable due to tumors’ invasive growth patterns and anatomical
integration with adjacent tissues (Nabors et al., 2020). Moreover,
despite multimodal therapy combining surgery, radiotherapy and
chemotherapy, patient prognosis persists as unfavorable, driven by
high tumor heterogeneity, an immunologically suppressive (“cold”)
tumor microenvironment (TME), and the infiltrative capacity of
glioma stem cells (Weller et al., 2024; Liu et al., 2024a). Uncontrolled
proliferation defines gliomas pathobiology, promoting increased
focus on regulatory role of tumor cell death in disease progression
(Mancusi and Monje, 2023). While current research on diagnostic
biomarkers and therapeutic agents for glioma has made progress
(Ivo D'Urso et al., 2015; Bombino et al., 2024), studies integrating 30
cell death modalities to address this issue remain largely unexplored.
Consequently, elucidating the impact of diverse cell death modalities
on gliomagenesis, establishing reliable prognostic models, and
identifying molecular therapeutic targets promise new foundational
insight for glioma treatment.

Frontiers in Cell and Developmental Biology

02

Cellular death predominantly arises via two pathways: accident
cell death (ACD) (Tang et al., 2019) and programmed cell death
(PCD) (Galluzzi et al,, 2018). ACD is an uncontrolled biological
process, whereas PCD is a tightly regulated biological process
involving multiple molecular pathways and mechanisms critical for
maintaining cellular homeostasis and eliminating abnormal cells
(Galluzzi et al., 2018; Qin et al., 2023). PCD manifests in diverse
forms, including apoptosis, necroptosis, ferroptosis, cuproptosis,
pyroptosis, alkaliptosis, lysosome-dependent death, and autophagy-
dependent death (Hanahan and Weinberg, 2011). Comprehensive
literature and GeneCards database analyses currently recognize
30 distinct PCD modalities. Increasing evidence demonstrates
that PCD fundamentally influences malignant tumor progression,
as cancer cells evade multiple PCD forms during tumorigenesis
(Su et al,, 2015). Dysregulated PCD is closely associated with key
malignant phenotypes, including tumor proliferation, metastasis,
and recurrence (Yu et al., 2021; Yan et al., 2022), with numerous
studies confirming a strong link between glioma progression and
PCD (Hanson et al., 2023; Wei et al., 2024). However, the molecular
characteristics of PCD in gliomas and its clinical therapeutic
potential remain insufficiently understood, necessitating further
exploration into PCD-glioma cross-talk to advance treatment
strategies.

During glioma progression, tumor cells selectively recruit
immunosuppressive cell populations to establish an immune-
suppressive microenvironment, a pathological mechanism
identified as a major cause of immunotherapy failure (Quai et al.,
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2017). release of
inflammatory cytokines, chemokines, and immunoregulatory
molecules (Dai et al, 2020; Park and Chung, 2019; Liu et al,
2022). To address these complexities, this study integrated data
from 2,743 glioma patients across TCGA, CGGA, and GEO

databases. We systematically analyzed 30 cell death modalities

Simultaneously, PCD activation triggers

and constructed a pan-death prognostic signature (Cell-Death
Score, CDS) using 114 machine learning algorithm combinations.
Employing advanced bioinformatics, we identified 25 key genes,
deciphered interaction linking PCD modalities to the immune
microenvironment, and validated candidate therapeutic agents.
These findings provide novel insights into the role of PCD in
glioma progression and contribute to the development of improved
therapeutic approaches.

Results

Genetic characteristics associated with cell
death are enriched in the ligand-receptor
interaction pathways

To explore differences in 30 cell death-related genes between
normal brain tissues and gliomas patients, we analyzed gene
expression profiles from GTEx cohort (normal brain) and
TCGA-GBM/LGG cohort (glioma). This analysis identified 886
statistically differentially expressed genes (DEGs), including
202 upregulated and 684 downregulated genes (Figure 1A).
Visualization using a petal plot revealed the number of genes
associated with each of the 30 cell death modes, ranging
from 3 to 9,255 (Figure 1B). Integrating all cell death-related
genes yielded a total of 11,681 genes. Intersection of these
with the 886 DEGs identified 428 cell death-associated DEGs
(Figure 1C). Among these, 109 were upregulated and 319 were
downregulated (Figure 1D).

Gene Ontology (GO) enrichment analysis of these 428 DEGs
revealed significant associations. Within biological processes, the
humoral immune response was the most enriched term. This
adaptive immune process, involving B cell-mediated antibody
production, functions in concert with cell-mediated immunity
driven by T cells. For cellular components, the term “extracellular
matrix containing collagen” was most enriched, highlighting the
structural and functional importance of collagen-rich matrices,
which are implicated in tumor cell invasion, metastasis, and
microenvironment regulation. In terms of molecular function,
receptor-ligand activity was significantly enriched, reflecting the
critical role of receptor-ligand binding in cellular signaling, function,
survival, and proliferation (Figure 1E).

Parallel Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis demonstrated significant enrichment of DEGs
in pathways involving cytokine-cytokine receptors interaction,
neuroactive ligand-receptor interaction, JAK-STAT signaling,
and PI3K-Akt signaling. The
neuroactive ligand-receptor interactions drives characteristic

significant  dysregulation of

clinical manifestations in glioma: Tumor cells abnormally
secrete neurotransmitters such as glutamate, which not only
induce peritumoral epilepsy by activating neuron-associated
receptors but also directly accelerate tumor proliferation and
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metabolic reprogramming through autocrine activation of the
mTOR signaling axis. This is closely related to the clinical
phenotypes and proliferative features of glioma. Dysregulation
of cytokine-receptor pathways mediates sustained recruitment of
tumor-associated macrophages, forming an immunosuppressive
microenvironment that weakens anti-tumor immune responses.
Activation of PI3K-Akt and JAK-STAT pathways leads to
broad resistance to radiotherapy, chemotherapy, and targeted
therapies by regulating cell cycle progression, inducing anti-
apoptotic protein expression, and enhancing DNA damage
repair capacity (Figure 1F).

Identification of cell death-related patient
subgroups by unsupervised clustering

Base on the above-mentioned analyses, we performed
unsupervised clustering on the TCGA-GBM/LGG cohort to
classify patients based on cell death-related gene expression.
Optimal clustering stability was achieved by dividing patients into
subgroups C1 and C2 while maximizing intra-group consensus
and minimizing ambiguity (Figures 2A-C). Immune infiltration
analysis revealed significant differences between subgroups, with
C1 exhibiting a generally higher degree of immune cell infiltration
(Figure 2D). Specifically, while activated B cells, effector CD4 T
cells, monocytes, plasmacytoid dendritic cells, and type 17 helper
T cells showed no significant difference, eosinophils abundance
was significantly higher in C2. All other immune cell types were
significantly more abundant in C1 (Figure 2E). This indicates
distinct tumor immune activities between the subgroups defined by
cell death patterns. Principal component analysis (PCA) confirmed
clear separation between C1 and C2 (Figure2F), suggesting
divergent tumor characteristics. Consequently, we performed
differential gene expression analysis between the subgroups,
identifying DEGs suing thresholds of P < 0.05, | Log,FC | > 1.
This analysis yielded 89 significant DEGs: 14 were significantly
upregulated, while 75 were significantly downregulated (Figure 2G).

Prognostic model establishment based on
CoxBoost machine learning

We then focused these 89 key genes and constructed prognosis
model using the TCGA-GBM/LGG cohort as the training set, and
GSE108474, CGGA-693, and CGGA-325 as validation sets. We
evaluated 114 machine learning algorithms. The CoxBoost model
was selected as the final prognostic signature due to its superior
average C-index (0.717) across all cohorts, along with demonstrated
stability in high-dimensional data and consistent performance in
cross-validation (Figure 3A). Using this model, we calculated a
Cell-Death Score (CDS) for each patient sample. Patients were
divided into high- and low-risk groups based on the median CDS
value. Expression levels of the 25 genes selected by the CoxBoost
prognostic model differed significantly between risk groups, with
most genes showing higher expression in the high-risk group
(Figure 3B). Distribution of CDS within the TCGA-GBM/LGG
cohort is shown in Figure 3C. Dividing patients by increasing CDS
revealed a corresponding increase in mortality and decrease in
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FIGURE 1
Genetic characteristics associated with cell death are enriched in the ligand-receptor interaction pathways. (A) Differential gene expression volcano
plot between GTEx cohort and TCGA- GBM/LGG cohort; (B) petal plot of the number of related genes corresponding to 30 cell death modes; (C) Venn
diagram of intersection of cell death-related genes and differential genes; (D) Bar chart of the number of cell death-related genes in
upregulated/downregulated differential genes; (E) GO enrichment analysis of cell death-related differential gene enrichment pathway bar chart; (F)
KEGG enrichment analysis of cell death-related differential gene enrichment pathway bubble map, the color of the bubble indicates the P value of
enrichment significance, and the size of the bubble indicates the number of enriched genes.

survival time (Figure 3C). Kaplan-Meier (KM) survival analysis
was performed on patients in the TCGA- GBM/LGG cohort, and
the results showed that patients in the high-risk group had a
significantly worse prognosis (P < 0.0001) (Figure 3D). Receiver
operating characteristic (ROC) curve analysis demonstrated strong
prognostic performance for CDS, with area under the curve (AUC)
of 0.894, 0.943 and 0.878 for 1-year, 3-year and 5-year survival,
respectively (Figure 3E). Validation in the CGGA-693, CGGA-325,
and GSE108474 corhorts consistently showed poorer prognosis
for high-risk patients (Figures 3EH,]), and robust AUC values
(mostly >0.7) for 1-, 3-, and 5-year survival prediction (Figures
3G,LK), confirming CDS as an excellent prognostic model for
glioma patients.
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Mutation landscape between CDS high-
and low-risk groups exhibits significant
differences

To explore mutational differences, we analyzed the mutational
landscape. In the high-risk group, TP53 mutation was the most
frequent (35% of patients), exhibiting diverse mutation types
(Figure 4A). Conversely, in the low-risk group, IDH1 mutation
predominated (93% of patients), mainly nonsense mutation
(Figure 4B). Overall, the proportion of mutations in genes was
lower in the low-risk group compared to the high-risk group,
except for IDHI, TP53, ATRX and CIC. Furthermore, we evaluated
genomic instability metrics: Tumor Mutation Burden (TMB,
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Figure 4C), MSIsensor Score (Figure 4D), Fraction Genome Altered
(FGA, Figure 4E), Mutation Count (Figure 4F), and Homologous
Recombination Deficiency (HRD) score (Figure 4G). All metrics
except HRD score were significantly higher in the high-risk group,
indicating a higher incidence of gene mutation events and greater
genomic instability among these patients.
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Significant differences exist in cell death
patterns and immune characteristics
between CDS high- and low-risk groups

To compare the 30 cell death modalities between risk groups,
we calculated death scores for each patient. Heatmaps visualization
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FIGURE 4
Mutation landscape between CDS high- and low-risk groups exhibits significant differences. (A) CDS mutations in patients with high-risk group
waterfall figure; (B) CDS mutations in patients with low-risk group waterfall figure; (C) Violin plot of Tumor Mutation Burden between CDS high and
low-risk groups; (D) CDS high-risk group of patients with microsatellite instability Score (MSlsensor Score) differences violin figure; (E) Violin plot of
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0.001, ns indicates no statistical significance.

indicated higher score across most cell death modes in the
high-risk group (Figure 5A). Specifically, 23 death modes showed
significantly elevated scores in high-risk patients (Figure 5B).
Similarly, immune function scores were significantly increased in the
high-risk group (Figure 5C).

Given the crucial role of immune cells in glioma, we evaluated
immune infiltration using single-sample gene set enrichment
analysis (ssGSEA). The high-risk group exhibited significantly
greater abundance across 28 immune cell types (Figure 5D),
confirming enhanced immune infiltration. Consistently, Immune
Score (Figure 5E) and Stromal Score (Figure 5F) were significantly
higher, while Tumor Purity (Figure 5G) was lower, in the high-
risk group. Consequently, the ESTIMATE scores were significantly
elevated in high-risk patients (Figure 5H), suggesting they might be
better candidates for immunotherapy. Assessment using the Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm predicted a
better response to immunotherapy in the low-risk group (Figure 5I).

CDS association with drug sensitivity

Using GDSC database, we predicted drug susceptibility
differences between risk groups. Significant differences in the half
maximal inhibitory concentration, half inhibitory concentration
(IC50) were observed for 16 drugs (Figure 6A). Eleven drugs showed
lower IC50 (indicating higher sensitivity) in the high-risk group
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(Figure 6B): AICAR, CEP701, Embelin, Etoposide, GDC0941,
Gemcitabine, MK. 2206, NSC.87877, Obatoclax. Mesylate, PLX4720
and Tipifarnib. Conversely, five drugs showed lower IC50 (higher
sensitivity) in low-risk group (Figure 6C): AMG.706, AZD.228,
Bosutinib, Gefitinib and JNK. inhibitor.VIII. These represent
potential therapeutic agents differential efficacy based on CDS risk
stratification.

Construction and validation of a
nomogram integrating CDS and clinical
features

To evaluate the combined prognostic power of CDS with clinical
factors, we conducted univariate COX regression analysis. This
analysis identified CDS risk score, WHO grade, chemotherapy,
radiotherapy, and clinical features as significant prognostic factors
(Figure 7A). Subsequent multivariate COX regression confirmed
CDS risk score, WHO grade, and radiation therapy as independent
prognostic predictors (Figure 7B). Therefore, we integrated these
three factors into a prognostic nomogram (Figure 7C). The
calibration curve indicated good agreement between predicted and
observed outcomes (Figure 7D). ROC curve analysis comparing
the nomogram, CDS alone, WHO grade, and radiotherapy showed
the highest AUC for CDS (0.829), followed by the nomogram
(0.793) (Figure 7E). Precision-recall (PR) curve analysis further
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0.01, ***indicates P < 0.001.

CDS association with drug sensitivity. (A) the CDS between high and low risk groups IC50 half inhibitory concentration level heat 16 kinds of drugs. (B)
Violin plot of IC50 lower levels of CDS high-risk groups; (C) Violin plot of IC50 lower levels of CDS low-risk groups; *indicates P < 0.05, **indicates P <

confirmed strong performance of the CDS risk score (Figure 7F).
Notably, adding clinical factors to CDS did not improve prognostic
performance beyond CDS alone.

Single-cell level analysis of CDS

We further analyzed CDS using the GSE167960 single-cell RNA-
seq dataset from 6 HGG patients (22,732 TME cells after quality
control, Supplementary Figure S1). Manual annotation identified
major cell types: glioma cells, monocyte, macrophages, stromal cells,
T cells, and B cells [Figure 8A (Supplementary Figures S2A,B)],
with proportions varying per patient (Supplementary Figure S2C).
Assigning CDS risk at the single-cell level divided cells into high-
risk (1,134 cells) and low-risk (21,598) groups, with the majority
being low-risk (Supplementary Figure S2D). Cell communication
analysis showed diverse interactions between these cell types
(Figure 8B), including specific receptor-ligand interaction involving
gliomas cells (Figure 8C).
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Analysis of the high-risk cell populations showed its distribution
across annotated cell types (Figure 8D). Cell communication
analysis highlighted interactions, particularly between glioma
cells and stromal cells, monocytes, macrophages, and T cells
(Figure 8E). Pseudotime trajectory analysis of high-risk cell revealed
a developmental path with one branch point, resulting in three
distinct cellular states (Figure 8F). Expression analysis along the
trajectory showed significant changes for 20 of the 25 CDS model
genes, suggesting their key roles in the development of these
high-risk cells (Figure 8G). High-risk cells exhibited 3.2x more
interactions than low-risk cells (p < 0.001).

Analysis of the low-risk cell populations similarly showed its
distribution (Figure 8H) cell communication patterns (Figure 8I).
After, we have a group of CDS low-risk cells cells to time series
analysis. Pseudotime trajectory analysis of low-risk cells revealed
a path with three branch points, partitioning cells into seven
distinct states (Figure 8]). Among the 25 CDS model genes, 5
showed significant dynamic expression changes during low-risk cell
development (Figure 8K).
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FIGURE 7

Construction and validation of a nomogram integrating CDS and clinical features. (A) Forest plot of the results of univariate COX regression analysis of
CDS score and other clinical factors in the prognosis of patients; (B) Forest plot of CDS score and key clinical factors in patients’ prognosis by
multivariate COX regression analysis; (C) CDS score combined with World Health Organization (WHO) grade and clinical model of radiotherapy
Nomogram; (D) nomogram model fitting curve; (E) Receiver Operating Characteristic curve (ROC) curves of CDS score, World Health Organization
(WHO) grade, radiotherapy and nomogram score; (F) PR (Precision-Recall) curve of CDS score, World Health Organization (WHO) grade and

radiotherapy.

In summary, comparison of cell communication and pseudo-
time trajectories between CDS high- and low-risk cell populations
revealed differences. Gliomas cells within the high-risk population
exhibited more intensive communication, both amongst themselves
and with other cell types. Furthermore, a greater number of
model genes showed significant expression changes during the
developmental trajectory of the high-risk cell population.

Frontiers in Cell and Developmental Biology

10

Experimental validation of 25 key genes in
vitro

Based on the above results, we performed mRNA-level
detection of the 25 key genes in vitro. In cell line experiments,
certain genes were undetectable due to low expression levels.
Among the seven key genes (HOXD11, HOXC9, HOXC6, HOXA3,

frontiersin.org


https://doi.org/10.3389/fcell.2025.1677290
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Huang et al. 10.3389/fcell.2025.1677290

A B Number of interactions c Commun. Prob p-value
celltype o e e p>005 .p<u,n1
SPP1 - CD44 Y ®
SPP1 - (ITGAV+ITGB1) ®
SPP1 - (ITGA4+TGB1) Y
PTN - PTPRZ1 )
PTN -NCL 000000
PSAP - GPR37
CCL3 - CCR1 )
ANXAT - FPR1 (X )
= & g £ 2 &
8 8 2 3 8B 8 §
@ g 5 § 8 N OZ
bos g = E 4+ 5
2 B A B 2 4
g7 2498 .
g 2 1 % o g 8
5 e B gi8:ige
/ «© oS
= Tcells HE RN o
@ B cells © Macrophages @ Stromal cells ~ ® Unknown Y ° 5 o
® Glioma cells ® Monocyte @ Tcells
D E F Pseudotime NN State © 1 ® 2 e 3
- . 0 5 10 15 20 25
Number of interactions 8
Macrophages oS 4
celltype 5
So
50 E
o
-4
25 -10 -5 0 5 10 -0 -5 0 5 10
2 cded 0y Component 1 Component 1
N ( et 3 >
w Sttt
Z g lls %) _.‘6"
2 Clisraeds
% -'.‘:?':J:-' Cluster
Uy W :
-25 5 3
4
. . . 5
Unknown 6
-50 3 S
-25 0 25 < g
tSNE_1 T 3
)
H Number of interactions State ®1 3 o5 e7
Pseudotime [INNEINENENN
ce"type Macrophages i 0 5 10 15 20 e2 e4 ®6
4 4
P oy
£
80 o
g g
S 5
<Q S
-4 -4
-2 -8 -4 0 4 8 -2 -8 -4 0 4 8

Component 1 Component 1

|2 Cluster
1
o W
2

MYOD1
RETN
GALNTS
orP
ACMSD

tSNE_1

FIGURE 8

Single-cell level analysis of CDS. (A) Using 22,732 cells Seurat t distribution stochastic neighbornood embedded (t - SNE) cell type annotation figure; (B)
by analyzing cell communication between main 6 types of cell cell communication situation of the network diagram; (C) Ligand-receptor interaction
pairs for communication between glioma cells and other cell types. (D) Seurat t-distributed random neighborhood embedding (t-SNE) plot using 1134
CDS high-risk cells; (E) CDS high-risk cell populations and other types of cell communication network diagram; (F) CDS high-risk cell populations
pseudo-time trajectory analysis, trajectories are colored from dark blue to light blue according to gradient; CDS cell developmental state trajectory of
high-risk cell population; (G) 20/25 model gene expression under the false time trajectory heat maps of high-risk cells. (H) Seurat t-distributed random
neighborhood embedding (t-SNE) plot using 21,598 CDS low-risk cells; (I) CDS low-risk cell populations and other types of cell communication
network diagram; (J) CDS low-risk cell populations pseudo-time trajectory analysis, trajectories are colored from dark blue to light blue according to
gradient; CDS cell developmental state trajectory of low-risk cell population; (K) 5/25 model gene expression under the false time trajectory heat maps
of low-risk cells.
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FBX039, OTP, and HMGA?2) consistently detectable in both
normal astrocyte cell lines (SVG-P12) and glioma cell lines (U87,
U251, LN229), tumor cell lines exhibited significantly upregulated
expression compared to normal cell lines (Figure 9A). RNA-seq
analysis of seven paired gliomas and adjacent non-tumorous
tissue samples from our institution showed that 24/25 key genes
were detectable, with the majority highly expressed in tumor
samples (Figure 9B). Among these, 10 genes (SCNNIB, HOXDI1,
HOXCé6, FBX039, VSTM1, MEOX2, HOXC9, HOXA3, SHOX2,
OTP) exhibited statistically significant differential expression
(Figure 9C), while 14 genes showed non-significant differences
(Supplementary Figure S3A). qRT-PCR analysis of these seven
paired samples revealed undetectable expression for partial genes
due to low expression levels. Among the 12 genes (APCDDIL, CD70,
FBXO039, GALNT5, HMGA2, HOXA3, HOXC6, HOXC9, HOXD11,
SHOX2, MEOX2, OTP) within normal detection thresholds,
differential expression was observed between tumor and adjacent
tissues (Supplementary Figure S3B). Integration of qRT-PCR data
from all seven sample pairs demonstrated statistically significant
expression differences for nine genes, while the remaining three
genes showed higher mean expression in tumor tissues than in
adjacent tissues but lacked statistical significance due to substantial
dispersion (Figure 9D).

Spatial transcriptomic analysis of 25 key
genes

Our research group previously selected four surgically resected
glioma specimens (including two paired tumor-adjacent tissues and
two tumor-only tissues) for spatial transcriptomic analysis using the
standardized Seurat analytical pipeline (Yang et al., 2024). Following
Harmony integration of the four samples, dimension reduction
and clustering yielded 17 transcriptionally distinct cell clusters
(Supplementary Figure S4B,C). Given the established correlation
between malignant transformation and large-scale chromosomal
aberrations, inferCNV was employed for copy number variation
(CNV) profiling. Consistent with prior findings, clusters 9
and 13 were designated as adjacent non-tumorous reference
populations (Supplementary Figure S4D). Analysis revealed that
cluster 3 additionally exhibited the genomic stability characteristic
of adjacent non-tumorous tissues. Spatial transcriptomics
demonstrated universal upregulation of the 25 key genes within
tumor regions (Figure 10A; Supplementary Figure S4E). Spatial
visualization confirmed distinct anatomical boundaries between
tumor and adjacent non-tumorous zones (Figure 10B). Localization
analysis of HOXDII and OTP—selected for high expression
abundance and consistency with in vitro validation—revealed
predominant tumor-specific localization in paired tumor-
adjacent samples (n = 2), while showing diffuse distribution
2) (Figures 10C,D). Integration

of seven key genes consistently overexpressed in both tumor

in tumor-only samples (n
cell lines and tissues further revealed their tumor region-

specific enrichment (Figure 10E; boxed areas indicate adjacent
non-tumorous tissues).
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Discussion

Glioma heterogeneity necessitates deciphering programmed
cell death (PCD) networks to overcome therapeutic resistance
(Nicholson and Fine, 2021). Our integrated analysis of 30 PCD
modalities transcends single-pathway limitations, revealing how
coordinated cell death regulation drives glioma progression.
The machine learning-derived Cell-Death Score (CDS) robustly
stratifies patients, with high-risk groups exhibiting elevated genomic
instability (TP53-dominant mutations, increased TMB/Mutation
Count), immune checkpoint activation (PD-L1/CTLA-4), and
distinct microenvironment remodeling (Lin et al., 2024; Gong et al.,
2018; Liang et al, 2024). Crucially, high-CDScore patients
show enhanced sensitivity to 11 agents (gemcitabine, etoposide)
while displaying immune-activation signatures suggesting
immunotherapy candidacy (Rajkomar et al., 2019; Greener et al.,
2022). This discovery indicates that integrating the CDS model may
uncover additional molecular markers and therapeutic targets.

Single-cell resolution confirmed developmental heterogeneity:
High-risk cells progressed through trajectories dynamically
regulated by 20/25 CDS genes, while differential intercellular
communication involved oncogenic pathways (SPP1-CD44, HIFa-
VEGF) (Sabu et al., 2023; Suva and Tirosh, 2020; Fan et al.,
2024; Xing et al, 2023; Chen et al.,, 2019; Tu et al.,, 2022). Key
regulators include HOX family members (HOXC9/C6/D11) driving
immunosuppression and invasion (Wang et al., 2021; Li et al., 2018;
Liu et al., 2024b), MEOX2 maintaining stemness via ERK/MAPK
(Tachon et al., 2021; Schonrock et al., 2022; Li et al., 2024),
and GALNT5 mediating chemoresistance through DNA damage
repair mechanisms (Jia et al., 2024). CD70 overexpression further
represents a therapeutically targetable axis of immune evasion
(Junker et al., 2005; Wischhusen et al., 2002).

The marginal AUC reduction in the nomogram likely reflects
information redundancy between CDS and clinical variables,
where CDS encapsulates molecular features beyond WHO grade
or treatment history. Among the 25 key genes, 13 were undetectable
by qRT-PCR in some cell lines/tissues due to expression levels
below technical detection thresholds (<10 copies/ng RNA under
10 ng input and Ct cutoff = 35 cycles). RNA-seq analysis
confirmed detectable expression of 24/25 genes (FPKM=>0.1),
suggesting biological relevance despite qRT-PCR limitations.
Spatial transcriptomics further validated tumor-specific expression
of all genes.

Although contemporary glioma clinical practice relies on
multiple established biomarkers—including MGMT promoter
methylation status, IDH, genetic alterations beyond 1p/19q and
adjuvant therapies—these markers primarily focus on single
therapeutic contexts or specific pathological subtypes. As the
understanding of glioma biology continues to expand, researchers
are investigating emerging prognostic factors and novel molecular
markers to refine prognostication and personalize treatment
approaches. In this study, the differential enrichment of TP53 and
IDH1 mutations in CDS high/low groups, which was independent
of known molecular subtypes, further substantiates this perspective,
this model can circumvent the limitations of single-molecular
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FIGURE 9

Experimental Validation of 25 Key Genes In Vitro. (A) mRNA expression of 7 key genes consistently detectable in normal astrocytes (SVG-P12) and
tumor cell lines (U87, U251, LN229); (B) RNA-seq expression heatmap of key genes in 7 paired tissue samples; (C) Statistically significant expression of
key genes in RNA-seq analysis; (D) Expression of 12 genes within normal threshold range by gRT-PCR across 7 paired samples. *

indicates P <
0.05, **indicates P < 0.01, ***indicates P < 0.001, ****indicates P < 0.0001.
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FIGURE 10
Spatial Transcriptomic Analysis of 25 Key Genes. (A) Total expression levels and average expression levels of 25 key genes in tumor regions versus

adjacent non-tumorous areas across four spatial transcriptomic samples; (B) Spatial mapping profiles of four spatial transcriptomic samples; (C) Spatial
mapping of HOXD11 gene; (D) Spatial mapping of OTP gene; (E) Expression profiles of OTP, FBXO39, SHOX2, HOXD11, HOXC6, HOXC9, and MEOX2
(boxed areas indicate adjacent non-tumorous tissue regions)

subtyping to predict patient prognosis. The CDS prognostic model ~ enable personalized therapeutic selection. Mechanistically, the
constructed herein achieves cross-molecular subtype survival  dysregulated expression of CDS components highlights novel
prediction in glioma for the first time by integrating 30 programmed  targets for modulating glioma progression (Wu et al, 2024;
cell death (PCD) modalities. This integration enables CDS to Leung et al., 2002; Qian et al., 2023).
overcome the constraints of traditional biomarkers, making the This study has several limitations: the cohort size for single-
development of combination therapeutic strategies targeting PCD  cell heterogeneity analysis is constrained, statistical power is
pathways a novel tool for glioma treatment. compromised by the limited spatial transcriptomics sample size,
These findings establish CDS as a multidimensional biomarker ~ and computational predictions of drug responses require validation
integrating PCD biology with clinically actionable insights. The  via PDX/organoid models. Future investigations should expand
model’s prognostic power persists after controlling for WHO  sample cohorts and integrate dynamic metabolic profiling to better
grade/radiotherapy, and its risk-specific drug sensitivity profiles  elucidate interactions between programmed cell death (PCD)
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and the tumor microenvironment (TME), thereby facilitating the
development of combination strategies to overcome therapeutic
bottlenecks in glioma.

Conclusion

This study establishes the Cell-Death Score (CDS), a clinically
translatable prognostic biomarker derived from machine learning
integration of 30 programmed cell death (PCD) modalities.
By dividing glioma patients into high- and low-risk groups
and characterizing cellular subpopulations, the CDS framework
reveals the mechanistic nexus between PCD heterogeneity,
immune dysregulation, and therapeutic resistance. These insights
provide novel molecular targets and actionable therapeutic
strategies, enhancing our understanding of PCD-driven immune
microenvironment remodeling. Future research should focus
on deciphering dynamic PCD regulatory networks to optimize
personalized therapeutic regimens and improve clinical outcomes.

Materials and methods
Data download

To develop a glioma prediction model based on the origin of
homologous recombination deficiency for clinical precision medicine
in Gliomas, this study acquired the gliomas dataset TCGA-GBM/LGG
from UCSC Xena (Goldman et al., 2020) (https://xena.ucsc.edu).
Download Count and sequencing of gene expression data in patients
with FPKM values (n = 1,131), and further standardized into TPM
value. At the same time, the clinical data of patients, including age,
gender, survival time and survival status, were downloaded, and the
patients without clinical information were excluded. At the same time,
the Mutation data of patients were downloaded through GDC, and
“Masked Somatic Mutation” was selected, visualized using maftools
(Mayakonda et al., 2018) R package, and the tumor mutation burden
(TMB) of each patient was obtained. Fraction Genome Altered (FGA,
part of the Genome change scores), Mutation Count (mutations)
and MSI - Sensor score obtained from cBioPortal database (http://
www.cbioportal.org), Finally, a total of 641 samples meeting the
criteria were retained. The normal human brain tissue gene expression
dataset TcgaTargetGTEx (n = 1,664) was downloaded from the GTEx
database, and the data type was selected as FPKM and converted
to TPM format. Finally, a total of 1,141 normal human brain
tissue gene expression data were obtained. From a GEO database
(Barrett etal., 2013) (https://www.ncbi.nlm.nih.gov/geo) to download
patients with Gliomas RNAseq data sets: GSE108474 (Gusev et al.,
2018) (Homo sapiens, GPL570, a total of 550 patient tumor samples),
which were all confirmed solid tumor samples of Gliomas patients;
Download the single-cell expression profiling dataset at the same
time: GSE167960 (Wang et al., 2023) (H. sapiens, GPL20301, tumor
samples from 6 patients), single cell data were processed by Seurat
package, and a total of 22,732 cells were obtained after quality control
to filter out low-quality cells.

Cell communication between cell subsets was analyzed by
CellChat package. The gene expression data of brain Gliomas
dataset and clinical information of patients (including survival
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time and survival status) were downloaded from CGGA (Chinese
Glioma Genome Atlas) database (Zhao et al, 2021) (http://
www.cgga.org.cn/). The data samples were obtained from H. sapiens.
All patients pathologically diagnosed with Gliomas were selected,
and samples of patients lacking clinical staging information and
survival information were excluded. Finally, two Gliomas patient
datasets CGGA_693 (Zh et al., 2022) and CGGA_325 (Zhao et al,,
2017). Were retained, and a total of 970 tumor samples were included
in this study (Supplementary Table S1).

Collection of 30 genes related to cell death
modes

We conducted literature retrieval and based on previous
literature reports (Tang et al, 2019; Galluzzi et al, 2018;
Qin et al,, 2023; Zou et al.,, 2022) and GeneCards database (https://
www.genecards.org/) were collected 30 kinds of PCD model
and the key regulatory genes, Including 228 genes related to
apoptosis, 52 genes related to Pyroptosis, 753 genes related to
Ferroptosis, 232 genes associated with Autophagy, necrotizing
apoptosis (Necroptosis) phase There were 67 genes related to
apoptosis, 12 genes related to Cuproptosis, 23 genes related to PARP-
1-dependent cell death, 9 genes related to Entotic cell death. Three
genes related to Netotic cell death, 240 genes related to Lysosome-
dependent cell death, 3 genes related to Alkaliptosis, 3 genes related
to cuproptosis. 19 genes related to Oxygen death (Oxeiptosis), 69
genes related to neutrophils inflammatory cell death (NETosis), 34
genes related to immunogenicity (Immunogenic_cell_death), cell
death loss nest apoptosis related gene 434 (up), 29 genes related
to Paraptosis, 8 genes related to Methuosis, 23 genes related to cell
invasive death, 10 genes related to Disulfidptosis, 29 genes related
to Phagocytosis, 19 genes related to PANoptosis, 9,255 genes related
to Intrinsic apoptosis, 2108 genes related to Extrinsic apoptosis,
156 genes related to Mitochondrial permeability transition (MPT-
driven necrosis), 3,838 genes related to Autosis, 102 genes related to
Efferocytosis, 8,097 genes related to Mitotic death, 540 genes related
to Accidental cell death, 946 genes related to Mitotic catastrophe,
6 genes related to paraptosis like death, and a total of 11,681 genes
related to programmed cell death (Supplementary Table S2).

Determine the feature genes associated
with cell death

We used Limma R package (Ritchie et al., 2015) to perform
differential analysis on the expression data of normal human brain
tissue and tumor samples of gliomas patients, screened differentially
expressed genes, and selected log,fold change >1 and P < 0.05 as
cutoff. The obtained log,foldchange greater than 1 was the highly
expressed gene in gliomas patients, and the log, Foldchange less than
—1 was the low-expressed gene in gliomas patients. The volcano plot
was used to show the distribution of these genes. In addition, the
number of 30 cell death patterns collected was visualized by petal
diagram, and the Venn diagram was used to show its intersection
with differential genes. Finally, 30 differentially expressed genes
related to cell death were obtained.
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The bar chart was used to visualize the composition of
30 cell death and non-cell death genes in the downregulated
degs. To explore the biological significance of these differentially
expressed Genes related to cell death, we used Gene Ontology (GO)
(The Gene Ontology Consortium, 2017) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Chen et al., 2020) enrichment
analysis was used to evaluate the signaling pathways and biological
processes associated with the differentially expressed genes, with a
Q-and P-value threshold of <0.05.

Unsupervised clustering based on
differential genes reveals differences in
immune characteristics among subgroups

The “Consensus Cluster Plus” (Seiler et al.,, 2010) R package
was used to identify multiple cell death-related subtypes through
unsupervised consensus clustering, and the k range was 2-10.
To ensure the stability of clustering, we repeated 1,000 times.
Considering the feasibility of clinical prognostic analysis, the
optimal number of clusters consists of two maximizing intra-cluster
consensus while minimizing ambiguity in cluster assignment.
CIBERSORT (https://cibersort.stanford.edu/) is based on linear
support vector regression (linear support vector regression) subtype
of principle of human immune cells to the expression of matrix
convolution (Newman et al., 2019) It can evaluate the infiltration
status of immune cells in sequencing samples based on the gene
expression feature sets of 22 known immune cell subtypes. This study
by CIBERSORT algorithm with different coronary heart disease
(CHD) samples consolidated data sets to evaluate immune cells into
the state, and then by Wilcoxon test different diseases in various
immune cell infiltration of subgroup differences, P < 0.05 or less
for the difference was statistically significant. Principal component
analysis (PCA) was used to observe the differentiation between
subgroups, and volcano plot was used to display the differences
between subgroups to further screen the signature genes.

Multi-machine learning to realize one-stop
prognostic feature gene screening and
prognostic model construction

In order to construct a stable prognostic model for gliomas
based on multi-cell death mode, (1) first, we integrated 10 classical
algorithms: Random forest (RSF), least absolute shrinkage and
selection operator (LASSO), gradient boosting machine (GBM),
Survival support vector machine (survival-SVM), supervised
principal component (SuperPC), ridge regression (ridge), Cox
Partial least squares regression (plsRcox), CoxBoost, Stepwise Cox,
and elastic network (Enet). Among them, RSE, LASSO, CoxBoost,
and Stepwise Cox have the function of dimensionality reduction and
variable screening, and we combined them with other algorithms
into 114 machine learning algorithm combinations. (2) Next,
we used TCGA-GBM/LGG as the training cohort, and used the
combination of these 114 algorithms to screen key genes and
construct a prognostic model based on the previously identified
feature genes. (3) Finally, in the three test cohorts (CGGA-693,
CGGA-325, GSE108474), we used the key genes obtained in the
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training cohort to calculate the risk score for each cohort. According
to the average C-index of the four test cohorts, we finally selected the
best prognostic model and calculated its final risk Score, Cell-Death
Score (CDS). Based on the median value of the score, the patients
were divided into CDS high-risk group and CDS low-risk group.
Survival analysis and receiver operating characteristic (ROC) curve
analysis were used to evaluate the prognostic significance of CDS.

Tumor mutation burden (TMB) and
microsatellite instability (MSI) analysis

To analyze single nucleotide polymorphisms (SNPS) in different
risk score subgroups of TCGA-GBM/LGG patients, maftools
package was used to analyze frequently mutated genes in high and
low risk groups. In the meantime, Through from cBioportal database
(https://www.cbioportal.org) for patients with GBM TMB (Tumor
Mutation Burden), MSI - Sensor Score, Fraction Genome Altered,
Mutation Count, we analyzed the corresponding score differences
between high and low-risk groups to reveal their mutation
level characteristics. Meanwhile, the difference of Homologous
recombination deficiency (HRD) score between high and low risk
groups was analyzed.

The comparison of cell death score and
immune characteristics

In order to reveal the discriminative power of CDS risk score in
tumor immunity, we performed single-sample gene set enrichment
analysis (ssGSEA) (Foroutan et al., 2018) enrichment analysis.
ssGSEA is a method used to assess the activity of gene sets (e.g.,
pathways or functional sets) in a single sample. It quantifies the
degree of enrichment of gene sets by calculating the cumulative
distribution function of genes within a sample, thereby revealing the
activity associated with a specific biological process. By performing
ssGSEA enrichment analysis of the related genes corresponding to
the 30 cell death modes, we obtained the death score of each patient’s
corresponding cell death mode, which was visualized by heat map
and difference boxplot. At the same time, we obtained the scores of
each patient in different immune functions and 28 immune cells in
the same way. Next, we used the R package “estimate “to analyze
the differences in tumor immune score, stromal score and tumor
purity. Meanwhile, Tumor Immune Dysfunction and Rejection
(TIDE) is a computational method that mimics the tumor immune
escape mechanism and is used to evaluate the potential response
to immune checkpoint blockade (ICB) treatment (Jiang et al,
2018) In website: http://tide.dfci.harvard.edu/. TIDE prediction was
performed on youdaoplaceholder0, and the percentage difference of
immunotherapy response prediction results between high and low
risk groups was analyzed.

Development and validation of potential
therapeutic drugs

In order to assess the CDS drug sensitivity difference between
high and low risk group of patients, we based on anti-cancer drug
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sensitivity genomics database (https://www.cancerrxgene.org/),
Genomicsof Drug Sensitivity in Cancer (GDSC) was used for
drug sensitivity analysis using pRRophetic package. The drugs
with significant difference in half-inhibitory concentration between
the high and low risk groups were identified. To screen potential
anticancer drugs with better efficacy in patients with different risk
groups. In this study, we further classified the 16 candidate drugs
screened in Figure 6 into the following categories: conventional
chemotherapeutic agents (e.g., Etoposide, Gemcitabine), targeted
kinase inhibitors (e.g., Bosutinib, Gefitinib, PLX4720, Tipifarnib),
PI3K/AKT/mTOR pathway inhibitors (e.g., GDC0941, MK-2206,
Embelin), and other small-molecule inhibitors (e.g., Obatoclax
Mesylate, NSC-87877, JNK Inhibitor VIII, AICAR, CEP-701,
AMG-706, AZD-2281). Drug classifications were confirmed
based on annotations from the GDSC database and established
pharmacological literature. Regarding the IC50 difference threshold,
the pRRophetic model outputs relative predicted In (IC50) values
between patient subgroups rather than absolute clinical in vivo drug
concentrations. Therefore, we primarily determined differential
drug sensitivity based on statistical significance (Wilcoxon test,
BH-adjusted q < 0.05). To ensure biological relevance, we further
required a predicted median In (IC50) difference >0.25 between
groups (approximately equivalent to a 28.3% difference on the
original scale) to define potential clinical relevance.

Construction and validation of a
nomogram model integrating CDS and
clinical features

After univariate and multivariate Cox regression analysis of CDS
and other clinical features, we integrated all identified independent
prognostic parameters and constructed a prognostic nomogram
using the R package “rms”. Calibration plot, ROC curve and decision
curve analysis (DCA) were used to evaluate the predictive ability of
the nomogram.

Analysis of single-cell sequencing data

Single-cell RNA sequencing (scRNA-seq) data were preprocessed
and analyzed using the “Seurat “R package. The “NormalizeData
“function of “Seurat” software package was used to normalize
the scRNA-seq data, and the normalization method was set to
“LogNormalize”. The normalized data were then converted into Seurat
objects. The percentage of mitochondrial or ribosomal genes was
calculated and low-quality cells were excluded to ensure quality control
(QC). We excluded samples with a gene count of less than 200 or more
than 3,000, and samples with a ribosomal RNA ratio of more than
20%. Then, by using Seurat package FindVariableFeatures, choose the
variable characteristics of 3,000 genes as the most important, as the
basis of standardized scRNA - seq data of each cell. In addition, we
implement ScaleData and RunPCA function to get the number of
principal components (PC) based on object Seurat.

We use “UMAP (Uniform Manifold Approximation and
Projection)” dimensionality reduction to further summarize
the principal components. Finally, using the
information of each class of cells supported by previous articles

annotation
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(Abdelfattah et al., 2022; Wen et al., 2023), the Idents and DimPlot
functions were used to annotates and visualize the cells of the major
cell types or subtypes. Then, we performed CellChat (intercellular
communication) analysis. CellChat is used to analyze the intercellular
communication of R packages, including human and mouse
ligand/receptor interaction database, can according to the comments
for different cell clusters scRNA - seq intercellular communication
network data analysis. First, we used CellChat to evaluate the major
signal inputs and outputs between all types of cell clusters using
CellChatDB.human. We then used the netVisual_circle function to
show the strength of the intercellular communication network from
the target cell cluster to different cell clusters in all clusters.

Meanwhile, in order to study the relationship between the
cell pseudo-time traces and the model genes, we adopted the
Monocle R package to obtain the single-cell RNA data of all cell
types. Highly variable genes were set according to the following
filtering criteria: mean expression >0.1 and empirical value of
dispersion 21" Dispersion fit. The DDRTree method was used for
dimensionality reduction. We then used the “plot_pseudotime_
heatmap” function to visualize the heatmap of model gene dynamic
expression in the pseudo-time traces showing different TME cell
types in HGG. Significant dynamic changes were defined as p-value
<0.05 and |log,FC|>1.

RNA extraction and real-time qPCR analysis

RNA was extracted from cell lines and tissues by using TRIzol
(I mL for 50-100 mg brain tissue or 2-5 x 106 cells), and quantified
by Nanodrop. 20 pg of RNA was revised transcribed by Revert Aid
First Strand cDNA Synthesis Kit (Thermo Scientific #K1622) or
miRNA first Strand ¢cDNA Synthesis Kit (by tailing A) (Vazyme
#MR201). Quantitative PCR (qPCR) was run with ¢cDNA input
in a 20 uL reaction using 2 x SYBR Green PCR Master Mix.
For analysis, the AACt method was used to calculate the relative
fold gene expression of samples. The housekeeping gene GAPDH
served as control for qPCR. The primers used in these experiments
are shown in Supplementary Table S3.

RNA-seq sample processing, library
preparation, sequencing, and data analysis

After extracting RNA from human glioma tissues and adjacent
non-tumorous tissues, RNAs total amounts and integrity were
assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 system (Agilent Technologies, CA, United States). For library
preparation, 1.5 mg of total RNA (RIN R 6.8) was used with VAHTS
Universal V8 RNA-seq Library Prep Kit for Illumina (Vazyme,
NR605). After the library is qualified, the different libraries are
pooled according to the effective concentration and the target
amount of data off the machine, then sequenced by the Illumina
NovaSeq 6,000. The end reading of 100-bp pairing is generated.

The FASTQ format files obtained from the Illumina platform
are transformed into short reads (raw data). Sequence quality
control is performed using Fastp, which removes reads containing
adapters, reads with N bases, and low-quality reads. All downstream
analyses are based on clean data of high quality. For alignment,
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STAR (Version 2.7.9a) aligns the clean reads to the Human
reference: Obtained from UCSC (GRCh38/hg38). Uniquely mapped
reads are used for subsequent analyses. RSEM (RNA-Seq by
Expectation-Maximization Version 1.3.1) and DESeq2 (v1.42.0)
were used to identify differentially expressed genes (DEGs). Genes
are considered differentially expressed if the log2(FoldChange) is
either > 1 or < —1, and the adjusted p-value (p-adjust) is < 0.05. For
experimental validation of the 25 previously identified key genes,
expression patterns were visualized through heatmaps generated
by pheatmap (v1.0.12) and quantitative bar plots constructed with
ggplot2 (v3.5.2).

Spatial sequencing data analysis

We used Seurat (version 5.2.1) to perform data processing,
integration, and clustering of spatial transcriptomics data. Spatial
expression matrices were loaded and individual Seurat objects were
created for each of the four samples. Sample identities were assigned
to each object and subsequently merged into a single integrated
dataset. Expression matrices were normalized using NormalizeData
and scaled using ScaleData Variable features were identified using
FindVariableFeatures with default parameters. Principal component
analysis was performed using RunPCA. Then armony integration
was applied for batch correction through Harmonylntegration
with principal components (dims = 1:30) as input. The resulting
integrated embeddings were used for downstream unsupervised
analysis: Shared nearest neighbor graph construction was performed
FindNeighbors and clustering was implemented with resolution
parameter 0.6. All analysis steps used default parameters except
where explicitly specified.

Copy number variations (CNVs) in six tumor samples were
inferred using inferCNV (v1.22.0). An inferCNV object was
constructed with three inputs: 1) the raw expression matrix from
the integrated spatial dataset, 2) Seurat-derived cluster annotations,
and 3) a gene positional file. Clusters 9 and 13—identified as non-
tumor regions in previous research—served as the reference group.
Analysis parameters included: an expression cutoff of 1 to filter low-
abundance genes, group-based cell clustering, noise reduction, and
hidden Markov modeling for CNV state prediction.

Statistical analysis

All statistical analyses were performed with R software (versions
4.3.1 and 3.6.0). Comparison of inter-group differences using
Wilcoxon rank-sum test and t-test The Kruskal-Wallis test was
used to evaluate differences between more than two groups.
The Spearman correlation method is adopted for correlation
analysis. P < 0.05 was considered as the threshold of statistical
significance.
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