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analysis of 30 cell death patterns 
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Background: Glioma heterogeneity and therapeutic resistance are closely linked 
to dysregulated programmed cell death (PCD). While individual PCD pathways 
have been studied, the integrated network of multi-modal PCD interactions and 
their clinical implications in glioma remain poorly understood. This study aims 
to decipher the interplay between 30 distinct PCD modalities and the immune 
microenvironment, developing a robust prognostic signature to guide therapy.
Methods: This study integrated 2,743 glioma samples from TCGA, CGGA, 
and GEO databases, encompassing RNA-seq, single-cell transcriptomic 
(GSE167960), and mutational data. Through literature mining and GeneCards 
database screening, 30 programmed cell death (PCD)-related gene sets (total 
11,681 genes) were curated, identifying 428 differentially expressed genes (DEGs; 
|log2FC|>1, p < 0.05). A pan-death prognostic signature (Cell-Death Score, CDS) 
was constructed using 114 machine learning algorithm combinations, refined 
via CoxBoost to select 25 key genes. CIBERSORT quantified the abundance of 
22 immune cell subsets, while ssGSEA assessed functional activity of 28 immune 
cell types. Drug sensitivity predictions employed GDSC database, with single-cell 
trajectory analysis validating molecular mechanisms and therapeutic strategies.
In vitro, differential expression profiles of key genes were first examined 
between human normal astrocyte cell lines (SVG-P12) and three glioma cell lines 
(U87, U251, LN229). Subsequently, RNA-seq and qRT-PCR validated expression 
patterns of 25 key genes in tumor/adjacent non-tumorous tissues from 7 glioma 
patients. Finally, spatial transcriptomic data from 4 glioma tissue samples in our 
cohort (including two paired tumor-adjacent non-tumorous samples and two 
tumor-only samples) were integrated to delineate spatial expression patterns 
of key genes.
Results: Integrated analysis of 2,743 public gliomas samples identified 428 
cell death-associated differentially expressed genes, enriched in neuroactive 
ligand-receptor interactions and extracellular matrix regulation. Unsupervised 
clustering revealed distinct immune-activated and immune-silent patient 
subtypes. A pan-death prognostic signature (Cell-Death Score, CDS), 
constructed via multi-algorithm machine learning and optimized using 
CoxBoost to incorporate 25 key genes, demonstrated robust performance

 

Frontiers in Cell and Developmental Biology 01 frontiersin.org

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2025.1677290
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2025.1677290&domain=pdf&date_stamp=
2025-09-16
mailto:ycheng@ynu.edu.cn
mailto:ycheng@ynu.edu.cn
mailto:zhaoninghui@kmmu.edu.cn
mailto:zhaoninghui@kmmu.edu.cn
mailto:zhaoninghui@hotmail.com
mailto:zhaoninghui@hotmail.com
https://doi.org/10.3389/fcell.2025.1677290
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcell.2025.1677290/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1677290/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1677290/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1677290/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Huang et al. 10.3389/fcell.2025.1677290

in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index 
= 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). 
High-CDS patients displayed elevated tumor mutational burden, homologous 
recombination deficiency, and immune checkpoint expression, alongside 
enhanced sensitivity to 11 therapeutic agents, including gemcitabine. Single-cell 
trajectory analysis confirmed significant activation of model genes during glioma 
progression. A clinical nomogram integrating CDS, WHO grade and radiotherapy 
further improved prognostic utility. Based on in vitro cell line experiments, the 
expression profiles of 25 key genes demonstrated significant heterogeneity, 
with partial genes undetectable by qRT-PCR due to expression levels falling 
below detection thresholds. Among seven genes consistently detected across 
all 4 cell lines, tumor cell lines exhibited significantly upregulated expression 
relative to normal astrocyte counterparts. RNA-seq analysis revealed effective 
detection of 24/25 key genes in seven paired tumor/adjacent tissue samples, 
with 20 genes showing higher mean expression in tumor tissues. qRT-PCR 
validation confirmed upregulated trends for 12 detectable genes in tumor 
tissues. Spatial transcriptomic analysis further corroborated tumor region-
specific overexpression of all 25 key genes compared to adjacent non-
tumorous areas.
Conclusion: The CDS signature unravels the molecular interplay between 
glioma cell death heterogeneity, immune dysregulation, and therapeutic 
resistance. This biomarker system provides both prognostic and therapeutic 
insights for precision oncology, paving the way for personalized combination 
therapies in glioma management.

KEYWORDS

glioma, programmed cell death, machine learning, immune microenvironment, drug 
sensitivity, prognostic model 

Introduction

Gliomas represent the most prevalent primary tumors of the 
human central nervous system (CNS), with current evidence 
suggesting their origin in neural stem or progenitor cells (Yang et al., 
2022). According to the latest WHO classification of CNS tumors, 
gliomas are classified from WHO 1 to 4 based on malignancy, 
where glioblastoma constitutes the most aggressive subtype 
(Louis et al., 2021). Surgical resection remains the primary 
therapeutic intervention; nevertheless, complete resection is often 
unattainable due to tumors’ invasive growth patterns and anatomical 
integration with adjacent tissues (Nabors et al., 2020). Moreover, 
despite multimodal therapy combining surgery, radiotherapy and 
chemotherapy, patient prognosis persists as unfavorable, driven by 
high tumor heterogeneity, an immunologically suppressive (“cold”) 
tumor microenvironment (TME), and the infiltrative capacity of 
glioma stem cells (Weller et al., 2024; Liu et al., 2024a). Uncontrolled 
proliferation defines gliomas pathobiology, promoting increased 
focus on regulatory role of tumor cell death in disease progression 
(Mancusi and Monje, 2023). While current research on diagnostic 
biomarkers and therapeutic agents for glioma has made progress 
(Ivo D'Urso et al., 2015; Bombino et al., 2024), studies integrating 30 
cell death modalities to address this issue remain largely unexplored. 
Consequently, elucidating the impact of diverse cell death modalities 
on gliomagenesis, establishing reliable prognostic models, and 
identifying molecular therapeutic targets promise new foundational 
insight for glioma treatment.

Cellular death predominantly arises via two pathways: accident 
cell death (ACD) (Tang et al., 2019) and programmed cell death 
(PCD) (Galluzzi et al., 2018). ACD is an uncontrolled biological 
process, whereas PCD is a tightly regulated biological process 
involving multiple molecular pathways and mechanisms critical for 
maintaining cellular homeostasis and eliminating abnormal cells 
(Galluzzi et al., 2018; Qin et al., 2023). PCD manifests in diverse 
forms, including apoptosis, necroptosis, ferroptosis, cuproptosis, 
pyroptosis, alkaliptosis, lysosome-dependent death, and autophagy-
dependent death (Hanahan and Weinberg, 2011). Comprehensive 
literature and GeneCards database analyses currently recognize 
30 distinct PCD modalities. Increasing evidence demonstrates 
that PCD fundamentally influences malignant tumor progression, 
as cancer cells evade multiple PCD forms during tumorigenesis 
(Su et al., 2015). Dysregulated PCD is closely associated with key 
malignant phenotypes, including tumor proliferation, metastasis, 
and recurrence (Yu et al., 2021; Yan et al., 2022), with numerous 
studies confirming a strong link between glioma progression and 
PCD (Hanson et al., 2023; Wei et al., 2024). However, the molecular 
characteristics of PCD in gliomas and its clinical therapeutic 
potential remain insufficiently understood, necessitating further 
exploration into PCD-glioma cross-talk to advance treatment 
strategies.

During glioma progression, tumor cells selectively recruit 
immunosuppressive cell populations to establish an immune-
suppressive microenvironment, a pathological mechanism 
identified as a major cause of immunotherapy failure (Quai et al., 
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2017). Simultaneously, PCD activation triggers release of 
inflammatory cytokines, chemokines, and immunoregulatory 
molecules (Dai et al., 2020; Park and Chung, 2019; Liu et al., 
2022). To address these complexities, this study integrated data 
from 2,743 glioma patients across TCGA, CGGA, and GEO 
databases. We systematically analyzed 30 cell death modalities 
and constructed a pan-death prognostic signature (Cell-Death 
Score, CDS) using 114 machine learning algorithm combinations. 
Employing advanced bioinformatics, we identified 25 key genes, 
deciphered interaction linking PCD modalities to the immune 
microenvironment, and validated candidate therapeutic agents. 
These findings provide novel insights into the role of PCD in 
glioma progression and contribute to the development of improved 
therapeutic approaches.

Results

Genetic characteristics associated with cell 
death are enriched in the ligand-receptor 
interaction pathways

To explore differences in 30 cell death-related genes between 
normal brain tissues and gliomas patients, we analyzed gene 
expression profiles from GTEx cohort (normal brain) and 
TCGA-GBM/LGG cohort (glioma). This analysis identified 886 
statistically differentially expressed genes (DEGs), including 
202 upregulated and 684 downregulated genes (Figure 1A). 
Visualization using a petal plot revealed the number of genes 
associated with each of the 30 cell death modes, ranging 
from 3 to 9,255 (Figure 1B). Integrating all cell death-related 
genes yielded a total of 11,681 genes. Intersection of these 
with the 886 DEGs identified 428 cell death-associated DEGs 
(Figure 1C). Among these, 109 were upregulated and 319 were 
downregulated (Figure 1D).

Gene Ontology (GO) enrichment analysis of these 428 DEGs 
revealed significant associations. Within biological processes, the 
humoral immune response was the most enriched term. This 
adaptive immune process, involving B cell-mediated antibody 
production, functions in concert with cell-mediated immunity 
driven by T cells. For cellular components, the term “extracellular 
matrix containing collagen” was most enriched, highlighting the 
structural and functional importance of collagen-rich matrices, 
which are implicated in tumor cell invasion, metastasis, and 
microenvironment regulation. In terms of molecular function, 
receptor-ligand activity was significantly enriched, reflecting the 
critical role of receptor-ligand binding in cellular signaling, function, 
survival, and proliferation (Figure 1E).

Parallel Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis demonstrated significant enrichment of DEGs 
in pathways involving cytokine-cytokine receptors interaction, 
neuroactive ligand-receptor interaction, JAK-STAT signaling, 
and PI3K−Akt signaling. The significant dysregulation of 
neuroactive ligand-receptor interactions drives characteristic 
clinical manifestations in glioma: Tumor cells abnormally 
secrete neurotransmitters such as glutamate, which not only 
induce peritumoral epilepsy by activating neuron-associated 
receptors but also directly accelerate tumor proliferation and 

metabolic reprogramming through autocrine activation of the 
mTOR signaling axis. This is closely related to the clinical 
phenotypes and proliferative features of glioma. Dysregulation 
of cytokine-receptor pathways mediates sustained recruitment of 
tumor-associated macrophages, forming an immunosuppressive 
microenvironment that weakens anti-tumor immune responses. 
Activation of PI3K-Akt and JAK-STAT pathways leads to 
broad resistance to radiotherapy, chemotherapy, and targeted 
therapies by regulating cell cycle progression, inducing anti-
apoptotic protein expression, and enhancing DNA damage 
repair capacity (Figure 1F). 

Identification of cell death-related patient 
subgroups by unsupervised clustering

Base on the above-mentioned analyses, we performed 
unsupervised clustering on the TCGA-GBM/LGG cohort to 
classify patients based on cell death-related gene expression. 
Optimal clustering stability was achieved by dividing patients into 
subgroups C1 and C2 while maximizing intra-group consensus 
and minimizing ambiguity (Figures 2A–C). Immune infiltration 
analysis revealed significant differences between subgroups, with 
C1 exhibiting a generally higher degree of immune cell infiltration 
(Figure 2D). Specifically, while activated B cells, effector CD4 T 
cells, monocytes, plasmacytoid dendritic cells, and type 17 helper 
T cells showed no significant difference, eosinophils abundance 
was significantly higher in C2. All other immune cell types were 
significantly more abundant in C1 (Figure 2E). This indicates 
distinct tumor immune activities between the subgroups defined by 
cell death patterns. Principal component analysis (PCA) confirmed 
clear separation between C1 and C2 (Figure 2F), suggesting 
divergent tumor characteristics. Consequently, we performed 
differential gene expression analysis between the subgroups, 
identifying DEGs suing thresholds of P < 0.05, | Log2FC | > 1. 
This analysis yielded 89 significant DEGs: 14 were significantly 
upregulated, while 75 were significantly downregulated (Figure 2G).

Prognostic model establishment based on 
CoxBoost machine learning

We then focused these 89 key genes and constructed prognosis 
model using the TCGA-GBM/LGG cohort as the training set, and 
GSE108474, CGGA-693, and CGGA-325 as validation sets. We 
evaluated 114 machine learning algorithms. The CoxBoost model 
was selected as the final prognostic signature due to its superior 
average C-index (0.717) across all cohorts, along with demonstrated 
stability in high-dimensional data and consistent performance in 
cross-validation (Figure 3A). Using this model, we calculated a 
Cell-Death Score (CDS) for each patient sample. Patients were 
divided into high- and low-risk groups based on the median CDS 
value. Expression levels of the 25 genes selected by the CoxBoost 
prognostic model differed significantly between risk groups, with 
most genes showing higher expression in the high-risk group 
(Figure 3B). Distribution of CDS within the TCGA-GBM/LGG 
cohort is shown in Figure 3C. Dividing patients by increasing CDS 
revealed a corresponding increase in mortality and decrease in 
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FIGURE 1
Genetic characteristics associated with cell death are enriched in the ligand-receptor interaction pathways. (A) Differential gene expression volcano 
plot between GTEx cohort and TCGA- GBM/LGG cohort; (B) petal plot of the number of related genes corresponding to 30 cell death modes; (C) Venn 
diagram of intersection of cell death-related genes and differential genes; (D) Bar chart of the number of cell death-related genes in 
upregulated/downregulated differential genes; (E) GO enrichment analysis of cell death-related differential gene enrichment pathway bar chart; (F)
KEGG enrichment analysis of cell death-related differential gene enrichment pathway bubble map, the color of the bubble indicates the P value of 
enrichment significance, and the size of the bubble indicates the number of enriched genes.

survival time (Figure 3C). Kaplan-Meier (KM) survival analysis 
was performed on patients in the TCGA- GBM/LGG cohort, and 
the results showed that patients in the high-risk group had a 
significantly worse prognosis (P < 0.0001) (Figure 3D). Receiver 
operating characteristic (ROC) curve analysis demonstrated strong 
prognostic performance for CDS, with area under the curve (AUC) 
of 0.894, 0.943 and 0.878 for 1-year, 3-year and 5-year survival, 
respectively (Figure 3E). Validation in the CGGA-693, CGGA-325, 
and GSE108474 corhorts consistently showed poorer prognosis 
for high-risk patients (Figures 3F,H,J), and robust AUC values 
(mostly >0.7) for 1-, 3-, and 5-year survival prediction (Figures 
3G,I,K), confirming CDS as an excellent prognostic model for 
glioma patients.

Mutation landscape between CDS high- 
and low-risk groups exhibits significant 
differences

To explore mutational differences, we analyzed the mutational 
landscape. In the high-risk group, TP53 mutation was the most 
frequent (35% of patients), exhibiting diverse mutation types 
(Figure 4A). Conversely, in the low-risk group, IDH1 mutation 
predominated (93% of patients), mainly nonsense mutation 
(Figure 4B). Overall, the proportion of mutations in genes was 
lower in the low-risk group compared to the high-risk group, 
except for IDH1, TP53, ATRX and CIC. Furthermore, we evaluated 
genomic instability metrics: Tumor Mutation Burden (TMB, 
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FIGURE 2
Identification of cell death-related patient subgroups by unsupervised clustering. (A) Cumulative Distribution Function (CDF) curves for k = 2-9 in the 
consistency cluster; (B) the relative change curve of the area under the CDF (Cumulative Distribution Function) curve when k = 2-9 in the consistency 
cluster; (C) heat map of consistent clustering (k = 2) of patients in TCGA-GBM/LGG dataset; (D) ssGSEA (single - sample Gene Set Enrichment Analysis) 
immune infiltration Analysis of immune cell abundance differences between C1 and C2 heat map; (E) Violin plot of immune cell abundance difference 
between C1 and C2 in immune infiltration Analysis of ssGSEA (single-sample Gene Set Enrichment Analysis); (F) Principal Component Analysis (PCA) 
cluster plots of C1 and C2 samples; (G) Volcano plot of gene expression difference between C1 subgroup and C2 subgroup. ∗∗∗indicates P < 0.001.

Figure 4C), MSIsensor Score (Figure 4D), Fraction Genome Altered 
(FGA, Figure 4E), Mutation Count (Figure 4F), and Homologous 
Recombination Deficiency (HRD) score (Figure 4G). All metrics 
except HRD score were significantly higher in the high-risk group, 
indicating a higher incidence of gene mutation events and greater 
genomic instability among these patients.

Significant differences exist in cell death 
patterns and immune characteristics 
between CDS high- and low-risk groups

To compare the 30 cell death modalities between risk groups, 
we calculated death scores for each patient. Heatmaps visualization 
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FIGURE 3
Prognostic model establishment based on CoxBoost machine learning. (A) The C-index heat map of 114 machine learning models combined based on 
89 key genes in the training set TCGA-GBM/LGG and the validation set CGGA-693, CGGA-325, GSE108474; (B) Heat map of differential expression of 
25 model genes in CDS between high and low risk groups in TCGA-GBM/LGG; (C) Scatter plot of CDS distribution and distribution of high and low 
score groups in TCGA-GBM/LGG; Scatter plot of survival status distribution of patients ranked by CDS level in TCGA-GBM/LGG; (D) KM curves of 
patients in high and low score groups in TCGA-GBM/LGG; (E) receiver operating characteristic (ROC) curve of TCGA-GBM/LGG in high and low risk 
group; (F) KM curve of patients in the high and low risk group of CGGA-693 in the validation set; (G) receiver operating characteristic (ROC) curve of 
CGGA-693 in high and low risk group; (H) KM curve of patients in the high and low risk group of validation set CGGA-325; (I) validation set CGGA - 325 
high risk group of patients with ROC curve; (J) KM curve of GSE108474 in the high and low risk group; (K) ROC curve of validation set GSE108474 in 
high and low risk group. Significant dynamic changes were defined as p-value <0.05 and |log2FC|>1.
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FIGURE 4
Mutation landscape between CDS high- and low-risk groups exhibits significant differences. (A) CDS mutations in patients with high-risk group 
waterfall figure; (B) CDS mutations in patients with low-risk group waterfall figure; (C) Violin plot of Tumor Mutation Burden between CDS high and 
low-risk groups; (D) CDS high-risk group of patients with microsatellite instability Score (MSIsensor Score) differences violin figure; (E) Violin plot of 
difference in Fraction Genome Altered between CDS high and low risk groups (F) Violin plot of difference in Mutation Count between CDS high and 
low risk groups; (G) Violin plot of Homologous Recombination Deficiency score difference between CDS high and low risk groups. ∗∗∗indicates P < 
0.001, ns indicates no statistical significance.

indicated higher score across most cell death modes in the 
high-risk group (Figure 5A). Specifically, 23 death modes showed 
significantly elevated scores in high-risk patients (Figure 5B). 
Similarly, immune function scores were significantly increased in the 
high-risk group (Figure 5C).

Given the crucial role of immune cells in glioma, we evaluated 
immune infiltration using single-sample gene set enrichment 
analysis (ssGSEA). The high-risk group exhibited significantly 
greater abundance across 28 immune cell types (Figure 5D), 
confirming enhanced immune infiltration. Consistently, Immune 
Score (Figure 5E) and Stromal Score (Figure 5F) were significantly 
higher, while Tumor Purity (Figure 5G) was lower, in the high-
risk group. Consequently, the ESTIMATE scores were significantly 
elevated in high-risk patients (Figure 5H), suggesting they might be 
better candidates for immunotherapy. Assessment using the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm predicted a 
better response to immunotherapy in the low-risk group (Figure 5I). 

CDS association with drug sensitivity

Using GDSC database, we predicted drug susceptibility 
differences between risk groups. Significant differences in the half 
maximal inhibitory concentration, half inhibitory concentration 
(IC50) were observed for 16 drugs (Figure 6A). Eleven drugs showed 
lower IC50 (indicating higher sensitivity) in the high-risk group 

(Figure 6B): AICAR, CEP.701, Embelin, Etoposide, GDC0941, 
Gemcitabine, MK. 2206, NSC.87877, Obatoclax. Mesylate, PLX4720 
and Tipifarnib. Conversely, five drugs showed lower IC50 (higher 
sensitivity) in low-risk group (Figure 6C): AMG.706, AZD.228, 
Bosutinib, Gefitinib and JNK. inhibitor.VIII. These represent 
potential therapeutic agents differential efficacy based on CDS risk 
stratification.

Construction and validation of a 
nomogram integrating CDS and clinical 
features

To evaluate the combined prognostic power of CDS with clinical 
factors, we conducted univariate COX regression analysis. This 
analysis identified CDS risk score, WHO grade, chemotherapy, 
radiotherapy, and clinical features as significant prognostic factors 
(Figure 7A). Subsequent multivariate COX regression confirmed 
CDS risk score, WHO grade, and radiation therapy as independent 
prognostic predictors (Figure 7B). Therefore, we integrated these 
three factors into a prognostic nomogram (Figure 7C). The 
calibration curve indicated good agreement between predicted and 
observed outcomes (Figure 7D). ROC curve analysis comparing 
the nomogram, CDS alone, WHO grade, and radiotherapy showed 
the highest AUC for CDS (0.829), followed by the nomogram 
(0.793) (Figure 7E). Precision-recall (PR) curve analysis further 
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FIGURE 5
Significant differences exist in cell death patterns and immune characteristics between CDS high- and low-risk groups. (A) Heat map of 30 cell death 
score differences between CDS-high and CDS-low risk groups; (B) Box plot of 30 cell death score differences between CDS high and low risk groups;
(C) ten kinds of immune function score difference boxplot. CDS (Cell-Death Score) (D) Box plot of difference in abundance of 28 immune cells 
between CDS-high and CDS-low risk groups; (E) Violin plot of Immune Score difference between CDS high and low risk group; (F) CDS high risk group 
of patients Score matrix (Stromal Score) differences violin figure; (G) the CDS Purity of high and low risk group of patients with Tumor (Tumor Purity) 
differences violin figure; (H) CDS high risk group of patients ESTIMATE score differences violin figure; (I) Bar plot of predicted percentage of TIDE 
immunotherapy for patients in CDS high and low risk groups. CDS (Cell-Death Score). ∗∗∗indicates P < 0.001.
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FIGURE 6
CDS association with drug sensitivity. (A) the CDS between high and low risk groups IC50 half inhibitory concentration level heat 16 kinds of drugs. (B)
Violin plot of IC50 lower levels of CDS high-risk groups; (C) Violin plot of IC50 lower levels of CDS low-risk groups; ∗indicates P < 0.05, ∗∗indicates P < 
0.01, ∗∗∗indicates P < 0.001.

confirmed strong performance of the CDS risk score (Figure 7F). 
Notably, adding clinical factors to CDS did not improve prognostic 
performance beyond CDS alone.

Single-cell level analysis of CDS

We further analyzed CDS using the GSE167960 single-cell RNA-
seq dataset from 6 HGG patients (22,732 TME cells after quality 
control, Supplementary Figure S1). Manual annotation identified 
major cell types: glioma cells, monocyte, macrophages, stromal cells, 
T cells, and B cells [Figure 8A (Supplementary Figures S2A,B)], 
with proportions varying per patient (Supplementary Figure S2C). 
Assigning CDS risk at the single-cell level divided cells into high-
risk (1,134 cells) and low-risk (21,598) groups, with the majority 
being low-risk (Supplementary Figure S2D). Cell communication 
analysis showed diverse interactions between these cell types 
(Figure 8B), including specific receptor-ligand interaction involving 
gliomas cells (Figure 8C).

Analysis of the high-risk cell populations showed its distribution 
across annotated cell types (Figure 8D). Cell communication 
analysis highlighted interactions, particularly between glioma 
cells and stromal cells, monocytes, macrophages, and T cells 
(Figure 8E). Pseudotime trajectory analysis of high-risk cell revealed 
a developmental path with one branch point, resulting in three 
distinct cellular states (Figure 8F). Expression analysis along the 
trajectory showed significant changes for 20 of the 25 CDS model 
genes, suggesting their key roles in the development of these 
high-risk cells (Figure 8G). High-risk cells exhibited 3.2× more 
interactions than low-risk cells (p < 0.001).

Analysis of the low-risk cell populations similarly showed its 
distribution (Figure 8H) cell communication patterns (Figure 8I). 
After, we have a group of CDS low-risk cells cells to time series 
analysis. Pseudotime trajectory analysis of low-risk cells revealed 
a path with three branch points, partitioning cells into seven 
distinct states (Figure 8J). Among the 25 CDS model genes, 5 
showed significant dynamic expression changes during low-risk cell 
development (Figure 8K).
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FIGURE 7
Construction and validation of a nomogram integrating CDS and clinical features. (A) Forest plot of the results of univariate COX regression analysis of 
CDS score and other clinical factors in the prognosis of patients; (B) Forest plot of CDS score and key clinical factors in patients’ prognosis by 
multivariate COX regression analysis; (C) CDS score combined with World Health Organization (WHO) grade and clinical model of radiotherapy 
Nomogram; (D) nomogram model fitting curve; (E) Receiver Operating Characteristic curve (ROC) curves of CDS score, World Health Organization 
(WHO) grade, radiotherapy and nomogram score; (F) PR (Precision-Recall) curve of CDS score, World Health Organization (WHO) grade and 
radiotherapy.

In summary, comparison of cell communication and pseudo-
time trajectories between CDS high- and low-risk cell populations 
revealed differences. Gliomas cells within the high-risk population 
exhibited more intensive communication, both amongst themselves 
and with other cell types. Furthermore, a greater number of 
model genes showed significant expression changes during the 
developmental trajectory of the high-risk cell population. 

Experimental validation of 25 key genes in 
vitro

Based on the above results, we performed mRNA-level 
detection of the 25 key genes in vitro. In cell line experiments, 
certain genes were undetectable due to low expression levels. 
Among the seven key genes (HOXD11, HOXC9, HOXC6, HOXA3, 
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FIGURE 8
Single-cell level analysis of CDS. (A) Using 22,732 cells Seurat t distribution stochastic neighborhood embedded (t - SNE) cell type annotation figure; (B)
by analyzing cell communication between main 6 types of cell cell communication situation of the network diagram; (C) Ligand-receptor interaction 
pairs for communication between glioma cells and other cell types. (D) Seurat t-distributed random neighborhood embedding (t-SNE) plot using 1134 
CDS high-risk cells; (E) CDS high-risk cell populations and other types of cell communication network diagram; (F) CDS high-risk cell populations 
pseudo-time trajectory analysis, trajectories are colored from dark blue to light blue according to gradient; CDS cell developmental state trajectory of 
high-risk cell population; (G) 20/25 model gene expression under the false time trajectory heat maps of high-risk cells. (H) Seurat t-distributed random 
neighborhood embedding (t-SNE) plot using 21,598 CDS low-risk cells; (I) CDS low-risk cell populations and other types of cell communication 
network diagram; (J) CDS low-risk cell populations pseudo-time trajectory analysis, trajectories are colored from dark blue to light blue according to 
gradient; CDS cell developmental state trajectory of low-risk cell population; (K) 5/25 model gene expression under the false time trajectory heat maps 
of low-risk cells.
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FBXO39, OTP, and HMGA2) consistently detectable in both 
normal astrocyte cell lines (SVG-P12) and glioma cell lines (U87, 
U251, LN229), tumor cell lines exhibited significantly upregulated 
expression compared to normal cell lines (Figure 9A). RNA-seq 
analysis of seven paired gliomas and adjacent non-tumorous 
tissue samples from our institution showed that 24/25 key genes 
were detectable, with the majority highly expressed in tumor 
samples (Figure 9B). Among these, 10 genes (SCNN1B, HOXD11, 
HOXC6, FBXO39, VSTM1, MEOX2, HOXC9, HOXA3, SHOX2, 
OTP) exhibited statistically significant differential expression 
(Figure 9C), while 14 genes showed non-significant differences 
(Supplementary Figure S3A). qRT-PCR analysis of these seven 
paired samples revealed undetectable expression for partial genes 
due to low expression levels. Among the 12 genes (APCDD1L, CD70, 
FBXO39, GALNT5, HMGA2, HOXA3, HOXC6, HOXC9, HOXD11, 
SHOX2, MEOX2, OTP) within normal detection thresholds, 
differential expression was observed between tumor and adjacent 
tissues (Supplementary Figure S3B). Integration of qRT-PCR data 
from all seven sample pairs demonstrated statistically significant 
expression differences for nine genes, while the remaining three 
genes showed higher mean expression in tumor tissues than in 
adjacent tissues but lacked statistical significance due to substantial 
dispersion (Figure 9D).

Spatial transcriptomic analysis of 25 key 
genes

Our research group previously selected four surgically resected 
glioma specimens (including two paired tumor-adjacent tissues and 
two tumor-only tissues) for spatial transcriptomic analysis using the 
standardized Seurat analytical pipeline (Yang et al., 2024). Following 
Harmony integration of the four samples, dimension reduction 
and clustering yielded 17 transcriptionally distinct cell clusters 
(Supplementary Figure S4B,C). Given the established correlation 
between malignant transformation and large-scale chromosomal 
aberrations, inferCNV was employed for copy number variation 
(CNV) profiling. Consistent with prior findings, clusters 9 
and 13 were designated as adjacent non-tumorous reference 
populations (Supplementary Figure S4D). Analysis revealed that 
cluster 3 additionally exhibited the genomic stability characteristic 
of adjacent non-tumorous tissues. Spatial transcriptomics 
demonstrated universal upregulation of the 25 key genes within 
tumor regions (Figure 10A; Supplementary Figure S4E). Spatial 
visualization confirmed distinct anatomical boundaries between 
tumor and adjacent non-tumorous zones (Figure 10B). Localization 
analysis of HOXD11 and OTP—selected for high expression 
abundance and consistency with in vitro validation—revealed 
predominant tumor-specific localization in paired tumor-
adjacent samples (n = 2), while showing diffuse distribution 
in tumor-only samples (n = 2) (Figures 10C,D). Integration 
of seven key genes consistently overexpressed in both tumor 
cell lines and tissues further revealed their tumor region-
specific enrichment (Figure 10E; boxed areas indicate adjacent 
non-tumorous tissues).

Discussion

Glioma heterogeneity necessitates deciphering programmed 
cell death (PCD) networks to overcome therapeutic resistance 
(Nicholson and Fine, 2021). Our integrated analysis of 30 PCD 
modalities transcends single-pathway limitations, revealing how 
coordinated cell death regulation drives glioma progression. 
The machine learning-derived Cell-Death Score (CDS) robustly 
stratifies patients, with high-risk groups exhibiting elevated genomic 
instability (TP53-dominant mutations, increased TMB/Mutation 
Count), immune checkpoint activation (PD-L1/CTLA-4), and 
distinct microenvironment remodeling (Lin et al., 2024; Gong et al., 
2018; Liang et al., 2024). Crucially, high-CDScore patients 
show enhanced sensitivity to 11 agents (gemcitabine, etoposide) 
while displaying immune-activation signatures suggesting 
immunotherapy candidacy (Rajkomar et al., 2019; Greener et al., 
2022). This discovery indicates that integrating the CDS model may 
uncover additional molecular markers and therapeutic targets.

Single-cell resolution confirmed developmental heterogeneity: 
High-risk cells progressed through trajectories dynamically 
regulated by 20/25 CDS genes, while differential intercellular 
communication involved oncogenic pathways (SPP1-CD44, HIFα-
VEGF) (Sabu et al., 2023; Suvà and Tirosh, 2020; Fan et al., 
2024; Xing et al., 2023; Chen et al., 2019; Tu et al., 2022). Key 
regulators include HOX family members (HOXC9/C6/D11) driving 
immunosuppression and invasion (Wang et al., 2021; Li et al., 2018; 
Liu et al., 2024b), MEOX2 maintaining stemness via ERK/MAPK 
(Tachon et al., 2021; Schönrock et al., 2022; Li et al., 2024), 
and GALNT5 mediating chemoresistance through DNA damage 
repair mechanisms (Jia et al., 2024). CD70 overexpression further 
represents a therapeutically targetable axis of immune evasion 
(Junker et al., 2005; Wischhusen et al., 2002).

The marginal AUC reduction in the nomogram likely reflects 
information redundancy between CDS and clinical variables, 
where CDS encapsulates molecular features beyond WHO grade 
or treatment history. Among the 25 key genes, 13 were undetectable 
by qRT-PCR in some cell lines/tissues due to expression levels 
below technical detection thresholds (≤10 copies/ng RNA under 
10 ng input and Ct cutoff = 35 cycles). RNA-seq analysis 
confirmed detectable expression of 24/25 genes (FPKM≥0.1), 
suggesting biological relevance despite qRT-PCR limitations. 
Spatial transcriptomics further validated tumor-specific expression 
of all genes.

Although contemporary glioma clinical practice relies on 
multiple established biomarkers—including MGMT promoter 
methylation status, IDH, genetic alterations beyond 1p/19q and 
adjuvant therapies—these markers primarily focus on single 
therapeutic contexts or specific pathological subtypes. As the 
understanding of glioma biology continues to expand, researchers 
are investigating emerging prognostic factors and novel molecular 
markers to refine prognostication and personalize treatment 
approaches. In this study, the differential enrichment of TP53 and 
IDH1 mutations in CDS high/low groups, which was independent 
of known molecular subtypes, further substantiates this perspective, 
this model can circumvent the limitations of single-molecular 
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FIGURE 9
Experimental Validation of 25 Key Genes In Vitro. (A) mRNA expression of 7 key genes consistently detectable in normal astrocytes (SVG-P12) and 
tumor cell lines (U87, U251, LN229); (B) RNA-seq expression heatmap of key genes in 7 paired tissue samples; (C) Statistically significant expression of 
key genes in RNA-seq analysis; (D) Expression of 12 genes within normal threshold range by qRT-PCR across 7 paired samples. ∗indicates P < 
0.05, ∗∗indicates P < 0.01, ∗∗∗indicates P < 0.001, ∗∗∗∗indicates P < 0.0001.
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FIGURE 10
Spatial Transcriptomic Analysis of 25 Key Genes. (A) Total expression levels and average expression levels of 25 key genes in tumor regions versus
adjacent non-tumorous areas across four spatial transcriptomic samples; (B) Spatial mapping profiles of four spatial transcriptomic samples; (C) Spatial 
mapping of HOXD11 gene; (D) Spatial mapping of OTP gene; (E) Expression profiles of OTP, FBXO39, SHOX2, HOXD11, HOXC6, HOXC9, and MEOX2
(boxed areas indicate adjacent non-tumorous tissue regions).

subtyping to predict patient prognosis. The CDS prognostic model 
constructed herein achieves cross-molecular subtype survival 
prediction in glioma for the first time by integrating 30 programmed 
cell death (PCD) modalities. This integration enables CDS to 
overcome the constraints of traditional biomarkers, making the 
development of combination therapeutic strategies targeting PCD 
pathways a novel tool for glioma treatment.

These findings establish CDS as a multidimensional biomarker 
integrating PCD biology with clinically actionable insights. The 
model’s prognostic power persists after controlling for WHO 
grade/radiotherapy, and its risk-specific drug sensitivity profiles 

enable personalized therapeutic selection. Mechanistically, the 
dysregulated expression of CDS components highlights novel 
targets for modulating glioma progression (Wu et al., 2024; 
Leung et al., 2002; Qian et al., 2023).

This study has several limitations: the cohort size for single-
cell heterogeneity analysis is constrained, statistical power is 
compromised by the limited spatial transcriptomics sample size, 
and computational predictions of drug responses require validation 
via PDX/organoid models. Future investigations should expand 
sample cohorts and integrate dynamic metabolic profiling to better 
elucidate interactions between programmed cell death (PCD) 
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and the tumor microenvironment (TME), thereby facilitating the 
development of combination strategies to overcome therapeutic 
bottlenecks in glioma.

Conclusion

This study establishes the Cell-Death Score (CDS), a clinically 
translatable prognostic biomarker derived from machine learning 
integration of 30 programmed cell death (PCD) modalities. 
By dividing glioma patients into high- and low-risk groups 
and characterizing cellular subpopulations, the CDS framework 
reveals the mechanistic nexus between PCD heterogeneity, 
immune dysregulation, and therapeutic resistance. These insights 
provide novel molecular targets and actionable therapeutic 
strategies, enhancing our understanding of PCD-driven immune 
microenvironment remodeling. Future research should focus 
on deciphering dynamic PCD regulatory networks to optimize 
personalized therapeutic regimens and improve clinical outcomes.

Materials and methods

Data download

To develop a glioma prediction model based on the origin of 
homologous recombination deficiency for clinical precision medicine 
in Gliomas, this study acquired the gliomas dataset TCGA-GBM/LGG 
from UCSC Xena (Goldman et al., 2020) (https://xena.ucsc.edu). 
Download Count and sequencing of gene expression data in patients 
with FPKM values (n = 1,131), and further standardized into TPM 
value. At the same time, the clinical data of patients, including age, 
gender, survival time and survival status, were downloaded, and the 
patients without clinical information were excluded. At the same time, 
the Mutation data of patients were downloaded through GDC, and 
“Masked Somatic Mutation” was selected, visualized using maftools 
(Mayakonda et al., 2018) R package, and the tumor mutation burden 
(TMB) of each patient was obtained. Fraction Genome Altered (FGA, 
part of the Genome change scores), Mutation Count (mutations) 
and MSI - Sensor score obtained from cBioPortal database (http://
www.cbioportal.org), Finally, a total of 641 samples meeting the 
criteria were retained. The normal human brain tissue gene expression 
dataset TcgaTargetGTEx (n = 1,664) was downloaded from the GTEx 
database, and the data type was selected as FPKM and converted 
to TPM format. Finally, a total of 1,141 normal human brain 
tissue gene expression data were obtained. From a GEO database 
(Barrett et al., 2013) (https://www.ncbi.nlm.nih.gov/geo) to download 
patients with Gliomas RNAseq data sets: GSE108474 (Gusev et al., 
2018) (Homo sapiens, GPL570, a total of 550 patient tumor samples), 
which were all confirmed solid tumor samples of Gliomas patients; 
Download the single-cell expression profiling dataset at the same 
time: GSE167960 (Wang et al., 2023) (H. sapiens, GPL20301, tumor 
samples from 6 patients), single cell data were processed by Seurat 
package, and a total of 22,732 cells were obtained after quality control 
to filter out low-quality cells. 

Cell communication between cell subsets was analyzed by 
CellChat package. The gene expression data of brain Gliomas 
dataset and clinical information of patients (including survival 

time and survival status) were downloaded from CGGA (Chinese 
Glioma Genome Atlas) database (Zhao et al., 2021) (http://
www.cgga.org.cn/). The data samples were obtained from H. sapiens. 
All patients pathologically diagnosed with Gliomas were selected, 
and samples of patients lacking clinical staging information and 
survival information were excluded. Finally, two Gliomas patient 
datasets CGGA_693 (Zh et al., 2022) and CGGA_325 (Zhao et al., 
2017). Were retained, and a total of 970 tumor samples were included 
in this study (Supplementary Table S1). 

Collection of 30 genes related to cell death 
modes

We conducted literature retrieval and based on previous 
literature reports (Tang et al., 2019; Galluzzi et al., 2018; 
Qin et al., 2023; Zou et al., 2022) and GeneCards database (https://
www.genecards.org/) were collected 30 kinds of PCD model 
and the key regulatory genes, Including 228 genes related to 
apoptosis, 52 genes related to Pyroptosis, 753 genes related to 
Ferroptosis, 232 genes associated with Autophagy, necrotizing 
apoptosis (Necroptosis) phase There were 67 genes related to 
apoptosis, 12 genes related to Cuproptosis, 23 genes related to PARP-
1-dependent cell death, 9 genes related to Entotic cell death. Three 
genes related to Netotic cell death, 240 genes related to Lysosome-
dependent cell death, 3 genes related to Alkaliptosis, 3 genes related 
to cuproptosis. 19 genes related to Oxygen death (Oxeiptosis), 69 
genes related to neutrophils inflammatory cell death (NETosis), 34 
genes related to immunogenicity (Immunogenic_cell_death), cell 
death loss nest apoptosis related gene 434 (up), 29 genes related 
to Paraptosis, 8 genes related to Methuosis, 23 genes related to cell 
invasive death, 10 genes related to Disulfidptosis, 29 genes related 
to Phagocytosis, 19 genes related to PANoptosis, 9,255 genes related 
to Intrinsic apoptosis, 2108 genes related to Extrinsic apoptosis, 
156 genes related to Mitochondrial permeability transition (MPT-
driven necrosis), 3,838 genes related to Autosis, 102 genes related to 
Efferocytosis, 8,097 genes related to Mitotic death, 540 genes related 
to Accidental cell death, 946 genes related to Mitotic catastrophe, 
6 genes related to paraptosis like death, and a total of 11,681 genes 
related to programmed cell death (Supplementary Table S2). 

Determine the feature genes associated 
with cell death

We used Limma R package (Ritchie et al., 2015) to perform 
differential analysis on the expression data of normal human brain 
tissue and tumor samples of gliomas patients, screened differentially 
expressed genes, and selected log2fold change >1 and P < 0.05 as 
cutoff. The obtained log2foldchange greater than 1 was the highly 
expressed gene in gliomas patients, and the log2Foldchange less than 
−1 was the low-expressed gene in gliomas patients. The volcano plot 
was used to show the distribution of these genes. In addition, the 
number of 30 cell death patterns collected was visualized by petal 
diagram, and the Venn diagram was used to show its intersection 
with differential genes. Finally, 30 differentially expressed genes 
related to cell death were obtained.

Frontiers in Cell and Developmental Biology 15 frontiersin.org

https://doi.org/10.3389/fcell.2025.1677290
https://xena.ucsc.edu
http://www.cbioportal.org
http://www.cbioportal.org
https://www.ncbi.nlm.nih.gov/geo
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://www.genecards.org/
https://www.genecards.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Huang et al. 10.3389/fcell.2025.1677290

The bar chart was used to visualize the composition of 
30 cell death and non-cell death genes in the downregulated 
degs. To explore the biological significance of these differentially 
expressed Genes related to cell death, we used Gene Ontology (GO) 
(The Gene Ontology Consortium, 2017) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (Chen et al., 2020) enrichment 
analysis was used to evaluate the signaling pathways and biological 
processes associated with the differentially expressed genes, with a 
Q-and P-value threshold of <0.05. 

Unsupervised clustering based on 
differential genes reveals differences in 
immune characteristics among subgroups

The “Consensus Cluster Plus” (Seiler et al., 2010) R package 
was used to identify multiple cell death-related subtypes through 
unsupervised consensus clustering, and the k range was 2–10. 
To ensure the stability of clustering, we repeated 1,000 times. 
Considering the feasibility of clinical prognostic analysis, the 
optimal number of clusters consists of two maximizing intra-cluster 
consensus while minimizing ambiguity in cluster assignment. 
CIBERSORT (https://cibersort.stanford.edu/) is based on linear 
support vector regression (linear support vector regression) subtype 
of principle of human immune cells to the expression of matrix 
convolution (Newman et al., 2019) It can evaluate the infiltration 
status of immune cells in sequencing samples based on the gene 
expression feature sets of 22 known immune cell subtypes. This study 
by CIBERSORT algorithm with different coronary heart disease 
(CHD) samples consolidated data sets to evaluate immune cells into 
the state, and then by Wilcoxon test different diseases in various 
immune cell infiltration of subgroup differences, P < 0.05 or less 
for the difference was statistically significant. Principal component 
analysis (PCA) was used to observe the differentiation between 
subgroups, and volcano plot was used to display the differences 
between subgroups to further screen the signature genes. 

Multi-machine learning to realize one-stop 
prognostic feature gene screening and 
prognostic model construction

In order to construct a stable prognostic model for gliomas 
based on multi-cell death mode, (1) first, we integrated 10 classical 
algorithms: Random forest (RSF), least absolute shrinkage and 
selection operator (LASSO), gradient boosting machine (GBM), 
Survival support vector machine (survival-SVM), supervised 
principal component (SuperPC), ridge regression (ridge), Cox 
Partial least squares regression (plsRcox), CoxBoost, Stepwise Cox, 
and elastic network (Enet). Among them, RSF, LASSO, CoxBoost, 
and Stepwise Cox have the function of dimensionality reduction and 
variable screening, and we combined them with other algorithms 
into 114 machine learning algorithm combinations. (2) Next, 
we used TCGA-GBM/LGG as the training cohort, and used the 
combination of these 114 algorithms to screen key genes and 
construct a prognostic model based on the previously identified 
feature genes. (3) Finally, in the three test cohorts (CGGA-693, 
CGGA-325, GSE108474), we used the key genes obtained in the 

training cohort to calculate the risk score for each cohort. According 
to the average C-index of the four test cohorts, we finally selected the 
best prognostic model and calculated its final risk Score, Cell-Death 
Score (CDS). Based on the median value of the score, the patients 
were divided into CDS high-risk group and CDS low-risk group. 
Survival analysis and receiver operating characteristic (ROC) curve 
analysis were used to evaluate the prognostic significance of CDS. 

Tumor mutation burden (TMB) and 
microsatellite instability (MSI) analysis

To analyze single nucleotide polymorphisms (SNPS) in different 
risk score subgroups of TCGA-GBM/LGG patients, maftools 
package was used to analyze frequently mutated genes in high and 
low risk groups. In the meantime, Through from cBioportal database 
(https://www.cbioportal.org) for patients with GBM TMB (Tumor 
Mutation Burden), MSI - Sensor Score, Fraction Genome Altered, 
Mutation Count, we analyzed the corresponding score differences 
between high and low-risk groups to reveal their mutation 
level characteristics. Meanwhile, the difference of Homologous 
recombination deficiency (HRD) score between high and low risk 
groups was analyzed. 

The comparison of cell death score and 
immune characteristics

In order to reveal the discriminative power of CDS risk score in 
tumor immunity, we performed single-sample gene set enrichment 
analysis (ssGSEA) (Foroutan et al., 2018) enrichment analysis. 
ssGSEA is a method used to assess the activity of gene sets (e.g., 
pathways or functional sets) in a single sample. It quantifies the 
degree of enrichment of gene sets by calculating the cumulative 
distribution function of genes within a sample, thereby revealing the 
activity associated with a specific biological process. By performing 
ssGSEA enrichment analysis of the related genes corresponding to 
the 30 cell death modes, we obtained the death score of each patient’s 
corresponding cell death mode, which was visualized by heat map 
and difference boxplot. At the same time, we obtained the scores of 
each patient in different immune functions and 28 immune cells in 
the same way. Next, we used the R package “estimate “to analyze 
the differences in tumor immune score, stromal score and tumor 
purity. Meanwhile, Tumor Immune Dysfunction and Rejection 
(TIDE) is a computational method that mimics the tumor immune 
escape mechanism and is used to evaluate the potential response 
to immune checkpoint blockade (ICB) treatment (Jiang et al., 
2018) In website: http://tide.dfci.harvard.edu/. TIDE prediction was 
performed on youdaoplaceholder0, and the percentage difference of 
immunotherapy response prediction results between high and low 
risk groups was analyzed. 

Development and validation of potential 
therapeutic drugs

In order to assess the CDS drug sensitivity difference between 
high and low risk group of patients, we based on anti-cancer drug 
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sensitivity genomics database (https://www.cancerrxgene.org/), 
Genomicsof Drug Sensitivity in Cancer (GDSC) was used for 
drug sensitivity analysis using pRRophetic package. The drugs 
with significant difference in half-inhibitory concentration between 
the high and low risk groups were identified. To screen potential 
anticancer drugs with better efficacy in patients with different risk 
groups. In this study, we further classified the 16 candidate drugs 
screened in Figure 6 into the following categories: conventional 
chemotherapeutic agents (e.g., Etoposide, Gemcitabine), targeted 
kinase inhibitors (e.g., Bosutinib, Gefitinib, PLX4720, Tipifarnib), 
PI3K/AKT/mTOR pathway inhibitors (e.g., GDC0941, MK-2206, 
Embelin), and other small-molecule inhibitors (e.g., Obatoclax 
Mesylate, NSC-87877, JNK Inhibitor VIII, AICAR, CEP-701, 
AMG-706, AZD-2281). Drug classifications were confirmed 
based on annotations from the GDSC database and established 
pharmacological literature. Regarding the IC50 difference threshold, 
the pRRophetic model outputs relative predicted ln (IC50) values 
between patient subgroups rather than absolute clinical in vivo drug 
concentrations. Therefore, we primarily determined differential 
drug sensitivity based on statistical significance (Wilcoxon test, 
BH-adjusted q < 0.05). To ensure biological relevance, we further 
required a predicted median ln (IC50) difference >0.25 between 
groups (approximately equivalent to a 28.3% difference on the 
original scale) to define potential clinical relevance. 

Construction and validation of a 
nomogram model integrating CDS and 
clinical features

After univariate and multivariate Cox regression analysis of CDS 
and other clinical features, we integrated all identified independent 
prognostic parameters and constructed a prognostic nomogram 
using the R package “rms”. Calibration plot, ROC curve and decision 
curve analysis (DCA) were used to evaluate the predictive ability of 
the nomogram. 

Analysis of single-cell sequencing data

Single-cell RNA sequencing (scRNA-seq) data were preprocessed 
and analyzed using the “Seurat “R package. The “NormalizeData 
“function of “Seurat” software package was used to normalize 
the scRNA-seq data, and the normalization method was set to 
“LogNormalize”. The normalized data were then converted into Seurat 
objects. The percentage of mitochondrial or ribosomal genes was 
calculated and low-quality cells were excluded to ensure quality control 
(QC). We excluded samples with a gene count of less than 200 or more 
than 3,000, and samples with a ribosomal RNA ratio of more than 
20%. Then, by using Seurat package FindVariableFeatures, choose the 
variable characteristics of 3,000 genes as the most important, as the 
basis of standardized scRNA - seq data of each cell. In addition, we 
implement ScaleData and RunPCA function to get the number of 
principal components (PC) based on object Seurat. 

We use “UMAP (Uniform Manifold Approximation and 
Projection)” dimensionality reduction to further summarize 
the principal components. Finally, using the annotation 
information of each class of cells supported by previous articles 

(Abdelfattah et al., 2022; Wen et al., 2023), the Idents and DimPlot 
functions were used to annotates and visualize the cells of the major 
cell types or subtypes. Then, we performed CellChat (intercellular 
communication) analysis. CellChat is used to analyze the intercellular 
communication of R packages, including human and mouse 
ligand/receptor interaction database, can according to the comments 
for different cell clusters scRNA - seq intercellular communication 
network data analysis. First, we used CellChat to evaluate the major 
signal inputs and outputs between all types of cell clusters using 
CellChatDB.human. We then used the netVisual_circle function to 
show the strength of the intercellular communication network from 
the target cell cluster to different cell clusters in all clusters. 

Meanwhile, in order to study the relationship between the 
cell pseudo-time traces and the model genes, we adopted the 
Monocle R package to obtain the single-cell RNA data of all cell 
types. Highly variable genes were set according to the following 
filtering criteria: mean expression ≥0.1 and empirical value of 
dispersion ≥1∗Dispersion fit. The DDRTree method was used for 
dimensionality reduction. We then used the “plot_pseudotime_
heatmap” function to visualize the heatmap of model gene dynamic 
expression in the pseudo-time traces showing different TME cell 
types in HGG. Significant dynamic changes were defined as p-value 
<0.05 and |log2FC|>1. 

RNA extraction and real-time qPCR analysis

RNA was extracted from cell lines and tissues by using TRIzol 
(1 mL for 50–100 mg brain tissue or 2–5 × 106 cells), and quantified 
by Nanodrop. 20 μg of RNA was revised transcribed by Revert Aid 
First Strand cDNA Synthesis Kit (Thermo Scientific #K1622) or 
miRNA first Strand cDNA Synthesis Kit (by tailing A) (Vazyme 
#MR201). Quantitative PCR (qPCR) was run with cDNA input 
in a 20 μL reaction using 2 × SYBR Green PCR Master Mix. 
For analysis, the ΔΔCt method was used to calculate the relative 
fold gene expression of samples. The housekeeping gene GAPDH 
served as control for qPCR. The primers used in these experiments 
are shown in Supplementary Table S3. 

RNA-seq sample processing, library 
preparation, sequencing, and data analysis

After extracting RNA from human glioma tissues and adjacent 
non-tumorous tissues, RNA’s total amounts and integrity were 
assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 
2100 system (Agilent Technologies, CA, United States). For library 
preparation, 1.5 mg of total RNA (RIN R 6.8) was used with VAHTS 
Universal V8 RNA-seq Library Prep Kit for Illumina (Vazyme, 
NR605). After the library is qualified, the different libraries are 
pooled according to the effective concentration and the target 
amount of data off the machine, then sequenced by the Illumina 
NovaSeq 6,000. The end reading of 100-bp pairing is generated.

The FASTQ format files obtained from the Illumina platform 
are transformed into short reads (raw data). Sequence quality 
control is performed using Fastp, which removes reads containing 
adapters, reads with N bases, and low-quality reads. All downstream 
analyses are based on clean data of high quality. For alignment, 
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STAR (Version 2.7.9a) aligns the clean reads to the Human 
reference: Obtained from UCSC (GRCh38/hg38). Uniquely mapped 
reads are used for subsequent analyses. RSEM (RNA-Seq by 
Expectation–Maximization Version 1.3.1) and DESeq2 (v1.42.0) 
were used to identify differentially expressed genes (DEGs). Genes 
are considered differentially expressed if the log2(FoldChange) is 
either > 1 or < −1, and the adjusted p-value (p-adjust) is < 0.05. For 
experimental validation of the 25 previously identified key genes, 
expression patterns were visualized through heatmaps generated 
by pheatmap (v1.0.12) and quantitative bar plots constructed with 
ggplot2 (v3.5.2). 

Spatial sequencing data analysis

We used Seurat (version 5.2.1) to perform data processing, 
integration, and clustering of spatial transcriptomics data. Spatial 
expression matrices were loaded and individual Seurat objects were 
created for each of the four samples. Sample identities were assigned 
to each object and subsequently merged into a single integrated 
dataset. Expression matrices were normalized using NormalizeData 
and scaled using ScaleData Variable features were identified using 
FindVariableFeatures with default parameters. Principal component 
analysis was performed using RunPCA. Then armony integration 
was applied for batch correction through HarmonyIntegration 
with principal components (dims = 1:30) as input. The resulting 
integrated embeddings were used for downstream unsupervised 
analysis: Shared nearest neighbor graph construction was performed 
FindNeighbors and clustering was implemented with resolution 
parameter 0.6. All analysis steps used default parameters except 
where explicitly specified.

Copy number variations (CNVs) in six tumor samples were 
inferred using inferCNV (v1.22.0). An inferCNV object was 
constructed with three inputs: 1) the raw expression matrix from 
the integrated spatial dataset, 2) Seurat-derived cluster annotations, 
and 3) a gene positional file. Clusters 9 and 13—identified as non-
tumor regions in previous research—served as the reference group. 
Analysis parameters included: an expression cutoff of 1 to filter low-
abundance genes, group-based cell clustering, noise reduction, and 
hidden Markov modeling for CNV state prediction. 

Statistical analysis

All statistical analyses were performed with R software (versions 
4.3.1 and 3.6.0). Comparison of inter-group differences using 
Wilcoxon rank-sum test and t-test The Kruskal-Wallis test was 
used to evaluate differences between more than two groups. 
The Spearman correlation method is adopted for correlation 
analysis. P < 0.05 was considered as the threshold of statistical
significance.
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SUPPLEMENTARY FIGURE S1 
Single-cell Quality Control. (A) RNA Feature Count, Count count, mitochondrial 
and red blood cell proportion box plot after quality control; (B) quality control 
before the RNA Feature count, mitochondria and scatterplot proportion of red 
blood cells; (C) RNA Feature count, mitochondrial and red blood cell proportion 
scatter plot after quality control.

SUPPLEMENTARY FIGURE S2 
Manual Annotation of Cell types (A) annotation cell t distribution stochastic 
neighborhood before embedding (t - SNE) figure; (B) markers in various types of 
cells in different subgroup of bubble chart, bubble color shades, said the average 
subgroup cells express, said the subgroup size cells expressed in proportion. (C)
all kinds of cells in different patient samples component percentage histogram;
(D) t distribution random neighborhood embedding (t-SNE) plot of cell 
distribution in CDS high and low expression groups.

SUPPLEMENTARY FIGURE S3 
Experimental Validation of 25 Key Genes In tumor. (A) Expression of 14 key genes 
with no statistically significant differences in RNA-seq analysis; (B) qRT-PCR results 
of 12 key genes within normal threshold range across seven paired samples.

SUPPLEMENTARY FIGURE S4 
Spatial Transcriptomic Analysis of 25 Key Genes. (A) Four distinct sources of 
glioma samples; (B) Standardized Seurat analytical workflow. Harmony-integrated 
dimensionality reduction and clustering of four sample groups identified 17 
transcriptionally distinct cell clusters; (C) Spatial mapping of clustering results; (D)
Copy number variation (CNV) analysis results; (E) Expression profiles of 25 key 
genes across distinct regions.
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