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Background: Prostate cancer demonstrates significant metabolic heterogeneity,
but its role in therapeutic resistance and disease progression remains unclear.
This study investigates the clinical implications of metabolic diversity and
identifies potential biomarkers for precision oncology.

Methods: Multi-omics analyses of TCGA-PRAD and meta-cohorts classified
tumors into three metabolic subtypes (C1, C2, C3). Functional studies utilized
prostate cancer cell lines with genetic modulation of PDIKIL. Proliferation
assays, protein expression analysis, and drug sensitivity evaluations were
systematically performed.

Results: Metabolic subtyping delineated distinct molecular and clinical
profiles. The C2 subtype demonstrated elevated genomic instability and
heightened sensitivity to PARP inhibitors, characterized by enrichment of
glycogen metabolism and TP53-driven oncogenic pathways. Integrative multi-
omics and random survival forest analysis prioritized PDIKIL as a C2-
specific biomarker, where its overexpression accelerated tumor proliferation
and rewired metabolic programs to confer resistance to PARP inhibitors.
Conversely, PDIK1L knockdown suppressed proliferation and sensitized cells to
therapy, underscoring its role as a dual-functional regulator. Mechanistically,
PDIK1L interacted with DNA repair and metabolic adaptation pathways,
creating a permissive environment for therapeutic resistance. Combinatorial
therapy with Enzalutamide and PARP inhibitors effectively reversed PDIK1L-
mediated resistance, restoring drug sensitivity across preclinical models.
Independent validation in multi-institutional cohorts confirmed the robustness
of metabolic subtyping and PDIK1L's prognostic value in predicting survival and
treatment outcomes.

Discussion: Metabolic stratification reveals the C2 subtype as a high-
risk prostate cancer group with unique therapeutic vulnerabilities. PDIK1L
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emerges as a dual-functional biomarker driving tumor progression and
modulating treatment efficacy, offering a novel target for precision therapeutic

strategies.
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Introduction

Prostate cancer is the second most common malignancy among
men globally, with the number of new cases projected to rise
from 1.4 million in 2020 to 2.9 million by 2040 (Bray et al,
2024; James et al, 2024). This disease is characterized by
significant clinical and molecular heterogeneity (Tang et al., 2022;
Han et al,, 2022; Dai et al., 2024). While advancements in androgen
deprivation therapy, precision-targeted therapy, and radiotherapy
have improved patient outcomes, treatment resistance and disease
progression remain critical challenges (Li et al., 2023; He et al,
2022). Emerging evidence highlights metabolic reprogramming
as a hallmark of cancer, yet the role of metabolic diversity in
prostate cancer has not been fully explored (Ward and Thompson,
2012; Allison et al., 2017). Tumor cells exhibit dynamic changes
in nutrient utilization, including glycogen synthesis, glycolysis,
glutaminolysis, and lipid metabolism, to promote proliferation,
metastasis, and adapt to microenvironment stress (Huang et al.,
2025; Perez et al, 2024; Zhou et al, 2024). This metabolic
plasticity drives tumor evolution and contributes to inter- and
intra-tumor heterogeneity, complicating therapeutic stratification.
Importantly, metabolic heterogeneity may underpin differential
responses to therapies, including radiotherapy, targeted therapy,
and androgen deprivation therapy (Venkatraman et al, 2024;
Yao et al.,, 2024; Cardoso et al., 2021). By analyzing the metabolic
profiles of prostate cancer subtypes, researchers can identify
actionable targets that align with clinical phenotypes, providing
a framework for refining prognostic models and personalizing
therapeutic interventions.

The metabolic diversity in cancer is rooted in genetic,
epigenetic, and microenvironmental factors that shape tumor
behavior (You et al, 2023). For example, mutations in PTEN,
TP53, and MYC drive distinct metabolic programs, while
hypoxia and nutrient scarcity within the tumor microenvironment
(TME) compel metabolic adaptations (Venkatraman et al., 2024;
Morris et al., 2019; Chen et al, 2018). Stromal cells, immune
infiltration, and extracellular matrix components further modulate
these metabolic interactions, creating a milieu conducive to
therapeutic resistance (Lyu et al, 2025). For instance, lipid-
rich niches may protect cancer stem cells from oxidative stress
(Snaebjornsson et al., 2020), whereas lactate secretion by glycolytic
tumors can suppress anti-tumor immunity (Chaudagar et al., 2023).
Moreover, androgen receptor signaling orchestrates metabolic
pathways such as fatty acid synthesis and mitochondrial respiration,
linking hormone dependency with metabolic dependency
(Zadra et al., 2019; Han et al., 2018). These intricate interactions
suggest that metabolic heterogeneity not only plays a bystander role
but also acts as a determinant of clinical trajectories. Therefore,
integrating metabolomics, transcriptomics, and genomics data may
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unveil biomarkers for risk stratification and identify metabolic nodes
susceptible to pharmacological inhibition.

Translating the metabolic diversity of prostate cancer into
actionable therapeutic strategies could revolutionize clinical
outcomes. This research analyzes how metabolic heterogeneity
impacts treatment resistance and progression in prostate cancer,
highlighting the necessity of integrating metabolic subtypes with
genomic and clinical data. This approach refines risk stratification
and uncovers context-specific vulnerabilities, linking metabolic
heterogeneity with precision oncology. Consequently, it aims to
guide improvements in patient survival and quality of life.

Methods and materials
Row data collection and processing

We integrated three independent cohorts with complete
expression profiles and clinical follow-up data, including the
TCGA PRAD cohort (n = 495, from the GDC platform:
https://portal.gdc.cancer.gov/), the MSKCC Prostate Cancer
Genomics Project (MSKCC, n = 140, https://cbio.mskecc.org/),
and the GSE70770 cohort (n = 203).The expression matrices
of all samples were uniformly annotated according to their
respective database platforms and converted to TPM (transcripts
per million) format. We used recurrence-free survival (RES)
as the primary endpoint to evaluate the clinical outcomes
of PCa patients. Batch effects were removed by ‘sva’ package
(Leek et al., 2012) (Supplementary Figure S1A).

Non-negative matrix factorization (NMF)
clustering and nearest template prediction
(NTP)

Drawing on earlier research, we created a compilation of 2,752
genes associated with metabolism to use as input for NMF clustering
(Possemato et al., 2011). Prior to executing the NMF, we performed
a screening procedure that entailed the elimination of candidate
genes exhibiting low median absolute deviation (MAD) values
(MAD <0.5) among PCa patients. This procedure encompassed
Cox regression analysis, the identification of shared genes from
three different cohorts, and the ultimate selection of genes that
demonstrated high variability (MAD >0.5) along with notable
prognostic significance (P < 0.05) for clustering samples. The ideal
number of clusters was established by pinpointing the k value at
which the co-phenotypic correlation coefficient started to decrease
(Gaujoux and Seoighe, 2010; Brunet et al., 2004). We confirmed
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the assignment of subtypes utilizing a methodology based on t-
distributed stochastic neighbor embedding (t-SNE) with the mRNA
expression data from the previously mentioned metabolic genes.

In order to predict patient subtypes across different cohorts,
we began by identifying particular genes that showed notable
differences in expression when comparing all possible pairs among
the three subtypes (Supplementary Table S1). The threshold for
these differences was established with an adjusted P-value. We then
chose the top 30 genes for each subtype to create the feature set for
subtype prediction. Utilizing this feature set, we applied the NTP
algorithm to reassign subtypes within the validation cohort.

Gene set variation analysis

To evaluate metabolic function and the progression of disease
quantitatively, we applied the Gene Set Variation Analysis (GSVA)
approach to carry out pathway enrichment scoring on the samples
(Hoshida et al., 2009). The gsva package (Hanzelmann et al., 2013)
was utilized in the analysis of the standardized transcriptomic data.
Following this, the limma package was used to conduct differential
analysis on the GSVA scores of 115 metabolic labels, applying criteria
[log2FC|>0.2 and a Benjamini-Hochberg adjusted P-value <0.05.

Mutation analysis

To comprehensively assess the genomic instability and immune-
related features of PCa patients within various molecular subtypes
from TCGA, we developed an all-encompassing analytical pipeline
that includes mutation profiles, tumor mutation burden (TMB)
analysis, and copy number variation (CNV) evaluation. MAF
format of mutation data was downloaded from FireBrowse (http://
firebrowse.org/), maftools and ComplexHeatmap package was
employed to generate an OncoPrint visualization, showcasing the
types of mutations and their distribution across samples from
each subtype. Following that, we used maftools to compute TMB.
To investigate the co-mutation relationships of key driver genes
among different subtypes of PCa, we utilized the somaticInteractions
() function from the maftools package, focusing on 24 high-
frequency mutated genes. This function was employed to calculate
the co-occurrence and mutual exclusivity of gene pairs within the
three subtypes (C1-C3). Furthermore, to systematically assess the
extent of functional abnormalities in key cancer signaling pathways
across various subtypes, we integrated common tumor-associated
pathways (including RTK-RAS, WNT, NOTCH, PI3K, TP53, MYC,
etc.) and employed the OncogenicPathways () function to identify
the impact of each pathway within the samples.

Evaluation of tumor immune
microenvironment, immunomodulator
compilation and immunotherapy efficacy

To systematically evaluate the immune characteristics of
different subtypes of PCa, we conducted an in-depth analysis of
mRNA expression profiles related to immune regulation, integrating
multi-omics alterations, including methylation modifications,

Frontiers in Cell and Developmental Biology

03

10.3389/fcell.2025.1674844

copy number amplifications, and gene deletions. This analysis
builds upon and extends the research framework established
in previous literature (Thorsson et al, 2018). Additionally,
starting from 21 known immune-related gene sets, we scored
and visualized the immune pathway activities of each subtype
sample using the GSVA algorithm integrated within the MOVICS
package (Meng et al., 2021; Lu et al, 2021). To further
investigate the mechanisms of tumor immune evasion and the
potential responsiveness to immunotherapy, we downloaded
the TIDE scores of PCa samples from the TIDE platform
(https://tide.dfciharvard.edu/) to quantify the extent of immune
dysfunction and immune exclusion, thereby providing a basis for
clinical decision-making in immunotherapy.

Spatial transcriptomics data processing and
module scoring analysis

The spatial transcriptomics data were acquired using the 10x
Genomics platform (https://www.10xgenomics.com/). The raw data,
which includes the gene expression matrix and tissue images,
were downloaded from the official 10x Genomics website and
imported to create a Seurat object using the Load10X_Spatial ()
function from the Seurat package. Based on the group-specific
differentially expressed genes and functional modules defined
earlier, we employed the AddModuleScore () function for the
spatial visualization of different groups. The TLS (Tertiary Lymphoid
Structure) genes can be sourced from our previous publication
(Xu et al, 2023; Xu et al, 2020). The scoring results were
visualized spatially using the SpatialFeaturePlot () function, while
the expression distribution differences for each score in TLS and
non-TLS regions were depicted using the VInPlot () function.

Random forest model

In order to pinpoint feature genes that may have diagnostic
or subtyping relevance, we performed an evaluation of feature
significance utilizing the Random Forest model. The classification
model was developed using the R package randomForest, with a total
0f 2000 decision trees configured. To assess the stability of the model,
we generated error curves. From the MeanDecreaseAccuracy and
MeanDecreaseGini indices, we identified the top 20 crucial genes
that played a significant role in classification for further analysis and
validation.

Cell lines and cell culture

C4-2 and PC-3 were obtained from the Shanghai Cell Bank of
Chinese Academy of Sciences (Shanghai, China). Both cell lines were
maintained in RPMI-1640 medium (Gibco) supplemented with 10%
fetal bovine serum (FBS; Gibco) and 1% penicillin-streptomycin
(Sigma) at 37 °C in a humidified atmosphere containing 5% CO,.
Culture medium was refreshed every 2-3 days, and cells were
subcultured using 0.25% trypsin-EDTA when reaching 80%-90%
confluence.
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Protein extraction and Western blot
analysis

Cultured cells were washed twice with ice-cold PBS and lysed
using RIPA buffer (Beyotime) containing 1x protease/phosphatase
inhibitor cocktail (Thermo Scientific). The lysates were centrifuged
at 12,000 x g for 15 min at 4 °C, and protein concentrations were
determined using a BCA assay kit. Equal amounts of protein
were separated by 10% SDS-PAGE and transferred onto PVDF
membranes (Millipore). After blocking with 5% non-fat milk in
TBST for 1h at room temperature, membranes were incubated
overnight at 4 °C with primary antibodies: anti-PDIK1L (Signalway)
and anti-GAPDH (Proteintech). Following three washes with
TBST, membranes were probed with HRP-conjugated secondary
antibodies (Proteintech) for 1 h at room temperature. Protein bands
were visualized using ECL Prime substrate and imaged with a
ChemiDoc MP imaging system.

Plasmid transfection

For PDIK1L knockdown or overexpression experiments, C4-2 and
PC-3 cells were seeded in 6-well plates at 40%-50% confluence prior to
transfection. Transfection complexes were prepared by mixing 2.5 ug
of plasmid DNA (pCMV-PDIKIL for overexpression or pLKO.1-
shPDIKIL for knockdown) with 5 uL Lipofectamine 3000 reagent
(Invitrogen) in Opti-MEM reduced serum medium (Gibco), following
the manufacturer’s protocol. Two different shRNA constructs
were used: shPDIKIL#1: TGGGCGAATGAAACAACTGAT;
shPDIK1L#2: GAAGAACCTGTCAGTGTAAAC. A non-targeting
shRNA was used as a control. Following viral transduction, stable
polyclonal cell populations were selected with puromycin.

Cell proliferation assay

PC-3 and C4-2 cells were seeded in 96-well plates at a density
of 1,000 cells per well in 100 pL. After 24 h of attachment, cell
proliferation was monitored daily for 4 consecutive days using a
CCK-8Kkit (Beyotime). At each time point, 10 pL CCK-8 reagent was
added to each well and incubated at 37 °C for 2 h. Absorbance was
measured at 450 nm using a microplate reader. Blank control wells
(medium + CCK-8 without cells) were included for background
subtraction. Cell viability curves were generated by normalizing
daily absorbance values to the Day 0 reading. Each experimental
group contained 5 replicate wells.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 6.0
software and R V.4.2.3. Data from at least three independent
biological replicates were normalized to respective controls and
expressed as mean * standard deviation (SD). For comparisons
between two groups (e.g., PDIKIL knockdown vs. control, or
overexpression vs. empty vector), a two-tailed unpaired Student’s
t-test was applied. Comparisons across multiple groups (e.g., time-
dependent proliferation assays or multi-dose treatments) were
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analyzed by one-way ANOVA followed by Tukey’s post hoc test for
pairwise comparisons. In all analyses, statistical significance was
definedas P <0.05 (*), *P<0.01 (**), P<0.001 (***),and P < 0.0001
(* * K *).

Results

Metabolic heterogeneity implicated diverse
clinical outcomes in prostate cancer
microenvironment

According to cophenetic coeflicient and prior articles (Meng et al.,
2021), we identified three clusters as the optimized cluster
number (Supplementary Figure S1B), and all of the patients
were divided into three metabolic populations based on NMF
(Supplementary Figure S1C). Metabolic pathway profiling identified
three distinct clusters (C1, C2, C3), each enriched with specific
pathways (Figure 1A). For instance, Pyrimidine Metabolism and
Pyrimidine Biosynthesis were enriched in C1, Glycogen Biosynthesis
in C2, while pathways such as Drug Metabolism by Cytochrome
P450 were specific to C3. Further analysis revealed that these
metabolic clusters are associated with different clinicopathological
features in PCa (Figure 1B). We further evaluated the prognostic
value of the three subtypes for prostate cancer patients across
multiple cohorts. In the Meta cohort, significant RFS were observed
among the three subtype groups (P = 0.047), with the C2 subtype
demonstrating the poorest prognosis. This trend was consistently
replicated in independent validation cohorts, including TCGA-PRAD
(P=0.008), MSKCC (P <0.001),and GSE70770 (P < 0.001), indicating
that the C2 subtype is consistently associated with poor survival
outcomes, while the C1 subtype exhibited a more favorable survival
advantage (Figure 1C). These results support the strong prognostic
predictive capability of our constructed molecular classification across
multiple independent cohorts.

Genetic and genomic features of metabolic
clusters in prostate cancer

We performed a comprehensive analysis of the genetic features
associated with distinct metabolic clusters in prostate cancer.
Our analysis of mutation distributions revealed that TP53, TTN,
SPOP, and MUCI16 were the most frequently mutated genes, with
varying mutation rates across different clusters (Figure 2A). To
further explore the co-mutation patterns of driver genes across
different PCa subtypes, we analyzed the co-occurrence and mutual
exclusivity of key gene pairs. The results indicated that in the
C1 subtype, TP53 and SPOP exhibited a significant mutually
exclusive mutation relationship (P < 0.05), while FOXA1 and
ARIDI1A displayed a notable tendency for co-mutation. In the C2
subtype, despite the overall low mutation burden, a co-mutation
trend between SPOP and ATM was still observed (P < 0.1). In
contrast, the C3 subtype exhibited a higher frequency of mutations
in driver genes such as TP53, SPOP, and FOXAI, accompanied
by significant co-mutation patterns, including the combinations
of FOXA1 with MED12 and TP53 with ATM (P < 0.05). These
findings suggest that the three subtypes exhibit distinct differences
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FIGURE 1

Metabolic Reprogramming Characteristics and Prognostic Significance of Metabolic Subtyping in Prostate Cancer. (A) The activity of 53 metabolic
pathways was quantified using the ssGSEA method, revealing functional differences among the three subtypes (C1-C3) at the metabolic level. Each
row in the figure represents a distinct metabolic pathway, while each column corresponds to a sample. Red indicates upregulation of pathway activity,
whereas blue indicates downregulation. The results indicate significant differences among the subtypes in pathways such as purine metabolism, fatty
acid elongation, glycogen synthesis, and steroid biosynthesis, suggesting that each subtype has a unique metabolic reprogramming pattern. (B) The
distribution of different metabolic subtypes was analyzed based on clinicopathological characteristics (T stage, Gleason score, age, and recurrence
status). The findings revealed that the C2 subtype was enriched in T3/T4 stages, high Gleason scores, older age groups, and recurrent populations. (C)
Kaplan-Meier analysis of recurrence-free survival (RFS) for metabolic subtypes was performed in four independent cohorts: Meta, TCGA-PRAD,
MSKCC, and GSE70770.

Frontiers in Cell and Developmental Biology 05 frontiersin.org


https://doi.org/10.3389/fcell.2025.1674844
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Wang et al.

in their mutational driving mechanisms, with the C3 subtype
demonstrating stronger mutational synergy, indicating a more
complex genetic background and tumor evolutionary pathway.
(Figure 2B). Using the Kruskal-Wallis’s test, we detected significant
variation in TMB among the three clusters (C1, C2, C3) (P = 1.6e-06)
(Figure 2C). We also evaluated the fraction of FGA and the fraction
of FGL/G. Compared to C2 and C3, C1 exhibited a higher FGA,
indicating more extensive genomic instability. Similarly, FGL/G
analysis showed that C1 had a greater proportion of genomic losses
or gains, further highlighting its genomic instability (Figure 2D).
We evaluated the enrichment characteristics of gene mutations in
typical cancer-related signaling pathways across various subtypes of
prostate cancer. The results revealed that the C2 subtype exhibited
a significantly higher frequency of pathway alterations, involving
multiple driver pathways such as RTK-RAS, WNT, NOTCH, Hippo,
PI3K, MYC, TGF-B, NRF2, and TP53, which suggests greater
genomic instability in this subtype. Over 50% of the samples were
found to simultaneously affect five or more pathways. In contrast,
the pathway alterations in the C1 and C3 subtypes were relatively
concentrated and less extensive, primarily focusing on the TP53 and
TGF-p pathways. This indicates that the C2 subtype may represent a
more heterogeneous and aggressive molecular subtype (Figure 2E).
These findings underscore the unique genetic and genomic features
associated with different metabolic profiles in prostate cancer and
suggest potential therapeutic targets based on the integration of
metabolic and genetic characteristics.

Impact of metabolic subtypes on PARP
inhibitor sensitivity in prostate cancer

Genomic analysis of homologous recombination repair (HRR)-
related genes across three metabolic subtypes (C1, C2,and C3) revealed
distinct mutation patterns in prostate cancer cohorts. C2 subtypes
identified ahigheralteration frequency of 11.45% (19/166), enriched in
nonsense mutations and splice site variants, suggesting compromised
DNA repair mechanisms (Figure 3A). Metabolic subtyping stratified
tumors into Cl, C2 and C3 with C2 exhibiting significantly
enhanced sensitivity to PARP inhibitors. In TCGA-PRAD, C2
tumors demonstrated lower IC50 values for olaparib and talazoparib,
supported by robust Kruskal-Wallis tests (Figure 3B). Similarly, the
meta-cohort highlighted superior olaparib and talazoparib efficacy
in C2, alongside pronounced bicalutamide sensitivity (Figure 3C).
These results emphasize that metabolic subtyping (C2) correlates with
HRR gene alterations and predicts enhanced vulnerability to PARP
inhibitors, offering a biomarker-driven framework for targeting DNA
repair-defective prostate cancers.

Different immune landscape and
immunotherapy response among the three
groups

We further analyzed the activities of immune pathways, the
expression characteristics of immune regulatory factors, and
their potential responses to immunotherapy in three subtypes
of prostate cancer. The results of the GSVA analysis revealed
significant differences among the subtypes across multiple classic
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tumor-related immune pathways. The C2 subtype demonstrated
notable upregulation in pathways such as Cell Cycle, MYC,
TP53, PI3K, and RTK-RAS, indicating a higher level of pathway
activation (Figure 4A). In conjunction with previous research
(Thorsson et al., 2018), we assessed the expression differences
of three categories of immune modulators (co-stimulatory, co-
inhibitory, ligand/receptor, etc.) and further integrated data on copy
number alterations (SCNA), methylation, and miRNA regulation
for expression regulation analysis. Various immune modulators
(such as PDCD1LG2, BTN3A1, CXCL10, VEGFA, etc.) exhibited
significant differences across the different subtypes, particularly
with elevated expression of certain immune suppression-related
genes in the C2 subtype. These genes showed a negative correlation
with methylation levels, suggesting potential epigenetic regulation
(Figure 4B). The C2 and C3 subtypes exhibited significant
enhancements across multiple immune function modules, including
the complement system, NK cell function, leukocyte function,
antigen presentation, chemokines, and cytotoxicity modules.
In contrast, the C1 subtype generally demonstrated a trend of
suppression, as illustrated in Figure 4C. By further integrating the
TIDE immunotherapy prediction score, we found that patients with
C2 and C3 subtypes exhibited a higher proportion of responders to
immunotherapy across multiple independent cohorts. In contrast,
patients with the C1 subtype were predominantly found in the non-
responder group (Figure 4D), indicating their reduced potential for
responding to immunotherapy.

Presence of TLS contributed to the high
immunotherapy response rate of C2

Our preliminary research found that, despite the high
activation of immunosuppressive pathways such as TGF-p and
the infiltration of numerous immune cells in C2 subtype prostate
cancer samples, these samples still exhibited a favorable response
rate to immunotherapy. This seemingly paradoxical phenomenon
suggests that specific immune regulatory mechanisms may be at
play in this subtype. Further analysis revealed a significant increase
in B-cell infiltration in the C2 subtype, indicating a potential
close correlation with the formation of tumor-associated TLS.
To investigate the association between the functional states of
different regions in spatial transcriptomics and the structure of
TLS, we evaluated the spatial distribution of three key functional
modules (C1-C3) and TLS-related scores in tumor tissue sections
(Figures 5A,B). The results indicated that the C2 module score was
significantly elevated in TLS-enriched regions, suggesting a close
relationship between this functional module and the formation
and maintenance of TLS (Figure 5C). To further explore the
metabolic characteristics of the TLS region, we introduced the
Inositol (inositol metabolism), Glycogen (glycogen metabolism),
and Glycan (glycosylation pathway) scores, which were displayed on
tissue sections (Figure 5D). The results demonstrated a significant
enhancement trend of these three metabolic scores in TLS-enriched
regions. Further comparison validated the elevated scores of
inositol metabolism in TLS region (Figures 5E,F), suggesting that
inositol metabolism pathway may play a crucial role in the TLS
microenvironment, potentially involved in maintaining immune
cell functions and local immune regulation.
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FIGURE 2

Genomic Alteration Characteristics of Different Metabolic Subtypes in Prostate Cancer. (A) The driver gene mutation landscape of three metabolic
subtypes (C1-C3) in the TCGA-PRAD cohort is presented. The top 30 genes exhibiting the highest mutation frequencies, along with their respective
mutation types, are displayed. These mutation types include missense mutations, splice site mutations, nonsense mutations, frameshift
insertions/deletions, and multi-site mutations. (B) Co-mutation and mutual exclusivity relationships of driver genes across different subtypes are
illustrated. The color intensity in the figure represents -log10 (Fisher's test P-value), with '+ and '« indicating P < 0.05 and P < 0.1, respectively. (C) The
distribution of tumor mutation burden (TMB) across the three subtypes is shown (Kruskal-Wallis test P = 1.6e-06). (D) Copy number variation analysis:
The left panel displays the fraction of the genome altered (FGA), while the right panel illustrates the proportions of genome loss (FGL) and genome gain
(FGG) (***P < 0.001). (E) Mutation enrichment analysis of the three subtypes across 10 classic cancer-related signaling pathways, including RTK-RAS,

WNT, NOTCH, TP53, and TGF-beta, is provided.
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FIGURE 3

Illustration of the mutation characteristics of the DNA damage repair (DDR) pathway and the analysis of drug sensitivity predictions across different
metabolic subtypes. (A) This panel displays the mutation profiles of the C1, C2, and C3 subtypes within the TCGA-PRAD cohort, focusing on
DDR-related genes such as ATM, BRCA1/2, CHEK2, and PALB2. The mutation types include missense mutations, nonsense mutations, frameshift

insertions/deletions, and splice site mutations. (B,C) The drug sensitivity prediction results demonstrate the varying responses of the three subtypes to
several clinically relevant drugs, specifically Olaparib, Bicalutamide, and Talazoparib. These results were assessed based on the Meta cohort (B) and the
TCGA-PRAD cohort (C), with the vertical axis representing the predicted IC50 values. Lower IC50 values indicate a higher sensitivity to PARP inhibitors
and anti-androgen therapies. Statistical testing was conducted using the Kruskal-Walli's test.

PDIK1L defines a high-risk C2 subtype with
poor survival and enhanced PARP inhibitor
sensitivity

Through integrative analysis, candidate genes were prioritized

using a Venn diagram (Figure 6A) approach combining
three strategies: (1) upregulated genes in the C2 subtype

(Supplementary Table S2), (2) monovariate Cox regression for
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survival-associated genes (P < 0.05) (Supplementary Table S3),
(3) feature selection via random forest algorithm
(Supplementary Figures S2A,B).  This screening
identified PDIKIL as a key candidate, which was consistently
linked to the C2 subtype across three independent cohorts.
Patients classified into the C2 subtype exhibited significantly
elevated PDIKIL expression (Kappa consistency: 0.311-0.506,
all P < 0.001) (Figure 6B). Survival analyses revealed that

and
multi-step
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amplification/deletion frequency. (C) The heatmap illustrates the differential distribution of various immune function modules (e.g., the
complement system, NK cell function, chemokines, antigen processing and presentation, etc.) across different subtypes. (D) The proportion of
immunotherapy responders (Responder), predicted based on the TIDE algorithm, shows significant differences among the different subtypes. The
number of samples for each subtype is indicated in parentheses in the figure.

high PDIKIL expression correlated with poor prognosis, as
demonstrated by markedly reduced survival probabilities in all
0.003 and P < 0.001) (Figures 6C-E).
The high-expression group showed a steep decline in survival

cohorts (log-rank P
over 144 months, with risk tables confirming progressive
attrition in this subgroup. Furthermore, PDIK1L-high patients
displayed enhanced sensitivity to PARP inhibitors, evidenced
by significantly lower estimated IC50 values for Olaparib
(Figures 6F,G).  These
PDIKIL as a prognostic biomarker and a potential predictor

and Talazoparib findings underscore
of therapeutic response to PARP inhibition in C2-subtype

malignancies.

PDIK1L drives prostate cancer proliferation
and modulates PARP inhibitor sensitivity

Figures 7A,B first validated successful modulation of PDIKIL
expression in C4-2 and PC-3 via Western blot. Overexpression
(OE) of PDIKIL significantly elevated its protein levels compared
to vector controls, while knockdown (Sh1/Sh2) effectively
suppressed endogenous PDIK1L expression. Subsequent functional
assays (Figures 7C,D) demonstrated that PDIKIL-OE cells
exhibited accelerated proliferation, with OD values at 48-96 h
markedly higher than controls. Conversely, PDIK1L knockdown
suppressed proliferation in both lines. Figures 7E,F further
explored therapeutic implications, revealing that PDIKIL-
OE cells displayed reduced sensitivity to PARP inhibitors
(Olaparib and Talazoparib), with significantly higher IC50
PDIK1L knockdown sensitized cells to
these inhibitors, as shown by sharply decreased relative cell

values. In contrast,
viability.

Enzalutamide is a first-line standard of care for CRPC patients;
however, resistance to Enzalutamide remains a major clinical
challenge. Emerging evidence indicates that altered glycogen
metabolism contributes to Enzalutamide resistance. Our data
show that PDIKI1L not only promotes prostate cancer proliferation
but also enhances glycogen metabolism and improve sensitivity
to PARP inhibitors. Given this dual role, we hypothesized
that PDIK1L-driven metabolic reprogramming might create a
context where PARP inhibitor therapy could be potentiated
by co-treatment with Enzalutamide. Strikingly, combination
therapy with Enzalutamide and Olaparib synergistically reduced
viability in PDIK1L-OE cells, suggesting a strategy to overcome
PDIK1L-mediated resistance (HAS Score: 26.77 for PC-3, HAS
Score: 28.02 for C4-2; Figures 7G-J). Collectively, these results
confirm that PDIKIL drives prostate cancer proliferation and
modulates PARP inhibitor efficacy, positioning it as both a
therapeutic target and predictive biomarker for combinatorial
therapies.
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Discussion

Our study establishes metabolic subtyping as a powerful
tool to dissect the interplay between genomic instability and
therapeutic vulnerabilities in prostate cancer. The identification
of the C2 subtype, characterized by TP53 mutations, elevated
genomic instability, and sensitivity to PARP inhibitors, aligns
with emerging evidence that metabolic reprogramming creates
context-specific dependencies in cancer. Notably, the C2 subtype’s
association with HRR defects mirrors clinical observations in
HRR-altered tumors treated with PARP inhibitors (Dong et al.,
2024). This metabolic-genomic crosstalk is further supported by
recent proteogenomic studies revealing distinct molecular subtypes
in high-risk prostate cancer, where metabolic pathways like
branched-chain amino acid metabolism drive tumor progression
(Dong et al., 2024; Ou et al., 2025).

The interplay between metabolic heterogeneity and immune
evasion mechanisms in prostate cancer represents a critical axis
for therapeutic intervention. Our spatial transcriptomic analysis
revealed that TLS-enriched regions in C2 tumors exhibit elevated
inositol and glycogen metabolism, suggesting a metabolic-immune
symbiosis that sustains immune cell activity. This finding aligns with
emerging evidence that metabolic byproducts (e.g., lactate, inositol
derivatives) can modulate immune checkpoint expression and T-
cell exhaustion (Llibre et al., 2025; Burke et al., 2023). Notably, the
C2 subtype’s paradoxical association with both immunosuppressive
pathways (e.g., TGF-B) and favorable immunotherapy responses
may stem from TLS-mediated antigen presentation, which
counterbalances local immunosuppression. Recent studies in renal
cell carcinoma similarly demonstrate that TLS-associated metabolic
niches enhance PD-1 inhibitor efficacy by fostering cytotoxic T-cell
infiltration (Xu et al., 2020; Cabrita et al., 2020). These observations
underscore the need to evaluate metabolic-immune crosstalk when
designing combination therapies, particularly for C2 tumors where
metabolic inhibitors (e.g., glycogen synthase kinase inhibitors) could
potentiate immunotherapy by remodeling the immune landscape.

The prioritization of PDIKIL as a C2-specific biomarker
underscores its dual role in tumor proliferation and therapy
resistance. Mechanistically, PDIKIL may stabilize oncogenic
signaling by modulating DNA repair or metabolic adaptations,
akin to OTUDG6A, a deubiquitinase recently shown to stabilize
c-Myc and promote metabolic remodeling in prostate cancer
(Peng et al., 2022). Our finding that PDIKIL overexpression
confers PARP inhibitor resistance parallels studies demonstrating
that MYC-driven metabolic rewiring compromises therapeutic
efficacy (Peng et al., 2022; Schaub-Clerigue et al., 2025). Conversely,
PDIK1L knockdown sensitizes cells to PARP inhibition, suggesting
its potential as a therapeutic target. This dual functionality is
reminiscent of PGCla, which exerts non-cell autonomous tumor
suppression by regulating secreted factors like spermidine synthase,
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FIGURE 5

Spatial transcriptomic analysis reveals the association of TLS regions with metabolic pathway activation and C2 subtype enrichment. (A) Heatmap
displaying scores for modules C1, C2, and C3 in spatial transcriptomic sections. (B) Spatial distribution of TLS scores across the sections, with red areas
indicating enrichment of TLS structures. (C) Violin plot comparing the differences in subtype scores (C1-C3) between TLS and non-TLS regions. (D)
Spatial distribution maps of inositol metabolism (Inositoll), glycogen metabolism (Glycogenl), and glycosylation (Glycanl) pathways across the
sections, demonstrating higher metabolic scores in TLS-enriched regions, which suggests their association with metabolic reprogramming. (E) Dot
plot illustrating the average expression levels and proportions of three metabolic pathway scores in TLS and non-TLS regions. (F) Violin plot further
comparing the expression differences of the three metabolic scores between TLS and non-TLS regions.

highlighting the complexity of metabolic regulation in tumor-
microenvironment interactions (Schaub-Clerigue et al., 2025).
Beyond its role in PARPi resistance, PDIKIL may serve as
a master regulator linking metabolic reprogramming to DNA
repair dysregulation. Mechanistically, PDIK1Ls interaction with
nucleotide biosynthesis pathways could deplete dNTP pools,
exacerbating replication stress and genomic instability in C2
tumors—a phenomenon observed in BRCAIl-deficient cancers
treated with PARPi (Mateo et al, 2015). This dual capacity
to drive proliferation while impairing DNA repair mirrors the

Frontiers in Cell and Developmental Biology

oncogenic role of MYC, which similarly coordinates anabolic
metabolism and replication stress (Meena et al., 2024). Furthermore,
PDIK1Ds association with TP53 mutations suggests a feedforward
loop wherein metabolic dysregulation stabilizes mutant p53,
perpetuating genomic chaos (Liu et al., 2024). Targeting this axis
via PDIK1L inhibition could simultaneously curb proliferation and
restore HRR competency, offering a synthetic lethality approach
for C2 tumors. Future studies should delineate whether PDIKIL
directly modulates HRR components or acts through intermediary
metabolites, which would refine therapeutic strategies.
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FIGURE 6
The metabolic score defined by PDK1L can effectively predict patient prognosis and drug sensitivity. (A) By utilizing the intersection of upregulated
genes in the C2 subtype, univariate Cox regression, and the random forest algorithm, five key metabolism-related genes (PDK1L, PTK7, NIPA1, CTHRCI,
COL10A1) were identified to construct the metabolic score model. (B) In the TCGA-PRAD, GSE70770, and MSKCC cohorts, the expression levels of
PDK1L demonstrated good consistency with the subtype distribution (Meta cluster/C1-C3 grouping), and the Kappa value was significant, indicating
that the model exhibits stable typing ability across different cohorts. Kaplan—Meier survival analysis revealed that patients with high PDK1L expression
experienced significantly poorer prognoses in the TCGA-PRAD (C), GSE70770 (D), and MSKCC (E) cohorts. Drug sensitivity analysis indicated that the
low PDKI1L expression group displayed higher sensitivity (lower IC50) to drugs such as Tazobactam and Olaparib in the TCGA-PRAD (F) and GSE70770
(G) cohorts, suggesting that PDK1L may serve as a potential predictive biomarker.

The clinical implications of our work are twofold. First,  between enzalutamide and olaparib in overcoming PDIKIL-
metabolic subtyping offers a stratification framework to identify =~ mediated resistance aligns with trials exploring androgen receptor
patients most likely to benefit from PARP inhibitors, particularly ~ and PARP inhibitor combinations, emphasizing the need for
in HRR-deficient C2 tumors. This approach complements recent  biomarker-driven combinatorial strategies (Dalla Volta et al., 2025).
advances in prostate-specific membrane antigen (PSMA)-targeted While this study establishes a framework for metabolic
imaging, which improves diagnostic precision but lacks predictive ~ subtyping, several limitations must be acknowledged. First, the
value for therapy response (Su et al., 2025). Second, the synergy  reliance on retrospective cohorts may introduce selection bias;
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Functional Validation of PDIK1L in Prostate Cancer Proliferation and PARP Inhibitor Response. (A,B) Western blot analysis confirming PDIK1L
knockdown (Sh1/Sh2) and overexpression (OE) in C4-2 and PC-3 cells. GAPDH was used as loading control. (C,D) Cell proliferation curves of C4-2 and
PC-3 cells following PDIK1L overexpression or knockdown, measured by CCK-8 assay at indicated time points. (E,F) IC50 assays evaluating the effects
of Olaparib or talazoparib treatment in PDIK1L-modulated C4-2 and PC-3 cells. (G-J) Cell viability assays evaluating the effects of combined
Enzalutamide and Olaparib treatment in PDIK1L-modulated C4-2 and PC-3 cells, while synergy score plots based on the HSA model.
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prospective validation in diverse populations is essential. Second,
the functional role of PDIKIL in modulating DNA repair requires
deeper mechanistic investigation, particularly its interaction with
HRR components like BRCA1/2. Third, the clinical applicability of
our findings depends on scalable biomarker assays, such as ctDNA-
based monitoring of metabolic signatures.

Conclusion

In conclusion, our findings bridge metabolic diversity with
genomic instability in prostate cancer, positioning PDIKIL as a
pivotal node for therapeutic intervention. By integrating multi-
omics insights and functional validation, this work advances
precision oncology paradigms, offering a roadmap for targeting
metabolic vulnerabilities in high-risk disease.
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