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Metabolic subtyping reveals 
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regulator of progression and 
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prostate cancer
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Background: Prostate cancer demonstrates significant metabolic heterogeneity, 
but its role in therapeutic resistance and disease progression remains unclear. 
This study investigates the clinical implications of metabolic diversity and 
identifies potential biomarkers for precision oncology.
Methods: Multi-omics analyses of TCGA-PRAD and meta-cohorts classified 
tumors into three metabolic subtypes (C1, C2, C3). Functional studies utilized 
prostate cancer cell lines with genetic modulation of PDIK1L. Proliferation 
assays, protein expression analysis, and drug sensitivity evaluations were 
systematically performed.
Results: Metabolic subtyping delineated distinct molecular and clinical 
profiles. The C2 subtype demonstrated elevated genomic instability and 
heightened sensitivity to PARP inhibitors, characterized by enrichment of 
glycogen metabolism and TP53-driven oncogenic pathways. Integrative multi-
omics and random survival forest analysis prioritized PDIK1L as a C2-
specific biomarker, where its overexpression accelerated tumor proliferation 
and rewired metabolic programs to confer resistance to PARP inhibitors. 
Conversely, PDIK1L knockdown suppressed proliferation and sensitized cells to 
therapy, underscoring its role as a dual-functional regulator. Mechanistically, 
PDIK1L interacted with DNA repair and metabolic adaptation pathways, 
creating a permissive environment for therapeutic resistance. Combinatorial 
therapy with Enzalutamide and PARP inhibitors effectively reversed PDIK1L-
mediated resistance, restoring drug sensitivity across preclinical models. 
Independent validation in multi-institutional cohorts confirmed the robustness 
of metabolic subtyping and PDIK1L’s prognostic value in predicting survival and 
treatment outcomes.
Discussion: Metabolic stratification reveals the C2 subtype as a high-
risk prostate cancer group with unique therapeutic vulnerabilities. PDIK1L
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emerges as a dual-functional biomarker driving tumor progression and 
modulating treatment efficacy, offering a novel target for precision therapeutic 
strategies.

KEYWORDS

prostate cancer, metabolic subtyping, PARP inhibitor, genomic instability, durg 
resistance 

Introduction

Prostate cancer is the second most common malignancy among 
men globally, with the number of new cases projected to rise 
from 1.4 million in 2020 to 2.9 million by 2040 (Bray et al., 
2024; James et al., 2024). This disease is characterized by 
significant clinical and molecular heterogeneity (Tang et al., 2022; 
Han et al., 2022; Dai et al., 2024). While advancements in androgen 
deprivation therapy, precision-targeted therapy, and radiotherapy 
have improved patient outcomes, treatment resistance and disease 
progression remain critical challenges (Li et al., 2023; He et al., 
2022). Emerging evidence highlights metabolic reprogramming 
as a hallmark of cancer, yet the role of metabolic diversity in 
prostate cancer has not been fully explored (Ward and Thompson, 
2012; Allison et al., 2017). Tumor cells exhibit dynamic changes 
in nutrient utilization, including glycogen synthesis, glycolysis, 
glutaminolysis, and lipid metabolism, to promote proliferation, 
metastasis, and adapt to microenvironment stress (Huang et al., 
2025; Perez et al., 2024; Zhou et al., 2024). This metabolic 
plasticity drives tumor evolution and contributes to inter- and 
intra-tumor heterogeneity, complicating therapeutic stratification. 
Importantly, metabolic heterogeneity may underpin differential 
responses to therapies, including radiotherapy, targeted therapy, 
and androgen deprivation therapy (Venkatraman et al., 2024; 
Yao et al., 2024; Cardoso et al., 2021). By analyzing the metabolic 
profiles of prostate cancer subtypes, researchers can identify 
actionable targets that align with clinical phenotypes, providing 
a framework for refining prognostic models and personalizing 
therapeutic interventions.

The metabolic diversity in cancer is rooted in genetic, 
epigenetic, and microenvironmental factors that shape tumor 
behavior (You et al., 2023). For example, mutations in PTEN, 
TP53, and MYC drive distinct metabolic programs, while 
hypoxia and nutrient scarcity within the tumor microenvironment 
(TME) compel metabolic adaptations (Venkatraman et al., 2024; 
Morris et al., 2019; Chen et al., 2018). Stromal cells, immune 
infiltration, and extracellular matrix components further modulate 
these metabolic interactions, creating a milieu conducive to 
therapeutic resistance (Lyu et al., 2025). For instance, lipid-
rich niches may protect cancer stem cells from oxidative stress 
(Snaebjornsson et al., 2020), whereas lactate secretion by glycolytic 
tumors can suppress anti-tumor immunity (Chaudagar et al., 2023). 
Moreover, androgen receptor signaling orchestrates metabolic 
pathways such as fatty acid synthesis and mitochondrial respiration, 
linking hormone dependency with metabolic dependency 
(Zadra et al., 2019; Han et al., 2018). These intricate interactions 
suggest that metabolic heterogeneity not only plays a bystander role 
but also acts as a determinant of clinical trajectories. Therefore, 
integrating metabolomics, transcriptomics, and genomics data may 

unveil biomarkers for risk stratification and identify metabolic nodes 
susceptible to pharmacological inhibition.

Translating the metabolic diversity of prostate cancer into 
actionable therapeutic strategies could revolutionize clinical 
outcomes. This research analyzes how metabolic heterogeneity 
impacts treatment resistance and progression in prostate cancer, 
highlighting the necessity of integrating metabolic subtypes with 
genomic and clinical data. This approach refines risk stratification 
and uncovers context-specific vulnerabilities, linking metabolic 
heterogeneity with precision oncology. Consequently, it aims to 
guide improvements in patient survival and quality of life.

Methods and materials

Row data collection and processing

We integrated three independent cohorts with complete 
expression profiles and clinical follow-up data, including the 
TCGA PRAD cohort (n = 495, from the GDC platform: 
https://portal.gdc.cancer.gov/), the MSKCC Prostate Cancer 
Genomics Project (MSKCC, n = 140, https://cbio.mskcc.org/), 
and the GSE70770 cohort (n = 203).The expression matrices 
of all samples were uniformly annotated according to their 
respective database platforms and converted to TPM (transcripts 
per million) format. We used recurrence-free survival (RFS) 
as the primary endpoint to evaluate the clinical outcomes 
of PCa patients. Batch effects were removed by ‘sva’ package 
(Leek et al., 2012) (Supplementary Figure S1A). 

Non-negative matrix factorization (NMF) 
clustering and nearest template prediction 
(NTP)

Drawing on earlier research, we created a compilation of 2,752 
genes associated with metabolism to use as input for NMF clustering 
(Possemato et al., 2011). Prior to executing the NMF, we performed 
a screening procedure that entailed the elimination of candidate 
genes exhibiting low median absolute deviation (MAD) values 
(MAD ≤0.5) among PCa patients. This procedure encompassed 
Cox regression analysis, the identification of shared genes from 
three different cohorts, and the ultimate selection of genes that 
demonstrated high variability (MAD >0.5) along with notable 
prognostic significance (P < 0.05) for clustering samples. The ideal 
number of clusters was established by pinpointing the k value at 
which the co-phenotypic correlation coefficient started to decrease 
(Gaujoux and Seoighe, 2010; Brunet et al., 2004). We confirmed 
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the assignment of subtypes utilizing a methodology based on t-
distributed stochastic neighbor embedding (t-SNE) with the mRNA 
expression data from the previously mentioned metabolic genes.

In order to predict patient subtypes across different cohorts, 
we began by identifying particular genes that showed notable 
differences in expression when comparing all possible pairs among 
the three subtypes (Supplementary Table S1). The threshold for 
these differences was established with an adjusted P-value. We then 
chose the top 30 genes for each subtype to create the feature set for 
subtype prediction. Utilizing this feature set, we applied the NTP 
algorithm to reassign subtypes within the validation cohort. 

Gene set variation analysis

To evaluate metabolic function and the progression of disease 
quantitatively, we applied the Gene Set Variation Analysis (GSVA) 
approach to carry out pathway enrichment scoring on the samples 
(Hoshida et al., 2009). The gsva package (Hanzelmann et al., 2013) 
was utilized in the analysis of the standardized transcriptomic data. 
Following this, the limma package was used to conduct differential 
analysis on the GSVA scores of 115 metabolic labels, applying criteria 
|log2FC|>0.2 and a Benjamini–Hochberg adjusted P-value <0.05. 

Mutation analysis

To comprehensively assess the genomic instability and immune-
related features of PCa patients within various molecular subtypes 
from TCGA, we developed an all-encompassing analytical pipeline 
that includes mutation profiles, tumor mutation burden (TMB) 
analysis, and copy number variation (CNV) evaluation. MAF 
format of mutation data was downloaded from FireBrowse (http://
firebrowse.org/), maftools and ComplexHeatmap package was 
employed to generate an OncoPrint visualization, showcasing the 
types of mutations and their distribution across samples from 
each subtype. Following that, we used maftools to compute TMB. 
To investigate the co-mutation relationships of key driver genes 
among different subtypes of PCa, we utilized the somaticInteractions 
() function from the maftools package, focusing on 24 high-
frequency mutated genes. This function was employed to calculate 
the co-occurrence and mutual exclusivity of gene pairs within the 
three subtypes (C1-C3). Furthermore, to systematically assess the 
extent of functional abnormalities in key cancer signaling pathways 
across various subtypes, we integrated common tumor-associated 
pathways (including RTK-RAS, WNT, NOTCH, PI3K, TP53, MYC, 
etc.) and employed the OncogenicPathways () function to identify 
the impact of each pathway within the samples. 

Evaluation of tumor immune 
microenvironment, immunomodulator 
compilation and immunotherapy efficacy

To systematically evaluate the immune characteristics of 
different subtypes of PCa, we conducted an in-depth analysis of 
mRNA expression profiles related to immune regulation, integrating 
multi-omics alterations, including methylation modifications, 

copy number amplifications, and gene deletions. This analysis 
builds upon and extends the research framework established 
in previous literature (Thorsson et al., 2018). Additionally, 
starting from 21 known immune-related gene sets, we scored 
and visualized the immune pathway activities of each subtype 
sample using the GSVA algorithm integrated within the MOVICS 
package (Meng et al., 2021; Lu et al., 2021). To further 
investigate the mechanisms of tumor immune evasion and the 
potential responsiveness to immunotherapy, we downloaded 
the TIDE scores of PCa samples from the TIDE platform 
(https://tide.dfci.harvard.edu/) to quantify the extent of immune 
dysfunction and immune exclusion, thereby providing a basis for 
clinical decision-making in immunotherapy. 

Spatial transcriptomics data processing and 
module scoring analysis

The spatial transcriptomics data were acquired using the 10x 
Genomics platform (https://www.10xgenomics.com/). The raw data, 
which includes the gene expression matrix and tissue images, 
were downloaded from the official 10x Genomics website and 
imported to create a Seurat object using the Load10X_Spatial () 
function from the Seurat package. Based on the group-specific 
differentially expressed genes and functional modules defined 
earlier, we employed the AddModuleScore () function for the 
spatial visualization of different groups. The TLS (Tertiary Lymphoid 
Structure) genes can be sourced from our previous publication 
(Xu et al., 2023; Xu et al., 2020). The scoring results were 
visualized spatially using the SpatialFeaturePlot () function, while 
the expression distribution differences for each score in TLS and 
non-TLS regions were depicted using the VlnPlot () function. 

Random forest model

In order to pinpoint feature genes that may have diagnostic 
or subtyping relevance, we performed an evaluation of feature 
significance utilizing the Random Forest model. The classification 
model was developed using the R package randomForest, with a total 
of 2000 decision trees configured. To assess the stability of the model, 
we generated error curves. From the MeanDecreaseAccuracy and 
MeanDecreaseGini indices, we identified the top 20 crucial genes 
that played a significant role in classification for further analysis and 
validation. 

Cell lines and cell culture

C4-2 and PC-3 were obtained from the Shanghai Cell Bank of 
Chinese Academy of Sciences (Shanghai, China). Both cell lines were 
maintained in RPMI-1640 medium (Gibco) supplemented with 10% 
fetal bovine serum (FBS; Gibco) and 1% penicillin-streptomycin 
(Sigma) at 37 °C in a humidified atmosphere containing 5% CO2. 
Culture medium was refreshed every 2–3 days, and cells were 
subcultured using 0.25% trypsin-EDTA when reaching 80%–90% 
confluence. 
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Protein extraction and Western blot 
analysis

Cultured cells were washed twice with ice-cold PBS and lysed 
using RIPA buffer (Beyotime) containing 1× protease/phosphatase 
inhibitor cocktail (Thermo Scientific). The lysates were centrifuged 
at 12,000 × g for 15 min at 4 °C, and protein concentrations were 
determined using a BCA assay kit. Equal amounts of protein 
were separated by 10% SDS-PAGE and transferred onto PVDF 
membranes (Millipore). After blocking with 5% non-fat milk in 
TBST for 1 h at room temperature, membranes were incubated 
overnight at 4 °C with primary antibodies: anti-PDIK1L (Signalway) 
and anti-GAPDH (Proteintech). Following three washes with 
TBST, membranes were probed with HRP-conjugated secondary 
antibodies (Proteintech) for 1 h at room temperature. Protein bands 
were visualized using ECL Prime substrate and imaged with a 
ChemiDoc MP imaging system. 

Plasmid transfection

For PDIK1L knockdown or overexpression experiments, C4-2 and 
PC-3 cells were seeded in 6-well plates at 40%–50% confluence prior to 
transfection. Transfection complexes were prepared by mixing 2.5 μg 
of plasmid DNA (pCMV-PDIK1L for overexpression or pLKO.1-
shPDIK1L for knockdown) with 5 μL Lipofectamine 3000 reagent 
(Invitrogen) in Opti-MEM reduced serum medium (Gibco), following 
the manufacturer’s protocol. Two different shRNA constructs 
were used: shPDIK1L#1: TGGGCGAATGAAACAACTGAT; 
shPDIK1L#2: GAAGAACCTGTCAGTGTAAAC. A non-targeting 
shRNA was used as a control. Following viral transduction, stable 
polyclonal cell populations were selected with puromycin. 

Cell proliferation assay

PC-3 and C4-2 cells were seeded in 96-well plates at a density 
of 1,000 cells per well in 100 μL. After 24 h of attachment, cell 
proliferation was monitored daily for 4 consecutive days using a 
CCK-8 kit (Beyotime). At each time point, 10 μL CCK-8 reagent was 
added to each well and incubated at 37 °C for 2 h. Absorbance was 
measured at 450 nm using a microplate reader. Blank control wells 
(medium + CCK-8 without cells) were included for background 
subtraction. Cell viability curves were generated by normalizing 
daily absorbance values to the Day 0 reading. Each experimental 
group contained 5 replicate wells. 

Statistical analysis

Statistical analyses were performed using GraphPad Prism 6.0 
software and R V.4.2.3. Data from at least three independent 
biological replicates were normalized to respective controls and 
expressed as mean ± standard deviation (SD). For comparisons 
between two groups (e.g., PDIK1L knockdown vs. control, or 
overexpression vs. empty vector), a two-tailed unpaired Student’s 
t-test was applied. Comparisons across multiple groups (e.g., time-
dependent proliferation assays or multi-dose treatments) were 

analyzed by one-way ANOVA followed by Tukey’s post hoc test for 
pairwise comparisons. In all analyses, statistical significance was 
defined as P < 0.05 (∗), ∗P < 0.01 (∗∗), P < 0.001 (∗∗∗), and P < 0.0001 
(∗∗∗∗).

Results

Metabolic heterogeneity implicated diverse 
clinical outcomes in prostate cancer 
microenvironment

According to cophenetic coefficient and prior articles (Meng et al., 
2021), we identified three clusters as the optimized cluster 
number (Supplementary Figure S1B), and all of the patients 
were divided into three metabolic populations based on NMF 
(Supplementary Figure S1C). Metabolic pathway profiling identified 
three distinct clusters (C1, C2, C3), each enriched with specific 
pathways (Figure 1A). For instance, Pyrimidine Metabolism and 
Pyrimidine Biosynthesis were enriched in C1, Glycogen Biosynthesis 
in C2, while pathways such as Drug Metabolism by Cytochrome 
P450 were specific to C3. Further analysis revealed that these 
metabolic clusters are associated with different clinicopathological 
features in PCa (Figure 1B). We further evaluated the prognostic 
value of the three subtypes for prostate cancer patients across 
multiple cohorts. In the Meta cohort, significant RFS were observed 
among the three subtype groups (P = 0.047), with the C2 subtype 
demonstrating the poorest prognosis. This trend was consistently 
replicated in independent validation cohorts, including TCGA-PRAD 
(P = 0.008), MSKCC (P < 0.001), and GSE70770 (P < 0.001), indicating 
that the C2 subtype is consistently associated with poor survival 
outcomes, while the C1 subtype exhibited a more favorable survival 
advantage (Figure 1C). These results support the strong prognostic 
predictive capability of our constructed molecular classification across 
multiple independent cohorts. 

Genetic and genomic features of metabolic 
clusters in prostate cancer

We performed a comprehensive analysis of the genetic features 
associated with distinct metabolic clusters in prostate cancer. 
Our analysis of mutation distributions revealed that TP53, TTN, 
SPOP, and MUC16 were the most frequently mutated genes, with 
varying mutation rates across different clusters (Figure 2A). To 
further explore the co-mutation patterns of driver genes across 
different PCa subtypes, we analyzed the co-occurrence and mutual 
exclusivity of key gene pairs. The results indicated that in the 
C1 subtype, TP53 and SPOP exhibited a significant mutually 
exclusive mutation relationship (P < 0.05), while FOXA1 and 
ARID1A displayed a notable tendency for co-mutation. In the C2 
subtype, despite the overall low mutation burden, a co-mutation 
trend between SPOP and ATM was still observed (P < 0.1). In 
contrast, the C3 subtype exhibited a higher frequency of mutations 
in driver genes such as TP53, SPOP, and FOXA1, accompanied 
by significant co-mutation patterns, including the combinations 
of FOXA1 with MED12 and TP53 with ATM (P < 0.05). These 
findings suggest that the three subtypes exhibit distinct differences 
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FIGURE 1
Metabolic Reprogramming Characteristics and Prognostic Significance of Metabolic Subtyping in Prostate Cancer. (A) The activity of 53 metabolic 
pathways was quantified using the ssGSEA method, revealing functional differences among the three subtypes (C1–C3) at the metabolic level. Each 
row in the figure represents a distinct metabolic pathway, while each column corresponds to a sample. Red indicates upregulation of pathway activity, 
whereas blue indicates downregulation. The results indicate significant differences among the subtypes in pathways such as purine metabolism, fatty 
acid elongation, glycogen synthesis, and steroid biosynthesis, suggesting that each subtype has a unique metabolic reprogramming pattern. (B) The 
distribution of different metabolic subtypes was analyzed based on clinicopathological characteristics (T stage, Gleason score, age, and recurrence 
status). The findings revealed that the C2 subtype was enriched in T3/T4 stages, high Gleason scores, older age groups, and recurrent populations. (C)
Kaplan-Meier analysis of recurrence-free survival (RFS) for metabolic subtypes was performed in four independent cohorts: Meta, TCGA-PRAD, 
MSKCC, and GSE70770.
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in their mutational driving mechanisms, with the C3 subtype 
demonstrating stronger mutational synergy, indicating a more 
complex genetic background and tumor evolutionary pathway. 
(Figure 2B). Using the Kruskal–Wallis’s test, we detected significant 
variation in TMB among the three clusters (C1, C2, C3) (P = 1.6e-06) 
(Figure 2C). We also evaluated the fraction of FGA and the fraction 
of FGL/G. Compared to C2 and C3, C1 exhibited a higher FGA, 
indicating more extensive genomic instability. Similarly, FGL/G 
analysis showed that C1 had a greater proportion of genomic losses 
or gains, further highlighting its genomic instability (Figure 2D). 
We evaluated the enrichment characteristics of gene mutations in 
typical cancer-related signaling pathways across various subtypes of 
prostate cancer. The results revealed that the C2 subtype exhibited 
a significantly higher frequency of pathway alterations, involving 
multiple driver pathways such as RTK-RAS, WNT, NOTCH, Hippo, 
PI3K, MYC, TGF-β, NRF2, and TP53, which suggests greater 
genomic instability in this subtype. Over 50% of the samples were 
found to simultaneously affect five or more pathways. In contrast, 
the pathway alterations in the C1 and C3 subtypes were relatively 
concentrated and less extensive, primarily focusing on the TP53 and 
TGF-β pathways. This indicates that the C2 subtype may represent a 
more heterogeneous and aggressive molecular subtype (Figure 2E). 
These findings underscore the unique genetic and genomic features 
associated with different metabolic profiles in prostate cancer and 
suggest potential therapeutic targets based on the integration of 
metabolic and genetic characteristics.

Impact of metabolic subtypes on PARP 
inhibitor sensitivity in prostate cancer

Genomic analysis of homologous recombination repair (HRR)-
related genes across three metabolic subtypes (C1, C2, and C3) revealed 
distinct mutation patterns in prostate cancer cohorts. C2 subtypes 
identified a higher alteration frequency of 11.45% (19/166), enriched in 
nonsense mutations and splice site variants, suggesting compromised 
DNA repair mechanisms (Figure 3A). Metabolic subtyping stratified 
tumors into C1, C2 and C3 with C2 exhibiting significantly 
enhanced sensitivity to PARP inhibitors. In TCGA-PRAD, C2 
tumors demonstrated lower IC50 values for olaparib and talazoparib, 
supported by robust Kruskal–Wallis tests (Figure 3B). Similarly, the 
meta-cohort highlighted superior olaparib and talazoparib efficacy 
in C2, alongside pronounced bicalutamide sensitivity (Figure 3C). 
These results emphasize that metabolic subtyping (C2) correlates with 
HRR gene alterations and predicts enhanced vulnerability to PARP 
inhibitors, offering a biomarker-driven framework for targeting DNA 
repair-defective prostate cancers. 

Different immune landscape and 
immunotherapy response among the three 
groups

We further analyzed the activities of immune pathways, the 
expression characteristics of immune regulatory factors, and 
their potential responses to immunotherapy in three subtypes 
of prostate cancer. The results of the GSVA analysis revealed 
significant differences among the subtypes across multiple classic 

tumor-related immune pathways. The C2 subtype demonstrated 
notable upregulation in pathways such as Cell Cycle, MYC, 
TP53, PI3K, and RTK-RAS, indicating a higher level of pathway 
activation (Figure 4A). In conjunction with previous research 
(Thorsson et al., 2018), we assessed the expression differences 
of three categories of immune modulators (co-stimulatory, co-
inhibitory, ligand/receptor, etc.) and further integrated data on copy 
number alterations (SCNA), methylation, and miRNA regulation 
for expression regulation analysis. Various immune modulators 
(such as PDCD1LG2, BTN3A1, CXCL10, VEGFA, etc.) exhibited 
significant differences across the different subtypes, particularly 
with elevated expression of certain immune suppression-related 
genes in the C2 subtype. These genes showed a negative correlation 
with methylation levels, suggesting potential epigenetic regulation 
(Figure 4B). The C2 and C3 subtypes exhibited significant 
enhancements across multiple immune function modules, including 
the complement system, NK cell function, leukocyte function, 
antigen presentation, chemokines, and cytotoxicity modules. 
In contrast, the C1 subtype generally demonstrated a trend of 
suppression, as illustrated in Figure 4C. By further integrating the 
TIDE immunotherapy prediction score, we found that patients with 
C2 and C3 subtypes exhibited a higher proportion of responders to 
immunotherapy across multiple independent cohorts. In contrast, 
patients with the C1 subtype were predominantly found in the non-
responder group (Figure 4D), indicating their reduced potential for 
responding to immunotherapy.

Presence of TLS contributed to the high 
immunotherapy response rate of C2

Our preliminary research found that, despite the high 
activation of immunosuppressive pathways such as TGF-β and 
the infiltration of numerous immune cells in C2 subtype prostate 
cancer samples, these samples still exhibited a favorable response 
rate to immunotherapy. This seemingly paradoxical phenomenon 
suggests that specific immune regulatory mechanisms may be at 
play in this subtype. Further analysis revealed a significant increase 
in B-cell infiltration in the C2 subtype, indicating a potential 
close correlation with the formation of tumor-associated TLS. 
To investigate the association between the functional states of 
different regions in spatial transcriptomics and the structure of 
TLS, we evaluated the spatial distribution of three key functional 
modules (C1–C3) and TLS-related scores in tumor tissue sections 
(Figures 5A,B). The results indicated that the C2 module score was 
significantly elevated in TLS-enriched regions, suggesting a close 
relationship between this functional module and the formation 
and maintenance of TLS (Figure 5C). To further explore the 
metabolic characteristics of the TLS region, we introduced the 
Inositol (inositol metabolism), Glycogen (glycogen metabolism), 
and Glycan (glycosylation pathway) scores, which were displayed on 
tissue sections (Figure 5D). The results demonstrated a significant 
enhancement trend of these three metabolic scores in TLS-enriched 
regions. Further comparison validated the elevated scores of 
inositol metabolism in TLS region (Figures 5E,F), suggesting that 
inositol metabolism pathway may play a crucial role in the TLS 
microenvironment, potentially involved in maintaining immune 
cell functions and local immune regulation.

Frontiers in Cell and Developmental Biology 06 frontiersin.org

https://doi.org/10.3389/fcell.2025.1674844
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Wang et al. 10.3389/fcell.2025.1674844

FIGURE 2
Genomic Alteration Characteristics of Different Metabolic Subtypes in Prostate Cancer. (A) The driver gene mutation landscape of three metabolic 
subtypes (C1–C3) in the TCGA-PRAD cohort is presented. The top 30 genes exhibiting the highest mutation frequencies, along with their respective 
mutation types, are displayed. These mutation types include missense mutations, splice site mutations, nonsense mutations, frameshift 
insertions/deletions, and multi-site mutations. (B) Co-mutation and mutual exclusivity relationships of driver genes across different subtypes are 
illustrated. The color intensity in the figure represents -log10 (Fisher’s test P-value), with '+' and '•' indicating P < 0.05 and P < 0.1, respectively. (C) The 
distribution of tumor mutation burden (TMB) across the three subtypes is shown (Kruskal–Wallis test P = 1.6e−06). (D) Copy number variation analysis: 
The left panel displays the fraction of the genome altered (FGA), while the right panel illustrates the proportions of genome loss (FGL) and genome gain 
(FGG) (∗∗∗P < 0.001). (E) Mutation enrichment analysis of the three subtypes across 10 classic cancer-related signaling pathways, including RTK-RAS, 
WNT, NOTCH, TP53, and TGF-beta, is provided.
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FIGURE 3
Illustration of the mutation characteristics of the DNA damage repair (DDR) pathway and the analysis of drug sensitivity predictions across different 
metabolic subtypes. (A) This panel displays the mutation profiles of the C1, C2, and C3 subtypes within the TCGA-PRAD cohort, focusing on 
DDR-related genes such as ATM, BRCA1/2, CHEK2, and PALB2. The mutation types include missense mutations, nonsense mutations, frameshift 
insertions/deletions, and splice site mutations. (B,C) The drug sensitivity prediction results demonstrate the varying responses of the three subtypes to 
several clinically relevant drugs, specifically Olaparib, Bicalutamide, and Talazoparib. These results were assessed based on the Meta cohort (B) and the 
TCGA-PRAD cohort (C), with the vertical axis representing the predicted IC50 values. Lower IC50 values indicate a higher sensitivity to PARP inhibitors 
and anti-androgen therapies. Statistical testing was conducted using the Kruskal-Walli’s test.

PDIK1L defines a high-risk C2 subtype with 
poor survival and enhanced PARP inhibitor 
sensitivity

Through integrative analysis, candidate genes were prioritized 
using a Venn diagram (Figure 6A) approach combining 
three strategies: (1) upregulated genes in the C2 subtype 
(Supplementary Table S2), (2) monovariate Cox regression for 

survival-associated genes (P < 0.05) (Supplementary Table S3), 
and (3) feature selection via random forest algorithm 
(Supplementary Figures S2A,B). This multi-step screening 
identified PDIK1L as a key candidate, which was consistently 
linked to the C2 subtype across three independent cohorts. 
Patients classified into the C2 subtype exhibited significantly 
elevated PDIK1L expression (Kappa consistency: 0.311–0.506, 
all P < 0.001) (Figure 6B). Survival analyses revealed that 
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FIGURE 4
Distribution of immune pathway activation, immune regulatory factor expression, and immunotherapy response characteristics across different 
subtypes. (A) GSVA enrichment analysis revealed significant differences in the activation levels of multiple key immune and signaling pathways among 
the three subtypes (C1, C2, C3). Statistical significance was assessed using the Kruskal-Walli’s test, with ∗∗p < 0.01∗∗ and ∗∗∗p < 0.001∗∗. (B) The 
expression characteristics of key immune regulatory factors, including co-stimulation (Co-stim), co-inhibition (Co-inh), and ligand-receptor 
(Ligand-Receptor) interactions, are presented, integrating multi-omics information such as mRNA expression, DNA methylation, and copy number
 (Continued)
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FIGURE 4 (Continued)

amplification/deletion frequency. (C) The heatmap illustrates the differential distribution of various immune function modules (e.g., the 
complement system, NK cell function, chemokines, antigen processing and presentation, etc.) across different subtypes. (D) The proportion of 
immunotherapy responders (Responder), predicted based on the TIDE algorithm, shows significant differences among the different subtypes. The 
number of samples for each subtype is indicated in parentheses in the figure.

high PDIK1L expression correlated with poor prognosis, as 
demonstrated by markedly reduced survival probabilities in all 
cohorts (log-rank P = 0.003 and P < 0.001) (Figures 6C–E). 
The high-expression group showed a steep decline in survival 
over 144 months, with risk tables confirming progressive 
attrition in this subgroup. Furthermore, PDIK1L-high patients 
displayed enhanced sensitivity to PARP inhibitors, evidenced 
by significantly lower estimated IC50 values for Olaparib 
and Talazoparib (Figures 6F,G). These findings underscore 
PDIK1L as a prognostic biomarker and a potential predictor 
of therapeutic response to PARP inhibition in C2-subtype 
malignancies.

PDIK1L drives prostate cancer proliferation 
and modulates PARP inhibitor sensitivity

Figures 7A,B first validated successful modulation of PDIK1L 
expression in C4-2 and PC-3 via Western blot. Overexpression 
(OE) of PDIK1L significantly elevated its protein levels compared 
to vector controls, while knockdown (Sh1/Sh2) effectively 
suppressed endogenous PDIK1L expression. Subsequent functional 
assays (Figures 7C,D) demonstrated that PDIK1L-OE cells 
exhibited accelerated proliferation, with OD values at 48–96 h 
markedly higher than controls. Conversely, PDIK1L knockdown 
suppressed proliferation in both lines. Figures 7E,F further 
explored therapeutic implications, revealing that PDIK1L-
OE cells displayed reduced sensitivity to PARP inhibitors 
(Olaparib and Talazoparib), with significantly higher IC50 
values. In contrast, PDIK1L knockdown sensitized cells to 
these inhibitors, as shown by sharply decreased relative cell 
viability.

Enzalutamide is a first-line standard of care for CRPC patients; 
however, resistance to Enzalutamide remains a major clinical 
challenge. Emerging evidence indicates that altered glycogen 
metabolism contributes to Enzalutamide resistance. Our data 
show that PDIK1L not only promotes prostate cancer proliferation 
but also enhances glycogen metabolism and improve sensitivity 
to PARP inhibitors. Given this dual role, we hypothesized 
that PDIK1L-driven metabolic reprogramming might create a 
context where PARP inhibitor therapy could be potentiated 
by co-treatment with Enzalutamide. Strikingly, combination 
therapy with Enzalutamide and Olaparib synergistically reduced 
viability in PDIK1L-OE cells, suggesting a strategy to overcome 
PDIK1L-mediated resistance (HAS Score: 26.77 for PC-3, HAS 
Score: 28.02 for C4-2; Figures 7G–J). Collectively, these results 
confirm that PDIK1L drives prostate cancer proliferation and 
modulates PARP inhibitor efficacy, positioning it as both a 
therapeutic target and predictive biomarker for combinatorial 
therapies.

Discussion

Our study establishes metabolic subtyping as a powerful 
tool to dissect the interplay between genomic instability and 
therapeutic vulnerabilities in prostate cancer. The identification 
of the C2 subtype, characterized by TP53 mutations, elevated 
genomic instability, and sensitivity to PARP inhibitors, aligns 
with emerging evidence that metabolic reprogramming creates 
context-specific dependencies in cancer. Notably, the C2 subtype’s 
association with HRR defects mirrors clinical observations in 
HRR-altered tumors treated with PARP inhibitors (Dong et al., 
2024). This metabolic-genomic crosstalk is further supported by 
recent proteogenomic studies revealing distinct molecular subtypes 
in high-risk prostate cancer, where metabolic pathways like 
branched-chain amino acid metabolism drive tumor progression 
(Dong et al., 2024; Ou et al., 2025).

The interplay between metabolic heterogeneity and immune 
evasion mechanisms in prostate cancer represents a critical axis 
for therapeutic intervention. Our spatial transcriptomic analysis 
revealed that TLS-enriched regions in C2 tumors exhibit elevated 
inositol and glycogen metabolism, suggesting a metabolic-immune 
symbiosis that sustains immune cell activity. This finding aligns with 
emerging evidence that metabolic byproducts (e.g., lactate, inositol 
derivatives) can modulate immune checkpoint expression and T-
cell exhaustion (Llibre et al., 2025; Burke et al., 2023). Notably, the 
C2 subtype’s paradoxical association with both immunosuppressive 
pathways (e.g., TGF-β) and favorable immunotherapy responses 
may stem from TLS-mediated antigen presentation, which 
counterbalances local immunosuppression. Recent studies in renal 
cell carcinoma similarly demonstrate that TLS-associated metabolic 
niches enhance PD-1 inhibitor efficacy by fostering cytotoxic T-cell 
infiltration (Xu et al., 2020; Cabrita et al., 2020). These observations 
underscore the need to evaluate metabolic-immune crosstalk when 
designing combination therapies, particularly for C2 tumors where 
metabolic inhibitors (e.g., glycogen synthase kinase inhibitors) could 
potentiate immunotherapy by remodeling the immune landscape.

The prioritization of PDIK1L as a C2-specific biomarker 
underscores its dual role in tumor proliferation and therapy 
resistance. Mechanistically, PDIK1L may stabilize oncogenic 
signaling by modulating DNA repair or metabolic adaptations, 
akin to OTUD6A, a deubiquitinase recently shown to stabilize 
c-Myc and promote metabolic remodeling in prostate cancer 
(Peng et al., 2022). Our finding that PDIK1L overexpression 
confers PARP inhibitor resistance parallels studies demonstrating 
that MYC-driven metabolic rewiring compromises therapeutic 
efficacy (Peng et al., 2022; Schaub-Clerigue et al., 2025). Conversely, 
PDIK1L knockdown sensitizes cells to PARP inhibition, suggesting 
its potential as a therapeutic target. This dual functionality is 
reminiscent of PGC1α, which exerts non-cell autonomous tumor 
suppression by regulating secreted factors like spermidine synthase, 
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FIGURE 5
Spatial transcriptomic analysis reveals the association of TLS regions with metabolic pathway activation and C2 subtype enrichment. (A) Heatmap 
displaying scores for modules C1, C2, and C3 in spatial transcriptomic sections. (B) Spatial distribution of TLS scores across the sections, with red areas 
indicating enrichment of TLS structures. (C) Violin plot comparing the differences in subtype scores (C1–C3) between TLS and non-TLS regions. (D)
Spatial distribution maps of inositol metabolism (Inositol1), glycogen metabolism (Glycogen1), and glycosylation (Glycan1) pathways across the 
sections, demonstrating higher metabolic scores in TLS-enriched regions, which suggests their association with metabolic reprogramming. (E) Dot 
plot illustrating the average expression levels and proportions of three metabolic pathway scores in TLS and non-TLS regions. (F) Violin plot further 
comparing the expression differences of the three metabolic scores between TLS and non-TLS regions.

highlighting the complexity of metabolic regulation in tumor-
microenvironment interactions (Schaub-Clerigue et al., 2025).

Beyond its role in PARPi resistance, PDIK1L may serve as 
a master regulator linking metabolic reprogramming to DNA 
repair dysregulation. Mechanistically, PDIK1L’s interaction with 
nucleotide biosynthesis pathways could deplete dNTP pools, 
exacerbating replication stress and genomic instability in C2 
tumors—a phenomenon observed in BRCA1-deficient cancers 
treated with PARPi (Mateo et al., 2015). This dual capacity 
to drive proliferation while impairing DNA repair mirrors the 

oncogenic role of MYC, which similarly coordinates anabolic 
metabolism and replication stress (Meena et al., 2024). Furthermore, 
PDIK1L’s association with TP53 mutations suggests a feedforward 
loop wherein metabolic dysregulation stabilizes mutant p53, 
perpetuating genomic chaos (Liu et al., 2024). Targeting this axis 
via PDIK1L inhibition could simultaneously curb proliferation and 
restore HRR competency, offering a synthetic lethality approach 
for C2 tumors. Future studies should delineate whether PDIK1L 
directly modulates HRR components or acts through intermediary 
metabolites, which would refine therapeutic strategies.
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FIGURE 6
The metabolic score defined by PDK1L can effectively predict patient prognosis and drug sensitivity. (A) By utilizing the intersection of upregulated 
genes in the C2 subtype, univariate Cox regression, and the random forest algorithm, five key metabolism-related genes (PDK1L, PTK7, NIPA1, CTHRC1, 
COL10A1) were identified to construct the metabolic score model. (B) In the TCGA-PRAD, GSE70770, and MSKCC cohorts, the expression levels of 
PDK1L demonstrated good consistency with the subtype distribution (Meta cluster/C1-C3 grouping), and the Kappa value was significant, indicating 
that the model exhibits stable typing ability across different cohorts. Kaplan–Meier survival analysis revealed that patients with high PDK1L expression 
experienced significantly poorer prognoses in the TCGA-PRAD (C), GSE70770 (D), and MSKCC (E) cohorts. Drug sensitivity analysis indicated that the 
low PDK1L expression group displayed higher sensitivity (lower IC50) to drugs such as Tazobactam and Olaparib in the TCGA-PRAD (F) and GSE70770
(G) cohorts, suggesting that PDK1L may serve as a potential predictive biomarker.

The clinical implications of our work are twofold. First, 
metabolic subtyping offers a stratification framework to identify 
patients most likely to benefit from PARP inhibitors, particularly 
in HRR-deficient C2 tumors. This approach complements recent 
advances in prostate-specific membrane antigen (PSMA)-targeted 
imaging, which improves diagnostic precision but lacks predictive 
value for therapy response (Su et al., 2025). Second, the synergy 

between enzalutamide and olaparib in overcoming PDIK1L-
mediated resistance aligns with trials exploring androgen receptor 
and PARP inhibitor combinations, emphasizing the need for 
biomarker-driven combinatorial strategies (Dalla Volta et al., 2025).

While this study establishes a framework for metabolic 
subtyping, several limitations must be acknowledged. First, the 
reliance on retrospective cohorts may introduce selection bias;
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FIGURE 7
Functional Validation of PDIK1L in Prostate Cancer Proliferation and PARP Inhibitor Response. (A,B) Western blot analysis confirming PDIK1L 
knockdown (Sh1/Sh2) and overexpression (OE) in C4-2 and PC-3 cells. GAPDH was used as loading control. (C,D) Cell proliferation curves of C4-2 and 
PC-3 cells following PDIK1L overexpression or knockdown, measured by CCK-8 assay at indicated time points. (E,F) IC50 assays evaluating the effects 
of Olaparib or talazoparib treatment in PDIK1L-modulated C4-2 and PC-3 cells. (G–J) Cell viability assays evaluating the effects of combined 
Enzalutamide and Olaparib treatment in PDIK1L-modulated C4-2 and PC-3 cells, while synergy score plots based on the HSA model.
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prospective validation in diverse populations is essential. Second, 
the functional role of PDIK1L in modulating DNA repair requires 
deeper mechanistic investigation, particularly its interaction with 
HRR components like BRCA1/2. Third, the clinical applicability of 
our findings depends on scalable biomarker assays, such as ctDNA-
based monitoring of metabolic signatures.

Conclusion

In conclusion, our findings bridge metabolic diversity with 
genomic instability in prostate cancer, positioning PDIK1L as a 
pivotal node for therapeutic intervention. By integrating multi-
omics insights and functional validation, this work advances 
precision oncology paradigms, offering a roadmap for targeting 
metabolic vulnerabilities in high-risk disease.
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