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MRI-based radiomics for 
noninvasive prediction of T790M 
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cancer spinal metastases: an 
exploratory study
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Background: The T790M mutation is a significant mechanism of acquired 
resistance to EGFR-TKIs in non-small cell lung cancer (NSCLC). Its noninvasive 
detection in spinal metastases remains challenging due to tumour heterogeneity 
and limitations of current diagnostic methods. This study aimed to develop an 
MRI-based radiomics model derived from spinal metastases to non-invasively 
predict T790M resistance mutations in NSCLC patients, by incorporating 
intratumoral spatial heterogeneity.
Methods: One hundred ten EGFR-mutant NSCLC patients with spinal 
metastases (80 from Center 1, 30 from Center 2) underwent T1W and T2FS MRI 
scans. Spinal lesions were partitioned into phenotypically consistent subregions 
using patient- and population-level clustering based on local entropy to capture 
spatial heterogeneity. Radiomic features were extracted from each subregion, 
and reproducibility was assessed using the intraclass correlation coefficient 
(ICC >0.80). Significant features were selected via the Mann–Whitney U test 
and LASSO regression, and logistic regression models were constructed for 
each subregion and MRI sequence. A multi-sequence regional fusion model 
was subsequently developed based on the best-performing subregion. Model 
performance was evaluated by AUC, sensitivity, and specificity in both internal 
and external validation cohorts. SHAP analysis was conducted to interpret 
feature contributions.
Results: Models based on inner subregions with higher heterogeneity 
outperformed those from marginal or whole-tumor regions. The fusion model 
combining T1W and T2FS features achieved AUCs of 0.916 (training), 0.867 
(internal validation), and 0.839 (external validation). SHAP analysis identified key 
textural features associated with the T790M mutation.
Conclusion: Subregion-based MRI radiomics enables accurate, noninvasive 
prediction of T790M mutations in NSCLC spinal metastases. This 
subregion-based MRI radiomics model, to our knowledge, is the 
first to non-invasively predict T790M resistance mutations in spinal 
metastases by integrating spatial heterogeneity and SHAP interpretability.
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This subregion-based MRI radiomics model is exploratory and showed a 
consistent trend toward improved discrimination and net benefit.
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bone metastases, radiomics, intratumoral heterogeneity, targeted therapy, 
interpretability 

1 Introduction

Lung cancer remains the leading cause of cancer-related 
mortality worldwide, with non-small cell lung cancer (NSCLC) 
accounting for approximately 85% of cases (Thai et al., 2021; 
Sung et al., 2021). Among NSCLC patients, spinal metastases 
are a frequent complication, which significantly deteriorates 
prognosis and quality of life (Shi et al., 2021). Bone metastasis 
interferes with normal bone remodeling processes, resulting 
in serious complications including refractory bone pain, 
pathological fractures, hypercalcemia, and spinal cord compression, 
all of which substantially compromise the quality of life in 
affected patients (Coleman, 2001).

Epidermal growth factor receptor (EGFR) tyrosine kinase 
inhibitors (TKIs) have revolutionized the treatment of EGFR-
mutant NSCLC, substantially improving clinical outcomes (Shirley 
and Keam, 2022; Wang et al., 2022). However, acquired resistance, 
predominantly driven by the T790M mutation, a secondary point 
mutation occurring at amino acid 790 of the EGFR gene (Pao et al., 
2005), emerges in over half of resistant cases, posing a major 
therapeutic challenge. In the early and middle stages, patients 
generally exhibit a favorable response to targeted therapy. However, 
the majority of them develop resistance after 8–13 months of 
treatment with first- or second-generation tyrosine kinase inhibitors 
(TKIs), such as gefitinib and erlotinib (Mok et al., 2017). The T790M 
mutation often necessitates the use of third-generation TKIs, such as 
Osimertinib, which are specifically designed to overcome T790M-
mediated resistance (Cross et al., 2014; Ramalingam et al., 2020). 
Consequently, early and accurate detection of the T790M mutation 
status is critical for optimizing treatment strategies and improving 
patient outcomes.

Currently, the clinical detection of T790M mutations primarily 
relies on tumor tissue biopsy or testing for circulating tumor 
DNA (ctDNA) (Rolfo et al., 2021). These methods are used to 
determine the mutation status to a certain extent and guide the use 
of third-generation TKI drugs (Soria et al., 2018). However, tissue 
biopsy is an invasive procedure with sampling bias and the risk 
of complications, while ctDNA detection is limited by insufficient 
sensitivity, technical complexity, and high cost (Siravegna et al., 
2017). Moreover, intratumoral heterogeneity makes it difficult for 
these methods to comprehensively capture the mutational landscape 
of bone metastases (Dagogo-Jack and Shaw, 2018; Kobayashi and 
Tan, 2023; Lim and Ma, 2019). Although the use of imaging for 
genetic assessment is increasing, noninvasive techniques such as 
MRI can only provide morphological and functional information 
(Lambin et al., 2017). Traditional imaging evaluation mainly relies 
on visible morphological features, lacking specific markers for 
assessing T790M drug-resistant mutations (Zhang et al., 2024b). 
The internal composition of bone metastases is highly complex, 
comprising tumor cells, residual bone tissue, and normal bone 

tissue, which results in significant differences within the internal 
regions of bone metastases (Clézardin et al., 2021; Coleman, 2001).

The emergence of radiomics methods has provided new ideas 
for quantitative image analysis (Lambin et al., 2017). By extracting 
high-dimensional features, radiomics can quantify intratumoral 
heterogeneity and reveal potential molecular characteristics 
(Gillies et al., 2016; Ibrahim et al., 2021). Recent studies have 
demonstrated that radiomics methods based on primary lung 
cancer imaging can effectively predict T790M resistance mutations 
following targeted therapy (Lu et al., 2024; Li et al., 2023; Zhang et al., 
2024b). Fan et al. (2023a), Fan et al. (2023b) and Lv et al. (2023) have 
also developed MRI-based radiomics models using brain metastases 
from lung cancer to predict T790M mutation status.

These studies indicate that a variety of radiomic features 
are highly correlated with the T790M status in both lung 
cancer and distant metastases, which can be effectively 
mined through radiomics methods. Additionally, tumor 
heterogeneity—which encompasses the diversity of genetic, 
phenotypic, and microenvironmental characteristics—has attracted 
increasing attention due to its significant impact on diagnosis, 
treatment response, and clinical prognosis (Dagogo-Jack and 
Shaw, 2018; McGranahan and Swanton, 2017; Vitale et al., 2021). 
However, whether the spatial heterogeneity of lung cancer bone 
metastases is associated with acquired drug resistance after targeted 
therapy remains unclear, owing to a lack of relevant studies 
(Clézardin et al., 2021; Wu et al., 2021). Therefore, this study utilized 
a subregion-based radiomics analysis to investigate the relationship 
between intratumoral heterogeneity and T790M mutation status, 
aiming to provide technical support for elucidating resistance 
mechanisms and guiding personalized treatment decisions. 

2 Materials and methods

2.1 Patients

This retrospective study was approved by the Institutional 
Ethics Committee of Liaoning Cancer Hospital (Approval No. 
20220806YG), with a waiver of informed consent. A total of 271 
patients from Liaoning Cancer Hospital (Center 1), who were 
treated between January 2017 and February 2025, and 100 patients 
from Shengjing Hospital (Center 2), who were treated between 
January 2018 and September 2025, were initially enrolled. The 
T790M mutation status was identified in plasma ctDNA extracted 
from blood samples following treatment with first- or second-
generation TKIs, based on pathological biopsy specimens of the 
primary tumor prior to treatment. Inclusion criteria were: (1) 
pathological diagnosis of non-small cell lung cancer (NSCLC) 
with imaging confirmation of spinal bone metastasis; (2) complete 
baseline MRI data, including T1-weighted imaging (T1W) and 
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FIGURE 1
Flowchart of patient inclusion and exclusion criteria for the study, showing the selection process for NSCLC patients with spinal bone metastases based 
on eligibility and MRI data availability.

T2-weighted fat-suppressed imaging (T2FS); and (3) confirmed 
T790M mutation status based on tissue biopsy or ctDNA testing 
results. Exclusion criteria were: (1) presence of other malignant 
tumors, (2) incomplete or poor-quality MRI data, and (3) absence of 
T790M mutation gene testing results. Patients from Center one were 
divided into a training and internal validation group at a 2:1 ratio 
(stratified by T790M status), while patients from Center two were 
used as an independent validation group. Clinical characteristics 
were collected from hospital medical records. The detailed process of 
patient inclusion and grouping is shown in Figure 1. Clinical factors, 
including age, gender, smoking, carcinoembryonic antigen (CEA), 
performance status (PS) score, cytokeratin (CYFRA), and neuron-
specific enolase (NSE), were obtained from the medical records.

2.2 MRI scanning methods and parameters

All MRI examinations at both centers were performed using 
a Siemens 3.0 T MRI scanner (Siemens Magnetom Trio, Erlangen, 
Germany). T1W and T2FS sequences were obtained. In center 1, 
the scanning parameters for the T1W sequence were as follows: 
repetition time (TR) = 500 m, echo time (TE) = 9 m, slice thickness 
= 4 mm, and inter-slice gap = 4.4 mm. For the T2FS sequence, TR 
= 3,000 m, TE = 78 m, slice thickness = 4 mm, and inter-slice gap = 
4.4 mm. In center 2, the scanning parameters for the T1W sequence 
were as follows: repetition time (TR) = 514 m, echo time (TE) = 
11 m, slice thickness = 4 mm, and inter-slice gap = 4.4 mm. For the 
T2FS sequence, TR = 3,000 m, TE = 87 m, slice thickness = 4 mm, 
and inter-slice gap = 4.4 mm.

Regions of interest (ROIs) were manually delineated on the 
spinal metastatic lesions by two radiologists with 15 and 10 years of 

experience, respectively, who were blinded to patients’ pathological 
results. The first radiologist performed the initial segmentation 
using ITK-SNAP software (version 3.6; www.itksnap.org), and 
the second radiologist independently reviewed and confirmed the 
segmentation. 

2.3 Intratumor partitioning methods

The intratumoral partitioning method consisted of three steps. 
First, within each ROI, the MRI local entropy was calculated 
using small neighborhoods in the ROI (9 × 9 pixels, stride = 
1 pixel), while also preserving the original pixel intensity; both 
entropy and intensity values were normalized (Z-score) within 
each ROI. Next, the ROI was divided into different subregions 
by the K-means (Gutman et al., 2013) clustering algorithm, 
mapping each pixel in the ROI into the two-dimensional feature 
space intensity, local entropy, and distance measured by Euclidean 
distance. Second, through K-means clustering, each ROI was 
clustered into 30 superpixels, with each superpixel’s intensity 
determined by the average intensity of all pixels within it. The 
number 30 was selected after comparing candidate values (20, 30, 
40, 60) in early experiments evaluating within-cluster variance and 
inter-patient/inter-sequence consistency. Third, the superpixels of 
all patients were gathered together, and the similarity between 
and within patients was explored through hierarchical clustering 
using Ward linkage to realize group-level clustering. Using the k-
means clustering algorithm, each tumor was divided into different 
subregions in space. In order to avoid the occurrence of a local 
optimal solution, the number of subregions (clusters K) is set from 
2 to 10 (Pham et al., 2005). The optimal number of subregions 
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is confirmed by using the Calinski-Harabasz (CH) index and 
Silhouette coefficient (Caliński and Harabasz, 1974). 

2.4 Radiomics feature extraction and 
selection

The “pyradiomics” package was implemented on Python v.3.10 
to extract radiomics features. Detailed information about the 
pyradiomics documentation and radiomics features can be found 
on the official website: https://pyradiomics.readthedocs.io/en/latest/
index.html. A total of 1,967 radiomic features, including first-order, 
shape-based, texture (e.g., GLCM, GLRLM, GLSZM, NGTDM, 
and GLDM), and filtered image features, were extracted separately 
from each spinal metastasis subregion and the whole tumor region 
across two MRI sequences. A total of eight image filters, including 
wavelet, square, square root, local binary pattern (2D), Laplacian of 
Gaussian, logarithm, exponential, and gradient, were applied to the 
MR images. The resulting filtered images were subsequently used 
to extract first-order statistical and texture features. Before feature 
extraction, MR images were pre-processed including normalization, 
resampling, discretization, and filtering, detailed preprocessing 
protocols are provided in Supplementary Methods 1.

ComBat harmonization has been widely used to eliminate 
the effects of different scanners and protocols and to facilitate 
multicenter radiomics analysis. We used the neuroHarmonize 
implementation in Python v3.10 (https://github.com/rpomponio/
neuroHarmonize/tree/master) to harmonize our extracted 
radiomics features per scanner without changing the feature 
definitions.

To ensure the reliability and reproducibility of the extracted 
features, intraclass correlation coefficients (ICCs) were calculated 
based on repeated feature extractions from a randomly selected 
subset of 30 patients. Features with ICC values greater than 0.80 were 
considered highly reliable and were retained for further analysis.

Subsequently, feature selection was conducted strictly within the 
training set and confined to the inner loop of a nested five-fold cross-
validation framework to avoid data leakage (Demircioğlu, 2021). 
The Mann-Whitney U test was applied to the extracted feature using 
the “stats” package in R language Version 3.6. Features that have P < 
0.05 were considered predictive and retained. Next, the least absolute 
shrinkage and selection operator (LASSO) logistic regression was 
used with the “glmnet” package in R to exclude irrelevant and 
redundant features. 

2.5 Radiomics model construction and 
validation

Radiomics signatures (RSs) were constructed from weighted 
linear combinations of the selected features, which can be 
used to calculate a personalized score for each patient. The 
receiver operating characteristic (ROC) curve for the developed 
models was plotted with the scikit-learn v1.0 package in Python 
v3.10. The best cutoff value was determined by the maximum 
Youden index (Ruopp et al., 2008). The DeLong test was used 
to compare AUC differences between models, evaluating their 
predictive performance for T790M mutations. To evaluate 

clinical utility beyond discrimination metrics, we employed 
Decision Curve Analysis (DCA) (Vickers and Elkin, 2006) and 
calibration curves (Van Calster et al., 2019) to assess the net benefit 
across a range of threshold probabilities, comparing our model to 
default strategies such as “treat all” and “treat none.” Decision curve 
analysis is a widely accepted method for quantifying clinical value 
and can reveal benefits not captured by AUC alone. 

2.6 Statistical analysis

Statistical analysis included t-tests and Mann-Whitney U 
tests, depending on data distribution, to assess the differences in 
radiomics features between T790M-positive (T790M+) and T790M-
negative (T790M-) patients. Clinical parameters were analyzed 
using Mann-Whitney U tests and chi-square tests. ROC analysis, 
using AUC as the primary metric, calculated the accuracy, 
sensitivity, and specificity to evaluate model performance across 
various data subsets. The optimal model for predicting T790M 
mutations was identified based on AUC comparison using the 
DeLong test. To further address potential class imbalance, we also 
reported area under the precision–recall curve (AUPRC), which 
focuses more on the minority (positive) class performance and 
may offer more actionable insight than AUC in the presence of 
imbalance (Brabec et al., 2020). Figure 2 illustrates the overall 
experimental workflow.

2.7 SHAP analysis

To interpret the construct RS, this study employed the “shap” 
package in Python for Shapley Additive exPlanations (SHAP). SHAP 
values were computed to assess the contribution of each selected 
feature to the T790M mutation predictions. Additionally, SHAP 
bar charts and beeswarm plots were generated to visualize feature 
importance and the direction of their impact, thereby offering an 
easy way to understand the model’s decision-making process. 

2.8 Hardware and software resources

All computations were performed on a workstation equipped 
with an Intel® Core™ i7-8700K CPU, an NVIDIA GeForce RTX 
1060 GPU (6 GB VRAM), and 16 GB system RAM. The operating 
environment included Python 3.10 and R 3.6, with key packages 
such as pyradiomics, scikit-learn (v1.0), glmnet, stats, shap, and 
neuroHarmonize. 

3 Results

3.1 Patients’ characteristics

Table 1 summarizes the clinical and demographic characteristics 
of the enrolled patients, comparing those with and without the 
T790M mutation across various factors. In the training set, there 
were significant differences between the T790M+ and T790M-
groups in terms of smoking status (P = 0.009). However, no 
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FIGURE 2
Workflow of the study, including tumor partition, radiomics feature extraction and selection, and model evaluation.

significant difference was observed in age, gender, PS score, CEA, 
CYFRA, or NSE (all P > 0.05).

3.2 Tumor partition

Based on the CH index and Silhouette coefficient 
(Supplementary Figure S1), the tumor was classified into two 
subregions with significant heterogeneity using a clustering method: 
marginal subregion (S1) and inner subregion (S2). Figure 3 
presents the results of spinal metastases in two patients, one 
with wild-type EGFR and the other with an EGFR mutation. The 
boxplot in Figure 4 shows that S2 consistently exhibits higher 
MRI intensity and local entropy values compared to S1 in all 
patients, which may indicate a higher degree of heterogeneity in the
S2 region.

3.3 Feature selection and model 
construction

The optimal features selected from the two MRI sequences 
were combined to identify the most important predictors. Table 3 
lists the final retained features and their prediction performance, 
and Supplementary Table S1 provides detailed descriptions of 

each feature. By integrating the features from both sequences 
and weighting them based on LASSO regression coefficients, a 
multi-parametric radiomics signature was constructed, as shown 
in Supplementary Formula S1. After ComBat harmonization, 
the predictive performance of the radiomics signature and 
the feature values of the selected predictors are reported in
Supplementary Table S2–S4. 

3.4 Model performance across sequences 
and subregions

Table 2 summarizes the performance of radiomics models 
constructed from different tumor regions (S1, S2, and the whole 
tumor region) using T1W and T2FS sequences. Although the 
DeLong test did not show statistically significant differences 
(P > 0.05) in the internal and external validation cohorts, 
the fusion model consistently achieved higher AUCs across 
all datasets, indicating a consistent trend toward improved 
diagnostic performance. The multi-sequence regional fusion model 
constructed by integrating the optimal regions demonstrated 
enhanced predictive capability. This model achieved an AUC of 
0.916 in the training set (ACC = 0.830, SPE = 0.867, SEN = 0.783), 
showing encouraging discriminative power. The model exhibited 
consistent performance, with an AUC of 0.867 (ACC = 0.815, SPE 
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FIGURE 3
Results of the intratumor partition in the T1W and T2FS MRI. The ROI column represents the MRI images with manually segmented spinal metastases. 
The local entropy column represents entropy maps of the metastases.

= 0.800, SEN = 0.833) on the internal validation set and an AUC 
of 0.839 (ACC = 0.833, SPE = 0.812, SEN = 0.857) on the external 
validation set. To complement discrimination with clinical utility, 
decision curve analysis (Supplementary Figure S2) showed that 
the fusion model consistently provided greater net benefit across 
clinically plausible threshold probabilities than all comparator 
models. The calibration curves (Supplementary Figure S3) indicate 
that the fusion model is reasonably well calibrated in all cohorts. The 
full set of performance metrics, including AUPRC (with 95% CI), 
positive predictive value (PPV), negative predictive value (NPV), 
and F1 score (the harmonic mean of precision and recall), are 
reported in Supplementary Figure S4 and Supplementary Table S5. 
Overall, performance patterns were generally stable across cohorts, 
with minor fluctuations consistent with variations in class 
prevalence. 

3.5 Performance evaluation of the fusion 
model

As shown in Figure 5, the RS-T1W-S2 and RS-T2FS-S2 
exhibited consistent and comparable predictive performance. 
Specifically, in Figure 6, the AUC values for RS-T1W-S2 were 
0.817, 0.822, and 0.748 in the training, internal, and external 
validation sets, respectively, while RS-T2FS-S2 achieved AUCs 
of 0.817, 0.728, and 0.754 in the corresponding sets. The 
results suggest that the diagnostic utility of single-sequence 
RSs remains relatively stable across different datasets. The 
Multi-sequence Regional Fusion Model, which integrates 
both T1W and T2FS sequences, consistently outperformed 

the single-sequence models across all datasets, yielding 
AUCs of 0.916 in the training set, 0.867 in the internal 
validation set, and 0.839 in the external validation set. 
The patient-level waterfall plots (Figure 6) of predicted 
probabilities show clearer separation between T790M+ and 
T790M-cases and fewer high-confidence misclassifications. 
Overall, these diagnostics indicate a modest but consistent 
advantage of the fusion model at clinically relevant decision
thresholds. 

3.6 Feature analysis

As shown in Table 3, a total of six features were identified 
as strongly associated with the T790M mutation following 
EGFR-TKI treatment, three from T1W and three from 
T2FS. All features demonstrated statistical significance with 
p-values less than 0.05 and AUC >0.65. The majority of 
the features (five out of six) belong to the textural feature 
category, which suggests that intratumoral heterogeneity 
is highly correlated with the T790M resistance mutation. 
The feature correlation heatmap for the selected features is 
provided in Supplementary Figure S5. To further investigate the 
expression patterns and consistency of these six key features 
across patients with different T790M mutation statuses, a 
hierarchical clustering heatmap was constructed, as shown in 
Supplementary Figure S6. Detailed explanations of these features 
are provided in the Supplementary Table S1 to facilitate a deeper 
understanding of their potential roles in the T790M mutation
status. 

Frontiers in Cell and Developmental Biology 07 frontiersin.org

https://doi.org/10.3389/fcell.2025.1673498
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhou et al. 10.3389/fcell.2025.1673498

FIGURE 4
Boxplots of the MRI intensity and local entropy in the training (A,D,G,J), internal validation (B,E,H,K), and external validation (C,F,I,L) sets. Significant 
differences between the S1 and S2 were found by a t-test.

3.7 SHAP analysis and model 
interpretability

To enhance the interpretability and clinical applicability of 
the Multi-sequence Regional Fusion Model, we performed SHAP 
analysis to quantify the contributions of each feature. Figure 7A 
illustrates the mean absolute SHAP values, with F3 showing 
the highest value (0.458), indicating its most substantial 

influence on the model’s predictions, consistent with its 
prominent positive coefficient in the Rad-Score formula. 
F4 and F5 follow with SHAP values of 0.337 and 0.239, 
respectively, further emphasizing their significant predictive 
importance. In contrast, F2 exhibited the lowest SHAP 
value (0.033), suggesting minimal impact on the model’s 
predictions, which aligns with its negative coefficient in the 
Rad-Score formula.
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The SHAP beeswarm plot in Figure 7B offers comprehensive 
information regarding the impact of each feature on the model’s 
output. F3 shows a broad SHAP value distribution, indicating that 
varying values of this feature significantly influence the model’s 
predictions, predominantly in a positive direction, which aligns with 
its significant positive coefficient. In contrast, F2 displays a narrow 
SHAP value distribution centered around zero, further confirming 
its minimal contribution to the model’s predictions.

Through SHAP analysis, we have clarified the specific roles 
of each feature within the model’s decision-making process. 
F3, F5, and F6 make significant contributions to the model’s 
predictions, while F2 and F4 have relatively minor impacts. 
Integrating SHAP values with the Rad-Score formula enhances the 
transparency of the decision-making process, improving both the 
model’s interpretability and its clinical applicability. These results 
demonstrate the value of feature selection and model interpretability, 
particularly in the accurate assessment of T790M mutation status. 

4 Discussion

While MRI and other imaging techniques have advanced 
the molecular management of lung cancer, traditional imaging 
assessments often fail to capture intratumoral heterogeneity. This 
heterogeneity is increasingly recognized as closely linked to 
molecular characteristics and treatment responses (Zhang et al., 
2022; Rasche et al., 2019). For patients without access to primary 
tumor tissue, bone metastases provide a crucial alternative for 
genetic evaluation. Although radiomics has been widely utilized for 
molecular prediction in brain metastases and other sites (Fan et al., 
2023a; Cao et al., 2022; Lv et al., 2023), research specifically 
targeting spinal bone metastases—especially concerning the EGFR 
T790M resistance mutation—remains limited. To our knowledge, 
this study is the first to apply MRI-based radiomics to analyze 
intratumoral heterogeneity in spinal bone metastases and assess 
its clinical value in predicting T790M mutations. Additionally, our 
integration of model interpretability and the inclusion of data from 
two independent centers enhances the transparency and credibility 
of our findings.

Building on a robust clustering strategy based on local entropy, 
we objectively divided both T1W and T2FS MRI sequences into S1 
and S2 for radiomics analysis. Notably, the S2 region, located in the 
tumor core, consistently exhibited superior predictive performance 
compared to the S1 region in both sequences, as reflected by 
higher AUCs and classification accuracies. This finding suggests 
that the inner subregion harbors greater biological heterogeneity 
and is more closely linked to the molecular status of EGFR 
T790M mutations, consistent with previous studies by Fan et al. 
(Fan et al., 2021) and Jiang et al. (Jiang et al., 2023). Biologically, 
the tumor core often experiences hypoxia, nutrient deprivation, and 
increased cellular stress (Vitale et al., 2021; Marusyk et al., 2020), 
which fosters the selection and expansion of cell populations with 
survival-promoting mutations, such as EGFR T790M alterations. 
Previous studies have reported that tumor bone metastases often 
result in bone destruction or osteolysis (Liu et al., 2022). The 
peripheral S1 region may correspond to the edges of destroyed 
bone or residual bone fragments, thus harboring less discriminative 
information. The inner region may be composed predominantly 
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FIGURE 5
ROC curves of each RS in the training (A), internal validation (B), and external validation (C) sets.

FIGURE 6
Multi-sequence Regional Fusion Model for the patients in the training (A), internal validation (B), and external validation (C) sets. The red bars indicate 
patients with T790M+, whereas the blue bars indicate patients with T790M-.

TABLE 3  Performance of the selected radiomics features.

Feature Source Mean ± SD AUC P

T790M+ T790M-

log-sigma-5-0-mm-3D_gldm_DependenceNonUniformityNormalized (F1) T1W 0.097 ± 0.037 0.065 ± 0.014 0.772 <0.001

original_glcm_InverseVariance (F2) T1W 0.420 ± 0.042 0.452 ± 0.022 0.721 0.002

wavelet-HHH_glcm_ MCC (F3) T1W 0.119 ± 0.028 0.094 ± 0.018 0.778 <0.001

exponential_gldm_DependenceNonUniformityNormalized (F4) T2FS 0.151 ± 0.050 0.110 ± 0.044 0.732 0.003

lbp-3D-m2_firstorder_90Percentile (F5) T2FS 16.856 ± 0.503 17.167 ± 0.235 0.675 0.010

log-sigma-5-0-mm-3D_glszm_SmallAreaEmphasis (F6) T2FS 0.194 ± 0.073 0.262 ± 0.093 0.713 0.004

SD, standard deviation.

of metastatic tumor cells and potentially (Cao et al., 2023) 
contain more information associated with T790 mutation status. 
In contrast, marginal and fragmental regions may contain more 
stromal, necrotic, or inflammatory elements (Hinohara and Polyak, 
2019), thus providing less specific genetic information. These 
results emphasize the importance of spatially resolved analysis in 
uncovering the molecular basis of resistance.

By integrating features from both T1W and T2FS sequences, 
our model consistently outperformed single-sequence models, 
with AUCs increasing from 0.817 to 0.916 in the training set 
and demonstrating similar improvements in both internal and 
external validation sets. This performance gain can be attributed 

to the complementary properties of T1W and T2FS: T1W 
features primarily contributed to morphological discrimination 
(Hanrahan and Shah, 2011), whereas T2FS features were 
more sensitive to water-related heterogeneity and cellularity 
(Lecouvet, 2016; Ruopp et al., 2008). These findings highlight 
the value of multi-dimensional integration for noninvasive 
characterization of the molecular and physiological landscape 
of bone metastases and support its potential clinical application 
in personalized molecular stratification and treatment planning. 
Although the DeLong test did not indicate statistical significance 
(P > 0.05) in the internal and external validation cohorts, this 
is likely due to limited sample size. Nonetheless, the fusion 
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FIGURE 7
Overall visualization of the Multi-sequence Regional Fusion Model through SHAP. (A) The SHAP bar chart shows the weight of the six most important 
characteristics. (B) The SHAP beeswarm plot shows the positive or negative effects of each feature on the prediction probability through red and 
blue colors.

model consistently demonstrated higher AUCs across all datasets, 
supported by DCA demonstrating superior net benefit and 
calibration curves indicating reliable probability estimates. 
The fusion model exhibits a consistent trend toward better 
discrimination and decision net benefit; however, DeLong test in the 
validation cohorts is not statistically significant, and confirmation 
in larger, multi-center prospective studies remains necessary. Such 
consistency supports the added predictive value of integrating 
subregional features from multiple MRI sequences.

Texture features, as pivotal components of radiomics, provide 
quantitative descriptors of spatial complexity and gray-level 
heterogeneity within tumors. Increasing evidence has demonstrated 
that these features serve as noninvasive imaging surrogates 
for intratumoral biological diversity and therapy resistance 
(Gillies et al., 2016; Aerts et al., 2014). For example, Aerts 
et al. systematically revealed that textural heterogeneity features 
are associated with underlying gene-expression patterns and 
proliferative activity (Aerts et al., 2014). These findings highlight the 
essential role of spatial heterogeneity, captured by radiomic texture 
features, in reflecting the clonal diversity and microenvironmental 
adaptation of tumors under therapeutic pressure. In this study, six 
radiomic features were identified from the S2 subregion—three 
from each of the T1W and T2FS sequences—that showed strong 
associations with the T790M mutation status. We found that five of 
these features were textural, and all exhibited consistent predictive 
performance (P < 0.05, AUC >0.65). This illustrates the important 
function of spatial heterogeneity, as captured by texture features, 
in the emergence of acquired resistance. These results reinforce the 
paradigm that intratumoral textural heterogeneity, as quantified 
by radiomics, serves as a critical imaging biomarker for drug 
resistance, likely reflecting underlying clonal diversity and adaptive 
microenvironmental changes in metastatic lesions.

At the microscopic level, the most influential features, 
F1 (DependenceNonUniformityNormalized, GLDM), F6 
(SmallAreaEmphasis, GLSZM), and F3 (MCC, GLCM), 
capture complementary aspects of tumor biology that 
are closely linked to acquired resistance. Specifically, 
DependenceNonUniformityNormalized quantifies the irregularity 
of local gray-level dependencies, may reflecting increased cellular 
heterogeneity, disorganized tissue structure, or the coexistence 
of proliferative and necrotic areas, hallmarks of aggressive, 
therapy-resistant. SmallAreaEmphasis highlights the presence of 

small, high-intensity regions, which may correspond to clusters 
of densely packed tumor cells or focal necrosis, indicative 
of microenvironmental adaptation and clonal selection under 
therapeutic pressure. MCC measures the spatial linear complexity 
of intensity distributions, serving as a putative marker for 
underlying genetic and cellular diversity. Collectively, these features 
act as noninvasive imaging proxies for complex pathological 
processes, such as cellular heterogeneity, necrosis, and architectural 
disorganization, that drive the emergence of aggressive, drug-
resistant tumor phenotypes. Collectively, these texture features 
are theoretically well aligned with the clonal selection mechanism 
that drives EGFR T790M mutation. T790M is one of the most 
common mechanisms of acquired resistance to first- or second-
generation EGFR-TKIs; its essence is the expansion of resistant 
subclones under therapeutic pressure (Qi et al., 2024; Dong et al., 
2024; O'Connor et al., 2015), which is biologically manifested as 
intratumoral heterogeneity (including variation in cell density, 
coexistence of necrotic and viable regions, and intermixing of 
dying vs. surviving cells). Secondly, such texture features represent 
whole-tumor heterogeneity, whereas biopsies usually sample only 
a local region and thus may miss resistant subregions (Li and 
Zhou, 2022; Frankell et al., 2023; Gerlinger et al., 2012). However, 
we also explicitly acknowledge that biological interpretability 
remains limited.

A significant difference in smoking status was found between 
T790M-positive and T790M-negative patients (45.8% vs. 10.3%, P 
= 0.009) in the training set. Two previous studies demonstrated that 
smoking was significantly associated with T790M mutation status 
(P < 0.05) (Ke et al., 2017; Jaiswal et al., 2019), which is consistent 
with our findings. This association may be explained by the fact that 
smoking increases tumor mutational burden and subclonal diversity, 
thereby facilitating resistance to tumor therapy (Blakely et al., 2017; 
Frankell et al., 2023). However, smoking remains a controversial 
factor, as some previous studies reported no significant association 
(P > 0.05) (Huang et al., 2018; Wu et al., 2024; Lv et al., 2023; 
Tseng et al., 2016; Ouyang et al., 2020).

SHAP analysis confirmed the dominant contributions of 
F3 (MCC), F4 (DependenceNonUniformityNormalized), and F5 
(firstorder 90Percentile) to model predictions, consistent with 
their prominent positive coefficients in the Rad-Score formula. In 
contrast, features such as InverseVariance (F2) had minimal impact, 
underscoring the specificity and biological relevance of the key 
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textural predictors. By elucidating the internal decision logic of the 
model, SHAP analysis enhances interpretability and transparency, 
enabling clinicians to better trust and adopt radiomics-based 
tools in precision oncology. In multicenter MRI radiomics, 
scanner variability poses a major challenge. In our study, ComBat 
harmonization failed to improve predictive performance, consistent 
with prior work (Li et al., 2021; Zhang et al., 2024a; Ibrahim et al., 
2022). Therefore, we instead employed multistep preprocessing and 
ICC-based filtering to enhance robustness.

This study has several limitations. First, this retrospective 
analysis has a limited sample size, particularly in the external 
validation set, which creates potential for selection bias. Further 
studies should be conducted with larger sample sizes. Second, 
although the reliability and validity of the segmentation approach 
have been previously demonstrated (Fan et al., 2021; Hong et al., 
2020), it may not fully capture the microstructural heterogeneity 
of bone metastases. Third, the stability of radiomic features is 
dependent on image quality and may be influenced by artifacts 
or scanner variability. Fourth, this study only analyzed T1W and 
T2FS MRI sequences and did not incorporate functional imaging 
(e.g., T1CE, DWI) or multi-omics data, which may limit the 
completeness of feature representation and model generalizability. 
Finally, although SHAP analysis provided only a preliminary level 
of model interpretability, the identified MRI features still lack 
biological validation, and their associations with tumor biology 
remain unclear. 

5 Conclusion

This study demonstrates that MRI-based radiomics can 
effectively and non-invasively predict EGFR T790M mutations in 
spinal metastases. Model performance was improved by integrating 
features from S2 and combining T1W and T2FS sequences. Its 
potential as a noninvasive tool for guiding EGFR-TKI therapy in 
NSCLC patients with inaccessible spinal metastases.
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