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Background: The T790M mutation is a significant mechanism of acquired
resistance to EGFR-TKIs in non-small cell lung cancer (NSCLC). Its noninvasive
detection in spinal metastases remains challenging due to tumour heterogeneity
and limitations of current diagnostic methods. This study aimed to develop an
MRI-based radiomics model derived from spinal metastases to non-invasively
predict T790M resistance mutations in NSCLC patients, by incorporating
intratumoral spatial heterogeneity.

Methods: One hundred ten EGFR-mutant NSCLC patients with spinal
metastases (80 from Center 1, 30 from Center 2) underwent TIW and T2FS MRI
scans. Spinal lesions were partitioned into phenotypically consistent subregions
using patient- and population-level clustering based on local entropy to capture
spatial heterogeneity. Radiomic features were extracted from each subregion,
and reproducibility was assessed using the intraclass correlation coefficient
(ICC >0.80). Significant features were selected via the Mann-Whitney U test
and LASSO regression, and logistic regression models were constructed for
each subregion and MRI sequence. A multi-sequence regional fusion model
was subsequently developed based on the best-performing subregion. Model
performance was evaluated by AUC, sensitivity, and specificity in both internal
and external validation cohorts. SHAP analysis was conducted to interpret
feature contributions.

Results: Models based on inner subregions with higher heterogeneity
outperformed those from marginal or whole-tumor regions. The fusion model
combining TIW and T2FS features achieved AUCs of 0.916 (training), 0.867
(internal validation), and 0.839 (external validation). SHAP analysis identified key
textural features associated with the T790M mutation.

Conclusion: Subregion-based MRI radiomics enables accurate, noninvasive
prediction of T790M mutations in NSCLC spinal metastases. This
subregion-based MRI radiomics model, to our knowledge, is the
first to non-invasively predict T790M resistance mutations in spinal
metastases by integrating spatial heterogeneity and SHAP interpretability.
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This subregion-based MRI radiomics model is exploratory and showed a
consistent trend toward improved discrimination and net benefit.
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1 Introduction

Lung cancer remains the leading cause of cancer-related
mortality worldwide, with non-small cell lung cancer (NSCLC)
accounting for approximately 85% of cases (Thai et al, 2021;
Sung et al., 2021). Among NSCLC patients, spinal metastases
are a frequent complication, which significantly deteriorates
prognosis and quality of life (Shi et al., 2021). Bone metastasis
interferes with normal bone remodeling processes, resulting
in serious complications including refractory bone pain,
pathological fractures, hypercalcemia, and spinal cord compression,
all of which substantially compromise the quality of life in
affected patients (Coleman, 2001).

Epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitors (TKIs) have revolutionized the treatment of EGFR-
mutant NSCLC, substantially improving clinical outcomes (Shirley
and Keam, 2022; Wang et al,, 2022). However, acquired resistance,
predominantly driven by the T790M mutation, a secondary point
mutation occurring at amino acid 790 of the EGFR gene (Pao et al.,
2005), emerges in over half of resistant cases, posing a major
therapeutic challenge. In the early and middle stages, patients
generally exhibit a favorable response to targeted therapy. However,
the majority of them develop resistance after 8-13 months of
treatment with first- or second-generation tyrosine kinase inhibitors
(TKIs), such as gefitinib and erlotinib (Mok et al., 2017). The T790M
mutation often necessitates the use of third-generation TKIs, such as
Osimertinib, which are specifically designed to overcome T790M-
mediated resistance (Cross et al., 2014; Ramalingam et al., 2020).
Consequently, early and accurate detection of the T790M mutation
status is critical for optimizing treatment strategies and improving
patient outcomes.

Currently, the clinical detection of T790M mutations primarily
relies on tumor tissue biopsy or testing for circulating tumor
DNA (ctDNA) (Rolfo et al., 2021). These methods are used to
determine the mutation status to a certain extent and guide the use
of third-generation TKI drugs (Soria et al., 2018). However, tissue
biopsy is an invasive procedure with sampling bias and the risk
of complications, while ctDNA detection is limited by insufficient
sensitivity, technical complexity, and high cost (Siravegna et al,
2017). Moreover, intratumoral heterogeneity makes it difficult for
these methods to comprehensively capture the mutational landscape
of bone metastases (Dagogo-Jack and Shaw, 2018; Kobayashi and
Tan, 2023; Lim and Ma, 2019). Although the use of imaging for
genetic assessment is increasing, noninvasive techniques such as
MRI can only provide morphological and functional information
(Lambin et al., 2017). Traditional imaging evaluation mainly relies
on visible morphological features, lacking specific markers for
assessing T790M drug-resistant mutations (Zhang et al., 2024b).
The internal composition of bone metastases is highly complex,
comprising tumor cells, residual bone tissue, and normal bone
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tissue, which results in significant differences within the internal
regions of bone metastases (Clézardin et al., 2021; Coleman, 2001).

The emergence of radiomics methods has provided new ideas
for quantitative image analysis (Lambin et al., 2017). By extracting
high-dimensional features, radiomics can quantify intratumoral
heterogeneity and reveal potential molecular characteristics
(Gillies et al., 2016; Ibrahim et al., 2021). Recent studies have
demonstrated that radiomics methods based on primary lung
cancer imaging can effectively predict T790M resistance mutations
following targeted therapy (Lu et al., 2024; Liet al., 2023; Zhang et al.,
2024b). Fan et al. (2023a), Fan et al. (2023b) and Lv et al. (2023) have
also developed MRI-based radiomics models using brain metastases
from lung cancer to predict T790M mutation status.

These studies indicate that a variety of radiomic features
are highly correlated with the T790M status in both lung
metastases, which
methods.

cancer and distant can be effectively
Additionally,

heterogeneity—which encompasses the diversity of genetic,

mined through radiomics tumor
phenotypic, and microenvironmental characteristics—has attracted
increasing attention due to its significant impact on diagnosis,
treatment response, and clinical prognosis (Dagogo-Jack and
Shaw, 2018; McGranahan and Swanton, 2017; Vitale et al., 2021).
However, whether the spatial heterogeneity of lung cancer bone
metastases is associated with acquired drug resistance after targeted
therapy remains unclear, owing to a lack of relevant studies
(Clézardin et al., 2021; Wu et al., 2021). Therefore, this study utilized
a subregion-based radiomics analysis to investigate the relationship
between intratumoral heterogeneity and T790M mutation status,
aiming to provide technical support for elucidating resistance

mechanisms and guiding personalized treatment decisions.

2 Materials and methods

2.1 Patients

This retrospective study was approved by the Institutional
Ethics Committee of Liaoning Cancer Hospital (Approval No.
20220806YG), with a waiver of informed consent. A total of 271
patients from Liaoning Cancer Hospital (Center 1), who were
treated between January 2017 and February 2025, and 100 patients
from Shengjing Hospital (Center 2), who were treated between
January 2018 and September 2025, were initially enrolled. The
T790M mutation status was identified in plasma ctDNA extracted
from blood samples following treatment with first- or second-
generation TKIs, based on pathological biopsy specimens of the
primary tumor prior to treatment. Inclusion criteria were: (1)
pathological diagnosis of non-small cell lung cancer (NSCLC)
with imaging confirmation of spinal bone metastasis; (2) complete
baseline MRI data, including T1-weighted imaging (T1W) and
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271 patients with lung adenocarcinoma from | .| 100 patients with lung adenocarcinoma from Jan.2018 to
Jan.2017 to Feb.2025 from Center 1 Sep.2025 from Center 2
Exclusion criteria:
(i) patients with other tumor diseases or Inclusion criteria :
Ziei;t;l::sl;g:‘nﬁ[?::deEC:;zs (i) patient was diagnosed as bone metastasis
(i) with di ffus:s T (ii) availability of complete MRI sequence and clinical data
P (iii) with complete gene test results of theT790M mutation
| Patients finally selected for the study (n =110) |
| Center 1(n= 80) | | Center 2(n = 30) |
| Training (n = 53) | | Internal Validation (n = 27) | | External Validation (n = 30) |
| T790M+(n = 24) | | T790M-(n = 29) | | T790M+(n = 12) | | T790M-(n = 15) | | T790M+(n = 14) | | T790M-(n = 16) |
FIGURE 1

Flowchart of patient inclusion and exclusion criteria for the study, showing the selection process for NSCLC patients with spinal bone metastases based

on eligibility and MRI data availability.

T2-weighted fat-suppressed imaging (T2FS); and (3) confirmed
T790M mutation status based on tissue biopsy or ctDNA testing
results. Exclusion criteria were: (1) presence of other malignant
tumors, (2) incomplete or poor-quality MRI data, and (3) absence of
T790M mutation gene testing results. Patients from Center one were
divided into a training and internal validation group at a 2:1 ratio
(stratified by T790M status), while patients from Center two were
used as an independent validation group. Clinical characteristics
were collected from hospital medical records. The detailed process of
patient inclusion and grouping is shown in Figure 1. Clinical factors,
including age, gender, smoking, carcinoembryonic antigen (CEA),
performance status (PS) score, cytokeratin (CYFRA), and neuron-
specific enolase (NSE), were obtained from the medical records.

2.2 MRI scanning methods and parameters

All MRI examinations at both centers were performed using
a Siemens 3.0 T MRI scanner (Siemens Magnetom Trio, Erlangen,
Germany). TIW and T2FS sequences were obtained. In center 1,
the scanning parameters for the TIW sequence were as follows:
repetition time (TR) = 500 m, echo time (TE) = 9 m, slice thickness
= 4 mm, and inter-slice gap = 4.4 mm. For the T2FS sequence, TR
=3,000 m, TE = 78 m, slice thickness = 4 mm, and inter-slice gap =
4.4 mm. In center 2, the scanning parameters for the TIW sequence
were as follows: repetition time (TR) = 514 m, echo time (TE) =
11 m, slice thickness = 4 mm, and inter-slice gap = 4.4 mm. For the
T2FS sequence, TR = 3,000 m, TE = 87 m, slice thickness = 4 mm,
and inter-slice gap = 4.4 mm.

Regions of interest (ROIs) were manually delineated on the
spinal metastatic lesions by two radiologists with 15 and 10 years of
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experience, respectively, who were blinded to patients’ pathological
results. The first radiologist performed the initial segmentation
using ITK-SNAP software (version 3.6; www.itksnap.org), and
the second radiologist independently reviewed and confirmed the
segmentation.

2.3 Intratumor partitioning methods

The intratumoral partitioning method consisted of three steps.
First, within each ROI, the MRI local entropy was calculated
using small neighborhoods in the ROI (9 x 9 pixels, stride =
1 pixel), while also preserving the original pixel intensity; both
entropy and intensity values were normalized (Z-score) within
each ROI. Next, the ROI was divided into different subregions
by the K-means (Gutman et al, 2013) clustering algorithm,
mapping each pixel in the ROI into the two-dimensional feature
space intensity, local entropy, and distance measured by Euclidean
distance. Second, through K-means clustering, each ROI was
clustered into 30 superpixels, with each superpixel’s intensity
determined by the average intensity of all pixels within it. The
number 30 was selected after comparing candidate values (20, 30,
40, 60) in early experiments evaluating within-cluster variance and
inter-patient/inter-sequence consistency. Third, the superpixels of
all patients were gathered together, and the similarity between
and within patients was explored through hierarchical clustering
using Ward linkage to realize group-level clustering. Using the k-
means clustering algorithm, each tumor was divided into different
subregions in space. In order to avoid the occurrence of a local
optimal solution, the number of subregions (clusters K) is set from
2 to 10 (Pham et al, 2005). The optimal number of subregions
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is confirmed by using the Calinski-Harabasz (CH) index and
Silhouette coefhicient (Calinski and Harabasz, 1974).

2.4 Radiomics feature extraction and
selection

The “pyradiomics” package was implemented on Python v.3.10
to extract radiomics features. Detailed information about the
pyradiomics documentation and radiomics features can be found
on the official website: https://pyradiomics.readthedocs.io/en/latest/
index.html. A total of 1,967 radiomic features, including first-order,
shape-based, texture (e.g., GLCM, GLRLM, GLSZM, NGTDM,
and GLDM), and filtered image features, were extracted separately
from each spinal metastasis subregion and the whole tumor region
across two MRI sequences. A total of eight image filters, including
wavelet, square, square root, local binary pattern (2D), Laplacian of
Gaussian, logarithm, exponential, and gradient, were applied to the
MR images. The resulting filtered images were subsequently used
to extract first-order statistical and texture features. Before feature
extraction, MR images were pre-processed including normalization,
resampling, discretization, and filtering, detailed preprocessing
protocols are provided in Supplementary Methods 1.

ComBat harmonization has been widely used to eliminate
the effects of different scanners and protocols and to facilitate
multicenter radiomics analysis. We used the neuroHarmonize
implementation in Python v3.10 (https://github.com/rpomponio/
neuroHarmonize/tree/master) to harmonize our extracted
radiomics features per scanner without changing the feature
definitions.

To ensure the reliability and reproducibility of the extracted
features, intraclass correlation coefficients (ICCs) were calculated
based on repeated feature extractions from a randomly selected
subset of 30 patients. Features with ICC values greater than 0.80 were
considered highly reliable and were retained for further analysis.

Subsequently, feature selection was conducted strictly within the
training set and confined to the inner loop of a nested five-fold cross-
validation framework to avoid data leakage (Demircioglu, 2021).
The Mann-Whitney U test was applied to the extracted feature using
the “stats” package in R language Version 3.6. Features that have P <
0.05 were considered predictive and retained. Next, the least absolute
shrinkage and selection operator (LASSO) logistic regression was
used with the “glmnet” package in R to exclude irrelevant and
redundant features.

2.5 Radiomics model construction and
validation

Radiomics signatures (RSs) were constructed from weighted
linear combinations of the selected features, which can be
used to calculate a personalized score for each patient. The
receiver operating characteristic (ROC) curve for the developed
models was plotted with the scikit-learn v1.0 package in Python
v3.10. The best cutoff value was determined by the maximum
Youden index (Ruopp et al, 2008). The DeLong test was used
to compare AUC differences between models, evaluating their
predictive performance for T790M mutations. To evaluate

Frontiers in Cell and Developmental Biology

10.3389/fcell.2025.1673498

clinical utility beyond discrimination metrics, we employed
Decision Curve Analysis (DCA) (Vickers and Elkin, 2006) and
calibration curves (Van Calster et al., 2019) to assess the net benefit
across a range of threshold probabilities, comparing our model to
default strategies such as “treat all” and “treat none.” Decision curve
analysis is a widely accepted method for quantifying clinical value
and can reveal benefits not captured by AUC alone.

2.6 Statistical analysis

Statistical analysis included t-tests and Mann-Whitney U
tests, depending on data distribution, to assess the differences in
radiomics features between T790M-positive (T790M+) and T790M-
negative (T790M-) patients. Clinical parameters were analyzed
using Mann-Whitney U tests and chi-square tests. ROC analysis,
using AUC as the primary metric, calculated the accuracy,
sensitivity, and specificity to evaluate model performance across
various data subsets. The optimal model for predicting T790M
mutations was identified based on AUC comparison using the
DeLong test. To further address potential class imbalance, we also
reported area under the precision-recall curve (AUPRC), which
focuses more on the minority (positive) class performance and
may offer more actionable insight than AUC in the presence of
imbalance (Brabec et al, 2020). Figure 2 illustrates the overall
experimental workflow.

2.7 SHAP analysis

To interpret the construct RS, this study employed the “shap”
package in Python for Shapley Additive exPlanations (SHAP). SHAP
values were computed to assess the contribution of each selected
feature to the T790M mutation predictions. Additionally, SHAP
bar charts and beeswarm plots were generated to visualize feature
importance and the direction of their impact, thereby offering an
easy way to understand the model’s decision-making process.

2.8 Hardware and software resources

All computations were performed on a workstation equipped
with an Intel® Core™ i7-8700K CPU, an NVIDIA GeForce RTX
1060 GPU (6 GB VRAM), and 16 GB system RAM. The operating
environment included Python 3.10 and R 3.6, with key packages
such as pyradiomics, scikit-learn (v1.0), glmnet, stats, shap, and
neuroHarmonize.

3 Results
3.1 Patients’ characteristics

Table 1 summarizes the clinical and demographic characteristics
of the enrolled patients, comparing those with and without the
T790M mutation across various factors. In the training set, there
were significant differences between the T790M+ and T790M-
groups in terms of smoking status (P = 0.009). However, no
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significant difference was observed in age, gender, PS score, CEA,
CYFRA, or NSE (all P > 0.05).
3.2 Tumor partition

Based on the CH and  Silhouette
(Supplementary Figure S1), the tumor was classified into two

index coefficient
subregions with significant heterogeneity using a clustering method:
marginal subregion (S1) and inner subregion (S2). Figure 3
presents the results of spinal metastases in two patients, one
with wild-type EGFR and the other with an EGFR mutation. The
boxplot in Figure 4 shows that S2 consistently exhibits higher
MRI intensity and local entropy values compared to S in all
patients, which may indicate a higher degree of heterogeneity in the
S2 region.

3.3 Feature selection and model
construction

The optimal features selected from the two MRI sequences
were combined to identify the most important predictors. Table 3
lists the final retained features and their prediction performance,
and Supplementary Table S1 provides detailed descriptions of
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each feature. By integrating the features from both sequences
and weighting them based on LASSO regression coeflicients, a
multi-parametric radiomics signature was constructed, as shown
in Supplementary Formula S1. After ComBat harmonization,
the predictive performance of the radiomics signature and
the feature values of the selected predictors are reported in
Supplementary Table S2-54.

3.4 Model performance across sequences
and subregions

Table 2 summarizes the performance of radiomics models
constructed from different tumor regions (S1, S2, and the whole
tumor region) using T1W and T2FS sequences. Although the
DeLong test did not show statistically significant differences
(P > 0.05) in the internal and external validation cohorts,
the fusion model consistently achieved higher AUCs across
all datasets, indicating a consistent trend toward improved
diagnostic performance. The multi-sequence regional fusion model
constructed by integrating the optimal regions demonstrated
enhanced predictive capability. This model achieved an AUC of
0.916 in the training set (ACC = 0.830, SPE = 0.867, SEN = 0.783),
showing encouraging discriminative power. The model exhibited
consistent performance, with an AUC of 0.867 (ACC = 0.815, SPE
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Gene Patient-level | Population-level
MRI Status ROI Local Entropy Clustering Clustering
T790M-
TIW
T790M+
T790M-
T2FS
T790M+
low high low high -
FIGURE 3

Results of the intratumor partition in the TIW and T2FS MRI. The ROI column represents the MRl images with manually segmented spinal metastases.

The local entropy column represents entropy maps of the metastases.

= 0.800, SEN = 0.833) on the internal validation set and an AUC
of 0.839 (ACC = 0.833, SPE = 0.812, SEN = 0.857) on the external
validation set. To complement discrimination with clinical utility,
decision curve analysis (Supplementary Figure S2) showed that
the fusion model consistently provided greater net benefit across
clinically plausible threshold probabilities than all comparator
models. The calibration curves (Supplementary Figure S3) indicate
that the fusion model is reasonably well calibrated in all cohorts. The
full set of performance metrics, including AUPRC (with 95% CI),
positive predictive value (PPV), negative predictive value (NPV),
and F1 score (the harmonic mean of precision and recall), are
reported in Supplementary Figure S4 and Supplementary Table S5.
Overall, performance patterns were generally stable across cohorts,
with minor fluctuations consistent with variations in class
prevalence.

3.5 Performance evaluation of the fusion
model

As shown in Figure5, the RS-T1IW-S2 and RS-T2FS-S2
exhibited consistent and comparable predictive performance.
Specifically, in Figure 6, the AUC values for RS-TIW-S2 were
0.817, 0.822, and 0.748 in the training, internal, and external
validation sets, respectively, while RS-T2FS-S2 achieved AUCs
of 0.817, 0.728, and 0.754 in the corresponding sets. The
results suggest that the diagnostic utility of single-sequence
RSs remains relatively stable across different datasets. The
Fusion Model, which
both TIW and T2FS sequences, consistently outperformed

Multi-sequence Regional integrates
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the single-sequence models across all datasets, vyielding
AUCs of 0916 in the training set, 0.867 in the internal
and 0.839
patient-level

validation in the external validation set.
The
probabilities show clearer separation between T790M+ and
T790M-cases

Overall, these diagnostics indicate a modest but consistent

set,

waterfall plots (Figure 6) of predicted

and fewer high-confidence misclassifications.
advantage of the fusion model at clinically relevant decision

thresholds.

3.6 Feature analysis

As shown in Table 3, a total of six features were identified
as strongly associated with the T790M mutation following
EGFR-TKI three from TIW and three from
T2FS. All features demonstrated statistical significance with
p-values less than 0.05 and AUC >0.65. The majority of
the features (five out of six) belong to the textural feature
which that
is highly correlated with the T790M resistance mutation.

treatment,

category, suggests intratumoral heterogeneity
The feature correlation heatmap for the selected features is
provided in Supplementary Figure S5. To further investigate the
expression patterns and consistency of these six key features
across patients with different T790M mutation statuses, a
hierarchical clustering heatmap was constructed, as shown in
Supplementary Figure S6. Detailed explanations of these features
are provided in the Supplementary Table S1 to facilitate a deeper
understanding of their potential roles in the T790M mutation

status.

frontiersin.org


https://doi.org/10.3389/fcell.2025.1673498
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

10.3389/fcell.2025.1673498

Zhou et al.
T1W MRI in training set T1W MRI in internal validation set T1W MRI in external validation set
A ANOVA (p < 0.001) B ANOVA (p < 0.001) C ANOVA (p < 0.001)
160.0 s 500.0
120.0
140.0
> . 2 4000
B 1200 %‘ 100.0 @
g 5 g
£ 1000 E 00 5 300.0
x 3
= a0 = =
2 = 600 : 2 2000
= 600 = Lo
40.0 00 100.0
200 200
st s2 s1 s2 s1 ) s2
Subregions Subregions Subregions
D T1W MRI-entropy in training set E Tw MRH"};::S‘(,:‘ int:n;\g:,\;alidation set F T1W MRI-entropy in external validation set
o ANOVA (p < 0.001) w“ (p<0.001) ANOVA (p < 0.001)
38 38 a8
>
> o >
- c -
§32 ; 3.2 5
8 o R
83 230 s
- o -
& 28 4
= 2.8 =32
g z
22 c 2
= 25 -
22 3.0
22
20
st s2 st Subreai s2 s1 s2
Subregions ubregions Subregions
G o H o idati I T2FS MRI i I validati
T2FS MRI in training set T2FS MRI in internal validation set in external validation set
ANOVA (p < 0.001) ANOVA (p < 0.001) ANOVA (p < 0.001)
160.0 800.0
160.0 .
1400 700.0
140.0
2 2 2 6000
B ™0 2 1200 2 .
8 s 8 5000
£ 1000 € , £
= = 1000 =
E = x 400.0
= 800 H] H
» o 800 » 3000
& & i
o 600 F s00 F 200.0
400 00 100.0
20.0 0.0
s1 s2 s1 s2 s1 ) s2
Subregions Subregions Subregions
J K L
T2FS MRI-entropy in training set T2FS MRI-entropy in internal validation set T2FS MRI-entropy in external validation set
ANOVA (p < 0.001) ANOVA (p < 0.001) ANOVA (p < 0.001)
40 39
38
38 38
2 236 2
S 8 Sar
G 34 § 34 5
- - —= 36
g 842 g
232 27 235
§ 3.0 "E‘ 3.0 % e
228 4 2"
&2 & 28 S 33
26
26 32
24
24
s1 s2 s1 s2 s1 s2
Subregions Subregions Subregions
FIGURE 4
Boxplots of the MRI intensity and local entropy in the training (A,D,G,J), internal validation (B,E,H,K), and external validation (C,F,1,L) sets. Significant
differences between the S1 and S2 were found by a t-test.

3.7 SHAP analysis and model
interpretability

To enhance the interpretability and clinical applicability of
the Multi-sequence Regional Fusion Model, we performed SHAP
analysis to quantify the contributions of each feature. Figure 7A
illustrates the mean absolute SHAP values, with F3 showing
the highest value (0.458), indicating its most substantial
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influence on the model's predictions, consistent with its
prominent positive coefficient in the Rad-Score formula.
F4 and F5 follow with SHAP values of 0.337 and 0.239,
respectively, further emphasizing their significant predictive
importance. In contrast, F2 exhibited the lowest SHAP
value (0.033), suggesting minimal impact on the models
predictions, which aligns with its negative coefficient in the

Rad-Score formula.
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*P <0.05

S1 subregion 1, S2 subregion 2, W whole tumor region, vs. versus, AUC Area Under the Receiver Operating Characteristic Curve, ACC Accuracy, SPE Specificity, SEN Sensitivity.

Bold values indicate the best-performing results within each MRI sequence and the final multi-sequence regional fusion model, and also represent the DeLong test comparisons between the best single-sequence models and the final fusion model.
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The SHAP beeswarm plot in Figure 7B offers comprehensive
information regarding the impact of each feature on the model’s
output. F3 shows a broad SHAP value distribution, indicating that
varying values of this feature significantly influence the models
predictions, predominantly in a positive direction, which aligns with
its significant positive coefficient. In contrast, F2 displays a narrow
SHAP value distribution centered around zero, further confirming
its minimal contribution to the model’s predictions.

Through SHAP analysis, we have clarified the specific roles
of each feature within the model’s decision-making process.
F3, F5, and F6 make significant contributions to the model’s
predictions, while F2 and F4 have relatively minor impacts.
Integrating SHAP values with the Rad-Score formula enhances the
transparency of the decision-making process, improving both the
model’s interpretability and its clinical applicability. These results
demonstrate the value of feature selection and model interpretability,
particularly in the accurate assessment of T790M mutation status.

4 Discussion

While MRI and other imaging techniques have advanced
the molecular management of lung cancer, traditional imaging
assessments often fail to capture intratumoral heterogeneity. This
heterogeneity is increasingly recognized as closely linked to
molecular characteristics and treatment responses (Zhang et al.,
2022; Rasche et al,, 2019). For patients without access to primary
tumor tissue, bone metastases provide a crucial alternative for
genetic evaluation. Although radiomics has been widely utilized for
molecular prediction in brain metastases and other sites (Fan et al.,
2023a; Cao et al, 2022; Lv et al, 2023), research specifically
targeting spinal bone metastases—especially concerning the EGFR
T790M resistance mutation—remains limited. To our knowledge,
this study is the first to apply MRI-based radiomics to analyze
intratumoral heterogeneity in spinal bone metastases and assess
its clinical value in predicting T790M mutations. Additionally, our
integration of model interpretability and the inclusion of data from
two independent centers enhances the transparency and credibility
of our findings.

Building on a robust clustering strategy based on local entropy,
we objectively divided both TIW and T2FS MRI sequences into S1
and S2 for radiomics analysis. Notably, the S2 region, located in the
tumor core, consistently exhibited superior predictive performance
compared to the S1 region in both sequences, as reflected by
higher AUCs and classification accuracies. This finding suggests
that the inner subregion harbors greater biological heterogeneity
and is more closely linked to the molecular status of EGFR
T790M mutations, consistent with previous studies by Fan etal.
(Fan et al,, 2021) and Jiang et al. (Jiang et al., 2023). Biologically,
the tumor core often experiences hypoxia, nutrient deprivation, and
increased cellular stress (Vitale et al., 2021; Marusyk et al., 2020),
which fosters the selection and expansion of cell populations with
survival-promoting mutations, such as EGFR T790M alterations.
Previous studies have reported that tumor bone metastases often
result in bone destruction or osteolysis (Liu et al, 2022). The
peripheral S1 region may correspond to the edges of destroyed
bone or residual bone fragments, thus harboring less discriminative
information. The inner region may be composed predominantly
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TABLE 3 Performance of the selected radiomics features.

Feature Source Mean + SD
T790M+ T790M-
log-sigma-5-0-mm-3D_gldm_DependenceNonUniformityNormalized (F1) TIW 0.097 +0.037 0.065 +0.014 0.772 <0.001
original_glem_InverseVariance (F2) TIW 0.420 + 0.042 0.452 +0.022 0.721 0.002
wavelet-HHH_glem_ MCC (F3) TIW 0.119 +0.028 0.094 +0.018 0.778 <0.001
exponential_gldm_DependenceNonUniformityNormalized (F4) T2FS 0.151 + 0.050 0.110 + 0.044 0.732 0.003
Ibp-3D-m2_firstorder_90Percentile (F5) T2FS 16.856 + 0.503 17.167 +0.235 0.675 0.010
log-sigma-5-0-mm-3D_glszm_SmallAreaEmphasis (F6) T2FS 0.194 +0.073 0.262 +0.093 0.713 0.004

SD, standard deviation.

of metastatic tumor cells and potentially (Cao et al, 2023)
contain more information associated with T790 mutation status.
In contrast, marginal and fragmental regions may contain more
stromal, necrotic, or inflammatory elements (Hinohara and Polyak,
2019), thus providing less specific genetic information. These
results emphasize the importance of spatially resolved analysis in
uncovering the molecular basis of resistance.

By integrating features from both TIW and T2FS sequences,
our model consistently outperformed single-sequence models,
with AUCs increasing from 0.817 to 0.916 in the training set
and demonstrating similar improvements in both internal and
external validation sets. This performance gain can be attributed

Frontiers in Cell and Developmental Biology

to the complementary properties of TIW and T2FS: TIW
features primarily contributed to morphological discrimination
(Hanrahan and Shah, 2011), whereas T2FS features were
more sensitive to water-related heterogeneity and cellularity
(Lecouvet, 2016; Ruopp et al., 2008). These findings highlight
the value of multi-dimensional integration for noninvasive
characterization of the molecular and physiological landscape
of bone metastases and support its potential clinical application
in personalized molecular stratification and treatment planning.
Although the DeLong test did not indicate statistical significance
(P > 0.05) in the internal and external validation cohorts, this
is likely due to limited sample size. Nonetheless, the fusion
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model consistently demonstrated higher AUCs across all datasets,
supported by DCA demonstrating superior net benefit and
calibration curves indicating reliable probability estimates.
The fusion model exhibits a consistent trend toward better
discrimination and decision net benefit; however, DeLong test in the
validation cohorts is not statistically significant, and confirmation
in larger, multi-center prospective studies remains necessary. Such
consistency supports the added predictive value of integrating
subregional features from multiple MRI sequences.

Texture features, as pivotal components of radiomics, provide
quantitative descriptors of spatial complexity and gray-level
heterogeneity within tumors. Increasing evidence has demonstrated
that these features serve as noninvasive imaging surrogates
for intratumoral biological diversity and therapy resistance
(Gillies et al., 2016; Aerts et al, 2014). For example, Aerts
etal. systematically revealed that textural heterogeneity features
are associated with underlying gene-expression patterns and
proliferative activity (Aerts et al., 2014). These findings highlight the
essential role of spatial heterogeneity, captured by radiomic texture
features, in reflecting the clonal diversity and microenvironmental
adaptation of tumors under therapeutic pressure. In this study, six
radiomic features were identified from the S2 subregion—three
from each of the TIW and T2FS sequences—that showed strong
associations with the T790M mutation status. We found that five of
these features were textural, and all exhibited consistent predictive
performance (P < 0.05, AUC >0.65). This illustrates the important
function of spatial heterogeneity, as captured by texture features,
in the emergence of acquired resistance. These results reinforce the
paradigm that intratumoral textural heterogeneity, as quantified
by radiomics, serves as a critical imaging biomarker for drug
resistance, likely reflecting underlying clonal diversity and adaptive
microenvironmental changes in metastatic lesions.

At the microscopic level, the most influential features,

GLDM), F6
(MCC, GLCM),
biology that

Specifically,

F1
(SmallAreaEmphasis,
capture
are

(DependenceNonUniformityNormalized,
GLSZM), and F3
complementary aspects of
closely  linked acquired
DependenceNonUniformityNormalized quantifies the irregularity

tumor
to resistance.
of local gray-level dependencies, may reflecting increased cellular
heterogeneity, disorganized tissue structure, or the coexistence
of proliferative and necrotic areas, hallmarks of aggressive,
therapy-resistant. SmallAreaEmphasis highlights the presence of
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small, high-intensity regions, which may correspond to clusters
of densely packed tumor cells or focal necrosis, indicative
of microenvironmental adaptation and clonal selection under
therapeutic pressure. MCC measures the spatial linear complexity
of intensity distributions, serving as a putative marker for
underlying genetic and cellular diversity. Collectively, these features
act as noninvasive imaging proxies for complex pathological
processes, such as cellular heterogeneity, necrosis, and architectural
disorganization, that drive the emergence of aggressive, drug-
resistant tumor phenotypes. Collectively, these texture features
are theoretically well aligned with the clonal selection mechanism
that drives EGFR T790M mutation. T790M is one of the most
common mechanisms of acquired resistance to first- or second-
generation EGFR-TKIs; its essence is the expansion of resistant
subclones under therapeutic pressure (Qi et al., 2024; Dong et al.,
2024; O'Connor et al,, 2015), which is biologically manifested as
intratumoral heterogeneity (including variation in cell density,
coexistence of necrotic and viable regions, and intermixing of
dying vs. surviving cells). Secondly, such texture features represent
whole-tumor heterogeneity, whereas biopsies usually sample only
a local region and thus may miss resistant subregions (Li and
Zhou, 2022; Frankell et al., 2023; Gerlinger et al., 2012). However,
we also explicitly acknowledge that biological interpretability
remains limited.

A significant difference in smoking status was found between
T790M-positive and T790M-negative patients (45.8% vs. 10.3%, P
=0.009) in the training set. Two previous studies demonstrated that
smoking was significantly associated with T790M mutation status
(P < 0.05) (Ke et al., 2017; Jaiswal et al., 2019), which is consistent
with our findings. This association may be explained by the fact that
smoking increases tumor mutational burden and subclonal diversity,
thereby facilitating resistance to tumor therapy (Blakely et al., 2017;
Frankell et al., 2023). However, smoking remains a controversial
factor, as some previous studies reported no significant association
(P > 0.05) (Huang et al., 2018; Wu et al, 2024; Lv et al., 2023;
Tseng et al., 2016; Ouyang et al., 2020).

SHAP analysis confirmed the dominant contributions of
F3 (MCC), F4 (DependenceNonUniformityNormalized), and F5
(firstorder 90Percentile) to model predictions, consistent with
their prominent positive coefficients in the Rad-Score formula. In
contrast, features such as InverseVariance (F2) had minimal impact,
underscoring the specificity and biological relevance of the key
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textural predictors. By elucidating the internal decision logic of the
model, SHAP analysis enhances interpretability and transparency,
enabling clinicians to better trust and adopt radiomics-based
tools in precision oncology. In multicenter MRI radiomics,
scanner variability poses a major challenge. In our study, ComBat
harmonization failed to improve predictive performance, consistent
with prior work (Li et al., 2021; Zhang et al., 2024a; Ibrahim et al.,
2022). Therefore, we instead employed multistep preprocessing and
ICC-based filtering to enhance robustness.

This study has several limitations. First, this retrospective
analysis has a limited sample size, particularly in the external
validation set, which creates potential for selection bias. Further
studies should be conducted with larger sample sizes. Second,
although the reliability and validity of the segmentation approach
have been previously demonstrated (Fan et al., 2021; Hong et al.,
2020), it may not fully capture the microstructural heterogeneity
of bone metastases. Third, the stability of radiomic features is
dependent on image quality and may be influenced by artifacts
or scanner variability. Fourth, this study only analyzed TIW and
T2FS MRI sequences and did not incorporate functional imaging
(e.g., TICE, DWI) or multi-omics data, which may limit the
completeness of feature representation and model generalizability.
Finally, although SHAP analysis provided only a preliminary level
of model interpretability, the identified MRI features still lack
biological validation, and their associations with tumor biology
remain unclear.

5 Conclusion

This study demonstrates that MRI-based radiomics can
effectively and non-invasively predict EGFR T790M mutations in
spinal metastases. Model performance was improved by integrating
features from S2 and combining TIW and T2FS sequences. Its
potential as a noninvasive tool for guiding EGFR-TKI therapy in
NSCLC patients with inaccessible spinal metastases.
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