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quantification of mitochondria
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Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas & Universidad Miguel
Hernandez, Sant Joan d'Alacant, Spain

The precise characterization of mitochondrial morphology and subcellular
localization provides crucial insights into cellular metabolic states and
developmental fates. However, accurately analyzing mitochondria in cells with
complex morphologies remains challenging, particularly within intact tissues
where current methodologies lack sufficient resolution and specificity. Here
we introduce MitoLandscape, an innovative pipeline tailored for comprehensive
mitochondrial analysis at single-cell resolution in the developing nervous
system. MitoLandscape integrates Airyscan super-resolution microscopy, semi-
automated segmentation (leveraging ImageJ and 3DSlicer), machine-learning-
driven pixel classification (ilastik), and a modular custom Python script for
robust and versatile analysis. Using graph-based representations derived
from manual annotations and binary mitochondrial images, MitolLandscape
efficiently extracts detailed morphological parameters from distinct subcellular
compartments, applicable from cells with simple morphologies to complex
neuronal architectures. Additionally, the pipeline quantifies mitochondrial
distribution relative to specific cellular landmarks, such as nucleus or soma.
We validated MitolLandscape in vitro and in neural tissue, demonstrating its
capability to precisely and reliably map mitochondrial features in diverse
biological contexts. MitoLandscape represents a powerful, user-friendly, and
highly adaptable solution for investigating mitochondrial biology in cell and
developmental research.

organelle, morphology, machine learning, computational biology, super-resolution,
neurodevelopment

1 Introduction

The morphology, size, and subcellular distribution of organelles play critical roles in
defining the physiology, metabolism and even developmental fate of cells. Mitochondria
are particularly important given their central function in energy metabolism, calcium
signaling, apoptosis and cell differentiation processes (Namba et al., 2021; Tilokani et al.,
2018; Friedman and Nunnari, 2014). While classically presented as elongated cylinders,
mitochondria display a wide range of morphologies, from small spheres to simple tubes and
tubular networks. Different mitochondria morphologies correlate with specific functional
states, and affect the overall cellular response to physiological stimuli and pathological
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situations (Mishra and Chan, 2016). The subcellular localization
of mitochondria is also key to the location of ATP production,
reactive oxygen species production and signaling, and metabolic
regulation (Schwarz, 2013; Sheng, 2014). Therefore, the detailed
characterization of mitochondrial structure and distribution in any
cell type of interest is key to understanding the fundamental aspects
of its biology, development and disease.

The pressing need to determine the detailed morphology and
localization of mitochondria, in an accurate and quantitative
manner, clashes with the significant limitations of existing
methods. Traditionally, mitochondrial analysis has relied essentially
on manual or semi-manual methods, which are highly time-
consuming, labor-intensive, and prone to inherent subjective biases
and human error. For example, changes in the length of individual
mitochondria in neural cells have been previously described
performing manual analyses (Iwata et al., 2020), but applying such
methods to large-scale studies, or to complex samples such as intact
tissues, is not feasible. To overcome this critical limitation, recent
advances in computational approaches using machine-learning-
based image analysis technologies have enabled high-throughput
analyses of mitochondria (Chu et al., 2022; Chaudhry et al., 2020).
These computational methods offer significant improvements in
efficiency and reproducibility but have been largely designed for cells
that are either isolated and/or have simple morphologies, conditions
rarely found in tissue. Some efforts have attempted to extend these
approaches to three-dimensional tissue scenarios (Fogo et al., 2021),
but limitations in image processing and analysis protocols render
these insufficient for the unambiguous assignment of mitochondria
to individual cells.

Existing computational methods for image-based analysis
of mitochondria become particularly problematic in highly
heterogeneous tissues that are structurally complex. The developing
nervous system becomes particularly challenging when applying
these established methods to intact tissue. In this context, cells often
exhibit complex three-dimensional architectures, closely interwoven
processes, and dense cellular arrangements, which dramatically limit
the accurate segmentation and morphological analysis of individual
elements. Neural progenitor cells, for example, are very densely
packed and extend elaborate processes tightly intertwined with
neighboring cells, making conventional segmentation techniques
insufficient for accurately resolving individual cell structures and
their associated mitochondrial content. Thus, there is a pressing
need for advanced methods of analysis that can accurately quantify
mitochondrial morphology and localization within intact tissues at
single-cell resolution.

Here we introduce MitoLandscape, an advanced computational
pipeline specifically designed for the accurate, robust and versatile
analysis of mitochondrial morphology and their subcellular
distribution within individual cells in the intact developing nervous
system. MitoLandscape integrates Airyscan super-resolution
microscopy with semi-automated segmentation approaches
combining 3DSlicer software, machine learning-driven pixel
classification via ilastik (Berg et al, 2019, 20) and customized
Python scripts for detailed mitochondrial characterization. By
employing a combination of manual annotations, computational
segmentation, and graph-based analyses, our approach efficiently
resolves mitochondrial morphologies and localizations within
complex cellular architectures. We validated MitoLandscape using
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both cultured neural cells and fixed tissue samples, demonstrating
its efficacy in accurately capturing detailed mitochondrial structural
parameters, subcellular localization, and spatial relationships to key
cellular landmarks. MitoLandscape can also be applied to study
the architecture of complex branched structures such as neurons, by
skeletonizing entire cells or cellular processes. This pipeline analyzes
and measures the number and length of primary branches, and
assesses structural characteristics of specific regions (i.e., the end-
feet of Radial Glia Cells). Thus, our pipeline works across scales from
individual organelles (e.g., mitochondria) to whole cells, allowing
researchers to investigate cell morphology and cytoarchitecture
in a semi-automated, quantitative manner. MitoLandscape
provides an essential tool to investigate mitochondrial biology
and cell structure at high-resolution within physiologically
relevant contexts, significantly expanding the power of cell and
developmental studies.

2 Methods
2.1 HEK culture

HEK293T cells were cultured following standard laboratory
procedures. Briefly, cells were maintained in Dulbecco’s Modified
Eagle’s Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), 1% penicillin-streptomycin, and 1% L-glutamine,
incubated under humidified conditions at 37 °C and 5% CO,.
Cultures were passaged regularly to maintain approximately
70%-80% confluency.

For transient transfections aimed at sparse cell labeling, cells
were plated on 24-well plates and transfected using GeneJet
reagent (Thermo Fisher Scientific), following the manufacturer’s
instructions. Specifically, transfection mixtures per well consisted
of 1pg of a floxed plasmid encoding membrane-targeted EGFP
and mitochondrial-targeted dsRED (mito-dsRED), and 10 ng of
a plasmid expressing Cre recombinase, resulting in sporadic
recombination events and sparse cell labeling.

Cells were fixed 24 h post-transfection by directly adding
an equal volume (500 puL) of fixation solution consisting of 8%
paraformaldehyde (PFA) and 30% sucrose to 500 uL of the culture
medium, achieving a final concentration of 4% PFA. Fixation was
carried out for 5 min at room temperature, after which samples were
rinsed thoroughly with phosphate-buffered saline (PBS) and stored
appropriately for subsequent analyses.

2.2 Electroporation

In utero electroporation in mice was performed at embryonic
day 12.5 (E12.5) targeting the neocortex. Pregnant females were
deeply anesthetized using isoflurane, and the uterine horns
were gently exposed. A total volume of 1pL of DNA solution
was delivered into the lateral telencephalic ventricle via pulled
glass micropipettes, followed by application of five square-wave
electric pulses (28-35V, 50 ms duration, 950 ms interval) using a
Cuy21EDIT pulse generator (Bex Co., LTD.) and round electrodes
(CUY650P5, Nepa Gene). After electroporation, uterine horns were
returned to the abdominal cavity, which was suture closed, and
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the female was returned to the home cage after full recovery from
anesthesia.

In ovo electroporation in chick embryos was conducted at
4 days post-fertilization (dpf) as described elsewhere (Cérdenas and
Borrell, 2021). Briefly, fertilized eggs were incubated at 38.5 °C until
the desired developmental stage. On the day prior to electroporation,
a small amount of yolk was aspirated to improve visibility. For
electroporation, a window was open in the shell to access the
embryo, and DNA was injected into the lateral telencephalic
ventricle followed by the delivery of square-wave electric pulses
(30V, 5 ms duration, 5 pulses at 500 ms intervals) using a TSS20
Ovodyne Electroporator (MCI) and round electrodes (CUY650P3,
Nepa Gene). Eggs were then sealed and returned to the incubator
to continue development under standard conditions (38.5°C).
At the appropriate stage embryos were collected, fixed in ice-
cold 4% paraformaldehyde (PFA), and brains were processed for
immunohistochemistry.

Electroporation of perinatal ferrets was performed targeting
protocol described
previously (Borrell, 2010). Ferret kits aged postnatal day (P) 2 were

the neocortex following a similar as
anesthetized with isoflurane and placed in a stereotaxic system for
intraventricular injection of ~2 pL DNA solution. Electroporation
was performed by application of five square-wave electric pulses
(50'V, 50 ms duration, 950 ms interval) using a Cuy21EDIT pulse
generator (Bex Co., LTD.) and round electrodes (CUY650P7, Nepa
Gene). Following recovery from surgery, kits were euthanized, and
their brains collected 1 day later.

DNA solutions used for both mouse, ferret and chick
1pg/uL  of CAG-mEGFP-T2A-
mitoDsRed plasmid and 10 ng/uL of Cre-expressing plasmid.

electroporations  contained

2.3 Primary culture

Fresh neocortical tissue from electroporated mouse embryos
was collected 24 h post-electroporation. Tissue processing was
performed following previously described protocols (Wimmer et al.,
2025), with minor modifications. Briefly, dissected cortices were
rinsed in a base culture medium consisting of DMEM/F-12
supplemented with D-glucose (2.9 mg/mL), penicillin/streptomycin
(5 U/mL), and amphotericin B (250 ng/mL). The medium was then
replaced with Neurobasal medium supplemented with B27 without
vitamin A, basic fibroblast growth factor (FGE 20 ng/mL), and
epidermal growth factor (EGF, 20 ng/mL). Tissue was mechanically
dissociated into a single-cell suspension by gentle pipetting. The
suspension was centrifuged at 1,200 rpm for 3 min, and the
resulting cell pellet was resuspended in 1 mL of supplemented
medium. Cell viability was assessed using trypan blue exclusion,
and only preparations with a viability of 70%-90% were used
for further culture. Cells were plated at a density of 2 x 10°
cells per well onto 6-well plates pre-coated with poly-D-lysine
(0.1 mg/mL) and fibronectin (1.5%). Each well contained 2 mL of
supplemented medium. Cultures were maintained at 37°C in a
humidified atmosphere with 5% CO,. The culture medium was
refreshed 24 h after plating and every 2 days thereafter to eliminate
floating cells and debris. Seven days after plating, cells were fixed
with 4% paraformaldehyde (PFA) and subsequently processed for
immunostaining against EGFP and DsRed.
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2.4 Constructs

Floxed CAG m-EGFP-T2A-mitodsRed was
by  Vectorbuilder. pCAG-Cre,
of M. Gotz (Pilz et al., 2013).

produced
gift

was a generous

2.5 Immunohistochemistry

Ferrets were perfused transcardially with 4% PFA and post-fixed
for 30 min at 4 °C. Brains were cryoprotected with 30% Sucrose and
then were frozen and sectioned under a cryotome at 50 pm.

Chick embryonic brains were fixed with 4% PFA for 30 min,
cryoprotected and frozen like ferret brains, and sectioned under a
cryostat at 20 um.

Brain sections and fixed primary cultures were permeabilized
with PBS containing 0.25% Triton X-100, blocked in 10% of
Normal Horse Serum and 2% Bovine Serum Albumin (BSA) during
2 h, followed by incubation with primary antibodies overnight
in blocking solution, and then incubation with appropriate
fluorophore-conjugated secondary antibodies. Primary antibodies
used were: anti-GFP (1:1,000, chicken polyclonal, Aves Lab.) and
anti-dsRed (1:1,000, Clontech). Secondary antibodies used were:
Alexa555 anti-rabbit IgG (Invitrogen); Alexa488 anti-chicken IgY.

2.6 Imaging and deconvolution

To minimize acquisition-driven variability and maximize
segmentation fidelity, 3D stacks were acquired using an inverted
confocal microscope (Olympus FluoView FV1000) or an inverted
super-resolution confocal microscope (Zeiss LSM 880-Airyscan
Elyra PS.1) operating in Airyscan super-resolution mode (140 nm).
Acquisition parameters (objective NA, refractive index, emission
bandpasses) were selected to satisfy Nyquist sampling in XY and
Z for each channel, lateral and axial resolving power follow the
Abbe limits. Under our conditions, Airyscan processing yielded
approximately 120 nm (XY)/350 nm (Z) at 488 nm and 140 nm
(XY)/380-400 nm (Z) at 555 nm, improving signal-to-noise ratio
and edge definition of mitochondrial structures and subcellular

«

landmarks. Raw data were exported as “czi” and deconvolved
in Huygens Professional software (Scientific Volume Imaging)
using the Deconvolution Express tool with default parameters.
Deconvolved volumes were then submitted to the segmentation

stage (e.g., ilastik classifier or Fiji Mitochondria Analyzer).

2.7 Image segmentation

Image segmentation was required to achieve the single cell
resolution in the next analysis. Three-dimensional (3D) image
stacks of the membrane signal channel were loaded into 3D Slicer
(Figures 2A-E). In the Segmentation tool window, new labels are
added (Figures 2B,C,E), one for each cell we intended to segment
plus one for the background. We annotate individual cells trying
to cover pixels with different levels of intensity within each cell.
For the thinner processes, single lines along them were usually
sufficient for proper segmentation. Particular care and additional
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FIGURE 1

Membrane
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Mitochondria

Input images for MitoLandscape. Representative maximum intensity projections of z-stack images from HEK293T cells (A), neurons in culture (B) and
Radial Glia Cells from chick embryo (C), captured with Airyscan super-resolution and processed with Huygen's deconvolution, illustrating different
levels of sample complexity. Cells were transfected with plasmids encoding mEGFP (green) and mitoRed (magenta) to label cell membrane and
mitochondria, respectively, and nuclei were labeled with DAPI. Arrows point at nuclei of cell of interest. Scale bars, 5 um.

annotations, such as the precise cell separation, were necessary along
the boundaries between adjacent cells and processes. We used the
background label in the empty space around the cells of interest
to cover positive pixels belonging to cells or processes that were
not being segmented. In case of cells with low intensity signal,
it was necessary to better annotate the surrounding background
areas to avoid label spilling into the negative pixels. The first and
the last pictures of the stack were filled with the background label
(Figures 2B,C, top and bottom) to obtain an output with the same
dimensions of the original image stack. We used the Grow from seeds
option and after the Initialization step, we refined the areas where
the segmentation preview was not satisfactory, and we updated
the segmentation. Additional rounds of refinement and updating
were performed until the result was satisfactory (Figure 2F). The
Segmentation preview was saved as the default “seg.nrrd” format.
The file the
MorphoLib] package (Legland et al., 2016) was used to remove

output was open in Fiji, where
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the largest label (corresponding to the background volume), and
this set the background pixels to zero.

To segment the nucleus, we started from the DAPI channel and
used a combination of median filtering and thresholding in Fiji.

For soma segmentation, we manually removed the processes
from the segmentation outputs. For the following steps of the
pipeline, it was important to have each nucleus or soma labeled
with the same value of the corresponding cell. The output of nucleus
thresholding was an 8-bit image with a positive pixel value of
255. Using the “Process > Calculator Plus > Operation: Divide”
command where il and i2 were both the same binary picture
(we left the default “kl: 1.0” and “k2: 0.0”), we obtained an 8-
bit image where the positive pixel value was 1. We used again
the same command with “Operation: Multiply” and “il: result
of the previous step” and “i2: cell segmentation image”. In the
output, every nucleus value was the same as the label of cell

segmentation.
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Manual

annotation Merge

Membrane

Z-stack

Neurons of mouse
cortical primary cultures

Chick developing

Semi-automated segmentation of complex cell morphologies using 3D Slicer. (A) Selected slices from the z-stack open in 3DSlicer, from first to last
slice (z = 1to z = N). (B) Partial manual annotation of individual cells and their processes performed on 2D planes. (C) Merge of annotation and
membrane channels. Background is labeled in blue. To preserve the original z-stack dimensions, the first and last picture of the stack were partially

annotated as background ((B,C), top and bottom). (D—F) Maximum projections of membrane channel (D), manual annotation (E) and final
segmentation output (F), referred to as “Segmentation preview” in 3DSlicer. Scale bars: 5 pm

FIGURE 2

To segment the ventricle, we combined manual tracing and
thresholding from the membrane signal channel.

2.8 Distance maps

A Python function was written (indicated as geodesic_dist in
the code) to calculate both distances from the nucleus (Figure 3A)
and from the soma (Figure 3B). The function takes into account the
shape of the cell and the processes and pixel resolution to calculate
the distance appropriately. The inputs are two binary 3D numpy
arrays with the same shape, one mask that determines the volume
inside which to calculate the distance, the marker which is the origin
point for the distance (distance inside is zero) and a 3D tuple with the
pixel resolution. The function is based on the sckit-fmm library in
Python (Pedregosa et al., 2011). The output is a masked array where
the value of every pixel within the mask is set to the distance from
the marker. In the case of the distance from the ventricle (Figure 3C),
we opted to use Euclidean distance because there are no obstacles
within the tissue to consider and it is computationally faster. For
more complex tissue structure, the same geodesic distance function
used for the distances of nuclei and somas may be used.

2.9 Cell compartment identification

A function was written to recognize processes as separate
components attached to the soma (cell_annotation in the code)
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E F

(Figures 4A-C). This function takes as input two binary 3D numpy
arrays with the same shape: the cell and the soma masks (Figure 4A).
It produces a numpy 3D array with the same shape where the
background is filled with zeros, the soma is labeled with 1 and
every process is labeled with a different value (Figure 4C). Minor
processes shorter than a selected threshold are annotated as part
of the soma (Figure 4D).

A function was developed (indicated as apical_progenitor_
compartment_annotation) that the
processes belonging to the apical or basal side of the soma for each

automatically recognizes
cell and annotate them accordingly (Figure 4E). The identity of
the process is determined by the position of its starting portion
(a basal process that bends towards the ventricle would still be
properly recognized as basal). All these functions require the
pixel resolution, which we obtained directly in Python using the
aicsimageio library (Brown et al., 2021) to read the Tiff images.
Then, two functions were written to annotate cell types
with branching structures (Figures 5A-C). They are based on the
skeletonization of the cell and on the Strahler analysis of the
branching structure (Strahler, 1952; Ledderose et al., 2014). Strahler
numbers correspond to the distance from the extremities of the tree.
A map is obtained where the most distal branches are annotated as
1, the branches immediately upstream as 2, and so on. This analysis
requires a structure without closed loops. Structures with closed
loops were solved by removing loops with minimum_spanning_
tree function of the networkx package. We used the distance of
each pixel from the soma as a weight for the trimming step, such
that loops are preferentially removed away from the soma. This
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FIGURE 3

Distance map generation at increasing levels of biological complexity. (A) Geodesic distance from the nucleus in a HEK cell, mouse cortical progenitor
cell and apical Radial Glia Cell from the developing chick pallium. (B) Distance from soma in mouse cortical progenitor cells and chick apical Radial Glia
Cell. (C) Distance from ventricle of apical Radial Glia Cells from the developing chick pallium. Gray area in each distance map indicates the reference
structure used to measure distance. Geodesic distance was used for nuclear and soma-based maps; Euclidean distance was used for ventricular

distance calculations.

analysis requires root detection (the root end nodes without any
annotation would be considered equivalent to any other end node).
Since our pipeline already includes information about the soma
position and the geodesic distance from the soma, it does not
require an additional ROI containing the root; it assumes that the
end node with the minimum distance to the soma is the root.
The first function (strahler_analysis) needs cell and soma binary
masks and pixel resolution and produces a network annotated
with Strahler numbers, a unique id for each linear branch, and
a dataframe containing the length of each component. If an
annotated mask is provided, such as the output of the cell_annotation
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function, each branch will be additionally assigned to the respective
compartment. The annotated output can be used as input of the
second function annotate_from_network, which would create a
new labeling of the cell binary mask. This step can be used for
future analysis.

2.10 Mitochondria binarization

An ilastik (Berg et al., 2019) 2-class pixel classification model
was trained (mitochondria pixel and background), using a few
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FIGURE 4

Automated annotation and classification of apical radial glia compartments. (A) Segmentation masks showing the cell (green), soma (cyan) and
ventricle (white). (B) Geodesic distance from the soma (um), used to define the length of each process. (C) Separate cellular components connected to
the soma (each assigned to a numeric id). (D) The maximum distance from soma is used to calculate the length of the processes; short processes

(<2 um, number in bracket) were excluded from further analysis and reassigned to the soma. (E) Final classification of basal and apical processes. The
short processes have been combined with the soma to obtain an updated soma. The soma distance from the ventricle (gray line) is used to classify the
processes as apical or basal depending on the position of their attachment to the soma.

annotated images (Figure 6A) where mitochondrial signal spans a
wide range of intensities as ground truth.

To segment isolated cells, such as ferret cortical neurons
and Apical Radial Glia endfeet, we used a similar approach
training the model to distinguish background from cytoplasmic and
membrane signal.

2.11 Mitochondria morphology and
localization analysis

Our mito_analysis function takes as input the binary
mitochondrial image (which can be obtained with the preferred
binarization algorithm) (Figure 6B) and the pixel resolution. A
skeletonization step (Figure 6C) is performed and a graph object is
generated. Each voxel is associated to a node and it is connected
to all the neighbor nodes (in a 26-voxels neighborhood). Next,
a standard morphological analysis extracts relevant information
(length, volume, surface, number of branches, number of endpoints,
number of junctions, branch diameter and sphericity). For each
isolated mitochondrial element, a center was calculated as the graph
component barycenter. The barycenter is the voxel that minimizes
the distance from all the other nodes of the graph, taking into
account the voxel resolution (Figures 6C,D). This information allows
locating each element in its specific subcellular compartment. In case
of extremely long mitochondria, which span multiple components,
the final location assigned is the component where the mitochondria
center is located. Mitochondrial volume was measured from
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the binarized mitochondria images as the number of positive
voxels times voxel volume. The surface calculation algorithm was
based on the script of MorphoLib] (Legland et al,, 2016). The
diameter calculation algorithm was based on the Mitochondria
Analyzer plugin (Chaudhry et al, 2020). The total volume of
mitochondria was obtained for each component as the total number
mitochondria voxels belonging to the specific component. The core
mitochondria analysis (Figure 7A) function produces two outputs,
a mitochondria features table and a graph objects from Networkx
Python package that can be used for additional custom analysis.
The analysis was automated with the function cell_analysis
(Figure 7B). It takes as input the binarized mitochondria, the
annotated image, where each component is labeled with a different
number (the output of cell_annotation (Figure 7C) or apical_
progenitor_compartment_annotation (Figure 7D) for the process
annotation, or annotate_from_network (Figure 7E) with the Strahler
network for branching annotation), the distance map from the
soma previously calculated, and the pixel resolution. Two tables
are generated as output: the first contains the aggregate results
for each labeled subcellular component (Supplementary Table S1)
(label information stored in the “compartment” column; the
second contains information for every mitochondrial element
(Supplementary Table S2). The number of branches which was
previously calculated is used in this step to classify each element
as network, rod and punctus, following the work of Bakare et al.
(2021). Additional functions were written to automate the analysis
of multiple cells within the same image (function picture_analysis
in the code), and other utility functions to plot and manage the
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FIGURE 5

Automated skeletonization and branch analysis of neuronal and glial cells. Automated skeletonization and branch analysis of neurons and glia using the
MitoLandscape pipeline. (A—C) Representative examples: (A) Ferret apical radial glia, (B) mouse cortical neuron in vitro, and (C) adult ferret pyramidal
neuron (extracted from Borrell and Callaway (2002)); each showing membrane fluorescence, segmentation masks (soma/processes), and
Strahler-order color-coded skeletons. (D) Soma and main process identification for compartmental analysis (mouse neuron from (B)). For ferret apical
radial glia, the most proximal portion of the endfoot was annotated as root for the Strahler analysis. (E,F) Strahler analysis reveals abundant short

terminal branches (order 1) and fewer, longer proximal segments of higher order. Scale bars, 10 um (A,B); 50 um (C).

different intermediate images generated in the pipeline. The full code
is available on https://github.com/enricoenne/MitoLandscape. All
mitochondrial binarization, skeletonization, and subsequent graph-
based analyses were performed in 3D using the full Airyscan z-
stacks.
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To study the fine spatial distribution inside subcellular
compartments, the function process_analysis was written to quantify
the volume of mitochondria along the length and the thickness of
the process (Figures 8A-D). This function could be useful to study
the shape of processes even in the absence of mitochondria. The
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Mitochondrial skeletonization and graph-based analysis, example from chick developing pallium. (A) Raw Airyscan super-resolution microscopy
images were deconvolved using Huygens software (Mito signal), maximum projection. (B) Maximum projection of binarized mitochondria was
generated by a two-class pixel classification model in ilastik (Binarized mito). (C) Skeletonized representation showing endpoints (1 neighbor; magenta),
branching points (more than 2 neighbors; cyan) and centers (green) for each mitochondrial element, calculated as barycenter of each mitochondrial
element, treated as a graph where every voxel is a node connected to the neighbors. (D) Graph representation of mitochondria, green crosses indicate
element centers, colors represent the single linear components (or branches). Scale bar, 0.5 um.

function to quantify process and mitochondrial volume along the
process uses the distance from the soma (Supplementary Figure S1)
to split the process in subsections of defined thickness (the
default is 0.5 um). Relying on the distance from the soma
allows analyzing processes that are twisted; although subsections
that are not perpendicular to the process axis cause a minor
deformation, this usually does not alter the results considerably
(Supplementary Figure S1). For the population analysis of apical
Radial Glia Cells, we analyzed 102 cells (Figures 8L]).

2.12 Datasets analysis and comparisons

The analysis of our HEK293T cell dataset was performed
on 22 cells from 6 pictures. These cells show more complex
3D mitochondrial organization compared to apical Radial
Glia Cells (Figure 9A). Cell, mitochondria and nuclear segmentation
was performed as described previously.

The analysis of Cardiomyoblast cell-line H9¢2 in glucose and
galactose condition (Opstad et al., 2022) was performed on their
FixedGA subset (10 pictures for galactose condition and 15 for
glucose condition). The processed and aligned pictures were used
(SIT_ALX). Both mitochondrial green channel (Figure 9F) and far-
red lysosome channel (Figure 9F) were segmented with specifically
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trained 2-pixel classification models on ilastik. Models were trained
on annotations on pictures coming from both conditions. Since
pictures contained multiple partial cells with no way to distinguish
one from the other or to obtain the full cellular volume, the pipeline
analysis was performed on a picture scale, and the only comparable
values are relative metrics, such as mean quantification of individual
mitochondrial properties (Figures 9H,I), percentages (Figure 97)
and distributions (Figures 9K,L). Due to the heterogenous quality
within the lysosome channel between the two conditions, it was
not possible to perform reliable organelle analysis on the lysosome
components, but the binarized output of the segmentation was
used as a reference point for the process analysis function. This
produced a distribution of mitochondrial density as a function
of the distance from the lysosomes (Figure 9L). All the statistical
tests and plot annotations are performed using Python library
Statannotations (Charlier et al., 2022).

To test the reliability of our pipeline we compared its results on
a HEK293T cell dataset of 8 pictures with Mitochondria Analyzer,
an easy-to-use ImageJ plugin for morphological mitochondrial
analysis. We used the standard settings both for local thresholding
and for analysis, we chose “per-cell analysis”. Since the plugin does
not allow for multiple cell identification within the same picture, we
did not use any cell segmentation either for our pipeline, to obtain
comparable outputs. The plugin is composed of two parts, a first local
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cells with soma-derived compartments or other compartment annotations; (D) dedicated pipeline for apical radial glia exhibiting apico—basal polarity;

(E) analysis of branching morphologies and associated compartments.
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adaptive thresholding step followed by the morphological analysis.
To account for the impact of thresholding/binarization step, which
can be considerable (Hemel et al., 2021), we saved the output of the
local thresholding and the output of our ilastik binarization model.
We then performed both analyses, the plugin and our pipeline, on
both binarized sets of pictures (Figure 10). To be able to compare
the results we had to add a thresholding step based on the size of
the element, because Mitochondria Analyzer automatically excludes
particles below 0.05 um® of volume.

To observe the effects of different binarization steps to the
downstream analysis we repeated the analysis of the HEK cell
dataset (Supplementary Figure S2) using two different 2-class pixel
classification ilastik models. The two models were purposely trained
with a lower stringency annotation (Supplementary Figure S2B left)
and higher stringency (Supplementary Figure S2B right).

3 Results

3.1 3DSlicer is a powerful tool for
segmentation of complex cellular
morphologies

To test our semi-automated analysis tool, cells expressing
membrane and mitochondrial reporter proteins were imaged
(Figure 1). Cells labeled in vivo frequently overlapped, despite
our strategy to obtain sparse labeling. In particular, neural
progenitor cells exhibited extensively intertwined processes,
making segmentation by standard methods very challenging
(Figure 1C). To overcome this problem, we used the Grow from Seed
segmentation tool available in 3DSlicer software (Fedorov et al.,
2012). This allowed efficient segmentation by combining semi-
automated segmentation of coarse objects, such as the soma of
high-contrast cells, with manual annotations for complex and
fine cellular processes. The Grow from Seed tool was reliable
in segmenting membrane boundaries and texture, even in the
most complex cases when manual delineation along the entire
length of neuronal processes was necessary (Figures 2A-C; see
Methods). Segmentation quality depended relatively on signal
strength, but even cells with low signal intensities could be
segmented with 3DSlicer if they were isolated and their edges
easily recognizable (Figures 2D-F). Hence, 3DSlicer enabled
highly detailed and accurate segmentation of complex cellular
morphologies. The output was a standard label picture where every
cell is associated to a different value. Fiji was used to assign value
zero to background, necessary for the following steps.

3.2 Distance maps to extract sub-cellular
compartment information

The specific localization of mitochondria is key for their
function within cells, whether these are simple (Katajisto et al.,
2015) or highly compartmentalized (Virga et al., 2024, 20). Even
a very simple spatial analysis, such as measuring the distance
of mitochondria with respect to the nucleus, already provides
important information about their subcellular distribution. In the
case of elongated processes such as neuronal axons or dendrites,
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for example, it is very informative to obtain the distribution of
mitochondria along their extension. Accordingly, we wrote several
functions to determine the length of individual cell processes,
and the distribution along those of subcellular elements such as
mitochondria. For simple cells like HEK, we wrote a function
to simply measure distance from the nucleus (geodesic_dist),
which can also be used in other, more complex cells (Figure 3A).
For more complex cells containing thin processes that are well
distinguished from the soma, like neurons and Radial Glia Cells,
we used the same function to measure the distance from the soma
along individual processes (Figure 3B). Finally, for cells attached or
adjacent to a particular anatomical compartment, like apical Radial
Glia Cells anchored to the ventricular surface of the embryonic
telencephalon, we measured the distance along individual processes
with respect to such reference landmark (i.e., ventricular distance;
Figure 3C). Functions to measure distance along the cell relied on
geodesic distance, thus allowing the algorithm to follow along the
process no matter how twisted it was. Using the geodesic distance
might introduce small errors when dealing with quantification
of thick varicosities, which by definition are thicker than the
main process, but we found that such deviations were negligible
(Supplementary Figure S1). All these functions take as inputs the
cell segmentation picture from the previous steps and the nuclear
segmentation pictures (every nucleus is labeled with the value of the
respective cell; see Methods Section 2.7).

Finally, to analyze cells adjacent to an identified anatomical
structure, we integrated in our pipeline a function to measure
distance along individual processes with respect to the anatomical
structure or border of reference (as a binary 3D picture). This is key
when studying neural stem cells in the developing brain, like Radial
Glia Cells that extend a process anchored to the ventricular surface
or to a blood vessel (Ferent et al., 2020; Siqueira et al., 2018). As
proof of principle, we analyzed the processes of Radial Glia Cells
in the developing telencephalon, which display a very characteristic
morphology extending an apical process away from the ventricular
side of the soma, and a basal process away toward the opposite side
(Figure 4; see Methods) (Viola et al., 2024). This analysis pipeline
can be easily applied to measure distance along process with respect
to other reference anatomical structures, such as blood vessels or
amyloid plaques, as long as the feature of interest is contained within
the segmented 3D image.

3.3 Analysis of neuronal and glial cell
morphology

To validate the broader applicability of our pipeline for cell
morphology analysis, we applied it to analyze cells with branched
structures, and annotated their detailed morphology. To this end
we wrote additional functions (strahler_analysis and annotate_
from_network) that we tested on fluorescent images from neurons
and glial cells from a variety of preparations, containing neuronal
dendritic trees and the terminal tree of Radial Glia Cell basal
process (Figure 5). The first function (strahler_analysis) was an
implementation of the Strahler analysis (Strahler, 1952). This
annotates branches depending on their distance from an end point
and outputs the associated network, with each node representing
a pixel of the skeletonized processes (Figure 5). A second function
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FIGURE 8

Comprehensive analysis of mitochondrial morphology and distribution. (A) Merged image showing membrane (green), mitochondria (magenta), and

nuclei (blue) in an apical radial glia cell from chick developing pallium. (B) Segmentation masks identifying cell compartments in two cells of interest:

apical/basal part of the somas and processes (cyan, magenta, light and dark green), mitochondria (magenta), and ventricle (white). (C,D) Volume

profiles along the basal (C) and apical (D) processes, showing mitochondrial (magenta) and process (green) volumes as a function of distance
(Continued)
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from the soma. (E) Results of the analysis of the mitochondrial density across cellular components in the two cells of interest. (F) Result of the
analysis of individual mitochondrial length and their subcellular distribution in the two cells of interest. (G) Result of the analysis of individual
mitochondrial number of branches and their subcellular distribution in the two cells analyzed. (H) Morphological classification of

mitochondrial element (Bakare et al., 2021). (I) Result of the network content of subcellular compartments in 102 apical radial glia cells from the
developing pallium. (J) Kernel density estimation (KDE) plot of subcellular compartment volumes. Scale bar, 5 um

(annotate_from_network) uses the Strahler numbers calculated
previously to annotate the binary cell mask. In each case,
MitoLandscape’s segmentation and skeletonization modules were
used to extract the morphological structure of the cell of interest,
converting the cell’s fluorescence signal into a mathematical skeleton
representation. We tested three distinct types of samples: a) the
branched end-foot of a Radial Glia Cell in postnatal ferret brain;
b) cultured cortical neurons from mouse; and ¢) pyramidal neurons
in the adult ferret cerebral cortex. These different types of samples
represented a broad spectrum of cell sizes, complexities and imaging
conditions (Figures 5A-C).

In the developing cerebral cortex, Radial Glia Cells extend a
long basal process that arborizes profusely within the marginal zone
just before contacting the basal lamina. Using MitoLandscape we
isolated the basal process of a GFP-labeled Radial Glial Cell from
the surrounding tissue (Figure 5A). The segmentation accurately
captured the thin radial fiber together with its broader and complex
terminal arbor. After skeletonization, the branched structure was
clearly delineated, and the pipeline detected several branch points,
effectively mapping its complexity (Figure 5A, right panels). From
this skeleton, we obtained the number of branch segments and
the length of each branch. These features are of great interest
because the branching pattern of Radial Glia end-feet reflects how
these cells interact with the surrounding environment and the
basal lamina.

Next, we extended the analysis to neurons, which have an
even more complex morphology than Radial Glial cells. We used
neurons grown in vitro and developed in vivo (Figures 5B,C).
MitoLandscape successfully segmented the cell soma and dendritic
processes from the fluorescent membrane marker and produced a
clean skeleton of dendritic branches. The skeletonization preserved
all major dendrites and axonal processes, reducing them to
their centerlines (Figures 5B,C, right panels). Branch endpoints
were clearly identified in the skeleton’s graph representation.
Depending on the needs of the study, the terminal branches of
dendrites, i.e., dendritic spines, may be either excluded from the
analysis to focus on primary dendritic shafts, or maintained to
also analyze their quantity, distribution and length (Figure 5C).
MitoLandscape also supports compartment-specific analyses. Using
the segmentation mask, the soma (cyan) and main processes
(green) were clearly identified (Figure 5D). This segmentation
allowed the morphological quantification within distinct cellular
compartments. For example, MitoLandscape automatically counted
the number of branches in individual dendrites and measured
their length (Figures 5E,F).

The reliability of these analyses depended again on the quality
of the original images and the fidelity of cell segmentation. If two
branches were separated by a distance smaller than the spatial
resolution of the segmented image, annotation functions were prone
to error in branch identification. Similarly, strahler_analysis could
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not deal with structures containing loops. To solve this, we extracted
an acyclic graph favoring the opening of apparent cellular loops at
the side most distal from the soma. Alternative methods to solve
loops, such as removing pixels with the lowest intensity, could
not be applied because our analyses were based on segmented
binary pictures.

Altogether, our results demonstrated that MitoLandscape can
quantify in a fully automated manner classic morphological features
of neurons, such as the number and length of dendritic branches, as
well as overall dendritic length. These features are traditionally
measured in studies of neuronal development and plasticity
using manual tracing or specialized software; MitoLandscape
extracts with minimal user

them directly from images

intervention.

3.4 Mitochondria analysis pipeline

Next, we went on to establish an analysis pipeline for
mitochondria morphology and subcellular distribution. Our
analysis started with the binarization of the image channel
reporting the mitochondrial marker. Since mitochondria had
different levels of intensity depending on the amount of reporter
plasmid expressed, we found that thresholding methods were
unreliable for binarization. Previous analysis pipelines delt with
this issue performing the analysis with a range of threshold values
(Zamponi et al.,, 2018, 201), or based on videomicroscopy images
where the quality of a threshold could be evaluated based on the
consistency of its output along consecutive frames (Lefebvre et al.,
2021). In order to design a pipeline suitable for images on fixed
tissue, where a stable level of intensity cannot be guaranteed, we
used ilastik to obtain a 2-pixel classification model (Figures 6A,B).
To ensure reliable results across any sample, we trained this machine
learning-based resource with cells displaying a wide range of
mitochondria signal intensities. Our analyses were conducted in
3D, ensuring that mitochondrial morphology and connectivity were
quantified across the entire z-stack rather than from 2D projections.
Nevertheless, mitochondria analysis was always limited by the
resolution of original images and the local density of mitochondria.
It was not possible to distinguish two mitochondria positioned
closer than the resolution limits of Airyscan super-resolution
microscopy (approximately ~120 nm in the XY plane, ~350 nm
in Z), nor to fully resolve the fine ultrastructural details of a single
mitochondrion with highly intricate morphology. Importantly, our
pipeline includes the possibility of loading images already binarized
to continue with the following steps, as both mito_analysis and cell_
analysis function use as input a simple binarized 3D picture. In this
way the user is free to employ any binarization method of preference,
as tested with the adaptive thresholding output of the Mitochondria
Analyzer Image] plugin.
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Cell culture datasets analysis. (A) Representative HEK293T cell: left, z-slice; middle, max projection; right, 3D rendering of the mitochondrial channel.

In green the cellular outline from the max projection. (B) Histogram of the mean mitochondrial

element volume per cell. (C) Histogram of the mean

number of branches of mitochondrial elements per cell. (D) Branch number of individual mitochondrial elements as a function of their distance to the
nucleus. (E) Population fractions of mitochondria morphological classes: punctae (spherical, unbranched), rods (linear, unbranched) and
networks (branched). (F) Max projection of the mitochondria channelin H9c2 Cardiomyoblasts cultured in galactose-based medium (GAL; n = 10 images,
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bar, 5 um.

orange) versus glucose containing medium (GLU; n = 15 images, light blue). (G) Max projection of lysosome channel. (H-J) Between-condition
comparisons: (H) mean mitochondrial element volume per image, (I) mean mitochondrial diameter per image; (J) percentage of punctae per cell.
(K) Kernel density estimation (KDE) plot of individual mitochondrial element volumes; thin lines, individual pictures; thick lines, average; colors
represent condition (orange for GAL, light blue for GLU). (L) Mitochondrial density plot as a function of the distance from lysosomes; thick lines
represent mean distribution; colors represent condition (orange for GAL, light blue for GLU). T-test. ***p-value <0.001, ****p-value <0.0001. Scale

After obtaining binarized images, we skeletonized the binary
signal to extract the fundamental morphological structure of
individual elements (mitochondria - total length and number
of branches; Figure 6C) and to classify them (Bakare et al,
2021). To assign each element to a subcellular localization, we
defined a center point based on the barycenter of its graph
representation (Figure 6D). The center is chosen as the voxel with
the minimum distance from all the others in the graph, as a
way to keep into consideration the complexity of its branching
structure. This enabled us to assign each element to the specific
compartment to which it belonged. We set the analysis pipeline so
that each element can only belong to one compartment, although
this may be inaccurate in special cases, for example, with very
long mitochondria that may extend along different subcellular
compartments.

The overall analysis strategy, summarized in Figure 7,
relied on modular pipelines tailored to specific data types
and morphological complexity. Input images (e.g., deconvolved
acquisitions) were processed through standardized preprocessing
and automated or semi-automated segmentation by third party
software (Fiji, ilastik, 3DSlicer), followed by custom written
Python functions. The core pipeline quantified mitochondrial
features from segmentation using a graph-based representation
(Figure 7A). For simpler geometries, a basic workflow estimated
subcellular position from the nucleus-soma distance (Figure 7B).
For cells with explicit compartment annotations, analyses were
extended to compartment-resolved quantification (Figure 7C).
A dedicated workflow accommodated apical Radial Glia to
account for their apico-basal polarity (Figure7D). Finally,
branching morphologies and their associated compartments
were handled by a specialized pipeline (Figure 7E). Across
pipelines, intermediate products included graph objects and,
ultimately, standardized data tables for downstream statistical
analyses, providing a systematic and reproducible readout of
cellular features.

3.5 Analysis of mitochondria morphology
and localization

For a proof-of-concept and quality testing of our analysis
pipeline, we focused on the analysis of apical Radial Glia Cells. In
general, mitochondria are not single dots but three-dimensional
elements with measurable volume, and their distribution along
cells may be quite heterogeneous (Figures8A,B) (Kuznetsov
and Margreiter, 2009). Using MitoLandscape we quantified this
heterogeneity by assessing the mitochondrial volume in each cellular
compartment (as an aggregate) and the profile of mitochondrial
volume along the apical and basal processes (Figures 8C,D).
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To normalize for potential changes in volume along cells and
processes, we computed variations in mitochondrial volume
alongside with cytoplasmic volume. The analysis outputs captured
multiple mitochondrial features of each individual cell, from more
global features like density and length (Figures 8E,F) to more
detailed aspects like their branching (Figure 8G). MitoLandscape
allowed this analysis in the different subcellular compartments at
the level of individual cells, and as a population distribution. For
example, the abundance of mitochondria with network structure
(Figure 81), or cell morphological features like the volume of
subcellular compartments (Figure 8]).

To evaluate the robustness of the analysis pipeline, we
used a dataset of HEK293T cells (Figure 9A). The analysis
of the distribution of relevant mitochondrial features, such as
volume, branching and morphological complexity showed highly
reproducible results across cells (Figures 9B-E), demonstrating
the robustness of MitoLandscape. In this reductionistic biological
context, MitoLandscape could also analyze the subcellular spatial
distribution of mitochondria, using the position of the nucleus as
reference (Figure 9D).

We then tested the sensitivity of MitoLandscape to detect
differences in mitochondria profiling. To this end we analyzed
a mitochondrial dataset of Cardiomyoblast cell-line H9c2
(Opstad et al., 2022) where cells were subject to different nutritional
regimes, thus affecting mitochondria biology (Figures 9EG).
MitoLandscape was able to robustly identify significant differences
between cells treated with standard glucose medium, or
glucose-deprived galactose medium, in mitochondria volume,
diameter and structure (Figures 9H-K). Similar to the analysis
of distribution with respect to the cell nucleus, MitoLandscape
also provided information on the spatial distribution of
mitochondria with respect to other subcellular elements, such as
lysosomes (Figure 9L).

3.6 Comparison of MitoLandscape to other
analysis pipelines

When compared to other mitochondria analysis pipelines, such
as Mitochondria Analyzer (Chaudhry et al.,, 2020) our pipeline
shows comparable results (Figure 10). Our analysis produces the
same types of metrics about mitochondrial number, size and
complexity. Differences on the results between the two pipelines
related essentially to the binarization step, as starting from the
same mitochondrial segmentation files led to similar outcomes
(Figures 10A,B; blue and green comparisons are as similar as pink
and yellow). The effect of the binarization was also considered
comparing the results of the HEK dataset using different ilastik
mitochondria binarization models (Supplementary Figure S2).

frontiersin.org


https://doi.org/10.3389/fcell.2025.1668779
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Negri et al. 10.3389/fcell.2025.1668779

A Mitochondria Mito B C

Analyzer Landscape end point
O
data 2D /3D 3D > . . local
&
quantification '\‘"b&\ tastik threshold /.

9 . . .
organelle structure v v junction point
(skeleton analysis)

multiple channel ) . p . sphericity iameter
intensity analysis v X 55 Mito Mitochondria
& Landscape Analyzer
mito subcellular X v
localization analysis
D Count E Total Volume F Mean Volume G Total Surface Area
300 = ns ns ns
ns L — 20 = —_— 3000 = ns
_— ns —
400 = ns — ns ns
= - 200 ns - 15 o ® I e |
& ns | - — - ns 2000 T _
5 Y T IESl= sinaine] BT [mSi== g B
=)o (| IR S == e
=] 100 T = [ \ 1000 = -
E— % E _L _l_ 0.5 | — = _I_ ‘ |
- [ [ - -
O L] L] L] L) 0 _l L] L] Ll 00 L] L] L] Ll 0 L] L] L] L]
ilastik local ilastik local ilastik local ilastik local
Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land
H Mean Surface Area | Sphericity (Weighted) J Branches K Branches/mito
—_ ns 6000 = —_
20 = ns — ns
—_— - _—
ns oo PR ns
ol = _-r? - %0 © 5 4000~ -
NE - T ‘ E E
=10 o | o o ns Z |
| J_ Q 011 @ ——| 2000+ = )
s ‘ aspn s % ==
0 L] L} L] L] 00 L] L] L] L] 0 L] L] L] L 0 L] L] L] L]
ilastik local ilastik local ilastik local ilastik local
Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land

|_ Total Branch Length M Total Branch Length/mito N Mean Branch Length O Branch Junctions

ns ns 20+ 3000 ns
ns 30 = *x ns
4000 = _— ] ns (r—
ns ns 15 Kkkk — ns
— r— —
- - i~ 52000 -
20+ ns 2
g T g €104 A —
2000 [ | ———— 3 .
i —
| == == 10 | NT— T 05 10004 =
o - —
1 —= | —q==— I ?ﬁ
- I - - . L A L
0 T T T T 0 T T T T 0.0 T T T T 0 T T Y T
ilastik local ilastik local ilastik local ilastik local
Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land

P Branch Junctions/mito Q Branch End Points R Branch End Points/mito S Mean Branch Diameter

2000 4 ns ns
— "
ns ns
— 10 (— N —
1500 ns ns 0.34 —_—
_— — ns e
2 0] | T | & |5 £o2d = ==
- — £o. >
- , HEAE =
500 EH L @ == 0.1 @
- — =
. =S - ©
0 L] L] L Ll 0 L] L] L] Ll 0 L] L] L] L 00 L] L] L] L}
ilastik local ilastik local ilastik local ilastik local
Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land Analyzer Land
FIGURE 10

Comparison of analysis pipelines and the dominant effect of binarization. (A) Main features comparison between MitoLandscape and ImageJ plugin
Mitochondria Analyzer. (B) HEK cells comparison (8 pictures) was performed following four combinations of parameters: blue, MitoLandscape on ilastik
masks; yellow, Mitochondria Analyzer on its own masks; green, Mitochondria Analyzer on ilastik masks; pink, MitoLandscape on Mitochondria Analyzer
masks. (C) Mitochondrial morphological features measured by the two pipelines. (D=S) Comparison of metrics distribution across the four different
combinations. Gray lines connect same pictures. T-test with Bonferroni correction. *: p-value <0.05, **: p-values <0.01, ***: p-value <0.001,
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FIGURE 10 (Continued)

both pipelines to enable fair comparison.

****p-value <0.0001. Images of HEK cells were deconvolved with Huygens, and the mitochondrial channel was binarized either with a custom
ilastik classifier or with the local-thresholding step from the Mitochondria Analyzer Fiji plugin (Chaudrhry et al.,, 2020). We then quantified
mitochondria using either MitoLandscape or Mitochondria Analyzer, yielding four conditions: blue, MitoLandscape on ilastik masks; yellow,
Mitochondria Analyzer on its own masks; green, Mitochondria Analyzer on ilastik masks; pink, MitoLandscape on Mitochondria Analyzer masks.
Across the readouts shown, both analysis engines produced comparable estimates when provided with the same binary masks, whereas results
differed primarily as a function of the binarization method. To match the plugin’'s default behavior, objects with volume <0.05 um?® were excluded in

This showed that, as expected, mitochondrial volume and
branch length were directly correlated with the stringency of the
binarization model. More interestingly, both in the total number of
mitochondrial elements and total number of branches we observed
a trend where the number decreased for both higher and lower
stringency. The former case had many false-negative pixels, whereas
in the latter case the abundance of false-positives caused the merging
of separate elements. This trend was already described in the
literature when analyzing mitochondria at different background
thresholds (Zamponi et al., 2018).

4 Discussion

Here we present MitoLandscape, a flexible and semi-automated
analysis pipeline aimed at analyzing the morphology and spatial
distribution of mitochondria at single cell resolution, particularly
useful in complex tissue architectures. The motivation behind this
development was to address a well-known technical limitation
in subcellular biology: the difficulty of extracting organelle-
specific data from individual cells within densely packed and
morphologically complex tissues, where most conventional
segmentation and analysis methods fall short in resolution,
scalability and/or specificity. By combining super-resolution
Airyscan imaging with machine-learning segmentation and a
custom graph-based analysis in Python, our semi-automatic tool
performs a detailed study of mitochondrial architecture and
subcellular distribution, even in cells with long, branched, and/or
intertwined processes.

One of the main strengths of our approach is its ability to
assign mitochondrial structures to specific cells reliably, even in
cases where processes are overlapping or in close proximity. This
represents an important improvement over previous studies that
depend heavily on manual annotation. For example, Iwata et al.
(2020) provided high-quality mitochondrial quantification in
neuronal cells through manual tracing, which while precise, is
not feasible for large datasets or intact tissues. In tissue-based
analyses (e.g., (Baumann et al, 2025, 2; Fogo et al, 2021)),
authors were unable to assign mitochondria to individual cells
due to high tissue density. Similarly, in several in vitro studies
(Helguera et al., 2013; Meshrkey et al., 2021; Xu et al., 2022)
mitochondrial morphology was analyzed at the population level,
without single-cell resolution. In such contexts, our pipeline offers
major advantages by enabling precise cell-specific mitochondrial
quantification, improving interpretability and biological insight,
while preserving spatial context and reducing user-dependent
variability. Moreover, our approach complements previous 3D
analyses of mitochondrial networks (Mitra et al, 2009) by
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assigning organelles to individual cells and linking them to
specific subcellular compartments and tissue landmarks within
intact tissue. Beyond earlier approaches, several recent frameworks
(MitoSkel (Zaghbani et al, 2025), MoDL (Ding et al, 2025),
Pycytominer (Serrano et al, 2025) and Nellie (Lefebvre et al,
2025)) advance deep-learning segmentation, feature extraction and
standardized profiling. In contrast, MitoLandscape focuses on
cell- and compartment-resolved 3D spatial quantification in intact
tissues, with explicit mitochondria-to-cell/landmark assignment
and geodesic, graph-based metrics that preserve anatomical context.

To validate the robustness of our approach, we compared the
MitoLandscape analysis pipeline with a widely used method, the
Mitochondria Analyzer Fiji plugin (Chaudhry et al., 2020). We
performed this comparison using HEK cells, a standard model
for in vitro studies. As detailed in Figure 10, we processed the
same deconvolved images of the mitochondrial channel using
both pipelines. Specifically, we used our custom ilastik model
for binarization to feed the MitoLandscape analysis (Figure 10,
blue) and the local threshold to feed Mitochondria Analyzer
plugin (Figure 10, yellow). To further evaluate the impact of
the binarization step, we also initiated both analyses with the
binarization output from the other method: MitoLandscape on
the local thresholding output of Mitochondria Analyzer (Figure 10,
pink), and Mitochondria Analyzer on the ilastik output (Figure 10,
green). Our results demonstrate that while the two analysis pipelines
produce equivalent results, the final output is highly dependent on
the initial binarization step. It is also important to note that, to ensure
a fair comparison, we filtered the MitoLandscape results to exclude
objects with a volume less than 0.05 um?, a hardcoded threshold
present in the Mitochondria Analyzer plugin. This confirms that a
robust and reproducible segmentation strategy, like the one provided
by our machine learning model, is crucial for obtaining reliable
quantitative data.

Given that segmentation quality emerged as the dominant
source of variance in our benchmarks, the following practical
guidance on acquisition and pre-processing to maximize mask
fidelity should be applied. Use Airyscan for high-SNR super-
resolution and enforce Nyquist sampling per channel, followed
by Huygens deconvolution. Under our conditions, this yields
120-140 nm XY/350-400 nm Z at 555nm. This stabilizes
segmentations and improves the reliability of downstream
MitoLandscape readouts.

Thanks to its modular design, MitoLandscape further allows
for the extraction of various spatial metrics, such as distances
from soma, nucleus or other organelles, mitochondrial distribution
in defined compartments, and volumetric profiles along cellular
processes. These types of measurements are especially relevant
when working with polarized or highly compartmentalized cells like
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Radial Glia Cells or neurons. Our analysis is based on geodesic
distances and reference points defined by the user, which makes
the tool adaptable to different biological scenarios. For example,
we automated the classification of processes within the RGCs as
apical or basal by integrating information relative to the position of
the process with respect to selected tissue landmarks, such as the
ventricular surface. This approach can be easily extended to other
contexts by incorporating the preferred spatial reference, such as
vasculature or pathological structures like amyloid plaques, allowing
for organelle distribution studies in a wider range of physiological
and disease-related scenarios.

It is important to note that the graph-based modules of
MitoLandscape are applied consistently across all sample types,
regardless of whether the input is an isolated cultured cell or a
cell embedded in dense tissue. What differs is the segmentation
step: for isolated cells such as HEK, segmentation is straightforward,
whereas in tissue this step becomes critical to separate individual
cells with overlapping or intertwined processes. Once segmentation
is achieved, the downstream analysis is uniform across all contexts.

The analysis pipeline of MitoLandscape enabled both the
quantification of mitochondrial localization and distribution,
and the identification of cell-to-cell heterogeneity within the
same tissue context. For example, two neighboring radial glial
cells displayed distinct mitochondrial density profiles across
equivalent compartments, with one cell showing preferential
accumulation in the basal process and the other exhibiting
enrichment in the apical soma (Figure 8E). The volumetric profiles
along apical and basal processes further revealed local hotspots of
mitochondrial density, highlighting regions of potential metabolic
specialization (Figures 8C,D). In addition, our approach quantified
the length of individual mitochondrial elements within each
compartment (Figure 8F), and the complexity of mitochondrial
elements, quantified as number of branches (Figure 8G). These
results illustrate how the pipeline can dissect not only subcellular
distribution but also morphological diversity of mitochondria at
single-cell resolution, thereby uncovering biologically relevant
variability that would be masked by population-level analyses.

While in this study we focused on mitochondria, MitoLandscape
may be used to analyze other tubular organelles or cellular
if
Nevertheless, this will require organelle-specific validation given

structures, suitable fluorescent reporters are available.
their distinct 3D architecture and spatial distributions. Since the
core steps (semi-automated segmentation, pixel classification, and
morphological analysis by skeletonization) do not depend on the
structure of the specific signal, the method is adaptable to other
subcellular structures. In addition, MitoLandscape is ideal to
analyze the morphology of neuronal and glial cells, highlighting
its versatility in quantifying structures at different biological scales.
While originally developed to analyze subcellular components (such
as mitochondria), here we show that MitoLandscape is equally useful
to capture the detailed architecture of whole cells. Accordingly, this
single, unified pipeline is ideally suitable to study both the internal
organization of cells and their overall morphology. Indeed, the
segmentation and analysis modules can be applied to any biological
sample if individual cells and organelles are appropriately labeled,
including adult tissues, organoids, or disease models with altered

cellular architecture.
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In summary, MitoLandscape offers a robust and adaptable
tool for the spatial analysis of organelle morphology, architecture
and localization within the cell. It enables reproducible, user-
friendly and high-throughput quantification of subcellular
structures in complex biological samples. We hope that this
tool opens the door to more systematic investigations into how
organelle organization contributes to cellular identity, development,
and function.
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