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MitoLandscape, a 
semi-automated pipeline for 
subcellular localization and 
quantification of mitochondria

Enrico Negri*, Virginia Fernández and Víctor Borrell*

Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel 
Hernández, Sant Joan d’Alacant, Spain

The precise characterization of mitochondrial morphology and subcellular 
localization provides crucial insights into cellular metabolic states and 
developmental fates. However, accurately analyzing mitochondria in cells with 
complex morphologies remains challenging, particularly within intact tissues 
where current methodologies lack sufficient resolution and specificity. Here 
we introduce MitoLandscape, an innovative pipeline tailored for comprehensive 
mitochondrial analysis at single-cell resolution in the developing nervous 
system. MitoLandscape integrates Airyscan super-resolution microscopy, semi-
automated segmentation (leveraging ImageJ and 3DSlicer), machine-learning-
driven pixel classification (ilastik), and a modular custom Python script for 
robust and versatile analysis. Using graph-based representations derived 
from manual annotations and binary mitochondrial images, MitoLandscape 
efficiently extracts detailed morphological parameters from distinct subcellular 
compartments, applicable from cells with simple morphologies to complex 
neuronal architectures. Additionally, the pipeline quantifies mitochondrial 
distribution relative to specific cellular landmarks, such as nucleus or soma. 
We validated MitoLandscape in vitro and in neural tissue, demonstrating its 
capability to precisely and reliably map mitochondrial features in diverse 
biological contexts. MitoLandscape represents a powerful, user-friendly, and 
highly adaptable solution for investigating mitochondrial biology in cell and 
developmental research.
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 1 Introduction

The morphology, size, and subcellular distribution of organelles play critical roles in 
defining the physiology, metabolism and even developmental fate of cells. Mitochondria 
are particularly important given their central function in energy metabolism, calcium 
signaling, apoptosis and cell differentiation processes (Namba et al., 2021; Tilokani et al., 
2018; Friedman and Nunnari, 2014). While classically presented as elongated cylinders, 
mitochondria display a wide range of morphologies, from small spheres to simple tubes and 
tubular networks. Different mitochondria morphologies correlate with specific functional 
states, and affect the overall cellular response to physiological stimuli and pathological
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situations (Mishra and Chan, 2016). The subcellular localization 
of mitochondria is also key to the location of ATP production, 
reactive oxygen species production and signaling, and metabolic 
regulation (Schwarz, 2013; Sheng, 2014). Therefore, the detailed 
characterization of mitochondrial structure and distribution in any 
cell type of interest is key to understanding the fundamental aspects 
of its biology, development and disease.

The pressing need to determine the detailed morphology and 
localization of mitochondria, in an accurate and quantitative 
manner, clashes with the significant limitations of existing 
methods. Traditionally, mitochondrial analysis has relied essentially 
on manual or semi-manual methods, which are highly time-
consuming, labor-intensive, and prone to inherent subjective biases 
and human error. For example, changes in the length of individual 
mitochondria in neural cells have been previously described 
performing manual analyses (Iwata et al., 2020), but applying such 
methods to large-scale studies, or to complex samples such as intact 
tissues, is not feasible. To overcome this critical limitation, recent 
advances in computational approaches using machine-learning-
based image analysis technologies have enabled high-throughput 
analyses of mitochondria (Chu et al., 2022; Chaudhry et al., 2020). 
These computational methods offer significant improvements in 
efficiency and reproducibility but have been largely designed for cells 
that are either isolated and/or have simple morphologies, conditions 
rarely found in tissue. Some efforts have attempted to extend these 
approaches to three-dimensional tissue scenarios (Fogo et al., 2021), 
but limitations in image processing and analysis protocols render 
these insufficient for the unambiguous assignment of mitochondria 
to individual cells.

Existing computational methods for image-based analysis 
of mitochondria become particularly problematic in highly 
heterogeneous tissues that are structurally complex. The developing 
nervous system becomes particularly challenging when applying 
these established methods to intact tissue. In this context, cells often 
exhibit complex three-dimensional architectures, closely interwoven 
processes, and dense cellular arrangements, which dramatically limit 
the accurate segmentation and morphological analysis of individual 
elements. Neural progenitor cells, for example, are very densely 
packed and extend elaborate processes tightly intertwined with 
neighboring cells, making conventional segmentation techniques 
insufficient for accurately resolving individual cell structures and 
their associated mitochondrial content. Thus, there is a pressing 
need for advanced methods of analysis that can accurately quantify 
mitochondrial morphology and localization within intact tissues at 
single-cell resolution.

Here we introduce MitoLandscape, an advanced computational 
pipeline specifically designed for the accurate, robust and versatile 
analysis of mitochondrial morphology and their subcellular 
distribution within individual cells in the intact developing nervous 
system. MitoLandscape integrates Airyscan super-resolution 
microscopy with semi-automated segmentation approaches 
combining 3DSlicer software, machine learning-driven pixel 
classification via ilastik (Berg et al., 2019, 20) and customized 
Python scripts for detailed mitochondrial characterization. By 
employing a combination of manual annotations, computational 
segmentation, and graph-based analyses, our approach efficiently 
resolves mitochondrial morphologies and localizations within 
complex cellular architectures. We validated MitoLandscape using 

both cultured neural cells and fixed tissue samples, demonstrating 
its efficacy in accurately capturing detailed mitochondrial structural 
parameters, subcellular localization, and spatial relationships to key 
cellular landmarks. MitoLandscape can also be applied to study 
the architecture of complex branched structures such as neurons, by 
skeletonizing entire cells or cellular processes. This pipeline analyzes 
and measures the number and length of primary branches, and 
assesses structural characteristics of specific regions (i.e., the end-
feet of Radial Glia Cells). Thus, our pipeline works across scales from 
individual organelles (e.g., mitochondria) to whole cells, allowing 
researchers to investigate cell morphology and cytoarchitecture 
in a semi-automated, quantitative manner. MitoLandscape 
provides an essential tool to investigate mitochondrial biology 
and cell structure at high-resolution within physiologically 
relevant contexts, significantly expanding the power of cell and
developmental studies. 

2 Methods

2.1 HEK culture

HEK293T cells were cultured following standard laboratory 
procedures. Briefly, cells were maintained in Dulbecco’s Modified 
Eagle’s Medium (DMEM) supplemented with 10% fetal bovine 
serum (FBS), 1% penicillin-streptomycin, and 1% L-glutamine, 
incubated under humidified conditions at 37 °C and 5% CO2. 
Cultures were passaged regularly to maintain approximately 
70%–80% confluency.

For transient transfections aimed at sparse cell labeling, cells 
were plated on 24-well plates and transfected using GeneJet 
reagent (Thermo Fisher Scientific), following the manufacturer’s 
instructions. Specifically, transfection mixtures per well consisted 
of 1 µg of a floxed plasmid encoding membrane-targeted EGFP 
and mitochondrial-targeted dsRED (mito-dsRED), and 10 ng of 
a plasmid expressing Cre recombinase, resulting in sporadic 
recombination events and sparse cell labeling.

Cells were fixed 24 h post-transfection by directly adding 
an equal volume (500 µL) of fixation solution consisting of 8% 
paraformaldehyde (PFA) and 30% sucrose to 500 µL of the culture 
medium, achieving a final concentration of 4% PFA. Fixation was 
carried out for 5 min at room temperature, after which samples were 
rinsed thoroughly with phosphate-buffered saline (PBS) and stored 
appropriately for subsequent analyses. 

2.2 Electroporation

In utero electroporation in mice was performed at embryonic 
day 12.5 (E12.5) targeting the neocortex. Pregnant females were 
deeply anesthetized using isoflurane, and the uterine horns 
were gently exposed. A total volume of 1 μL of DNA solution 
was delivered into the lateral telencephalic ventricle via pulled 
glass micropipettes, followed by application of five square-wave 
electric pulses (28–35 V, 50 ms duration, 950 ms interval) using a 
Cuy21EDIT pulse generator (Bex Co., LTD.) and round electrodes 
(CUY650P5, Nepa Gene). After electroporation, uterine horns were 
returned to the abdominal cavity, which was suture closed, and 
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the female was returned to the home cage after full recovery from 
anesthesia.

In ovo electroporation in chick embryos was conducted at 
4 days post-fertilization (dpf) as described elsewhere (Cárdenas and 
Borrell, 2021). Briefly, fertilized eggs were incubated at 38.5 °C until 
the desired developmental stage. On the day prior to electroporation, 
a small amount of yolk was aspirated to improve visibility. For 
electroporation, a window was open in the shell to access the 
embryo, and DNA was injected into the lateral telencephalic 
ventricle followed by the delivery of square-wave electric pulses 
(30 V, 5 ms duration, 5 pulses at 500 ms intervals) using a TSS20 
Ovodyne Electroporator (MCI) and round electrodes (CUY650P3, 
Nepa Gene). Eggs were then sealed and returned to the incubator 
to continue development under standard conditions (38.5 °C). 
At the appropriate stage embryos were collected, fixed in ice-
cold 4% paraformaldehyde (PFA), and brains were processed for 
immunohistochemistry.

Electroporation of perinatal ferrets was performed targeting 
the neocortex following a similar protocol as described 
previously (Borrell, 2010). Ferret kits aged postnatal day (P) 2 were 
anesthetized with isoflurane and placed in a stereotaxic system for 
intraventricular injection of ∼2 μL DNA solution. Electroporation 
was performed by application of five square-wave electric pulses 
(50 V, 50 ms duration, 950 ms interval) using a Cuy21EDIT pulse 
generator (Bex Co., LTD.) and round electrodes (CUY650P7, Nepa 
Gene). Following recovery from surgery, kits were euthanized, and 
their brains collected 1 day later.

DNA solutions used for both mouse, ferret and chick 
electroporations contained 1 μg/μL of CAG-mEGFP-T2A-
mitoDsRed plasmid and 10 ng/μL of Cre-expressing plasmid. 

2.3 Primary culture

Fresh neocortical tissue from electroporated mouse embryos 
was collected 24 h post-electroporation. Tissue processing was 
performed following previously described protocols (Wimmer et al., 
2025), with minor modifications. Briefly, dissected cortices were 
rinsed in a base culture medium consisting of DMEM/F-12 
supplemented with D-glucose (2.9 mg/mL), penicillin/streptomycin 
(5 U/mL), and amphotericin B (250 ng/mL). The medium was then 
replaced with Neurobasal medium supplemented with B27 without 
vitamin A, basic fibroblast growth factor (FGF, 20 ng/mL), and 
epidermal growth factor (EGF, 20 ng/mL). Tissue was mechanically 
dissociated into a single-cell suspension by gentle pipetting. The 
suspension was centrifuged at 1,200 rpm for 3 min, and the 
resulting cell pellet was resuspended in 1 mL of supplemented 
medium. Cell viability was assessed using trypan blue exclusion, 
and only preparations with a viability of 70%–90% were used 
for further culture. Cells were plated at a density of 2 × 106

cells per well onto 6-well plates pre-coated with poly-D-lysine 
(0.1 mg/mL) and fibronectin (1.5%). Each well contained 2 mL of 
supplemented medium. Cultures were maintained at 37 °C in a 
humidified atmosphere with 5% CO2. The culture medium was 
refreshed 24 h after plating and every 2 days thereafter to eliminate 
floating cells and debris. Seven days after plating, cells were fixed 
with 4% paraformaldehyde (PFA) and subsequently processed for 
immunostaining against EGFP and DsRed. 

2.4 Constructs

Floxed CAG m-EGFP-T2A-mitodsRed was produced 
by Vectorbuilder. pCAG-Cre, was a generous gift 
of M. Gotz (Pilz et al., 2013). 

2.5 Immunohistochemistry

Ferrets were perfused transcardially with 4% PFA and post-fixed 
for 30 min at 4 °C. Brains were cryoprotected with 30% Sucrose and 
then were frozen and sectioned under a cryotome at 50 μm.

Chick embryonic brains were fixed with 4% PFA for 30 min, 
cryoprotected and frozen like ferret brains, and sectioned under a 
cryostat at 20 μm.

Brain sections and fixed primary cultures were permeabilized 
with PBS containing 0.25% Triton X-100, blocked in 10% of 
Normal Horse Serum and 2% Bovine Serum Albumin (BSA) during 
2 h, followed by incubation with primary antibodies overnight 
in blocking solution, and then incubation with appropriate 
fluorophore-conjugated secondary antibodies. Primary antibodies 
used were: anti-GFP (1:1,000, chicken polyclonal, Aves Lab.) and 
anti-dsRed (1:1,000, Clontech). Secondary antibodies used were: 
Alexa555 anti-rabbit IgG (Invitrogen); Alexa488 anti-chicken IgY. 

2.6 Imaging and deconvolution

To minimize acquisition-driven variability and maximize 
segmentation fidelity, 3D stacks were acquired using an inverted 
confocal microscope (Olympus FluoView FV1000) or an inverted 
super-resolution confocal microscope (Zeiss LSM 880-Airyscan 
Elyra PS.1) operating in Airyscan super-resolution mode (140 nm). 
Acquisition parameters (objective NA, refractive index, emission 
bandpasses) were selected to satisfy Nyquist sampling in XY and 
Z for each channel, lateral and axial resolving power follow the 
Abbe limits. Under our conditions, Airyscan processing yielded 
approximately 120 nm (XY)/350 nm (Z) at 488 nm and 140 nm 
(XY)/380–400 nm (Z) at 555 nm, improving signal-to-noise ratio 
and edge definition of mitochondrial structures and subcellular 
landmarks. Raw data were exported as “.czi” and deconvolved 
in Huygens Professional software (Scientific Volume Imaging) 
using the Deconvolution Express tool with default parameters. 
Deconvolved volumes were then submitted to the segmentation 
stage (e.g., ilastik classifier or Fiji Mitochondria Analyzer).

2.7 Image segmentation

Image segmentation was required to achieve the single cell 
resolution in the next analysis. Three-dimensional (3D) image 
stacks of the membrane signal channel were loaded into 3D Slicer 
(Figures 2A–E). In the Segmentation tool window, new labels are 
added (Figures 2B,C,E), one for each cell we intended to segment 
plus one for the background. We annotate individual cells trying 
to cover pixels with different levels of intensity within each cell. 
For the thinner processes, single lines along them were usually 
sufficient for proper segmentation. Particular care and additional 
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FIGURE 1
Input images for MitoLandscape. Representative maximum intensity projections of z-stack images from HEK293T cells (A), neurons in culture (B) and 
Radial Glia Cells from chick embryo (C), captured with Airyscan super-resolution and processed with Huygen’s deconvolution, illustrating different 
levels of sample complexity. Cells were transfected with plasmids encoding mEGFP (green) and mitoRed (magenta) to label cell membrane and 
mitochondria, respectively, and nuclei were labeled with DAPI. Arrows point at nuclei of cell of interest. Scale bars, 5 μm.

annotations, such as the precise cell separation, were necessary along 
the boundaries between adjacent cells and processes. We used the 
background label in the empty space around the cells of interest 
to cover positive pixels belonging to cells or processes that were 
not being segmented. In case of cells with low intensity signal, 
it was necessary to better annotate the surrounding background 
areas to avoid label spilling into the negative pixels. The first and 
the last pictures of the stack were filled with the background label 
(Figures 2B,C, top and bottom) to obtain an output with the same 
dimensions of the original image stack. We used the Grow from seeds
option and after the Initialization step, we refined the areas where 
the segmentation preview was not satisfactory, and we updated 
the segmentation. Additional rounds of refinement and updating 
were performed until the result was satisfactory (Figure 2F). The 
Segmentation preview was saved as the default “.seg.nrrd” format.

The output file was open in Fiji, where the 
MorphoLibJ package (Legland et al., 2016) was used to remove 

the largest label (corresponding to the background volume), and 
this set the background pixels to zero.

To segment the nucleus, we started from the DAPI channel and 
used a combination of median filtering and thresholding in Fiji.

For soma segmentation, we manually removed the processes 
from the segmentation outputs. For the following steps of the 
pipeline, it was important to have each nucleus or soma labeled 
with the same value of the corresponding cell. The output of nucleus 
thresholding was an 8-bit image with a positive pixel value of 
255. Using the “Process > Calculator Plus > Operation: Divide” 
command where i1 and i2 were both the same binary picture 
(we left the default “k1: 1.0” and “k2: 0.0”), we obtained an 8-
bit image where the positive pixel value was 1. We used again 
the same command with “Operation: Multiply” and “i1: result 
of the previous step” and “i2: cell segmentation image”. In the 
output, every nucleus value was the same as the label of cell
segmentation.
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FIGURE 2
Semi-automated segmentation of complex cell morphologies using 3D Slicer. (A) Selected slices from the z-stack open in 3DSlicer, from first to last 
slice (z = 1 to z = N). (B) Partial manual annotation of individual cells and their processes performed on 2D planes. (C) Merge of annotation and 
membrane channels. Background is labeled in blue. To preserve the original z-stack dimensions, the first and last picture of the stack were partially 
annotated as background ((B,C), top and bottom). (D–F) Maximum projections of membrane channel (D), manual annotation (E) and final 
segmentation output (F), referred to as “Segmentation preview” in 3DSlicer. Scale bars: 5 µm.

To segment the ventricle, we combined manual tracing and 
thresholding from the membrane signal channel. 

2.8 Distance maps

A Python function was written (indicated as geodesic_dist in 
the code) to calculate both distances from the nucleus (Figure 3A) 
and from the soma (Figure 3B). The function takes into account the 
shape of the cell and the processes and pixel resolution to calculate 
the distance appropriately. The inputs are two binary 3D numpy 
arrays with the same shape, one mask that determines the volume 
inside which to calculate the distance, the marker which is the origin 
point for the distance (distance inside is zero) and a 3D tuple with the 
pixel resolution. The function is based on the sckit-fmm library in 
Python (Pedregosa et al., 2011). The output is a masked array where 
the value of every pixel within the mask is set to the distance from 
the marker. In the case of the distance from the ventricle (Figure 3C), 
we opted to use Euclidean distance because there are no obstacles 
within the tissue to consider and it is computationally faster. For 
more complex tissue structure, the same geodesic distance function 
used for the distances of nuclei and somas may be used. 

2.9 Cell compartment identification

A function was written to recognize processes as separate 
components attached to the soma (cell_annotation in the code) 

(Figures 4A–C). This function takes as input two binary 3D numpy 
arrays with the same shape: the cell and the soma masks (Figure 4A). 
It produces a numpy 3D array with the same shape where the 
background is filled with zeros, the soma is labeled with 1 and 
every process is labeled with a different value (Figure 4C). Minor 
processes shorter than a selected threshold are annotated as part 
of the soma (Figure 4D).

A function was developed (indicated as apical_progenitor_
compartment_annotation) that automatically recognizes the 
processes belonging to the apical or basal side of the soma for each 
cell and annotate them accordingly (Figure 4E). The identity of 
the process is determined by the position of its starting portion 
(a basal process that bends towards the ventricle would still be 
properly recognized as basal). All these functions require the 
pixel resolution, which we obtained directly in Python using the 
aicsimageio library (Brown et al., 2021) to read the Tiff images.

Then, two functions were written to annotate cell types 
with branching structures (Figures 5A–C). They are based on the 
skeletonization of the cell and on the Strahler analysis of the 
branching structure (Strahler, 1952; Ledderose et al., 2014). Strahler 
numbers correspond to the distance from the extremities of the tree. 
A map is obtained where the most distal branches are annotated as 
1, the branches immediately upstream as 2, and so on. This analysis 
requires a structure without closed loops. Structures with closed 
loops were solved by removing loops with minimum_spanning_
tree function of the networkx package. We used the distance of 
each pixel from the soma as a weight for the trimming step, such 
that loops are preferentially removed away from the soma. This 

Frontiers in Cell and Developmental Biology 05 frontiersin.org

https://doi.org/10.3389/fcell.2025.1668779
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Negri et al. 10.3389/fcell.2025.1668779

FIGURE 3
Distance map generation at increasing levels of biological complexity. (A) Geodesic distance from the nucleus in a HEK cell, mouse cortical progenitor 
cell and apical Radial Glia Cell from the developing chick pallium. (B) Distance from soma in mouse cortical progenitor cells and chick apical Radial Glia 
Cell. (C) Distance from ventricle of apical Radial Glia Cells from the developing chick pallium. Gray area in each distance map indicates the reference 
structure used to measure distance. Geodesic distance was used for nuclear and soma-based maps; Euclidean distance was used for ventricular 
distance calculations.

analysis requires root detection (the root end nodes without any 
annotation would be considered equivalent to any other end node). 
Since our pipeline already includes information about the soma 
position and the geodesic distance from the soma, it does not 
require an additional ROI containing the root; it assumes that the 
end node with the minimum distance to the soma is the root. 
The first function (strahler_analysis) needs cell and soma binary 
masks and pixel resolution and produces a network annotated 
with Strahler numbers, a unique id for each linear branch, and 
a dataframe containing the length of each component. If an 
annotated mask is provided, such as the output of the cell_annotation

function, each branch will be additionally assigned to the respective 
compartment. The annotated output can be used as input of the 
second function annotate_from_network, which would create a 
new labeling of the cell binary mask. This step can be used for
future analysis. 

2.10 Mitochondria binarization

An ilastik (Berg et al., 2019) 2-class pixel classification model 
was trained (mitochondria pixel and background), using a few 
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FIGURE 4
Automated annotation and classification of apical radial glia compartments. (A) Segmentation masks showing the cell (green), soma (cyan) and 
ventricle (white). (B) Geodesic distance from the soma (μm), used to define the length of each process. (C) Separate cellular components connected to 
the soma (each assigned to a numeric id). (D) The maximum distance from soma is used to calculate the length of the processes; short processes 
(<2 μm, number in bracket) were excluded from further analysis and reassigned to the soma. (E) Final classification of basal and apical processes. The 
short processes have been combined with the soma to obtain an updated soma. The soma distance from the ventricle (gray line) is used to classify the 
processes as apical or basal depending on the position of their attachment to the soma.

annotated images (Figure 6A) where mitochondrial signal spans a 
wide range of intensities as ground truth.

To segment isolated cells, such as ferret cortical neurons 
and Apical Radial Glia endfeet, we used a similar approach 
training the model to distinguish background from cytoplasmic and 
membrane signal. 

2.11 Mitochondria morphology and 
localization analysis

Our mito_analysis function takes as input the binary 
mitochondrial image (which can be obtained with the preferred 
binarization algorithm) (Figure 6B) and the pixel resolution. A 
skeletonization step (Figure 6C) is performed and a graph object is 
generated. Each voxel is associated to a node and it is connected 
to all the neighbor nodes (in a 26-voxels neighborhood). Next, 
a standard morphological analysis extracts relevant information 
(length, volume, surface, number of branches, number of endpoints, 
number of junctions, branch diameter and sphericity). For each 
isolated mitochondrial element, a center was calculated as the graph 
component barycenter. The barycenter is the voxel that minimizes 
the distance from all the other nodes of the graph, taking into 
account the voxel resolution (Figures 6C,D). This information allows 
locating each element in its specific subcellular compartment. In case 
of extremely long mitochondria, which span multiple components, 
the final location assigned is the component where the mitochondria 
center is located. Mitochondrial volume was measured from 

the binarized mitochondria images as the number of positive 
voxels times voxel volume. The surface calculation algorithm was 
based on the script of MorphoLibJ (Legland et al., 2016). The 
diameter calculation algorithm was based on the Mitochondria 
Analyzer plugin (Chaudhry et al., 2020). The total volume of 
mitochondria was obtained for each component as the total number 
mitochondria voxels belonging to the specific component. The core 
mitochondria analysis (Figure 7A) function produces two outputs, 
a mitochondria features table and a graph objects from Networkx 
Python package that can be used for additional custom analysis.

The analysis was automated with the function cell_analysis
(Figure 7B). It takes as input the binarized mitochondria, the 
annotated image, where each component is labeled with a different 
number (the output of cell_annotation (Figure 7C) or apical_
progenitor_compartment_annotation (Figure 7D) for the process 
annotation, or annotate_from_network (Figure 7E) with the Strahler 
network for branching annotation), the distance map from the 
soma previously calculated, and the pixel resolution. Two tables 
are generated as output: the first contains the aggregate results 
for each labeled subcellular component (Supplementary Table S1) 
(label information stored in the “compartment” column; the 
second contains information for every mitochondrial element 
(Supplementary Table S2). The number of branches which was 
previously calculated is used in this step to classify each element 
as network, rod and punctus, following the work of Bakare et al. 
(2021). Additional functions were written to automate the analysis 
of multiple cells within the same image (function picture_analysis
in the code), and other utility functions to plot and manage the 
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FIGURE 5
Automated skeletonization and branch analysis of neuronal and glial cells. Automated skeletonization and branch analysis of neurons and glia using the 
MitoLandscape pipeline. (A–C) Representative examples: (A) Ferret apical radial glia, (B) mouse cortical neuron in vitro, and (C) adult ferret pyramidal 
neuron (extracted from Borrell and Callaway (2002)); each showing membrane fluorescence, segmentation masks (soma/processes), and 
Strahler-order color-coded skeletons. (D) Soma and main process identification for compartmental analysis (mouse neuron from (B)). For ferret apical 
radial glia, the most proximal portion of the endfoot was annotated as root for the Strahler analysis. (E,F) Strahler analysis reveals abundant short 
terminal branches (order 1) and fewer, longer proximal segments of higher order. Scale bars, 10 μm (A,B); 50 μm (C).

different intermediate images generated in the pipeline. The full code 
is available on https://github.com/enricoenne/MitoLandscape. All 
mitochondrial binarization, skeletonization, and subsequent graph-
based analyses were performed in 3D using the full Airyscan z-
stacks.

To study the fine spatial distribution inside subcellular 
compartments, the function process_analysis was written to quantify 
the volume of mitochondria along the length and the thickness of 
the process (Figures 8A–D). This function could be useful to study 
the shape of processes even in the absence of mitochondria. The 
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FIGURE 6
Mitochondrial skeletonization and graph-based analysis, example from chick developing pallium. (A) Raw Airyscan super-resolution microscopy 
images were deconvolved using Huygens software (Mito signal), maximum projection. (B) Maximum projection of binarized mitochondria was 
generated by a two-class pixel classification model in ilastik (Binarized mito). (C) Skeletonized representation showing endpoints (1 neighbor; magenta), 
branching points (more than 2 neighbors; cyan) and centers (green) for each mitochondrial element, calculated as barycenter of each mitochondrial 
element, treated as a graph where every voxel is a node connected to the neighbors. (D) Graph representation of mitochondria, green crosses indicate 
element centers, colors represent the single linear components (or branches). Scale bar, 0.5 μm.

function to quantify process and mitochondrial volume along the 
process uses the distance from the soma (Supplementary Figure S1) 
to split the process in subsections of defined thickness (the 
default is 0.5 μm). Relying on the distance from the soma 
allows analyzing processes that are twisted; although subsections 
that are not perpendicular to the process axis cause a minor 
deformation, this usually does not alter the results considerably 
(Supplementary Figure S1). For the population analysis of apical 
Radial Glia Cells, we analyzed 102 cells (Figures 8I,J). 

2.12 Datasets analysis and comparisons

The analysis of our HEK293T cell dataset was performed 
on 22 cells from 6 pictures. These cells show more complex 
3D mitochondrial organization compared to apical Radial 
Glia Cells (Figure 9A). Cell, mitochondria and nuclear segmentation 
was performed as described previously.

The analysis of Cardiomyoblast cell-line H9c2 in glucose and 
galactose condition (Opstad et al., 2022) was performed on their 
FixedGA subset (10 pictures for galactose condition and 15 for 
glucose condition). The processed and aligned pictures were used 
(SIT_ALX). Both mitochondrial green channel (Figure 9F) and far-
red lysosome channel (Figure 9F) were segmented with specifically 

trained 2-pixel classification models on ilastik. Models were trained 
on annotations on pictures coming from both conditions. Since 
pictures contained multiple partial cells with no way to distinguish 
one from the other or to obtain the full cellular volume, the pipeline 
analysis was performed on a picture scale, and the only comparable 
values are relative metrics, such as mean quantification of individual 
mitochondrial properties (Figures 9H,I), percentages (Figure 9J) 
and distributions (Figures 9K,L). Due to the heterogenous quality 
within the lysosome channel between the two conditions, it was 
not possible to perform reliable organelle analysis on the lysosome 
components, but the binarized output of the segmentation was 
used as a reference point for the process analysis function. This 
produced a distribution of mitochondrial density as a function 
of the distance from the lysosomes (Figure 9L). All the statistical 
tests and plot annotations are performed using Python library 
Statannotations (Charlier et al., 2022).

To test the reliability of our pipeline we compared its results on 
a HEK293T cell dataset of 8 pictures with Mitochondria Analyzer, 
an easy-to-use ImageJ plugin for morphological mitochondrial 
analysis. We used the standard settings both for local thresholding 
and for analysis, we chose “per-cell analysis”. Since the plugin does 
not allow for multiple cell identification within the same picture, we 
did not use any cell segmentation either for our pipeline, to obtain 
comparable outputs. The plugin is composed of two parts, a first local 
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FIGURE 7
Schematic of analysis pipelines. Rectangles denote images or data products: green, input images (e.g., deconvolved acquisitions); blue, intermediate 
images required by the pipeline; pink, graph objects (NetworkX); yellow, output tables. Star marks the images used as input to the Python scripts. Steps 
invariant relative to the baseline pipeline (cells without compartment/process annotations) are shown in white. Gray rhombuses indicate third-party 
software used for manual or semi-automated segmentation; gray ellipses indicate in-house Python functions used within the pipeline. Panels: (A) core 
mitochondrial analysis—segmentation-derived, graph-based quantification; (B) basic cell analysis using nucleus/soma distance only; (C) analysis of 
cells with soma-derived compartments or other compartment annotations; (D) dedicated pipeline for apical radial glia exhibiting apico–basal polarity;
(E) analysis of branching morphologies and associated compartments.
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adaptive thresholding step followed by the morphological analysis. 
To account for the impact of thresholding/binarization step, which 
can be considerable (Hemel et al., 2021), we saved the output of the 
local thresholding and the output of our ilastik binarization model. 
We then performed both analyses, the plugin and our pipeline, on 
both binarized sets of pictures (Figure 10). To be able to compare 
the results we had to add a thresholding step based on the size of 
the element, because Mitochondria Analyzer automatically excludes 
particles below 0.05 µm3 of volume.

To observe the effects of different binarization steps to the 
downstream analysis we repeated the analysis of the HEK cell 
dataset (Supplementary Figure S2) using two different 2-class pixel 
classification ilastik models. The two models were purposely trained 
with a lower stringency annotation (Supplementary Figure S2B left) 
and higher stringency (Supplementary Figure S2B right). 

3 Results

3.1 3DSlicer is a powerful tool for 
segmentation of complex cellular 
morphologies

To test our semi-automated analysis tool, cells expressing 
membrane and mitochondrial reporter proteins were imaged 
(Figure 1). Cells labeled in vivo frequently overlapped, despite 
our strategy to obtain sparse labeling. In particular, neural 
progenitor cells exhibited extensively intertwined processes, 
making segmentation by standard methods very challenging 
(Figure 1C). To overcome this problem, we used the Grow from Seed
segmentation tool available in 3DSlicer software (Fedorov et al., 
2012). This allowed efficient segmentation by combining semi-
automated segmentation of coarse objects, such as the soma of 
high-contrast cells, with manual annotations for complex and 
fine cellular processes. The Grow from Seed tool was reliable 
in segmenting membrane boundaries and texture, even in the 
most complex cases when manual delineation along the entire 
length of neuronal processes was necessary (Figures 2A–C; see 
Methods). Segmentation quality depended relatively on signal 
strength, but even cells with low signal intensities could be 
segmented with 3DSlicer if they were isolated and their edges 
easily recognizable (Figures 2D–F). Hence, 3DSlicer enabled 
highly detailed and accurate segmentation of complex cellular 
morphologies. The output was a standard label picture where every 
cell is associated to a different value. Fiji was used to assign value 
zero to background, necessary for the following steps. 

3.2 Distance maps to extract sub-cellular 
compartment information

The specific localization of mitochondria is key for their 
function within cells, whether these are simple (Katajisto et al., 
2015) or highly compartmentalized (Virga et al., 2024, 20). Even 
a very simple spatial analysis, such as measuring the distance 
of mitochondria with respect to the nucleus, already provides 
important information about their subcellular distribution. In the 
case of elongated processes such as neuronal axons or dendrites, 

for example, it is very informative to obtain the distribution of 
mitochondria along their extension. Accordingly, we wrote several 
functions to determine the length of individual cell processes, 
and the distribution along those of subcellular elements such as 
mitochondria. For simple cells like HEK, we wrote a function 
to simply measure distance from the nucleus ( geodesic_dist), 
which can also be used in other, more complex cells (Figure 3A). 
For more complex cells containing thin processes that are well 
distinguished from the soma, like neurons and Radial Glia Cells, 
we used the same function to measure the distance from the soma 
along individual processes (Figure 3B). Finally, for cells attached or 
adjacent to a particular anatomical compartment, like apical Radial 
Glia Cells anchored to the ventricular surface of the embryonic 
telencephalon, we measured the distance along individual processes 
with respect to such reference landmark (i.e., ventricular distance; 
Figure 3C). Functions to measure distance along the cell relied on 
geodesic distance, thus allowing the algorithm to follow along the 
process no matter how twisted it was. Using the geodesic distance 
might introduce small errors when dealing with quantification 
of thick varicosities, which by definition are thicker than the 
main process, but we found that such deviations were negligible 
(Supplementary Figure S1). All these functions take as inputs the 
cell segmentation picture from the previous steps and the nuclear 
segmentation pictures (every nucleus is labeled with the value of the 
respective cell; see Methods Section 2.7).

Finally, to analyze cells adjacent to an identified anatomical 
structure, we integrated in our pipeline a function to measure 
distance along individual processes with respect to the anatomical 
structure or border of reference (as a binary 3D picture). This is key 
when studying neural stem cells in the developing brain, like Radial 
Glia Cells that extend a process anchored to the ventricular surface 
or to a blood vessel (Ferent et al., 2020; Siqueira et al., 2018). As 
proof of principle, we analyzed the processes of Radial Glia Cells 
in the developing telencephalon, which display a very characteristic 
morphology extending an apical process away from the ventricular 
side of the soma, and a basal process away toward the opposite side 
(Figure 4; see Methods) (Viola et al., 2024). This analysis pipeline 
can be easily applied to measure distance along process with respect 
to other reference anatomical structures, such as blood vessels or 
amyloid plaques, as long as the feature of interest is contained within 
the segmented 3D image. 

3.3 Analysis of neuronal and glial cell 
morphology

To validate the broader applicability of our pipeline for cell 
morphology analysis, we applied it to analyze cells with branched 
structures, and annotated their detailed morphology. To this end 
we wrote additional functions (strahler_analysis and annotate_
from_network) that we tested on fluorescent images from neurons 
and glial cells from a variety of preparations, containing neuronal 
dendritic trees and the terminal tree of Radial Glia Cell basal 
process (Figure 5). The first function (strahler_analysis) was an 
implementation of the Strahler analysis (Strahler, 1952). This 
annotates branches depending on their distance from an end point 
and outputs the associated network, with each node representing 
a pixel of the skeletonized processes (Figure 5). A second function 
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FIGURE 8
Comprehensive analysis of mitochondrial morphology and distribution. (A) Merged image showing membrane (green), mitochondria (magenta), and 
nuclei (blue) in an apical radial glia cell from chick developing pallium. (B) Segmentation masks identifying cell compartments in two cells of interest: 
apical/basal part of the somas and processes (cyan, magenta, light and dark green), mitochondria (magenta), and ventricle (white). (C,D) Volume 
profiles along the basal (C) and apical (D) processes, showing mitochondrial (magenta) and process (green) volumes as a function of distance 
  (Continued)
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FIGURE 8 (Continued)

from the soma. (E) Results of the analysis of the mitochondrial density across cellular components in the two cells of interest. (F) Result of the 
analysis of individual mitochondrial length and their subcellular distribution in the two cells of interest. (G) Result of the analysis of individual 
mitochondrial number of branches and their subcellular distribution in the two cells analyzed. (H) Morphological classification of 
mitochondrial element (Bakare et al., 2021). (I) Result of the network content of subcellular compartments in 102 apical radial glia cells from the 
developing pallium. (J) Kernel density estimation (KDE) plot of subcellular compartment volumes. Scale bar, 5 μm.

(annotate_from_network) uses the Strahler numbers calculated 
previously to annotate the binary cell mask. In each case, 
MitoLandscape’s segmentation and skeletonization modules were 
used to extract the morphological structure of the cell of interest, 
converting the cell’s fluorescence signal into a mathematical skeleton 
representation. We tested three distinct types of samples: a) the 
branched end-foot of a Radial Glia Cell in postnatal ferret brain; 
b) cultured cortical neurons from mouse; and c) pyramidal neurons 
in the adult ferret cerebral cortex. These different types of samples 
represented a broad spectrum of cell sizes, complexities and imaging 
conditions (Figures 5A–C).

In the developing cerebral cortex, Radial Glia Cells extend a 
long basal process that arborizes profusely within the marginal zone 
just before contacting the basal lamina. Using MitoLandscape we 
isolated the basal process of a GFP-labeled Radial Glial Cell from 
the surrounding tissue (Figure 5A). The segmentation accurately 
captured the thin radial fiber together with its broader and complex 
terminal arbor. After skeletonization, the branched structure was 
clearly delineated, and the pipeline detected several branch points, 
effectively mapping its complexity (Figure 5A, right panels). From 
this skeleton, we obtained the number of branch segments and 
the length of each branch. These features are of great interest 
because the branching pattern of Radial Glia end-feet reflects how 
these cells interact with the surrounding environment and the
basal lamina.

Next, we extended the analysis to neurons, which have an 
even more complex morphology than Radial Glial cells. We used 
neurons grown in vitro and developed in vivo (Figures 5B,C). 
MitoLandscape successfully segmented the cell soma and dendritic 
processes from the fluorescent membrane marker and produced a 
clean skeleton of dendritic branches. The skeletonization preserved 
all major dendrites and axonal processes, reducing them to 
their centerlines (Figures 5B,C, right panels). Branch endpoints 
were clearly identified in the skeleton’s graph representation. 
Depending on the needs of the study, the terminal branches of 
dendrites, i.e., dendritic spines, may be either excluded from the 
analysis to focus on primary dendritic shafts, or maintained to 
also analyze their quantity, distribution and length (Figure 5C). 
MitoLandscape also supports compartment-specific analyses. Using 
the segmentation mask, the soma (cyan) and main processes 
(green) were clearly identified (Figure 5D). This segmentation 
allowed the morphological quantification within distinct cellular 
compartments. For example, MitoLandscape automatically counted 
the number of branches in individual dendrites and measured 
their length (Figures 5E,F).

The reliability of these analyses depended again on the quality 
of the original images and the fidelity of cell segmentation. If two 
branches were separated by a distance smaller than the spatial 
resolution of the segmented image, annotation functions were prone 
to error in branch identification. Similarly, strahler_analysis could 

not deal with structures containing loops. To solve this, we extracted 
an acyclic graph favoring the opening of apparent cellular loops at 
the side most distal from the soma. Alternative methods to solve 
loops, such as removing pixels with the lowest intensity, could 
not be applied because our analyses were based on segmented 
binary pictures.

Altogether, our results demonstrated that MitoLandscape can 
quantify in a fully automated manner classic morphological features 
of neurons, such as the number and length of dendritic branches, as 
well as overall dendritic length. These features are traditionally 
measured in studies of neuronal development and plasticity 
using manual tracing or specialized software; MitoLandscape 
extracts them directly from images with minimal user
intervention. 

3.4 Mitochondria analysis pipeline

Next, we went on to establish an analysis pipeline for 
mitochondria morphology and subcellular distribution. Our 
analysis started with the binarization of the image channel 
reporting the mitochondrial marker. Since mitochondria had 
different levels of intensity depending on the amount of reporter 
plasmid expressed, we found that thresholding methods were 
unreliable for binarization. Previous analysis pipelines delt with 
this issue performing the analysis with a range of threshold values 
(Zamponi et al., 2018, 201), or based on videomicroscopy images 
where the quality of a threshold could be evaluated based on the 
consistency of its output along consecutive frames (Lefebvre et al., 
2021). In order to design a pipeline suitable for images on fixed 
tissue, where a stable level of intensity cannot be guaranteed, we 
used ilastik to obtain a 2-pixel classification model (Figures 6A,B). 
To ensure reliable results across any sample, we trained this machine 
learning-based resource with cells displaying a wide range of 
mitochondria signal intensities. Our analyses were conducted in 
3D, ensuring that mitochondrial morphology and connectivity were 
quantified across the entire z-stack rather than from 2D projections. 
Nevertheless, mitochondria analysis was always limited by the 
resolution of original images and the local density of mitochondria. 
It was not possible to distinguish two mitochondria positioned 
closer than the resolution limits of Airyscan super-resolution 
microscopy (approximately ∼120 nm in the XY plane, ∼350 nm 
in Z), nor to fully resolve the fine ultrastructural details of a single 
mitochondrion with highly intricate morphology. Importantly, our 
pipeline includes the possibility of loading images already binarized 
to continue with the following steps, as both mito_analysis and cell_
analysis function use as input a simple binarized 3D picture. In this 
way the user is free to employ any binarization method of preference, 
as tested with the adaptive thresholding output of the Mitochondria 
Analyzer ImageJ plugin.
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FIGURE 9
Cell culture datasets analysis. (A) Representative HEK293T cell: left, z-slice; middle, max projection; right, 3D rendering of the mitochondrial channel. 
In green the cellular outline from the max projection. (B) Histogram of the mean mitochondrial element volume per cell. (C) Histogram of the mean 
number of branches of mitochondrial elements per cell. (D) Branch number of individual mitochondrial elements as a function of their distance to the 
nucleus. (E) Population fractions of mitochondria morphological classes: punctae (spherical, unbranched), rods (linear, unbranched) and 
networks (branched). (F) Max projection of the mitochondria channel in H9c2 Cardiomyoblasts cultured in galactose-based medium (GAL; n = 10 images, 
  (Continued)
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FIGURE 9 (Continued)

orange) versus glucose containing medium (GLU; n = 15 images, light blue). (G) Max projection of lysosome channel. (H–J) Between-condition 
comparisons: (H) mean mitochondrial element volume per image, (I) mean mitochondrial diameter per image; (J) percentage of punctae per cell.
(K) Kernel density estimation (KDE) plot of individual mitochondrial element volumes; thin lines, individual pictures; thick lines, average; colors 
represent condition (orange for GAL, light blue for GLU). (L) Mitochondrial density plot as a function of the distance from lysosomes; thick lines 
represent mean distribution; colors represent condition (orange for GAL, light blue for GLU). T-test.  ***p-value <0.001,  ****p-value <0.0001. Scale 
bar, 5 μm.

After obtaining binarized images, we skeletonized the binary 
signal to extract the fundamental morphological structure of 
individual elements (mitochondria - total length and number 
of branches; Figure 6C) and to classify them (Bakare et al., 
2021). To assign each element to a subcellular localization, we 
defined a center point based on the barycenter of its graph 
representation (Figure 6D). The center is chosen as the voxel with 
the minimum distance from all the others in the graph, as a 
way to keep into consideration the complexity of its branching 
structure. This enabled us to assign each element to the specific 
compartment to which it belonged. We set the analysis pipeline so 
that each element can only belong to one compartment, although 
this may be inaccurate in special cases, for example, with very 
long mitochondria that may extend along different subcellular
compartments.

The overall analysis strategy, summarized in Figure 7, 
relied on modular pipelines tailored to specific data types 
and morphological complexity. Input images (e.g., deconvolved 
acquisitions) were processed through standardized preprocessing 
and automated or semi-automated segmentation by third party 
software (Fiji, ilastik, 3DSlicer), followed by custom written 
Python functions. The core pipeline quantified mitochondrial 
features from segmentation using a graph-based representation 
(Figure 7A). For simpler geometries, a basic workflow estimated 
subcellular position from the nucleus–soma distance (Figure 7B). 
For cells with explicit compartment annotations, analyses were 
extended to compartment-resolved quantification (Figure 7C). 
A dedicated workflow accommodated apical Radial Glia to 
account for their apico–basal polarity (Figure 7D). Finally, 
branching morphologies and their associated compartments 
were handled by a specialized pipeline (Figure 7E). Across 
pipelines, intermediate products included graph objects and, 
ultimately, standardized data tables for downstream statistical 
analyses, providing a systematic and reproducible readout of
cellular features. 

3.5 Analysis of mitochondria morphology 
and localization

For a proof-of-concept and quality testing of our analysis 
pipeline, we focused on the analysis of apical Radial Glia Cells. In 
general, mitochondria are not single dots but three-dimensional 
elements with measurable volume, and their distribution along 
cells may be quite heterogeneous (Figures 8A,B) (Kuznetsov 
and Margreiter, 2009). Using MitoLandscape we quantified this 
heterogeneity by assessing the mitochondrial volume in each cellular 
compartment (as an aggregate) and the profile of mitochondrial 
volume along the apical and basal processes (Figures 8C,D). 

To normalize for potential changes in volume along cells and 
processes, we computed variations in mitochondrial volume 
alongside with cytoplasmic volume. The analysis outputs captured 
multiple mitochondrial features of each individual cell, from more 
global features like density and length (Figures 8E,F) to more 
detailed aspects like their branching (Figure 8G). MitoLandscape 
allowed this analysis in the different subcellular compartments at 
the level of individual cells, and as a population distribution. For 
example, the abundance of mitochondria with network structure 
(Figure 8I), or cell morphological features like the volume of 
subcellular compartments (Figure 8J).

To evaluate the robustness of the analysis pipeline, we 
used a dataset of HEK293T cells (Figure 9A). The analysis 
of the distribution of relevant mitochondrial features, such as 
volume, branching and morphological complexity showed highly 
reproducible results across cells (Figures 9B–E), demonstrating 
the robustness of MitoLandscape. In this reductionistic biological 
context, MitoLandscape could also analyze the subcellular spatial 
distribution of mitochondria, using the position of the nucleus as 
reference (Figure 9D).

We then tested the sensitivity of MitoLandscape to detect 
differences in mitochondria profiling. To this end we analyzed 
a mitochondrial dataset of Cardiomyoblast cell-line H9c2 
(Opstad et al., 2022) where cells were subject to different nutritional 
regimes, thus affecting mitochondria biology (Figures 9F,G). 
MitoLandscape was able to robustly identify significant differences 
between cells treated with standard glucose medium, or 
glucose-deprived galactose medium, in mitochondria volume, 
diameter and structure (Figures 9H–K). Similar to the analysis 
of distribution with respect to the cell nucleus, MitoLandscape 
also provided information on the spatial distribution of 
mitochondria with respect to other subcellular elements, such as
lysosomes (Figure 9L). 

3.6 Comparison of MitoLandscape to other 
analysis pipelines

When compared to other mitochondria analysis pipelines, such 
as Mitochondria Analyzer (Chaudhry et al., 2020) our pipeline 
shows comparable results (Figure 10). Our analysis produces the 
same types of metrics about mitochondrial number, size and 
complexity. Differences on the results between the two pipelines 
related essentially to the binarization step, as starting from the 
same mitochondrial segmentation files led to similar outcomes 
(Figures 10A,B; blue and green comparisons are as similar as pink 
and yellow). The effect of the binarization was also considered 
comparing the results of the HEK dataset using different ilastik 
mitochondria binarization models (Supplementary Figure S2). 
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FIGURE 10
Comparison of analysis pipelines and the dominant effect of binarization. (A) Main features comparison between MitoLandscape and ImageJ plugin 
Mitochondria Analyzer. (B) HEK cells comparison (8 pictures) was performed following four combinations of parameters: blue, MitoLandscape on ilastik 
masks; yellow, Mitochondria Analyzer on its own masks; green, Mitochondria Analyzer on ilastik masks; pink, MitoLandscape on Mitochondria Analyzer 
masks. (C) Mitochondrial morphological features measured by the two pipelines. (D–S) Comparison of metrics distribution across the four different 
combinations. Gray lines connect same pictures. T-test with Bonferroni correction.  ∗: p-value <0.05,  ∗∗: p-values <0.01,  ∗∗∗: p-value <0.001, 
 (Continued)
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FIGURE 10 (Continued)
****p-value <0.0001. Images of HEK cells were deconvolved with Huygens, and the mitochondrial channel was binarized either with a custom 
ilastik classifier or with the local-thresholding step from the Mitochondria Analyzer Fiji plugin (Chaudrhry et al., 2020). We then quantified 
mitochondria using either MitoLandscape or Mitochondria Analyzer, yielding four conditions: blue, MitoLandscape on ilastik masks; yellow, 
Mitochondria Analyzer on its own masks; green, Mitochondria Analyzer on ilastik masks; pink, MitoLandscape on Mitochondria Analyzer masks. 
Across the readouts shown, both analysis engines produced comparable estimates when provided with the same binary masks, whereas results 
differed primarily as a function of the binarization method. To match the plugin’s default behavior, objects with volume <0.05 μm3 were excluded in 
both pipelines to enable fair comparison.

This showed that, as expected, mitochondrial volume and 
branch length were directly correlated with the stringency of the 
binarization model. More interestingly, both in the total number of 
mitochondrial elements and total number of branches we observed 
a trend where the number decreased for both higher and lower 
stringency. The former case had many false-negative pixels, whereas 
in the latter case the abundance of false-positives caused the merging 
of separate elements. This trend was already described in the 
literature when analyzing mitochondria at different background 
thresholds (Zamponi et al., 2018). 

4 Discussion

Here we present MitoLandscape, a flexible and semi-automated 
analysis pipeline aimed at analyzing the morphology and spatial 
distribution of mitochondria at single cell resolution, particularly 
useful in complex tissue architectures. The motivation behind this 
development was to address a well-known technical limitation 
in subcellular biology: the difficulty of extracting organelle-
specific data from individual cells within densely packed and 
morphologically complex tissues, where most conventional 
segmentation and analysis methods fall short in resolution, 
scalability and/or specificity. By combining super-resolution 
Airyscan imaging with machine-learning segmentation and a 
custom graph-based analysis in Python, our semi-automatic tool 
performs a detailed study of mitochondrial architecture and 
subcellular distribution, even in cells with long, branched, and/or 
intertwined processes.

One of the main strengths of our approach is its ability to 
assign mitochondrial structures to specific cells reliably, even in 
cases where processes are overlapping or in close proximity. This 
represents an important improvement over previous studies that 
depend heavily on manual annotation. For example, Iwata et al. 
(2020) provided high-quality mitochondrial quantification in 
neuronal cells through manual tracing, which while precise, is 
not feasible for large datasets or intact tissues. In tissue-based 
analyses (e.g., (Baumann et al., 2025, 2; Fogo et al., 2021)), 
authors were unable to assign mitochondria to individual cells 
due to high tissue density. Similarly, in several in vitro studies 
(Helguera et al., 2013; Meshrkey et al., 2021; Xu et al., 2022) 
mitochondrial morphology was analyzed at the population level, 
without single-cell resolution. In such contexts, our pipeline offers 
major advantages by enabling precise cell-specific mitochondrial 
quantification, improving interpretability and biological insight, 
while preserving spatial context and reducing user-dependent 
variability. Moreover, our approach complements previous 3D 
analyses of mitochondrial networks (Mitra et al., 2009) by 

assigning organelles to individual cells and linking them to 
specific subcellular compartments and tissue landmarks within 
intact tissue. Beyond earlier approaches, several recent frameworks 
(MitoSkel (Zaghbani et al., 2025), MoDL (Ding et al., 2025), 
Pycytominer (Serrano et al., 2025) and Nellie (Lefebvre et al., 
2025)) advance deep-learning segmentation, feature extraction and 
standardized profiling. In contrast, MitoLandscape focuses on 
cell- and compartment-resolved 3D spatial quantification in intact 
tissues, with explicit mitochondria-to-cell/landmark assignment 
and geodesic, graph-based metrics that preserve anatomical context.

To validate the robustness of our approach, we compared the 
MitoLandscape analysis pipeline with a widely used method, the 
Mitochondria Analyzer Fiji plugin (Chaudhry et al., 2020). We 
performed this comparison using HEK cells, a standard model 
for in vitro studies. As detailed in Figure 10, we processed the 
same deconvolved images of the mitochondrial channel using 
both pipelines. Specifically, we used our custom ilastik model 
for binarization to feed the MitoLandscape analysis (Figure 10, 
blue) and the local threshold to feed Mitochondria Analyzer 
plugin (Figure 10, yellow). To further evaluate the impact of 
the binarization step, we also initiated both analyses with the 
binarization output from the other method: MitoLandscape on 
the local thresholding output of Mitochondria Analyzer (Figure 10, 
pink), and Mitochondria Analyzer on the ilastik output (Figure 10, 
green). Our results demonstrate that while the two analysis pipelines 
produce equivalent results, the final output is highly dependent on 
the initial binarization step. It is also important to note that, to ensure 
a fair comparison, we filtered the MitoLandscape results to exclude 
objects with a volume less than 0.05 μm3, a hardcoded threshold 
present in the Mitochondria Analyzer plugin. This confirms that a 
robust and reproducible segmentation strategy, like the one provided 
by our machine learning model, is crucial for obtaining reliable 
quantitative data.

Given that segmentation quality emerged as the dominant 
source of variance in our benchmarks, the following practical 
guidance on acquisition and pre-processing to maximize mask 
fidelity should be applied. Use Airyscan for high-SNR super-
resolution and enforce Nyquist sampling per channel, followed 
by Huygens deconvolution. Under our conditions, this yields 
120–140 nm XY/350–400 nm Z at 555 nm. This stabilizes 
segmentations and improves the reliability of downstream 
MitoLandscape readouts.

Thanks to its modular design, MitoLandscape further allows 
for the extraction of various spatial metrics, such as distances 
from soma, nucleus or other organelles, mitochondrial distribution 
in defined compartments, and volumetric profiles along cellular 
processes. These types of measurements are especially relevant 
when working with polarized or highly compartmentalized cells like 
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Radial Glia Cells or neurons. Our analysis is based on geodesic 
distances and reference points defined by the user, which makes 
the tool adaptable to different biological scenarios. For example, 
we automated the classification of processes within the RGCs as 
apical or basal by integrating information relative to the position of 
the process with respect to selected tissue landmarks, such as the 
ventricular surface. This approach can be easily extended to other 
contexts by incorporating the preferred spatial reference, such as 
vasculature or pathological structures like amyloid plaques, allowing 
for organelle distribution studies in a wider range of physiological 
and disease-related scenarios.

It is important to note that the graph-based modules of 
MitoLandscape are applied consistently across all sample types, 
regardless of whether the input is an isolated cultured cell or a 
cell embedded in dense tissue. What differs is the segmentation 
step: for isolated cells such as HEK, segmentation is straightforward, 
whereas in tissue this step becomes critical to separate individual 
cells with overlapping or intertwined processes. Once segmentation 
is achieved, the downstream analysis is uniform across all contexts.

The analysis pipeline of MitoLandscape enabled both the 
quantification of mitochondrial localization and distribution, 
and the identification of cell-to-cell heterogeneity within the 
same tissue context. For example, two neighboring radial glial 
cells displayed distinct mitochondrial density profiles across 
equivalent compartments, with one cell showing preferential 
accumulation in the basal process and the other exhibiting 
enrichment in the apical soma (Figure 8E). The volumetric profiles 
along apical and basal processes further revealed local hotspots of 
mitochondrial density, highlighting regions of potential metabolic 
specialization (Figures 8C,D). In addition, our approach quantified 
the length of individual mitochondrial elements within each 
compartment (Figure 8F), and the complexity of mitochondrial 
elements, quantified as number of branches (Figure 8G). These 
results illustrate how the pipeline can dissect not only subcellular 
distribution but also morphological diversity of mitochondria at 
single-cell resolution, thereby uncovering biologically relevant 
variability that would be masked by population-level analyses.

While in this study we focused on mitochondria, MitoLandscape 
may be used to analyze other tubular organelles or cellular 
structures, if suitable fluorescent reporters are available. 
Nevertheless, this will require organelle-specific validation given 
their distinct 3D architecture and spatial distributions. Since the 
core steps (semi-automated segmentation, pixel classification, and 
morphological analysis by skeletonization) do not depend on the 
structure of the specific signal, the method is adaptable to other 
subcellular structures. In addition, MitoLandscape is ideal to 
analyze the morphology of neuronal and glial cells, highlighting 
its versatility in quantifying structures at different biological scales. 
While originally developed to analyze subcellular components (such 
as mitochondria), here we show that MitoLandscape is equally useful 
to capture the detailed architecture of whole cells. Accordingly, this 
single, unified pipeline is ideally suitable to study both the internal 
organization of cells and their overall morphology. Indeed, the 
segmentation and analysis modules can be applied to any biological 
sample if individual cells and organelles are appropriately labeled, 
including adult tissues, organoids, or disease models with altered 
cellular architecture.

In summary, MitoLandscape offers a robust and adaptable 
tool for the spatial analysis of organelle morphology, architecture 
and localization within the cell. It enables reproducible, user-
friendly and high-throughput quantification of subcellular 
structures in complex biological samples. We hope that this 
tool opens the door to more systematic investigations into how 
organelle organization contributes to cellular identity, development,
and function.
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