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Enlargement of the muscle stem 
cell pool in linc-MYH-deficient 
mice does not prevent 
sarcopenia during aging
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1Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung 
Research, Bad Nauheim, Germany, 2Member of the German Centre for Cardiovascular Research 
(DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany

Loss of skeletal muscle mass and muscle strength during aging (sarcopenia) 
and reduced skeletal muscle regeneration are often attributed to the age-
dependent decline of muscle stem cells (MuSCs). However, it has not been 
analyzed whether enlargement of the MuSC pool in old animals can attenuate 
sarcopenia or restore regenerative potential. Here, we directly tested this idea 
by taking advantage of linc-MYH-mutant mice, which show a substantially 
increased number of MuSCs in young mice. We found that 24-month-old 
geriatric linc-MYH knockout mice still maintain a consistently enlarged MuSC 
pool compared to age-matched controls. MuSCs in geriatric linc-MYH knockout 
mice were located beneath the basal lamina and remained mostly in a quiescent 
state. Importantly, enlargement of the MuSC pool did not prevent sarcopenia, 
or improve muscle function and regeneration. Instead, the larger MuSC pool 
in geriatric linc-MYH−/− mice resulted in the formation of smaller muscles 
during regeneration with thicker fibers, characterized by an increased myonuclei 
content per fiber. Furthermore, we observed shifts of the muscle fiber-type 
composition in linc-MYH−/− mice during aging, including a reduction of type 
IIb fibers in the tibialis anterior muscle and a reduction of type IIa fibers in the 
soleus, combined with an increase of type I fibers.

KEYWORDS

muscle stem cells, sarcopenia, aging, linc-MYH, mice 

Introduction

Sarcopenia is characterized by the progressive loss of muscle mass and strength during 
aging, compromising physical fitness (Cruz-Jentoft et al., 2019; Sayer and Cruz-Jentoft, 
2022). Eventually, sarcopenia causes frailty and diminishes the quality of life. Various factors 
contribute to sarcopenia, including a sedentary life style, inflammatory conditions and 
systemic diseases (Tanner, et al., 2015; Sinclair, et al., 2017; Navarro-Cruz, et al., 2019). The 
dramatic growth of the global aging population has attracted growing attention to the onset, 
progression and management of sarcopenia.

The maintenance of skeletal muscle mass is supported by muscle stem cells (MuSCs), 
also known as muscle satellite cells. It is assumed that most MuSCs stay in quiescence under 
homeostatic conditions until activated by injury or intense physical exercise (Relaix, et al., 
2021). Following activation, MuSCs proliferate, differentiate and either form new myofibers
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or fuse with existing myotubes. The number of MuSCs declines in 
an age-dependent manner in both mice (Snow, 1977) and humans 
(Renault, et al., 2002; Kadi, et al., 2004). Comparisons of different 
fiber types revealed a more pronounced reduction of MuSCs on 
type II myofibers in humans (Verdijk, et al., 2014). The age-related 
reduction of MuSCs has been attributed to reduced self-renewal, 
loss of quiescence, and increased senescence (Renault, et al., 2002; 
Sousa-Victor, et al., 2014). The correlation between declining MuSC 
numbers and fiber atrophy suggests that the progression of age-
associated sarcopenia might be linked to depletion of the MuSC 
pool (Brack, et al., 2005; Verdijk, et al., 2010; Sousa-Victor, et al., 
2014). However, other studies challenge this notion: diphtheria 
toxin-mediated depletion of MuSC does not induce sarcopenia 
(Fry, et al., 2015), and even near complete ablation of MuSCs (>97%) 
does not reduce the average cross-sectional area of myofibers in 
aged mice (Keefe, et al., 2015). Gain-of-function approaches, which 
assess the impact of experimentally increased numbers of MuSCs on 
sarcopenia, are missing so far.

In our previous work, we identified the long non-coding RNA 
linc-MYH as a key regulator for limiting the size of the MuSC pool in 
adult mice, thereby preventing myofiber hypertrophy (Schutt, et al., 
2020). Deletion of linc-MYH, which is co-expressed together with 
the myosin gene cluster, increases the number of MuSCs and muscle 
mass, resulting in fiber hypertrophy in 10-week-old and 8-month-
old mice. Here, we wanted to explore whether the expansion of 
the MuSC pool is maintained in geriatric mice and whether a 
potentially higher number of MuSCs has effects on the progression 
of sarcopenia. We describe that the relative expansion of the 
MuSC pool in linc-MYH-deficient mice compared to controls, is 
maintained up to 24 months of age. However, the relative higher 
number of MuSCs in geriatric linc-MYH mutants does not correlate 
with increased muscle mass, attenuation of sarcopenia, or improved 
muscle regeneration. These findings suggest that an enlarged MuSC 
pool alone is not sufficient to prevent the progression of sarcopenia 
or improve skeletal muscle regeneration during aging.

Methods

Mouse models and cardiotoxin 
administration

DNA sequences coding for both isoforms of linc-MYH 
(AK010044 and AK079404) were deleted from the mouse genome 
by homologous recombination and subsequent removal of the 
neomycin resistance cassette as previously described (Schutt, et al., 
2020). All animal experiments were conducted in compliance with 
German animal protection laws and were approved by the local 
animal protection committee of the state of Hessen (ref. B2/2008).

Cardiotoxin (C9759, Sigma) was prepared in 0.9% saline 
solution at a concentration of 0.06 mg/mL and administered into 
the tibialis anterior (TA) muscles after induction of anesthesia 
using 5% isoflurane, followed by maintenance with 2% isoflurane. 
A total of 50 µL of cardiotoxin was injected evenly into the 
TA muscle using a 30G needle. Postoperative analgesia was 
accomplished by providing animals with metamizole-containing 
drinking water (200 mg/kg/day) beginning 1 day prior to 
treatment and continuing for 5 days postoperatively. The animals 

were housed for either 2 or 4 weeks after administration of 
cardiotoxin to allow muscle regeneration to occur before tissue
collection. 

Immunofluorescence staining

Freshly dissected muscles were snap-frozen in liquid nitrogen 
cooled isopentane for preparation of 10 µm cryosections. Tissue 
sections were air-dried at room temperature and subsequently fixed 
in 4% paraformaldehyde for 7 min. Sections were permeabilized in 
0.3% Triton X-100/PBS and blocked with 1/10 Blocking One/PBS 
(Nacalai 03953-95). For experiments involving mouse primary 
antibodies, the Mouse-on-Mouse Blocking Reagent (Vector Labs, 
MKB-2213) was applied. Sections were washed three times for 
10 min each in 0.01% Triton X-100/PBS. Primary antibody staining 
was performed by incubating sections overnight at 4 °C with 
the following primary antibodies: mouse anti-PAX7 (MAB1675, 
R&D Systems), rabbit anti-Laminin (L9393, Sigma), or rabbit 
anti-CalcR (AHP635, Bio-Rad) diluted in solution A (02272-
74, Nacalai Tesque). The next day, sections were incubated with 
secondary antibodies (goat anti-mouse IgG1 Alexa Fluor 488, 
A21121, Invitrogen; goat anti-rabbit IgG Alexa Fluor 594, A11012, 
Invitrogen) in solution B (02297-64, Nacalai Tesque) for 1 h and 
washed twice using 0.01% Triton X-100/PBS. DAPI (10236276001, 
Sigma-Aldrich) was applied at a 1:1,000 dilution in PBS to stain 
DNA. Finally, sections were embedded using Fluoromount W 
(21634.01, Serva).

Identification of skeletal muscle fiber types was performed 
by a combination of antibodies against MyHC type I (BA-D5, 
DSHB), MyHC type IIA (SC-71, DSHB), and MyHC type IIB 
(BF-F3, DSHB). Secondary antibodies were goat anti mouse IgG 
Fcγ 2b DyLight405 (Jackson Immuno, 115-475-207), goat anti 
mouse IgG Fcγ 1 Alexa 488 (Jackson Immuno, 115-545-205), and 
goat anti mouse IgM Alexa594 (Jackson Immuno, 115-85-075). 
The concentration of primary antibodies and secondary antibody 
were 1:100 and 1:500 respectively. Zeiss Axio Observer and Nikon 
BioPipeline Slide Scanner were used for image acquisition. 

MuSC isolation and culture

Skeletal muscles were dissected from 24-month-old mice and 
minced utilizing a Mcllwain Tissue Chopper (TC752). Enzymatic 
digestion was performed with Dispase (Corning #354-235) and 
Collagenase II (Worthington #LS004177) for 1 h to dissociate 
tissue fragments into single cells. The suspension was sequentially 
filtered through 100 μm, 70 μm, and 40 μm cell strainers, after 
which red blood cells were removed using 1× red blood cell 
lysis buffer. Fluorescence-activated cell sorting (FACS) was carried 
out using anti-CD45-APC (eBioscience #17-0451), anti-CD31-APC 
(eBioscience #17-0311), anti-Ly-6A/E-APC (eBioscience #17-5981), 
and anti-integrin-FITC (MBL #K0046-4) antibodies, as previously 
described (Schutt, et al., 2020). Sorted cells were seeded at a density 
of 40,000 cells per well in 24-well plates and imaged using the 
Cellcyte X system. 
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Acquisition of MRI data

Magnetic resonance imaging (MRI) was used as a non-
invasive method to analyze mouse body composition, enabling 
in situ quantification of fat and muscle mass. Body composition 
measurements were conducted in mice under isoflurane anesthesia 
at 15, 18, and 24 months of age. MRI settings were implemented 
as described by (Schweisgut, et al., 2017). Fat and muscle 
volumes below the bilateral femoral heads were quantified with 
ImageJ software, using tissue-specific intensity threshold-based 
segmentation. 

Physical performance tests

Three independent tests were conducted to determine skeletal 
muscle function of geriatric mice, including the voluntary running 
wheel test, the Rota Rod test, and the wire hanging grip test. The 
running wheel test was done as described by (Wust, et al., 2018). 
Mice were housed individually in cages equipped with a running 
wheel (303400-RW-V-M-BU, TSE Systems GmbH) for 3 days. Data 
from the middle 24-h period were averaged and used for analysis. 
The Rota Rod apparatus from Harvard Apparatus (LE8240) was used 
for quantifying coordination abilities of mice. The time duration was 
automatically recorded when mice disengaged from the rotating rod. 
The grip test, measuring forelimb endurance by allowing mice to 
hang from a thick wire, was done as described (Peled-Kamar, et al., 
1997). The time was recorded when the mice released their grip 
and fell. For both the Rota Rod and grip tests, measurements were 
performed three times per day over three separate days to minimize 
a potential bias. 

Quantification and statistical analysis

Cross-sectional areas of skeletal muscles were measured by the 
ImageJ plugin ‘Muscle morphometry’ (Sinadinos, et al., 2015). All 
statistical analysis was done in GraphPad PRISM 10 and all data are 
presented as mean ± SD. Student’s t-test or 2-way ANOVA test were 
used for the analysis as indicated.

Results

Enlargement of the MuSC pool in linc-MYH 
mutants is maintained in geriatric mice

Deletion of linc-MYH substantially increases the number of 
MuSCs in 10-week-old and 8-month-old mice compared to controls 
(Schutt, et al., 2020). To determine whether aging reduces the 
differences in MuSC numbers between linc-MYH mutants and 
controls, we quantified the number of MuSCs in 24-month-old 
mice by immunostaining for the MuSC marker PAX7. Linc-MYH−/−

mice showed a 50% increase in MuSC numbers at 24 months 
of age relative to age-matched wild-type (WT) controls (WT: 
7.09 ± 2.48/mm2, linc-MYH−/−: 11.01 ± 2.24/mm2), consistent 
with the increase observed at 8 months (Schutt, et al., 2020) 

(Figure 1a). The number of PAX7-positive MuSCs in 24-month-
old linc-MYH−/− mice was significantly lower than in 10-week-
old mutants, essentially recapitulating the reduction of the MuSC 
pool in WT mice, but leaving approximately 50% more MuSCs 
present (Figure 1b). The similar pattern of depletion suggests that 
the enlarged MuSC pool of linc-MYH mutants is diminished by 
comparable mechanisms as in WT controls. We also performed 
co-staining for PAX7 and Calcitonin Receptor (CalcR), a marker 
for MuSC quiescence, whose expression decreases during aging 
together with a reduction of MuSC numbers (Zhang, et al., 
2019). Akin to the situation in 10-week-old mice (Schutt, et al., 
2020), linc-MYH−/− mice at 24 months of age maintained MuSC 
quiescence at a comparable ratio to WT (WT: 69.65% ± 9.56%, linc-
MYH−/−: 76.13% ± 1.00%) (Figure 1c). Furthermore, MuSCs from 
24-month-old linc-MYH−/− mice showed an increased proliferation 
rate compared to WT MuSCs, similar as at 10 weeks, whereas 
differentiation was normal (Figures 1d–f), consistent with our 
findings in young adult mice (Schutt, et al., 2020). We concluded 
that linc-MYH−/− mice represent a suitable model for investigating 
the impact of an enlarged MuSC pool on sarcopenia and muscle 
regeneration in aging.

Enlargement of the MuSC pool does not 
attenuate loss of muscle mass during aging

To investigate whether an enlargement of the MuSC pool 
mitigates loss of muscle mass in geriatric mice, we determined the 
muscle volume. MRI measurements revealed a significant reduction 
in skeletal muscle volume between 15 and 24 months of age in both 
WT mice and linc-MYH mutants, with no significant difference 
between the two groups at any time point (WT-15m: 5535.92 ± 
624.68 mm3, linc-MYH−/−15 m: 5328.59 ± 412.50 mm3; WT-18m: 
4,925.15 ± 376.75 mm3, linc-MYH−/−18 m: 5048.47 ± 543.31 mm3; 
WT-24m: 4,842.20 ± 417.39 mm3, linc-MYH−/−24m: 4,599.87 ± 
514.37 mm3) (Figure 2a). Moreover, analysis of the cross-sectional 
area of myofibers revealed atrophy in type I, type IIa, type IIb, 
und type IIx fibers in both WT and linc-MYH mutants, with no 
significant difference between the two groups at 24 months of age 
(WT-young: IIa: 1,062.32 ± 85.98 µm2, IIb: 3285.24 ± 241.27 µm2, 
IIx: 1,636.79 ± 74.84 µm2, I: 1,282.30 ± 83.53 µm2; WT-aging: IIa: 
732.43 ± 46.58 µm2, IIb: 2,250.81 ± 265.28 µm2, IIx: 1,260.03 ± 
93.73 µm2, I: 755.77 ± 47.00 µm2; linc-MYH−/−young: IIa: 1,120.69 
± 78.97 µm2, IIb: 3294.65 ± 150.03 µm2, IIx: 1,672.34 ± 71.05 µm2, I: 
1,679.04 ± 338.30 µm2; linc-MYH−/−aging: IIa: 653.18 ± 89.54 µm2, 
IIb: 2,311.13 ± 474.01 µm2, IIx: 1,235.25 ± 149.89 µm2, I: 989.55 ± 
102.54 µm2) (Figures 2d,e). Likewise, body weights did not differ 
significantly between linc-MYH−/− and WT control mice at 15, 
18, and 24 months (WT-15m: 33.00 ± 2.63 g, linc-MYH−/−15m: 
32.21 ± 1.69 g; WT-18m: 32.90 ± 2.39 g, linc-MYH−/−18m: 32.83 ± 
1.75 g; WT-24m: 33.05 ± 2.73 g, linc-MYH−/−24m: 31.37 ± 2.00 g) 
(Figure 2b). We also measured the weights of different muscles at the 
end of the observation period at 24 months, which did not uncover 
differences between the two cohorts (TA: WT: 47.93 ± 5.00 mg, linc-
MYH−/−: 48.33 ± 3.27 mg; EDL: WT: 9.08 ± 1.12 mg, linc-MYH−/−: 
9.66 ± 0.84 mg; Soleus: WT: 7.31 ± 1.29 mg, linc-MYH−/−: 8.41 
± 1.10 mg) (Figure 2c).
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FIGURE 1
The MuSC pool is enlarged in skeletal muscles of geriatric linc-MYH−/− mice. (a) Representative transversal sections of TA muscles of 24-month-old WT 
and linc-MYH−/− mice, showing PAX7+ MuSCs or PAX7+/CalcR+ quiescent MuSCs. (b) Bar graphs depict the mean number of MuSCs per mm2 in TA 
muscles of 10-week-old and 24-month-old mice (10-week: n = 7 WT, n = 3 linc-MYH−/−; 24-month: n = 6 WT, n = 5 linc-MYH−/−). (c) Bar graphs 
depict the ratio of quiescent MuSCs in 24-month-old mice (n = 4 WT, n = 4 linc-MYH−/−). Data are presented as mean ± standard deviation and 
analyzed by one-way ANOVA and two-tailed Student’s t-test,∗p < 0.05,∗∗p < 0.01,∗∗∗∗p < 0.0001. (d,e) Representative images of isolated, proliferating 
MuSCs isolated from 24-month-old mice. Cell proliferation was monitored by time-laps imaging over 8 days (n = 3 WT, n = 2 linc-MYH−/−). (f) Phase 
contrast images of differentiating WT and linc-MYH−/− MuSCs 2 days after induction of differentiation. No apparent differences between WT and 
linc-MYH−/− MuSCs was observed.
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FIGURE 2
Enlargement of the MuSC pool does not attenuate sarcopenia during aging. (a) MRI cross-sectional images illustrating distribution of fat (cyan) and 
skeletal muscles (brown) in aging mice. Only the lower body was included for the statistical analysis. The bar graphs show mean volumes of muscle 
tissues at 15, 18, and 24 months (15-month: n = 13 WT, n = 17 linc-MYH−/−, 18-month: n = 13 WT, n = 15 linc-MYH−/−, 24-month: n = 5 WT, n = 8 
linc-MYH−/−),∗∗p < 0.01,∗∗∗p < 0.001. (b) Body weights of WT and linc-MYH−/− mice at 15, 18, and 24 months (15-month: n = 13 WT, n = 17 linc-MYH−/−; 
18-month: n = 13 WT, n = 15 linc-MYH−/−; 24-month: n = 6 WT, n = 8 linc-MYH−/−). (c) Muscle weights of tibialis anterior (TA), extensor digitorum 
longus (EDL), and soleus muscles at 24 months (n = 10 WT, n = 8 linc-MYH−/−). (d,e) Cross-sectional areas of different fiber types in TA or soleus 
muscles at 10 weeks (young) and 24 months (aging). Data for type II fibers were obtained from TA muscle (10-week: n = 3 WT, n = 2 linc-MYH−/−; 
24-month: n = 4 WT, n = 3 linc-MYH−/−), whereas data for type I fibers were obtained from soleus muscles (10-week: n = 3 WT, n = 3 linc-MYH−/−; 
24-month: n = 3 WT, n = 3 linc-MYH−/−).

Atrophy of muscle fiber in aged individuals is most pronounced 
in type IIA fibers (Murgia, et al., 2017). Since linc-MYH has been 
described to suppress expression of myosin genes characteristic 
for slow type I fibers (Sakakibara, et al., 2014), we performed 
muscle fiber typing using antibodies specific for different myosin 
heavy chain isoforms. Linc-MYH−/− mice exhibited a shift in fiber 
type composition at 24 months of age, with a transition from 
type IIb to type IIa and IIx in the fast-twitch TA muscles, and 
a shift toward type I fibers in the slow-twitch soleus muscles 
(Figure 3). Such fiber type switch was not apparent in linc-
MYH−/− mice at 10 weeks of age (Schutt, et al., 2020). Since the 
shift of fiber types in linc-MYH−/− mice was relatively moderate 
and we observed a decline of more atrophy-prone type IIA 
fibers, we do not assume that fiber-type differences between WT 
and linc-MYH−/− mice contribute to the normal progression of
sarcopenia.

Although no significant differences in muscle volume or weight 
were observed between 24-month-old WT and linc-MYH−/− mice, 

we next investigated whether the enlarged MuSC pool in linc-
MYH−/− mice improves skeletal muscle function in geriatric mice. 
Several functional tests were employed, including running wheel, 
wire hanging and Rota Rod tests, which assess physical performance 
and endurance. No significant differences were observed between 
WT and linc-MYH−/− mice in the running wheel test (running 
wheel average speed: WT: 14.17 ± 7.67 revs/min, linc-MYH−/−: 
14.37 ± 11.35 revs/min; maximum speed: WT: 79.46 ± 13.61 
revs/min, linc-MYH−/−: 71.02 ± 28.54 revs/min; total wheel 
revolutions: WT: 405.4 ± 376.7 revs, linc-MYH−/−: 263.1 ± 170.9 
revs; maximum wheel revolutions: WT: 27.4 ± 17.5 revs, linc-
MYH−/−: 19.7 ± 10.8 revs; total running time: WT: 37.52 ± 
37.38 s, linc-MYH−/−: 66.79 ± 75.33 s; maximum running time 
per run: WT: 3.03 ± 2.08 s, linc-MYH−/−: 4.07 ± 3.19 s), wire 
hanging test (wire hanging endurance time: WT: 37.02 ± 14.75 s, 
linc-MYH−/−: 40.43 ± 32.83 s), and Rota Rod test (Rota Rod 
endurance time: WT: 15.83 ± 3.79 s, linc-MYH−/−: 14.29 ± 2.86 s)
(Figures 4a–e).
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FIGURE 3
Inactivation of linc-MYH increases the number of slow-twitch muscle fibers in soleus muscles of geriatric mice. (a) Representative images of muscle 
fibers in TA and soleus muscles stained with antibodies against different MyHC isoforms. (b) Stacked bar graph showing the proportion of type I, type 
IIa, type IIb and type IIx fibers in cross-sectioned TA and soleus muscles (n = 4 WT, n = 4 linc-MYH−/−),∗∗p < 0.01,∗∗∗∗p < 0.0001. (c) Schematic 
representation of different muscle fiber types and metabolic characteristics. Inactivation of linc-MYH induces a shift toward oxidative muscle fibers.

The enlarged MuSC pool in 24-month-old 
linc-MYH−/− mice increases myonuclei 
number in regenerated myofibers

To test a potential impact of the enlarged MuSC pool in linc-
MYH−/− mice for skeletal muscle regeneration in geriatric animals, 
we performed muscle regeneration experiments by injection of 
cardiotoxin (CTX). As expected, regeneration was slower in geriatric 
compared to 10-week-old mice but no obvious differences in the 
rate of regeneration was detected between WT and linc-MYH−/−

mice. However, geriatric linc-MYH−/− mice displayed a higher 
proportion of thinner myofibers at 2 weeks after CTX injection, 

followed by a greater number of thicker myofibers at 4 weeks post-
injection (Figures 5a,c), consistent with previous findings in 8-
month-old linc-MYH−/− mice (Schutt, et al., 2020). Despite the 
increase of hypertrophic fibers, regenerated muscles of linc-MYH−/−

mice showed an overall reduction in muscle weight (WT-2w: 
2.61 ± 0.23 mg/mm, linc-MYH−/−2w: 2.21 ± 0.23 mg/mm; WT-
4w: 3.45 ± 0.17 mg/mm, linc-MYH−/−4w: 2.98 ± 0.26 mg/mm) 
(Figure 5b), as well as a reduction in myofiber density (WT: 658.90 
± 60.93/mm2, linc-MYH−/−: 540.00 ± 77.14/mm2) (Figure 5d). The 
average number of myonuclei per fiber was increased 4 weeks 
after injury in linc-MYH−/− skeletal muscles, suggesting that the 
enlarged MuSC pool in geriatric mice favored the formation of 
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FIGURE 4
Enlargement of the MuSC pool does not improve muscle functions in geriatric mice. (a–c) Quantification of running wheel tests, including average 
speed, maximum speed, total wheel revolutions, maximum wheel revolutions, total running time and maximum running time per running cycle. Data 
were continuously recorded over 24 h (n = 5 WT, n = 9 linc-MYH−/−). (d,e) Quantification of wire hanging and Rota Rod test. Each test was performed 
three times per day per animal over three consecutive days. The mean value was recorded for each individual (n = 11 WT, n = 10 linc-MYH−/−).

larger fibers rather than contributing to the formation of a larger 
number of new fibers (WT: 3.69 ± 0.09/fiber, linc-MYH−/−: 4.50 ± 
0.64/fiber) (Figure 5e).

Discussion

The decline in MuSC numbers during aging in mice is closely 
related to the onset of sarcopenia (Brack, et al., 2005; Garcia-
Prat, et al., 2016). Furthermore, we recently demonstrated that the 
depletion of the MuSC pool via inactivation of Gna12-Gna13 or 
Rhoa is associated with accelerated loss of muscle mass during 
aging (Peng, et al., 2024). In humans the situation is less clear. 
Although a decline in MuSC numbers during aging of humans 
was reported (Schmalbruch and Hellhammer, 1976; Renault, et al., 
2002; Kadi, et al., 2004; Sajko, et al., 2004), other studies questioned 
a significant reduction (Hikida, et al., 1998; Roth, et al., 2000). 
The absence of age-related loss of muscle mass after experimental 

ablation of MuSCs in mice further complicates the situation 
(Fry, et al., 2015; Keefe, et al., 2015). In this study, we confirmed a 
decrease in MuSC numbers and skeletal muscle mass in geriatric 
mice and demonstrated that an enlargement of the MuSC pool 
by approximately 50% is not sufficient to attenuate loss of muscle 
mass. Our data suggest that the size of the MuSC pool alone does 
not play a pivotal role to slow down the decline of muscle mass 
during aging. However, our study has some limitations, which need 
to be considered: (i) The size of the MuSC pool in our model is 
increased by approximately 50% compared to 24-month-old WT 
control mice but is still substantially lower than the 10-week-old 
mice. It is possible that despite the increase of MuSCs in 24-
month-old mice the numbers are too low to have an impact on 
sarcopenia. (ii) The increase of MuSCs in 24-month-old mice was 
achieved by inactivation of linc-MYH. Absence of linc-MYH favors 
the pro-proliferative function of the INO80 complex and thereby 
enlarges the number of MuSCs (Schutt, et al., 2020). We cannot 
fully exclude that the inactivation of linc-MYH has also negatively 
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FIGURE 5
Enlargement of the MuSC pool in geriatric linc-MYH mutant mice is associated with the presence of larger myofibers after completion of muscle 
regeneration. (a) Representative cross-sections of TA muscles after staining for laminin (red) and DAPI (blue), showing newly formed myofibers with 
centralized nuclei, either 2 weeks or 4 weeks after CTX injection. (b) Bar plots comparing relative weights of regenerated TA muscles in WT and 
linc-MYH−/− mice, either 2 weeks or 4 weeks after CTX injection (2-week: n = 4 WT, n = 5 linc-MYH−/−; 4-week: n = 3 WT, n = 10 linc-MYH). (c)
Distribution of cross-sectional areas (CSAs) of individual TA muscle fibers. Approximately 3,000–5,000 fibers were measured per animal. The x-axis 
shows CSA values in µm2 (2-week: n = 6 WT, n = 5 linc-MYH−/−; 4-week: n = 3 WT, n = 5 linc-MYH). (d) Quantification of myofiber number per 
millimeter square, 4 weeks after CTX injection (n = 3 WT, n = 5 linc-MYH−/−),∗p < 0.05. (e) Quantification of myonuclei number per single fiber, 4 weeks 
after CTX injection (n = 3 WT, n = 5 linc-MYH−/−),∗p < 0.05.
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effects on MuSCs, limiting their potential anti-sarcopenic functions. 
However, we did not obtain any evidence that would support such a 
possibility, since linc-MYH-deficient MuSCs differentiate normally 
and skeletal muscle regeneration happens in a normal fashion in 
young linc-MYH mutants. We even observed a modest increase 
in skeletal mass in young linc-MYH mutants (Schutt, et al., 2020), 
which was not present any longer in geriatric linc-MYH mutants. 
Furthermore, the increased size of the MuSC pool in linc-MYH-
deficient mice is maintained over the whole lifetime and shows 
the same percentage of quiescent cells as in controls. Thus, it 
seems unlikely that the absence of linc-MYH negatively affects 
MuSCs. In our study we addressed the potential impact of MuSC 
number on sarcopenia, but it is important to note that alternative 
mechanisms, such as degeneration of neuromuscular junctions 
(Gonzalez-Freire, et al., 2014; Iyer, et al., 2021) or metabolic 
abnormalities (Joseph, et al., 2012; Picca, et al., 2018), contribute to 
the progression of sarcopenia. The impact of such processes may 
override putative beneficial effects on sarcopenia, exerted by an 
increase of MuSCs.

In contrast to missing effects on sarcopenia, the increased MuSC 
pool had an impact on the size of regenerated muscles in 24-month-
old animals. We observed that linc-MYH−/− MuSCs preferentially 
fused into larger fibers with an increased number of myonuclei. At 
present, it is hard to judge whether this phenomenon is caused by 
the enlargement of the MuSC pool or by other intrinsic functions 
of linc-MYH. The linc-MYH locus is more abundantly expressed 
in myotubes, particularly in fast-twitch muscles, and in late-stage 
proliferating MuSCs to terminate proliferation (Sakakibara, et al., 
2014; Schutt, et al., 2020; Dos Santos, et al., 2022). In myotubes, 
linc-MYH participates in myofiber specification by suppressing 
genes characteristic for slow-twitch fibers (Sakakibara, et al., 2014), 
which is recapitulated by the increase of type I myofibers in geriatric 
linc-MYH mutants. It is possible that these additional functions 
of linc-MYH influence the balance between the formation of 
fewer and larger myofibers versus the formation of more and 
smaller myofibers. Despite the limitations of the model system, 
our data clearly suggest that strategies aimed solely at expanding 
the MuSC pool are unlikely to succeed in combating sarcopenia. 
Future research will be needed to determine whether enhancing the 
function of aged MuSCs, targeting myofiber atrophy, or restoring 
diminished innervation represent more effective therapeutic
approaches.
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