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Objective: To evaluate the prognosis and therapeutic potential of the UCP
family, particularly uncoupling protein 2 (UCP2), in 32 types of cancer through
integrated analysis of TCGA and CGGA databases.

Methods: Multi-omics data from TCGA, CGGA, GTEx, cBioPortal, and
ROC Plotter were analyzed to assess UCP family expression patterns,
prognostic significance, biological functions, immune cell infiltration, and
genetic alterations across various cancers. In vitro experiments were carried out
to assess UCP2's impact on glioblastoma (GBM) aggressive traits and apoptosis.
Results: UCP2 demonstrated significant overexpression in most malignancies,
whereas other UCP family members showed reduced expression. High UCP2
expression is a prognostic risk factor for KIRP, LGG, and UVM, while it has
protective effects in CESC, OV, SARC, and SKCM. Additional UCP members are
associated with enhanced survival in certain cancers, such as BLCA and PAAD.
Genetic analysis revealed negative regulation of UCP2 by DNA methylation.
Functional enrichment linked the UCP family to epithelial-mesenchymal
transition (EMT), G2M checkpoint, UV response, and mitotic processes across
cancers. However, in more types of cancer, UCP2 is associated with immune-
related pathways. Immune infiltration analysis revealed positive correlations
between UCP family expression and stromal/immune scores but negative
associations with immunosuppressive cells infiltration. Experimental validation
in glioblastoma models confirmed that UCP2 knockdown attenuated EMT,
impaired invasion, and improved radiosensitivity.

Conclusion: This study establishes UCP2 as a prognostic indicator and potential
therapeutic target for glioma.
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1 Introduction

Gliomas, the most common and aggressive primary malignant
brain tumors, present a formidable challenge in neuro-oncology
due to their high heterogeneity, invasive growth, and resistance to
traditional therapies (Liu et al., 2024). Even with standard treatment
involving surgical resection and chemoradiotherapy, the prognosis
for high-grade glioma patients remains dismal, with a median
survival of only 12-15 months (Molinaro et al., 2019). The urgent
need for novel molecular targets to disrupt glioma progression and
improve therapeutic outcomes is highlighted by the limited efficacy
of current treatments.

A key hallmark of glioma malignancy is metabolic
reprogramming, through which tumor cells alter their energy
metabolism to support rapid proliferation and survival within
a nutrient-deprived microenvironment (Chai et al, 2024).
Mitochondrial dysfunction and oxidative stress are pivotal to this
process, fostering a dependency on adaptive mechanisms that
protect tumor cells from apoptosis. The uncoupling protein (UCP)
family, including UCP1-5, plays critical roles in mitochondrial
metabolism by regulating proton leakage across the inner
mitochondrial membrane and modulating the generation of
endogenous reactive oxygen species (ROS) (Erlanson-Albertsson,
2003). While UCP1 is well-characterized in thermogenesis, UCP2
has garnered increasing attention in oncology due to its involvement
in metabolic adaptation, redox balance, and therapy resistance
(Brandi et al, 2016; Luby and Alves-Guerra, 2022). Previous
studies indicate that UCP2 plays context-dependent roles in
tumorigenesis across multiple cancer types, acting as either an
oncogene or a tumor suppressor (Baffy, 2010; Esteves et al,
2014; Li et al, 2019). In gliomas, UCP2 overexpression has
been linked to poor prognosis, suggesting its potential role
in tumor progression (Wu et al, 2020; Vallejo et al, 2021).
Mechanistically, UCP2 may promote glioma cell survival by
enhancing glycolysis (the Warburg effect), mitigating oxidative
stress, and conferring resistance to chemotherapy-induced apoptosis
(Esteves et al.,, 2015; Wu et al., 2020). However, its functions
in glioma radioresistance and epithelial-mesenchymal transition
(EMT) remain poorly understood.

To evaluate the oncogenic potential of the UCP family, we
conducted a thorough pan-cancer analysis using multi-omics data
from TCGA and CGGA datasets. Our bioinformatic investigation
identified UCP2 as a prominent prognostic marker within the
UCP family, with high expression associated with unfavorable
outcomes in various tumors, response to immunotherapy, and
reduced efficacy of radiotherapy in glioma. Gene set enrichment
analysis (GSEA) indicated that UCP2 expression positively
correlates with EMT and immune modulation pathways, suggesting
its dual role in promoting cancer cell invasion and regulating
the tumor immune microenvironment. In vitro functional
confirmed that UCP2 knockdown inhibits glioma cell migration,
invasion, and EMT, and enhances cells sensitivity to X-ray
irradiation.

In summary, our work provides a foundational framework
for future research on UCP2-targeted strategies, highlighting its
promise as a therapeutic target for glioblastoma (GBM).

Frontiers in Cell and Developmental Biology

02

10.3389/fcell.2025.1662654

2 Materials and methods
2.1 Data acquisition

Gene expression and phenotype data for pan-cancer analysis
were obtained from the following sources: The Cancer Genome
Atlas (TCGA) and GTEx data were downloaded from the UCSC
Xena browser (https://xenabrowser.net/). The Xena resource
provides harmonized RNA-seq data processed through a uniform
computational pipeline (Toil), which minimizes batch effects and
enables robust comparative analysis between TCGA tumors and
GTEx normal tissues (Vivian et al., 2017; Goldman et al., 2020).
The CGGA693 glioblastoma microarray dataset was obtained
from the Chinese Glioma Genome Atlas (CGGA) database (http://
www.cgga.org.cn/). This independent cohort was used for external

validation.
For pan-cancer survival and GSEA, we utilized the
standardized, batch-effect-adjusted  datasets from TCGA

Pan-Cancer Atlas consortium: The gene expression matrix
(EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.
geneExp.tsv) was generated by the PanCanAtlas team using the
Firehose pipeline, which employs MapSplice for alignment and
RSEM for transcript quantification. The data was normalized
by setting the upper quartile to 1,000 for each sample. Clinical
follow-up data and sample quality annotations were obtained
from the same repository: https://gdc.cancer.gov/about-data/
publications/pancanatlas. Samples flagged as poor quality in
the annotation file were excluded from subsequent analysis.
To enable cross-gene comparison within the TCGA cohort,
the expression data for each gene were converted to a unit-
free Z-score across tumor samples using the formula (x - p)/o,
where x is the expression value, u is the mean, and o is the
standard deviation. A full list of cancer types included in this
study, along with their abbreviations as defined by TCGA, is
provided in Supplementary Table S1.

2.2 Survival analysis

We conducted univariate Cox regression and Kaplan-Meier
survival analysis to evaluate the prognostic significance of
the UCP family in various cancer types. Forest plots were
constructed using the R packages “survival” and “forestplot”
Kaplan-Meier survival curves, stratified by median gene expression
levels, were generated with the R packages “survminer” and
“survival”

2.3 Genetic alteration analysis

The cBioPortal online database (http://cbioportal.org) was used
to examine genomic alteration types and frequencies within TCGA
pan-cancer atlas cohort. The Gene Set Cancer Analysis (GSCA)
online platform was used to evaluate the single-nucleotide variations
(SNV), copy number variations (CNV), and DNA methylation of
the UCP family. For the DNA methylation analysis, only cancer
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types containing more than 10 matched tumor-normal sample pairs
were included.

2.4 GSEA
The hallmark gene sets (h.all.v2023.2. Hs.symbols.gmt)
were obtained from the Molecular Signatures Database

(MSigDB; available at https://www.gsea-msigdb.org/gsea/index.jsp).
Normalized enrichment scores (NES) and false discovery rates
(FDR) across pan-cancer analyses were calculated using the “GSVA”
and “clusterProfiler” R packages.

2.5 Immune cell infiltration analysis

Immune infiltration data for TCGA samples were obtained
from the TIMER2.0 database (https://timer.cistrome.org/). The
correlation between single-sample gene set enrichment analysis
(ssGSEA) scores and immune infiltration levels across diverse cancer
types was evaluated using the “GSVA” R package. The predictive
capacity of UCP2 for immunotherapy response was assessed using
ROC Plotter (https://rocplot.org/).

2.6 Cell culture and RNA interference

The U87 and U251 human glioma cell lines, obtained from
the Institute of Modern Physics, Chinese Academy of Sciences
(Lanzhou, China), were cultured under standard conditions and
confirmed to be free of mycoplasma contamination. Cells were
maintained in DMEM medium (HyClone, Logan, UT, United States)
supplemented with 10% fetal bovine serum (FBS; ExCell Bio,
Suzhou, Jiangsu, China) and 1% penicillin-streptomycin at 37 °C in
a 5% CO2 atmosphere. Cells were transfected with UCP2-targeting
siRNA (sc-42682) or a scrambled siRNA control (sc-37007) (both
sourced from Santa Cruz Biotechnology, Heidelberg, Germany) and
harvested 48-72 h later following the manufacturer’s guidelines.
Transfection efficiency was assessed through quantitative real-time
PCR and Western blot analysis.

2.7 Quantitative real-time polymerase
chain reaction (qRT-PCR)

Total RNA was isolated from cultured cells using the GOONIE
RNA extraction kit (Guangzhou, China, Cat. #400-100). Follow
the manufacturer’s guidelines. Complementary DNA (cDNA)
was synthesized using a commercial cDNA synthesis kit (Yeason,
Shanghai, China). qRT-PCR was carried out using SYBR Green
Master Mix (Yeason, Shanghai, China) on a Baiyuan real-time PCR
detection system (Suzhou, China). The primer sequences used were
as follows: UCP2, forward 5'-GTCCGGTTACAGATCCAAGGAG-
3" and reverse 5'-AGCCCATTGTAGAGGCTTCG-3'; PB-actin,
forward 5'-GACCACACCTACAATGAG-3' and reverse 5'-
GCATACCCCTCGTAGGG-3'. Relative mRNA expression levels
were calculated using the 2722CT method, with B-actin as the
internal reference gene.
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2.8 Western blot

Cells were lysed using a mixture of RIPA buffer, PMSE
and phosphatase inhibitors (Solarbio, Beijing, China) at a ratio
of 100:1:1. After incubation on ice for 30 min, the lysate was
centrifuged at 12,000 r/min for 10 min at 4 °C. The supernatant
containing the soluble cellular proteins was collected for subsequent
analysis. Protein samples were separated by electrophoresis on 8% or
10% SDS-PAGE gels (Solarbio, Beijing, China) and then transferred
to PVDF membranes (Millipore, Cork, Ireland). The membranes
were blocked with 5% skim milk for 1h at room temperature
and subsequently incubated overnight with the following primary
antibodies (all from Proteintech, Wuhan, China): anti-UCP2
(1:1,000), anti-Cleaved-Caspase-3 (1:1,000), anti-N-cadherin
(1:2,000), anti-E-cadherin (1:10,000), anti-Vimentin (1:10,000),
and anti-B-actin (1:200). After washing with TBST, the membranes
were incubated for 1 h at room temperature with HRP-conjugated
goat anti-rabbit IgG secondary antibody (Huabio, Hangzhou,
China; 1:5,000). Protein bands were visualized using an enhanced
chemiluminescence (ECL) detection reagent (Yeason, Shanghai,
China) and quantified by grayscale analysis with Image] software.

2.9 X-ray irradiation

Irradiation was conducted with an X-Rad 225 system (Precision,
North Branford, CT, United States) at 225 kV, 13.3 mA, and a dose
rate of 2 Gy/min.

2.10 Wound healing assay and transwell
invasion assay

Cells were cultured in 6-well plates until they reached
90%-100% confluence; next, a scratch was made in the cell layer
with a sterile 200 pL pipette tip, then a serum-free DMEM medium
(HyClone, Logan, UT, United States) was added. Wound closure
was examined at 0 and 24 h using a x40 magnification inverted
microscope (Olympus, Japan). The migration rate was calculated
by measuring the change in wound width over time using Image]
software (NTH, United States).

Cell invasion was evaluated using Transwell chambers with
8 um pores (Corning, United States). Matrigel (BD Biosciences,
United States) was used to pre-coat the membranes. 20,000 cells
in serum-free DMEM were placed in the upper chamber, with the
lower chamber containing complete medium with 10% FBS (ExCell
Bio, Suzhou, Jiangsu, China). After 24 h of incubation, the cells
that penetrated Matrigel and reached the lower surface were fixed,
stained, and photographed using a microscope (Olympus, Japan)
with a magnification of 200x.

2.11 Statistical analysis

The R software (version 4.3.1) and RStudio (2023.09.0) were
used for bioinformatics analysis, while experimental data were
analyzed with GraphPad Prism (version 10.1.2; San Diego, CA,
United States). Continuous variables following a normal distribution
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are presented as mean + standard deviation (SD), and comparisons
between groups were performed using Student’s t-test. Otherwise,
the Mann-Whitney U test was applied. Survival analyses were
performed using univariate Cox proportional hazards regression,
Kaplan-Meier estimation, and log-rank tests. Associations with
immune cell infiltration were assessed using Spearman’s rank
correlation coefficients. All statistical tests were two-tailed, with
significance levels defined as follows: “P < 0.05,"*P < 0.01,"**P <
0.001, and ****P < 0.0001.

3 Results

3.1 UCP family expression in normal and
cancer tissues

We comprehensively analyzed UCP family gene expression
patterns across various human cancers using pan-cancer data from
The Cancer Genome Atlas (TCGA). As illustrated in Figure 1A,
the five UCP family genes exhibited distinct expression profiles
across multiple cancer types. Significant upregulation was noted
in BLCA, COAD, CHOL, KICH, KIRC, LIHC, PCPG, PRAD,
READ, THCA, and UCEC, while downregulation occurred in
BRCA, ESCA, GBM, HNSC, LUAD, LUSC, PAAD, and THYM. We
compared gene expression between tumor and normal tissues by
integrating data from the TCGA and GTEx databases. UCP1, UCP3,
SLC25A27, and SLC25A14 showed significantly lower expression in
most tumor tissues (Figures 1B-E). In contrast, UCP2 was markedly
upregulated across the majority of cancers analyzed (Figure 1F).
These consistent expression patterns suggest that UCP2 may
function as an oncogene in diverse cancer contexts, while UCP1,
UCP3, SLC25A27, and SLC25A 14 are potentially involved in tumor-
suppressive mechanisms.

3.2 Survival analysis

To assess the prognostic significance of UCP family genes, we
conducted univariate Cox regression and Kaplan-Meier analyses
to assess their associations with overall survival (OS), disease-
specific survival (DSS), disease-free interval (DFI), and progression-
free interval (PFI) across various cancers (Figures 2A,B; Additional
file: Supplementary Figure S1). UCP1 was a significant risk factor
in LGG, where high expression correlated with reduced OS.
UCP2 exhibited context-dependent roles: it functioned as a risk
factor in KIRP, LGG, and UVM, while it was associated with
improved outcomes in CESC, OV, SARC, and SKCM. Elevated
UCP2 expression was correlated with prolonged OS in BLCA, CESC,
HNSC, LUAD, SKCM, and THYM, whereas it predicted poorer OS
in LGG, MESO, and UVM. UCP3 served as a risk factor in KIRC
and LGG, but as a protective factor in BLCA, PAAD, and SKCM.
Higher UCP3 expression was associated with improved OS in BLCA,
PAAD, and UCS. SLC25A27 was identified as a risk factor in CHOL
but a protective factor in BLCA, LGG, LUAD, PAAD, and SKCM.
Elevated SLC25A27 levels correlated with better OS in LGG, PAAD,
and READ. SLC25A 14 acted as a risk factor in BRCA, ESCA, KICH,
LIHC, and PRAD, but was a protective risk in CESC, PAAD, and
READ. High SLC25A14 expression was linked to improved OS in
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BLCA, PAAD, and THYM, and reduced OS in KICH and MESO.
To further validate these findings in glioma, we analyzed data from
the CGGA database. Consistent with TCGA results, elevated UCP2
expression correlated significantly with poorer prognosis in glioma
patients (CNS WHO grades 2-4) (Figure 2C).

Multivariate Cox analysis showed that advanced age (=46 years)
and high-grade glioma (CNS WHO grades 3-4) were significantly
associated with poorer OS in glioma patients, while radiation
therapy emerged as a favorable prognostic factor correlated with
enhanced survival (Figure 3).

3.3 Genetic alteration analysis

We comprehensively analyzed genetic alterations—including
mutation types, DNA methylation, single-nucleotide variants
(SNV), and copy number variations (CNV)—across multiple
cancers to investigate the potential mechanisms underlying
aberrant expression of UCP family genes. The UCP gene family
displayed diverse genomic alterations, such as amplification,
mutation, deep deletion, and structural variants, prevalent in
numerous cancer types (Supplementary Figure S2). Across the
family, amplification and point mutations emerged as the most
frequent genetic changes (Figure 4A). DNA methylation analysis
revealed a general inverse correlation with mRNA expression
levels of UCP genes, a trend particularly pronounced for UCP2
in the pan-cancer context (Figure4B). Further examination
of SNV and CNV patterns showed that missense mutations
represent the predominant SNV class in the UCP family, followed
by nonsense mutations, with single-nucleotide polymorphisms
(SNPs) constituting the majority of all variants (Figure 4C). The
most common nucleotide changes involved C-to-T and G-to-T
conversions. Among the family members, SLC25A14 exhibited
the highest mutation frequency (31%), followed by UCP1 (23%),
UCP3 (22%), SLC25A27 (19%), and UCP2 (19%) (Figure 4D).
CNV profiles were characterized primarily by heterozygous
amplification and deletion, along with instances of homozygous
amplification (Figure 4E).

3.4 GSEA

We conducted Gene Set Variation Analysis (GSVA) to compute
single-sample Gene Set Enrichment Analysis (ssGSEA) scores for
the UCP family and performed subsequent enrichment analysis.
The ssGSEA scores of the UCP family showed limited variation
across cancer types, with ovarian cancer (OV) exhibiting the highest
score. Most cancer types—except OV, THCA, UCEC, DLBC, PCPG,
and THYM—displayed ssGSEA scores below zero (Figure 5A).
Enrichment analysis based on 50 hallmark gene sets revealed
significant associations between the UCP family and EMT, the G2M
checkpoint, UV response, and mitotic processes in the majority
of cancers. Additionally, the UCP family was linked to immune
regulatory responses in BLCA, DLBC, LUAD, THCA, and UCEC
(Figure 5B). Notably, UCP2 was not only involved in EMT and
NF-«B signaling pathways across multiple malignancies but also
correlated with numerous immune-related pathways in a wide range
of cancer types (Supplementary Figure S3).
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FIGURE 1

Expression of UCP family members. (A) A composite stacked bar and bubble plot showing the differential expression of UCP genes at the pan-cancer
level. (B—F) Expression of individual UCP genes across various cancer types, analyzed using data from the TCGA and GTEx databases.

3.5 Immune infiltration analysis

We applied multiple computational algorithms to systematically
evaluate the relationship between the UCP family and tumor-
infiltrating immune cells. As shown in Figure 6A, UCP family
activity scores were significantly positively correlated with
stromal, immune, and microenvironmental scores in most
cancer types. These findings were consistently supported by
pan-cancer immune cell heatmaps generated through diverse
algorithmic approaches. Conversely, the UCP family exhibited
significant negative correlations with the infiltration levels of
cancer-associated fibroblasts (CAFs), neutrophils, and endothelial
cells across most malignancies. Using the ROC Plotter database,
we further assessed the predictive significance of UCP2 levels
in response to immunotherapy. These results indicated that
patients who responded to anti-CTLA-4 and anti-PD-L1 therapies
had significantly higher UCP2 expression compared to non-

responders (Figures 6B,C). These findings indicate that UCP2
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expression may serve as a predictive biomarker for the efficacy
of immune checkpoint inhibitor treatment.

3.6 UCP2 knockdown inhibited GBM cell
migration, invasion and EMT

We used U251 and U87 GBM cell lines to experimentally
validate crucial bioinformatics predictions. Using siRNA-mediated
knockdown, we successfully reduced UCP2 expression in both
U251 and U87 cells, as confirmed at the mRNA and protein levels
(Figures 7A,B). Given GSEA results suggesting UCP2’s involvement
in EMT, we examined the impact of UCP2 knockdown on EMT
marker expression in GBM cells. Western blot results demonstrated
that silencing UCP2 significantly reduced N-cadherin and vimentin
protein while enhancing E-cadherin levels in both cell lines
(Figure 7C). Considering the known association between EMT and
metastasis, we subsequently assessed the role of UCP2 in cellular
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FIGURE 2

Survival analysis of UCP family based on TCGA and CGGA databases. (A) Univariable Cox regression analysis of UCP family gene expression for OS
based on TCGA database. (B) Kaplan-Meier curves of OS of UCP family genes based on TCGA database. (C) Kaplan-Meier curves of OS for UCP2
expression in glioma patients based on the CGGA database.
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Multivariate COX analysis of UCP2 based on TCGA database glioma cohort.

migration and invasion. Wound healing assays demonstrated that
silencing UCP2 markedly impaired the migration of both U251 and
U87 cell lines (Figure 7D). Consistent with this, transwell invasion
assays revealed a significant reduction in invasive ability upon UCP2
suppression (Figure 7E).

3.7 UCP2 knockdown increased GBM cell
apoptosis induced by irradiation

To investigate the association between UCP2 expression and
radiotherapy response, GBM patients who received radiotherapy
were selected from the TCGA and CGGA cohorts and divided
into high- and low-UCP2 expression groups according to median
mRNA levels. The Kaplan-Meier curves indicated that high UCP2
expression was associated with significantly poorer overall survival
among irradiated patients compared to those with low UCP2
expression (Figures 8A,B).

To examine whether UCP2 knockdown promotes apoptosis
and enhances radiosensitivity in GBM, we evaluated apoptosis-
related protein expression via Western blotting in U251 and
U87 cells. The results demonstrated that UCP2 knockdown not
only increased baseline apoptosis in both cell lines but also
significantly enhanced radiation-induced apoptosis following X-ray
irradiation (Figure 8C).
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4 Discussion

By integrating multi-omics data across diverse cancer types,
pan-cancer analysis enables the systematic evaluation of candidate
genes for their prognostic relevance and potential as predictive
biomarkers in malignant tumors (Chen et al, 2025b). This
study integrates bioinformatics and experimental validation to
perform a comprehensive pan-cancer analysis of the UCP family,
emphasizing UCP2’s role in glioma malignancy and treatment
response. Our findings indicate that UCP2 is often overexpressed
in various cancer types, correlating with poor prognosis and
aggressive tumor characteristics. Furthermore, UCP2 expression
was associated with radiation resistance in glioma. Functional
experiments demonstrated that UCP2 knockdown inhibits EMT,
migration, and invasion in glioblastoma cells, while increasing
apoptosis induced by irradiation. These in vitro results suggest that
UCP2 could serve as a potentially therapeutic target and a prognostic
biomarker in glioma patients, warranting further investigation.

Our pan-cancer analysis revealed distinct expression
patterns among UCP family members across different tumor
types. While UCP1, UCP3, SLC25A27, and SLC25A14 were
frequently downregulated in most cancers, UCP2 showed
consistent upregulation, indicating divergent functional roles
in oncogenesis. The elevated expression of UCP2 in multiple
malignancies, including glioblastoma, suggests its potential
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involvement in tumorigenesis and progression. This finding is
consistent with previous reports implicating UCP2 in metabolic
reprogramming—an established hallmark of cancer (Esteves et al.,
2014; Esteves et al, 2015; Beikbaghban et al., 2024). UCP2-
mediated mitochondrial uncoupling is associated with reduced
ROS generation, which may enhance tumor cell survival
under oxidative stress conditions. (Mailloux and Harper, 2011).
Interestingly, although ROS levels are typically moderately elevated
in tumor cells (Wu et al., 2024), UCP2 appears to play an essential
role in maintaining redox homeostasis and supporting cancer cell
viability. Conversely, the frequent downregulation of other UCP
family members, such as UCP3 and SLC25A27, across tumors
suggests their potential roles as tumor suppressors, although this
remains speculative without functional validation. Consistent with
this, survival analysis indicated that higher expression of these genes
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is correlated with improved clinical outcomes in certain cancers,
highlighting the need for further mechanistic studies into their
protective functions.

UCP2, a mitochondrial uncoupling protein, is crucial for
energy metabolism and oxidative stress regulation (Pitt, 2015).
This study revealed that elevated UCP2 expression was associated
with improved prognosis in cancers such as BLCA and CESC,
whereas it correlated with poorer outcomes in LGG, MESO,
and UVM. This tissue-specific duality in prognostic significance
could be explained by contextual factors such as the tumor
microenvironment (TME) and activation of distinct molecular
pathways. These findings offer fresh perspectives on the biological
complexity and diversity of cancer.

DNA methylation analysis is a critical biomarker for the
diagnosis and classification of gliomas, enabling the stratification of
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patients into molecular subgroups with distinct clinical outcomes,
thereby providing key insights for prognostic evaluation and
treatment strategy formulation (Capper et al., 2018). Genetic and
epigenetic analyses in this study demonstrate that DNA methylation
acts as a key regulatory mechanism for UCP2 expression in various
cancers, including glioma. A significant negative correlation was
observed between the methylation level of the UCP2 promoter
region and its mRNA expression. Cellular experiments further
revealed that UCP2 mediates radiotherapeutic sensitivity in glioma
cells, and inhibition of UCP2 expression enhances radiation-
induced cell death. These findings underscore the importance of
DNA methylation as a factor to consider in glioma treatment
strategies, given that our data raise the possibility that targeting DNA
methylation might influence glioma radiosensitivity in part through
the regulation of UCP2 expression.

Given the aggressive behavior and therapy-resistant nature of
glioblastoma (Stupp et al., 2014), we sought to explore potential
mechanisms. One potential explanation for the association between
UCP2 and poor clinical outcomes observed in bioinformatics
analysis is its role in promoting EMT, as supported by our in vitro
findings of EMT protein level changes upon UCP2 knockdown.
Our experiments showed that knocking down UCP2 in GBM
cells disrupts the levels of EMT related proteins, indicating EMT
suppression. Since EMT is known to facilitate tumor dissemination
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and confer therapy resistance (Liu et al., 2019), targeting UCP2 may
represent a promising strategy for inhibiting these aggressive traits.

UCP2 knockdown markedly reduced GBM cell motility
and invasion, as evidenced by wound healing and transwell
invasion assays. These results align with previous studies that have
implicated UCP2 in cytoskeletal reorganization and the promotion
of metastatic behavior in various cancer types (Wang et al., 2020;
Du et al,, 2023). UCP2 may modulate mitochondrial dynamics and
redox homeostasis, influencing cell motility and extracellular matrix
interactions (Caggiano and Taniguchi, 2024).

A critical finding of this study is the role of UCP2 in modulating
radiation response. Patients with high UCP2 expression exhibited
worse survival outcomes following radiotherapy, suggesting that
UCP2 may be involved in the radiation resistance of glioma cells.
Radiation therapy exerts cytotoxic effects partly through ROS
generation, and UCP2’s mitochondrial uncoupling activity can
reduce ROS accumulation (Echtay et al., 2002; Chen et al., 2025a).
Thus, we hypothesize that UCP2 overexpression could protect
tumor cells from radiation-induced cell death by mitigating ROS
accumulation. Our Western blot data showing increased apoptosis
upon UCP2 depletion support this hypothesis. UCP2 knockdown
enhanced radiation-induced apoptosis in GBM cells, implying that
UCP2 inhibition could sensitize tumors to radiotherapy. This is
particularly relevant given that radiotherapy remains a cornerstone
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the utility of UCP2 expression in predicting response to anti-PD-L1 therapy.

of glioblastoma treatment, yet resistance remains a major clinical Immune infiltration analysis showed that UCP family gene
challenge (Ali et al.,, 2020). Next studies should explore whether  expression positively correlates with stromal and immune scores
combining UCP2 inhibition with radiotherapy improves therapeutic ~ across multiple cancer types. Notably, tumors with high UCP family
efficacy in preclinical glioma models. scores showed reduced infiltration of immunosuppressive cells such
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FIGURE 8
Knockdown of UCP2 increased cell apoptosis induced by irradiation. Kaplan-Meier curves of glioma patients with different UCP2 expression levels in (A)
TCGA and (B) CGGA databases after radiotherapy. (C) Western blot detection of apoptosis-related proteins after UCP2 knockdown and/or irradiation.

as CAFs. Our previous bioinformatics analysis indicated a positive
association between elevated NOX4 expression—a key generator of
endogenous ROS-and increased CAFs abundance (Wu et al., 2025).
These results suggest that redox regulation may have a critical impact
on the tumor immune microenvironment.

One study showed that targeting the UCP2 pathway can
overcome  resistance

to programmed cell death protein-1
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blockade (Cheng et al., 2019). Consistently, we observed higher
UCP2 expression in patients who responded to anti-CTLA-4
and anti-PD-L1 treatments, supporting its potential role as a
predictive biomarker for immune checkpoint inhibitor efficacy.
The apparent contradiction between its immunosuppressive
and immune-favorable roles may reflect context-dependent
immunomodulatory functions of UCP2. Further investigation is
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necessary to elucidate the precise mechanisms through which UCP2
influences antitumor immunity.

Our integrated analysis and in vitro functional data highlight
UCP2 as a potential multifaceted oncogenic factor with prognostic
and therapeutic relevance in glioma. Its frequent overexpression in
aggressive tumors and contribution to therapy resistance support
its further investigation as a promising therapeutic target. Small-
molecule inhibitors of UCP2, such as genipin, have demonstrated
preclinical efficacy in other cancer types (Dando et al., 2017),
supporting further evaluation in glioblastoma models.

Furthermore, the association between UCP2 and EMT suggests
that its inhibition may attenuate metastatic dissemination—a
primary cause of treatment failure in solid tumors. Combining
UCP2-targeted agents with
immunotherapy could yield synergistic therapeutic effects,

conventional radiotherapy or
especially in UCP2-high glioma subtypes. Subsequent research
should focus on validating these combination strategies in vivo and
developing robust biomarkers for patient stratification.

The study is subject to several limitations. The identification
of pathogenic genes was based on bulk RNA-seq data from the
TCGA database. Without single-cell RNA sequencing (scRNA-
seq) data, it is challenging to accurately identify the specific
cellular subpopulations, such as glioma stem cells, malignant
astrocytes, or tumor-associated macrophages, where UCP2 is
highly expressed. This limitation hinders understanding of its cell
type-specific functional roles (Xu et al., 2025). Additionally, this
study did not utilize machine learning algorithms like LASSO
regression, random forest, or support vector machine (SVM)
for integrative multi-omics analysis, which might improve the
predictive model’s robustness and the reliability of gene screening
(Xu et al., 2022).

5 Conclusion

This integrative research identifies UCP2 as a potential key
regulator of glioma progression, EMT, and radiation resistance
in preclinical models. Our findings, primarily derived from
bioinformatics and in vitro studies, underscore UCP2 as a
candidate therapeutic target and highlight novel avenues for future
research to improve glioblastoma treatment. Further preclinical and
clinical investigations are warranted to translate these insights into
therapeutic applications.
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