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ER-resident proteins are key
players in cartilage and bone
homeostasis
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Rita Dreier
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Hyaline cartilage is essential for bone formation and joint function. It
contains a dense extracellular matrix that is produced in the ER of
chondrocytes. Therefore, the ER contains a complex machinery of enzymes
including chaperones, glycosyltransferases and hydroxylases that control
folding, modification and secretion of newly synthesized matrix proteins. Loss
or malfunction of ER-resident chaperones and proteins leads to misfolding
and accumulation of matrix proteins in the ER. This causes ER stress
and disrupts crucial cellular processes including chondrocyte differentiation,
signaling and matrix production. During skeletal development, deficiency
of ER chaperones disrupts cartilage and bone formation by impairing the
folding and maturation of collagens and other matrix proteins, causing
chondrodysplasia, pseudoachondroplasia and other skeletal diseases. Loss of
ER-resident chaperones also impairs the integrity and stability of the cartilage
matrix, promoting its degeneration during osteoarthritis. Due to the complexity
of the ER protein processing machinery, the specific roles of ER-resident
proteins in cartilage and bone homeostasis largely remain elusive. This review
provides an overview of the most common ER-resident proteins and our current
understanding of their function in cartilage homeostasis and disease.
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1 Introduction
1.1 Cartilage homeostasis

Cartilage is a specialized matrix-rich tissue of the skeletal system. In the mammalian
body, there are three different types of cartilage, including elastic cartilage, fibrocartilage
and hyaline cartilage. Each of these types has a distinct location, structure and function.
Elastic cartilage can be found in the ear lobes, larynx and trachea, providing shape and
elasticity (Nasiri et al., 2023). Fibrocartilage is the stiffest type of cartilage. It is present in
the meniscus, symphysis and at the transition from tendon to bone, providing stability
and shock absorbance (Fox et al., 2012). Hyaline cartilage is the most abundant type of
cartilage. It is mainly located in joints, where it is also referred to as articular cartilage.
Here, it covers the bone ends to provide a smooth surface for joint movement (Krishnan
and Grodzinsky, 2018). During skeletal development, hyaline cartilage can also be found
in the bone anlagen and in the growth plate where it serves as a temporary scaffold
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for bone formation (Melrose et al., 2016). Eventually, the
cartilaginous portion of the growth plate is replaced by bone.
Hyaline cartilage is composed of a dense extracellular matrix (ECM)
that contains crosslinked fibrils of collagens type II, IX and XI. This
fibrillar network embeds additional collagens and proteoglycans
such as aggrecan and other glycoproteins (Mendler et al., 1989).
Due to their negative charge, proteoglycans are strongly hydrophilic,
binding water within the fibrillar collagen network. This provides
lubrication, tensile strength and resistance to compressive loads
and gives the cartilage its unique viscoelastic structure and
biomechanical properties of articular cartilage (Sophia Fox et al.,
2009). Structurally, hyaline cartilage in growth plates and on
bone surfaces within joints can be divided into different layers,
which directly relate to its function. This zonal organization is
mainly based on matrix composition and the phenotype of the
cartilage-resident chondrocytes. Based on increasing metabolic
activity and volume of chondrocytes, growth plate cartilage can
be divided into resting, proliferative and hypertrophic zone, the
latter representing the place of bone formation. Adult articular
cartilage in the joint is subdivided into superficial, transitional and
deep zone, with increasing proteoglycan content and decreasing
cell density (Michelacci et al., 2023).

1.2 Cartilage diseases

Alterations in this intricate structure of the cartilage matrix
are at the root of most orthopedic diseases. During development,
disruptions in growth plate cartilage can severely impair skeletal
growth and cause cartilage and bone deformities (Krishnan and
Grodzinsky, 2018). In adult articular cartilage, altered matrix
organization can cause tissue damage and impair proper function.
Due to a lack of vasculature and low cellularity, articular cartilage
has a limited reparative capacity, predisposing it to degenerative
diseases such as different forms of arthritis (Goldring et al,
2017). Osteoarthritis (OA) is the most common form of arthritis
and is characterized by pathological changes and progressive
degradation of the cartilage matrix. In early stages, loss of
proteoglycans and a phenotypic shift of chondrocytes alters the
composition of the cartilage matrix. During disease progression,
catabolic enzymes degrade the collagen network, impairing cartilage
integrity. Thereby, degradation products and ECM fragments can be
released, triggering inflammation and pain. This amplifies cartilage
degradation and eventually results in permanent structural and
functional damage (Nasiri et al., 2023).

1.3 Chondrocytes and cartilage matrix

As the sole resident cell type in cartilage, chondrocytes are
responsible for the production and turnover of the ECM. While
constituting only a small fraction of the total tissue volume,
chondrocytes produce a variety of macromolecules that maintain
the cartilage homeostasis (Goldring et al, 2017). Operating
under hypoxic conditions, chondrocytes secrete structural ECM
molecules such as collagens, proteoglycans and other glycoproteins
(Coyle etal., 2009), thereby determining the structural composition
of the ECM. In addition, chondrocytes produce membrane receptors
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such as integrins and syndecans (Behonick and Werb, 2003;
Dreier et al, 2011). These provide contact points and enable
communication between cells and surrounding matrix. Thereby, the
ECM can affect chondrocyte function and behavior (Behonick and
Werb, 2003; Gao et al., 2014).

1.4 Matrix production in the endoplasmic
reticulum

Maintenance of the cartilage ECM creates a high demand of
protein synthesis. This is reflected by the prominent endoplasmic
reticulum (ER) observed in chondrocytes, particularly in the middle
and deep zones of articular cartilage (Horwitz and Dorfman, 1968;
Brighton et al.,, 1984). The ER is the largest organelle of the cell
and plays a crucial role in maintaining cellular homeostasis. The
ER lumen is delimited by a continuous lipid bilayer that forms
a network of interconnected tubules and sheets. This membrane
complex extends from the nuclear envelope to the cell periphery,
spanning a large area of the cytoplasm. Depending on the cell type,
the ER makes around 15% of the total cell volume (Garfield and
Cardell, 1987). Morphologically, the ER can be divided into two
subfractions with distinct functions. The rough ER is comprised
of sheet-like membranes with ribosomes and vesicles bound to the
surface. These membrane-bound ribosomes are rare or absent in
the smooth ER fraction. The smooth ER has a tubular structure
and is mainly responsible for the synthesis and metabolism of
lipids. It also serves as a storage site for cellular calcium. In
contrast, the rough ER is the main site of protein synthesis,
quality control and folding of membrane and secretory proteins.
It is distributed across the whole cell but is dense near the
nucleus and the Golgi apparatus (Schwarz and Blower, 2016).
ER structure and size are not static. Instead, it can adapt to
changing conditions, e.g., during chondrocyte differentiation and
ECM synthesis. Ultrastructural electron microscopy studies on
embryonic and mature cartilage demonstrated an enlargement of the
rough ER, a dilation of the cisternae and a condensation of the lumen
in response to chondrogenesis, differentiation and other conditions
of increased protein demand (Godman and Porter, 1960; Horwitz
and Dorfman, 1968).

During protein synthesis, ribosomes are recruited to the ER and
proteins are translated into the ER lumen. Inside the ER, nascent
ECM proteins undergo various post-translational modifications,
including glycosylation and folding. These reactions are catalyzed
by a wide range of ER-resident chaperones and folding enzymes
(Figure 1; Table 1). Proper folding is essential for proteins to reach
their destined target site and fulfil their appropriate function
(Horwitz and Dorfman, 1968; Schwarz and Blower, 2016). Therefore,
disrupted protein processing in the ER can compromise the folding
capacity and cause the misfolding of proteins. Misfolded proteins
are retained in the ER and accumulate in the lumen. This buildup
of misfolded proteins disrupts ER homeostasis and induces a
state of ER stress, that compromises ER function. In response to
ER stress, the ER activates various signaling pathways that are
collectively referred to as the unfolded protein response (UPR). In
this process, misfolded protein can be removed by autophagy and the
ER-associated degradation (ERAD) complex that recognizes non-
native proteins and subsequently targeting them for proteasomal
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FIGURE 1
Key steps of the ECM protein processing machinery in the rough ER.

Nascent proteins are translated into the rough ER by ribosomes. In the
ER lumen, these proteins undergo a rang of posttranslational
modifications. These include glycosylation by glycosyltransferases
(GT) and hydroxylation by lysyl- and prolylhydroxylases (LH, PH) and
enables the folding of newly synthesized proteins. Protein folding is
facilitated by various ER-resident chaperones. Folded proteins are
finally secreted and trafficked to their target sites. Image created with
BioRender.com.

degradation. If these efforts to restore ER homeostasis fail, apoptotic
pathways are initiated to eliminate affected cells (Rellmann and
Dreier, 2018; Sim et al., 2022).

Compromised protein folding and excess ER stress in
chondrocytes has been implicated in skeletal dysplasia and various
forms of arthritis. Due to the high complexity of the enzymatic
landscape in the ER, many studies focus on single enzymes and their
role in these pathologies. This review aims to provide an overview of
the most important ER-resident proteins with their diverse functions
and summarize their involvement in skeletal development, cartilage
homeostasis and degeneration.

2 ER-resident proteins
2.1 Molecular chaperones

While small proteins may fold autonomously, folding of larger
membrane proteins and secreted proteins (e.g., ECM proteins) is
facilitated by molecular chaperones and folding enzymes in the
lumen of the ER (Figure 1). By definition, folding chaperones aid
the folding of non- or misfolded proteins into their native state
without being part of the final protein (Halperin et al., 2014). They
are among the most abundant proteins in the cell, accounting
for 15%-25% of the total soluble cellular protein content (Anken
and Braakman, 2005). There are multiple families of ER
chaperones with both distinct and overlapping functions. The main
chaperones include protein disulfide isomerases, lectins and heath
shock proteins.
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2.1.1 Protein disulfide isomerases

Protein disulfide isomerases (PDI) are a large family of 21
luminal oxidoreductases with versatile functions (Ellgaard and
Ruddock, 2005). PDIs catalyze the formation (oxidation), cleavage
(reduction) and rearrangement (isomerization) of disulfide bonds
between cysteine residues. Thereby, they aid proper folding
and refolding of newly synthesized proteins and prevent the
accumulation of misfolded proteins in the ER. PDI family
members can undergo conformational changes depending on their
redox state (Okumura et al., 2015). In order to maintain their
chaperone function, PDIs are continuously re-oxidized by ER-
resident oxidoreductases and peroxidases, creating reactive oxygen
species in the process (Liu et al., 2024). PDI family members include
ERp72 (Mazzarella et al., 1990), ERp46 and the glycoprotein-specific
ERp57 (Jessop et al., 2007), which are abundantly expressed in the
cisternae of the rough ER of chondrocytes (Hecht et al., 2001).
ERp57 folds heavily glycosylated ECM proteins such as collagens
integrins or matrix metalloproteases (Jessop et al., 2009b), which
form essential components, receptors or modulators of the cartilage
matrix (Figure 2; Table 1).

2.1.1.1 PDIs in skeletal development
ERp57, also referred to as PDIA3, is crucial for skeletal

development. While homozygous deletion of ERp57 causes
embryonic lethality, heterozygous ERp57 deficiency manifested in
growth plate abnormalities and decreased metaphyseal bone volume
(Wang et al., 2010). Cartilage-specific knockout of ERp57 caused ER
stress, defective remodeling of the ECM and chondrocyte apoptosis
in the growth plate, manifesting in impaired long bone growth in
young mice (Linz et al., 2015; Table 1). In vitro, ERp57 knockout
impaired Vitamin Ds;-dependent signaling by blocking Vitamin
D5-induced protein kinase C (PKC) activation (Wang et al., 2010),
which plays an important role in bone development and regulates
the secretion of matrix-degrading enzymes into the cartilage ECM
(Boyan and Schwartz, 2009). In line with this, loss of ERp57 also
significantly reduced bone formation in vitro (Chen et al., 2010).

PDIs are also involved in the processing of mutant proteins,
that have been associated with different forms of skeletal dysplasia.
For instance, ERp72 reportedly binds mutant forms of the collagen-
binding protein matrilin-3 (Cotterill et al., 2005), resulting in its
retention in the ER. Subsequent accumulation of these mutants
causes epiphyseal dysplasia which often progresses to early-onset
OA (Table 1). In pseudoachondroplasia, ERp72 is also involved in
retaining mutant versions of cartilage oligomeric matrix (COMP),
aggrecan and collagen type IX in the ER of growth plate
chondrocytes (Hecht et al., 2001). This accumulation of proteins and
folding enzymes causes an enlargement of the cisternae in the rough
ER. In line with this, transcriptional profiling studies described
an upregulation of ERp57, ERp72 and other folding proteins in
hypertrophic growth plate cartilage of two mouse models carrying
collagen type X misfolding mutations (Cameron et al., 2011). These
studies demonstrate a vital role for PDIs in the maintenance and
function of various structural components of the cartilage matrix in
the growth plate.

2.1.1.2 PDls in cartilage degeneration
During postnatal growth, ERp57 is particularly important in
periods with extensive matrix deposition (e.g., growth spurts)
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TABLE 1 Molecular chaperones of the rough ER with functional significance in skeletal diseases.

ER chaperone

Function (possible

substrates, examples)

Role in skeletal diseases

10.3389/fcell.2025.1661846

Literature

ERp57 (PDIA3)

Glycoprotein-specific protein disulfide

isomerase (Integrin chains, Collagen al

(VI), Laminin chains, Agrin, ADAM10,
ADAM17)

Loss of ERp57: ER stress, impaired
skeletal growth and early-onset OA
development in mice

Jessop et al. (2009a)
Wang et al. (2010)
Linz et al. (2015)
Rellmann et al. (2021)

ERp72 (PDIA4)

Protein disulfide isomerase, protein
folding, thiol-disulfide interchange
reactions (Matrilin-3, Aggrecan,
Collagen type IX, COMP)

MED
Pseudoachondroplasia
Loss of ERp72: early-onset OA

Cotterill et al. (2005)
Hecht et al. (2001)
Yang et al. (2025)

to SERCA, enables substrate

ERp46 (PDIA15) Protein disulfide isomerase (Integrin RA Jessop et al. (2009b)

chains, Collagen al (VI), Laminin Wang et al., 2013, 2016
chains) Lu et al. (2020)

Chang et al. (2009)

Calnexin (CNX) Ca?* binding, enables substrate Degeneration of cartilage in RA and OA Jessop et al. (2009a)
recognition for ERp57, quality control Loss of CNX: ER stress, chondrocyte Hammond et al. (1994)

of glycoproteins apoptosis Tran et al. (2025)
Calreticulin (CRT) Ca’* binding, mediates ERp57 binding Reduced osteoclast activity Fischer et al. (2017)

Pro-inflammatory effects in RA

Jessop et al. (2009a)

recognition for ERp57, quality control
of glycoproteins

Corbett et al. (1999)
Li and Camacho (2004)
Hammond et al. (1994)

Ding et al. (2014)

BiP (GRP78) Folds and stabilizes cartilage matrix
proteins, regulator of unfolded protein

response

ER stress marker in Munro and Pelham (1986)

pseudoachondroplasia Hecht et al. (2001)

HSP47 Collagen folding (Col I and II)

osteophyte formation in OA
loss of HSP47: chondrodysplasia with
severe limb deformities and impaired

Kashin-Beck disease
osteogenesis imperfecta

Zhang et al. (2021)
Nagata et al. (1986)
Masago et al. (2012)
Christiansen et al. (2010)
Otsuka et al. (2025)
bone mineralization

HSP90 (GRP94) Integrin folding
ligand for TLR2
activation of NFkB signaling and

cholesterol synthesis

Inflammation in OA and RA

De Seny et al. (2020)
Huang et al. (2009)
Cheng et al. (2023)

osteoclastogenesis in RA
osteoporosis

HSP72 Suppression of NF«B signaling

Reduction of RA development and

Luo et al. (2011)
progression

(Linz et al., 2015). In knee joints of aged mice, ERp57 knockout
and subsequent ER stress induced OA-like changes, including
chondrocyte apoptosis, cartilage degeneration and osteophyte
formation (Rellmann et al., 2021; Table 1). Interestingly, the female
sex hormone estradiol has a protective function against the effects
induced by ERp57 loss. Specifically, it alleviated ER stress and
subsequent apoptosis, reducing OA development and cartilage
degeneration in female compared to male ERp57 knockout mice
(Dreier et al., 2022).

Knockout of ERp72 also promoted OA progression in vivo. Mice
lacking ERp72 displayed exacerbated cartilage degeneration and
synovial inflammation compared to wildtype animals (Yang et al.,
2025), suggesting a similar role to ERp57 in maintaining cartilage
homeostasis and joint integrity.
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2.1.1.3 PDlIs in inflammatory arthritis
PDIs are also involved in joint inflammation during various

arthropathies. Elevated levels of ERp46 were detected in serum and
synovial fluid of patients with RA, OA and calcium pyrophosphate
deposition disease and correlated with the degree of histological
synovitis (Chang et al., 2009; de Seny et al., 2020; Figure 2; Table 1).
In vitro, ERp46 promoted the proliferation and migration of RA
synovial fibroblasts and induced secretion of the inflammatory
cytokines TNF-a and IL-1p (Wang et al, 2013) and the pro-
angiogenic factors VEGF and IL-6 (Lu et al., 2020). Consistent with
these findings, ERp46 overexpression promoted the development
of collagen-induced arthritis, causing bone erosion, pannus
formation and systemic inflammation (Wang et al., 2013). ERp46
also activated catabolic pathways, inducing the expression of
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matrix metalloproteinases that degrade the cartilage matrix
(Wang et al., 2016; Figure 2). Conversely, microRNA and siRNA
mediated inactivation of ERp46 reduced cytokine production,
proliferation and migration of synovial fibroblasts in vitro
(Wang et al,, 2013; Wang et al.,, 2016). These findings highlight the
complex and multifactorial involvement of PDIs in the pathogenesis
of degenerative and inflammatory joint diseases.

2.1.14 PDIs in Ca®* metabolism
As an intracellular calcium storage, the ER contains a high

concentration of Ca?* jons (0.4-1 mM) (Corbett and Michalak,
2000; Clapham, 2007). Most of this luminal calcium is bound to
ER chaperones (Macer and Koch, 1988). PDIs can also affect Ca**
homeostasis by regulating designated transporters and interacting
with ER-resident chaperones and Ca?* sensors. In the presence of
high ER Ca%* levels, ERp57 also binds to the ER-resident Ca*t-
sensor stromal interaction molecule (STIM1) which regulates store-
operated Ca®*-influx (Prins et al., 2011; Figure 2). When ER Ca*t
levels are depleted, STIM1 is released and translocated to the ER
membrane to induce an influx of Ca?" in order to refill ER stores.
Additionally, ERp57 has been shown to interact with the Ca*t-
transporter sarco-ER calcium ATPase (SERCA) (Li and Camacho,
2004). At high ER Ca** concentrations, ERp57 binds and oxidizes
SERCA, thereby inhibiting its pump activity. Consequently, Ca**
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depletion leads to a dissociation of ERp57, leaving SERCA in its
reduced active state (Li and Camacho, 2004).

2.1.1.5 PDI in skeletal mineralization

Besides its function as a signaling molecule, Ca®" is a crucial
component of mineralized tissues. It associates with inorganic
phosphate to form hydroxyapatite, the main component of bone
and calcified cartilage (Fuerst et al., 2009). Phosphate is also stored
in the ER (Bublitz and Steavenson, 1988) and can be modulated
by PDI. A study by Couasnay identified the phosphate transporter
PiT1 as a binding partner for PDI. PiT1 is a well-established
marker of mineralization (Bernabei et al., 2024) and has been shown
to co-localize with PDI in the ER of growth plate chondrocytes
(Couasnay et al., 2019; Table 2). Here, induction of ER stress
increased both PiT1 and PDI expression in vitro. Conversely,
deletion of PiT1 impaired PDI activity. Thereby, loss of PiT1 further
promoted ER retention of aggrecan and reduced proteoglycan
secretion in growth plate cartilage (Couasnay et al., 2019).

The co-presence of calcium and phosphate enables their
precipitation as amorphous calcium phosphate complexes which
provide the basis for mineralization. A recent imaging study located
these mineral precursors in the ER of osteoblast-like cells and
tracked them to the mitochondria where they accumulated to
electron-dense mineral granules (Tang et al, 2020). Here, they
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TABLE 2 Other rough ER-resident proteins with clinical implication in skeletal diseases.
Associated skeletal Literature

Biological role
diseases

ER protein
Couasnay et al. (2019)

Loss of PiT1: ER-stress and chondrocyte

PiT1 Supports reductase activity of ERp46
death during endochondral ossification
Prolyl-4-hydroxylase (P4H) 4-hydroxylation of proline residues in Osteogenesis imperfecta Annunen et al. (1998)
collagens (Gly-X-Y motif) Loss of PH4: chondrodysplasia Berg and Prockop (1973)
Rauch et al. (2015)
Syx et al. (2021)
Prolyl 3-hydroxylase (P3H) 3-hydroxylation of proline residues in Osteogenesis imperfecta Morello et al. (2006)
collagens Syx et al. (2021)
Lysyl hydroxylase 1 (LH1) Hydroxylation of lysine residues in Loss of LHI: no collagen fibrillogenesis Heard et al. (2016)
collagens and crosslinking, reduced bone mass Yeowell and Walker (2000)
Ehlers Danlos syndrome Syx et al. (2021)
Morquio syndrome A with early-onset Bank et al. (2009)
OA
Glucosyltransferases (GT) ER quality control system (Tagging of Loss of GTs: dwarfism and skeletal Ellgaard and Helenius (2003)
Xylosyltransferase 1 (XYLTT) incompletely folded proteins) abnormalities with chondrocyte Schreml et al. (2014)
(1,4-galactosyltransferase-7 Addition of GAGs to proteoglycan core hypertrophy and disrupted matrix Taieb et al. (2023)
(B4GALT7) proteins organization in growth plate cartilage Guo et al. (2017)
N-acetylglucosaminyltransferase Ehlers Danlos syndrome Wilson et al. (2012)
(EXTL3) chondroitin sulfate synthase 1 chondrodysplasia Esapa et al. (2012)
(CHSYI) loss of GALNTS3: increased bone mass, Tran et al. (2025)
N-Acetylgalactosaminyltransferase 3 hyperphosphataemia and extra-skeletal Tardio et al. (2014)
(GALNTS3) calcification Andrés-Bergos et al. (2012)
O-GlcNAc transferases (OGT) elevated GALNT-driven glycosylation Kang et al. (2025)
of lectins: OA and RA
accumulation of O-GlcNAc-modified

proteins: hypertrophy, osteophyte
formation, secretion of
pro-inflammatory cytokines and

matrix-degrading metalloproteinases
Solute carrier family 35 (SLC35) Nucleotide sugar transporters Chondrodysplasia with impaired Hiraoka et al. (2007)
glycan-branching and GAG synthesis Kang et al. (2025)
Loss of SLC35: OA
Activating transcription factor 6 (ATF6) Regulator of unfolded protein response Loss of ATF6: impaired chondrogenesis Xiong et al. (2015)
(UPR) together with inositol-requiring and chondrocyte hypertrophy Guo et al. (2016)
enzyme-1 (IRE1) and protein kinase reduced mineralization and Hughes et al. (2017)
R-like endoplasmic reticulum kinase endochondral bone growth via Rellmann et al. (2021)
(PERK) interaction with Runx2
OASIS Transcription factor, promoting Loss of OASIS: impaired bone Murakami et al., 2009, 2011
collagen type I transcription in formation
osteoblasts
BBF2H7 Transcription factor important for Loss of BBF2H7: severe Saito et al. (2009)
proteins involved in vesicular chondrodysplasia Asada et al. (2011)
trafficking of proteins from ER to Golgi resulting in early postnatal death
ATF2 Osteoblast differentiation by increasing Loss of ATF2: impaired bone growth Ding et al. (2023)
RUNX2 expression and promoting due to reduced proliferation and Beier et al. (2000)
matrix mineralization differentiation of growth plate
chondrocytes
Sterol regulatory element-binding Transcription factors of the basic Early-onset OA osteoclastogenesis and Yokoyama et al. (1993)
proteins (SREBPs) helix-loop-helix leucine zipper bone loss Hu et al. (2020)
SREBP-1 (bHLH-LZ) family that increased inflammation via Kim et al. (2015b)
regulate genes of cholesterol and lipid transcription of pro-inflammatory Kostopoulou et al. (2012)
metabolism mediators, NfkB activation and Cheng et al. (2023)
induce PERK signaling macrophage polarization Xu et al. (2024)
regulates the transcription of
frizzled-related protein 2 (Sfrp2)
06 frontiersin.org
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could serve as nucleation centers and promote mineral growth.
While mineralization represents a physiological process during bone
formation, pathological mineralization of cartilage is a common
phenomenon in aging and degenerative joint disorders such as
OA. By affecting both Ca** and phosphate homeostasis, PDIs
may thereby play a key role in pathophysiological mineralization,
which has become a topic of interest in recent years (Zhang et al.,
2024a). In this context, a recent study by Lu and colleagues
demonstrated impaired mineralization, reduced collagen content
and decreased bone density in a mouse model with osteoblast-
specific PDI knockout (Lu et al., 2025). In fact, PDIs have been
implicated in several mineralization disorders such as osteoporosis
or osteogenesis imperfecta. For instance, missense mutations in
the PDI-encoding gene P4HB lead to bone fragility and cause a
form of osteogenesis imperfecta, which is characterized by skull and
facial deformities (Rauch et al., 2015; Figure 4). PDIs are also highly
expressed during osteoclastogenesis and have been implicated in the
pathogenesis of postmenopausal osteoporosis (Wang et al., 2024;
Yuan et al.,, 2024). In a recent study, Yuan and colleagues could
suppress osteoclast differentiation and promote osteogenesis by
inhibiting ERp57 activity. Thereby, they could reduce bone loss in
a mouse model of postmenopausal osteoporosis (Yuan et al., 2024).
This effect was mediated by a reduced expression of STIM1 and
other Ca®* trafficking enzymes which inhibited Ca®* oscillations
in osteoclast progenitor cells. A previous work by the same group
showed similar beneficial effects of PDI inhibition on in vivo
osteogenesis by reducing intracellular oxidative stress (Wang et al.,
2024). These findings suggest that PDIs may affect mineralization via
multiple pathways.

2.1.1.6 Extracellular functions of PDI

Originally identified as ER-resident proteins, PDI have also
been detected extracellularly (Chen et al., 2020; Xu et al.,, 2021).
In chondrocyte cultures, the presence of extracellular ERp57 has
been detected in the medium (Linz et al., 2015). The mechanism of
secretion is still debated and the functions of extracellular PDI are
not fully understood yet (Xu et al., 2021). Although the extracellular
fraction of PDI is rather small, it may play a significant role in
various pathophysiological processes including thrombosis, cancer
and inflammation (Xu et al., 2021). However, the role in cartilage has
yet to be identified.

2.1.2 Lectin chaperones

The lectin family includes ubiquitously expressed ER chaperones
that bind specific glycan residues to facilitate the folding and
maturation of glycoproteins (Pearse and Hebert, 2010). Calnexin
(CNX) and calreticulin (CRT) are the most extensively studied
members of this family. They share a high Ca®* binding affinity and
are involved in cartilage homeostasis and disease. CNX is anchored
to the ER membrane (David et al., 1993), while CRT resides in the
ER lumen (Ostwald et al., 1974), binding approximately half of the
Ca* content in the ER lumen (Somlyo et al., 1985). CRT and CNX
bind to the PDI ERp57 to form an efficient and superior folding
complex (Jessop etal., 2009a; Figure 2). When ER Ca** levels are low,
CRT forms a complex with ERp57 to enable substrate recognition
and binding and accelerate folding function (Zapun et al., 1998;
Corbett et al., 1999). When ER Ca’" stores are full, Ca®* induces
a conformational change in CRT. This results in a dissociation of
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the CRT-ERp57 complex and an increased concentration of free
CRT in the ER lumen. Thereby, CRT serves as a Ca** buffer and
regulates chaperone interactions within the ER (Corbett et al., 1999).
In addition, CRT regulates luminal Ca** levels by mediating ERp57’s
interaction with SERCA pumps (Li and Camacho, 2004; Table 1).
In association with ERp57, CRT and CNX are essential
components of the CNX/CRT cycle, an ER-internal quality control
system for glycoproteins (Hammond et al., 1994). They recognize
and bind glucose residues on unfolded and partially folded proteins
that were added by glucosyltransferases (GT) (Figure 2; Table 1).
Glucosidases remove these glucose residues on correctly folded
glycoproteins, terminating their interaction with CNX/CRT and
enabling exit from the ER (Zapun et al., 1998; Ellgaard and Helenius,
2003). Incompletely folded proteins are “glucose-tagged” by GT
again for renewed folding attempts by CNX/CRT and ERp57. Via
repeated de- and re-glycosylation, nascent proteins can undergo
multiple binding cycles to CRT and CNX until reaching their final
conformation (Hammond et al., 1994; Sousa and Parodi, 1995).

2.1.2.1 Lectins in chondrogenesis and bone formation
Developmentally, CRT has been shown to regulate the switch

between chondrogenic and osteogenic fate in embryonic stem
cells. CRT promotes differentiation towards the osteoblast lineage
via inhibition of Glycogen synthase kinase-3 beta (GSK3),
while its absence favors chondrogenesis (Pilquil et al., 2020).
Application of recombinant CRT inhibited osteoclastogenesis in
vitro by reducing Ca?* oscillations and blocking key osteoclast
differentiation pathways. In vivo, CRT reduced osteoclast activity
and osteolysis in lipopolysaccharide-induced bone inflammation
(Fischer et al, 2017). Overexpression of CRT in murine
chondrocyte progenitor cells reduced proteoglycan deposition and
aggrecan expression, while CRT knockdown did not affect these
parameters (Bomer et al.,, 2016).

2.1.2.2 Lectins in cartilage degeneration and aging

Compressive mechanical stress reportedly increases CRT
expression in rat mandibular cartilage, particularly in intermediate
and deep zones. This was accompanied by increased PDI expression,
ER stress and chondrocyte apoptosis (Li et al., 2013). Vice versa, CRT
was downregulated in mice lacking the deiodinase iodothyronine
type-2 (D2) gene (DIO2), a specific risk gene for OA. This was
associated with reduced cartilage damage and delayed development
of mechanically-induced OA (Bomer et al., 2016).

CNX has also been implicated in the degeneration of cartilage
during arthritis (Tran et al., 2025; Table 1). Using synovial fibroblasts
from OA and RA patients, the authors demonstrated increased
glycosylation of CNX, leading to a translocation of the ERp57-CNX
complex to the cell surface. Here, ERp57 may cleave disulfide bonds
that crosslink collagen and fibronectin in the matrix (Figure 3).
This disulfide bond cleavage degrades the cartilage matrix, causing
arthritis-like symptoms in vivo. Consequently, administration of
CNX-blocking antibodies could prevent these matrix-degrading
effects and preserve joint integrity in vivo (Tran et al,, 2025). On
the other hand, Tan and colleagues showed increased apoptosis
and ER stress marker expression in response to CNX knockdown
in vitro. These effects resembled their findings in aged articular
cartilage of monkeys that showed reduced levels of CNX and
other chaperones. Overall, the efficacy of the ER folding machinery
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Protein dysfunction in the rough ER during chondrodysplasia and cartilage degeneration. Solute carrier family (SLC35) transporters provide uridine
diphosphate (UDP)-sugars that serve as glycosylation substrates (purple). During osteoarthritis (OA), chondrocytes express reduced levels of SLC35. In
addition, missense mutations in glycosyltransferases reduce glycoprotein glycosylation and glycosaminoglycan chain elongation. Reduced expression
of chaperones such as ERp57, calnexin (CNX) and calreticulin (CRT) impairs the folding capacity of the ER, leading to protein misfolding. Misfolded
proteins aggregate in the ER and are targeted for proteosomal degradation via ER-associated degradation (ERAD) pathways. ER retention of misfolded
glycoproteins further reduces their secretion, causing ER stress and subsequent apoptosis. This eventually impairs cartilage matrix formation. During
osteoarthritis (OA), CNX-ERp57 complexes (blue) can be transported to the cell surface, where they cleave disulfide bonds between collagens (COL)
and fibronectin (FN), promoting cartilage degeneration. Secretion of chaperones such as calreticulin (CRT), ERp57 and heat shock protein 96 (HSP96)
(blue) also triggers inflammation and cartilage degradation. Deficiencies of HSP4, prolyl- (P3H, P4H) and lysylhydroxylases impair the formation and
stability of procollagen triple helices (green). This delays collagen secretion and crosslinking in the matrix and causes ER stress. Misfolded and
aggregated proteins are recognized by the stress sensors in the ER membrane (yellow). Upon activation, they regulate gene expression in order to
alleviate ER stress and mitigate misfolded protein load. For references refer to the main text. Image created with BioRender.com.
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has been shown to decline with age (Kaushik and Cuervo,
2015). Thus, compromised expression and function of CNX
and other chaperones during aging may promote ER stress and
chondrocyte apoptosis, likely contributing to OA pathogenesis
(Rellmann et al., 2021).
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2.1.2.3 Lectins in inflammatory arthritis

In contrast to their decline in aging and OA, CNX and CRT
show an opposite trend in inflammatory arthritis. For instance,
elevated levels of autoantibodies against CNX and the heat shock
protein family chaperone HSP70 have been detected in the serum
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of RA patients (Weber et al., 2010). This upregulation of CNX was
identified as an early event, occurring within the first 3 months
after disease onset, and was stable over at least 12 months. As
a chronic immune disease, RA manifests in inflammation of
the synovial lining of the joint, angiogenesis and destruction of
articular cartilage and bone (Ding et al., 2014). Similar to CNX,
CRT has also been implicated in RA pathogenesis. CRT levels were
upregulated in plasma and synovial fluid of RA patients (Tarr et al.,
2010), correlating with disease severity (Ni et al., 2013; Figure 3;
Table 1). Ding and colleagues also located high CRT expression
in the synovium, particularly in regions of inflammation. They
ascribed this proinflammatory effect of CRT to increased nitric
oxide production and subsequent angiogenesis (Ding et al., 2014).
In complex with ERp57, CRT is also involved in the folding,
assembly and antigen loading of MHC molecules (Garbi et al,
2007; Blees et al., 2017). MHC variants are associated with an
increased risk for severe RA and CRT has been identified as a
ligand for shared epitope alleles within these variants (Ling et al.,
2010). These findings indicate an important role for both CNX
and CRT in RA pathogenesis and suggest their inhibition
as a promising target to counteract ECM destruction in the
treatment of RA.

2.1.3 Heat shock proteins

Heat shock proteins (HSP) represent another major family of ER
chaperones. They exert various functions, including translocation,
folding and degradation of secretory and membrane proteins and
are abundantly expressed in chondrocytes (Vanmuylder et al., 1997;
Hecht et al., 2001). BIP or GRP78 belongs to the HSP70 protein
family and is among the most extensively studied members (Munro
and Pelham, 1986).

2.1.3.1 HSPs in chondrogenesis and collagen synthesis

During chondrogenesis, BIP is particularly important for
processing cartilage matrix proteins, e.g.,, COMP and colocalizes
with aggregated mutant COMP that is retained in the ER during
pseudoachondroplasia (Hecht et al., 2001; Table 1). HSP70 proteins
have further been shown to interact with Sox9 (Marshall and
Harley, 2001), a master transcription factor for chondrocyte lineage
differentiation (Bi et al., 1999).

In addition to HSP70 proteins, HSP47 plays a key role in
cartilage development. While most chaperones bind a broad
range of substrates, HSP47 specifically aids the folding of collagen
(Nagata et al., 1986). Collagen synthesis starts with the translation
of procollagen molecules in the chondrocyte ER. Here, HSP47 binds
to newly synthesized procollagen, stabilizing the characteristic
triple-helix structure to prevent aggregation (Figure 2; Table 1).
Upon transition of procollagen chains into the Golgi, HSP47
detaches and gets recycled back to the ER (Satoh et al., 1996; Ito
and Nagata, 2017). Consequently, HSP47 expression correlated
with collagen expression (Clarke et al., 1993). As collagens form
the main structural component of the cartilage matrix (Eyre,
1991), HSP47 is indispensable for the integrity of cartilage.
Its deficiency leads the aggregation of misfolded and unfolded
procollagen within the ER and has been associated with various
skeletal disorders (Figure 3; Table 1). For instance, cartilage-specific
knockdown of HSP47 severely disrupted chondrogenesis and
endochondral ossification. Mice of this genotype exhibited severe
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limb deformities and impaired bone mineralization, eventually
resulting in perinatal lethality (Masago et al., 2012). Loss of HSP47
further reduced extracellular collagen type II and VI content and
caused fibrillar misalignment in cartilage (Masago et al., 2012).
Phenotypically, chondrocyte-specific knockout of HSP47 closely
resembles chondrodysplasia mouse models carrying mutations
in COL2A1I (Li et al, 1995). HSP47 has further been implicated
in the pathogenesis of Kashin-Beck disease, a degenerative joint
disorder that mostly affects children and manifests in arthritic pain,
joint deformities and growth retardation (Zhang et al.,, 2021). A
recent study by the same group identified a downregulation of
HSP47 as a driver of chondrocyte apoptosis and cartilage damage
in hypertrophic chondrocyte progenitor cells and T-2 toxin treated
rats (Zhang et al, 2021; Zhang et al., 2025). Specifically, toxin-
induced cartilage damage and nutritional Selenium-deficiency
significantly reduced cartilage expression of HSP47, thereby
disrupting collagen type II synthesis and stability and promoting
matrix degradation.

Besides collagen type II, HSP47 is also crucially involved in
the maturation of other types of procollagens such as type L
Consistently, missense mutations in the HSP47 encoding gene
SERPINHI cause a recessive form of osteogenesis imperfecta. In
these patients, mutated HSP47 is degraded by the proteasome.
While this loss of HSP47 did not affect the overall production and
posttranslational modification of type I procollagen, the secretion
was delayed, leading to an accumulation of procollagen type I in
the ER and Golgi (Figure 3). In addition, loss of HSP47 impaired
the stability of the characteristic triple helix structure, rendering
procollagen molecules more susceptible to degradation by proteases
(Christiansen et al., 2010). In vitro, HSP47 knockout resulted
in aberrant collagen type I fibrillation and network formation,
accompanied by reduced secretion and evident accumulation of
in the ER. These effects could be reversed by transient HSP47
expression (Ishida et al., 2006). Conversely, HSP47 overexpression
has recently been implicated in osteophyte formation in OA
knee joints (Otsuka et al., 2025). Here, HSP47 expression was
increased in TGF-p and BMP2-stimulated human osteophytic
cell spheroids, while inhibition of HSP47 reduced osteophyte
formation.

During procollagen maturation, HSP47 cooperates with
the peptidylpropyl isomerase FKBP65, another chaperone for
procollagen type I (Ito and Nagata, 2017). Still, FKBP65 cannot
compensate for HSP47 deficiency. In fact, SERPINHI mutations not
only disrupted HSP47 expression but also had similar effects on
FKBP65, impairing their interaction and the processing of type I
procollagen (Duran et al., 2015).

These findings highlight the importance for HSP47 in
the maturation, secretion and fibrillation of various types of
collagens (Figure 2). Thereby, HSP47 is a crucial chaperone for
the development and integrity of the collagenous cartilage matrix.

2.1.3.2 HSPs in ER stress and cartilage degeneration
HSP70 proteins are key player in ER stress and often used

as a marker for this. They bind to ER stress sensors, inactivating
them under basal conditions. In the presence of misfolded proteins,
HSP70 proteins dissociate, activating ER stress sensors and initiating
the UPR (Preissler and Ron, 2019; Gonzalez-Quiroz et al., 2020).
This includes an inhibition of mRNA translation, upregulated
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chaperone expression and increased protein degradation to
deal with ER stress and mitigate the misfolded protein load
(Gonzélez-Quiroz et al, 2020). Naturally, HSP70 proteins are
upregulated during ER stress, exerting chondroprotective effects.
Transfection of chondrocytes with the HSP70 protein BIP
increased proliferation, matrix production and reparative capacity
(Sato et al, 2012). BIP is also upregulated in cartilage biopsies
from OA patients, accompanied by increased collagen production
(Nugent et al., 2009). In OA cartilage, HSP70 expression was
localized in the deeper layers and correlated with disease severity
(Takahashi et al., 1997). Here, HSP70 overexpression increased
chondrocyte viability and protected against OA (Grossin et al,
2006). Consistent with these findings, increased ambient BIP
expression was associated with delayed OA development and
chondrocyte apoptosis in vivo, possibly due to more efficient
coping with ER stress (Kung et al, 2019). A recent gene set
variation analysis revealed an upregulated gene expression of
several other HSPs such as HSPA5, HSPA6 and others in
OA patients (Cai et al., 2025).

2.1.3.3 HSPs in inflammatory arthritis
HSP90, also referred to as GRP94 or Endoplasmin, is a major

chaperon for Toll-like receptors (TLRs) and integrins. By facilitating
TLR and integrin folding, HSP90 optimizes B-cell function (Liu
and Li, 2008). It is highly expressed in synovial tissue of RA
and OA patients and its expression correlates with the degree
of synovitis. HSP90 also functions as an endogenous ligand for
TLR2, promoting chronic inflammation in RA (Huang et al,
2009; de Seny et al., 2020; Table 1). HSP90 expression is also
increased during osteoclast differentiation. Consequently, this
chaperone has recently been linked to bone loss and was upregulated
in bone biopsies from osteoporosis patients (Cheng et al,
2023). Specifically, HSP90 stimulated osteoclastogenesis and
bone loss via activation of NfkB and cholesterol synthesis. Vice
versa, inhibition of HSP90 reduced osteoclast formation and
alleviated bone loss in vitro and in vivo (Cheng et al, 2023),
suggesting HSP90 as a promising target in the treatment of
osteoporosis.

In contrast to HSP90, HSP72 was downregulated in RA synovial
tissue and its expression inversely correlated with histological
inflammation (de Seny et al., 2020). Consistent with these
findings, recombinant HSP72 reduced pro-inflammatory cytokine
production in RA synovial fibroblasts in vitro and inhibited synovitis
and arthritis development and progression in vivo. These anti-
inflammatory effects of HSP72 could be attributed to a suppression
of NfB signaling (Luo et al., 2011; Table 1).

2.1.3.4 Extracellular functions of HSPs

Similar to PDI, HSPs can be released into the extracellular
space (Satoh et al, 1996) and have been detected in blood
and synovial fluid (Ngarmukos et al., 2020). Here, HSP70 levels
correlated with radiological OA severity and have been suggested
as a biomarker for predicting the disease severity. In RA, elevated
synovial fluid levels of HSP96 have been reported (Huang et al,
2009) which may serve as endogenous ligand for TLRs, activating
macrophages and contributing to chronic inflammation (Figure 3).
However, the functions of extracellular chaperones remain a topic of
ongoing research.
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2.2 Other ER-resident proteins

2.2.1 Hydroxylases

Besides chaperone-assisted protein folding, the ER performs a
range of additional modifications on newly synthesized proteins.
A frequent post-translational modification is the hydroxylation
of lysine and proline amino acid residues by respective lysyl-
and prolylhydroxylases. These modify the side chains of proline
and lysine into hydroxyproline and -lysine (Heard et al., 2016;
Figure 1). This hydroxylation provides attachment sites for
glycans during subsequent glycosylation and is crucial for proper
collagen folding and triple helix formation. Hence, disruptions
in this posttranslational collagen modification machinery impair
chondrogenesis and cartilage homeostasis and are associated with
various connective tissue disorders (Morello et al., 2006).

2.2.1.1 Prolylhydroxylases in collagen-related diseases
Prolyl-4-hydroxylases (P4H) are abundantly expressed in
chondrocytes and form a tetrameric complex with PDIs. They
catalyze the 4-hydroxylation of proline residues on the Y
position of the collagen-specific Gly-X-Y motif (Annunen et al,
1998; Myllyharju, 2003). This 4-hydroxylation is a frequent
posttranslational modification that provides thermal stability
to the fibrillar collagen triple helix structure (Berg and
Prockop, 1973; Figure 2; Table2). Homozygous deletion of
P4H isoform 2 had no apparent phenotypic abnormalities, but
additional haploinsufficiency of P4H isoform 1 caused severe
chondrodysplasia, chondrocyte apoptosis and impairments of the
biomechanical stability of growth plate cartilage in vivo. P4h2—/—
P4h1+/— mice had reduced tibial bone volume, collagen content and
osteoblast numbers (Aro et al., 2015; Tolonen et al., 2022), indicating
the importance of P4H for skeletal development and chondrocyte
survival. In line with this, P4H1 deficiency causes a connective
tissue disorder that includes joint hypermobility, muscle weakness,
skeletal dysplasia and myopia (Zou et al., 2017). In contrast, P4H
synthesis seems to be increased during early OA, presumably due to
the upregulated collagen production by hypertrophic chondrocytes
in this stage of the disease (Grimmer et al., 2006). However, its
specific role in cartilage degeneration remains elusive.
Hydroxylation of proline to 3-hydroxyproline is less frequent
than 4-hydroxylation, particularly in collagen type I and type
II which are the main types expressed in bone and cartilage
(Morello et al., 2006). It usually occurs in the X position of the
Gly-X-Y motif and is catalyzed by collagen prolyl 3-hydroxylases
(P3H) to prevent premature procollagen aggregation in the ER
(Vranka et al., 2004; Hudson and Eyre, 2013; Table 2). P3H exists
in three isoforms (P3H1, P3H2, P3H3), with P3H1, also known
as Leprecan, being the most abundant in cartilage (Wassenhove-
McCarthy and McCarthy, 1999). Inactivating mutations in
the P3Hl-encoding gene LEPREI (Cabral et al, 2007) have
been shown to cause a severe form of osteogenesis imperfecta
characterized by decreased bone density, impaired mineralization
and shortened long bones. Mechanistically, loss of P3HI
reduced 3-hydroxylation, delayed helix formation and impaired
fibrillogenesis of collagen type I (Figure 3). This was accompanied
by increased lysyl hydroxylation due to overmodification by lysyl
hydroxylases (Morello et al., 2006; Cabral et al., 2007). While P3H
seems to be crucial for proper collagen I fibrillation and bone
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development, its role in cartilage and collagen type II maturation
remains unknown.

2.2.1.2 Lysylhydroxylases in collagen-related diseases
Lysyl hydroxylases (LH) catalyze the hydroxylation of lysine
residues in the Y position of the Gly-X-Y motif. LH isoform
1 associates with P3H and synaptonemal complex 65 (SC65) to
hydroxylate lysine at cross-linking sites in the collagen triple helical
region (Heard et al., 2016; Figure 2; Table 2). Depleting this lysine
hydroxylation via SC65 knockout disrupted collagen fibrillogenesis
and crosslinking, causing skin fragility and reduced bone mass
in vivo (Heard et al, 2016). LH1 mutations have further been
identified as a cause for Ehlers Danlos syndrome (EDS). EDS
is a connective tissue disorders of defective collagen metabolism
that manifests in joint hypermobility, scoliosis and skin fragility
(Hyland et al., 1992). These mutations impair the cross-linking
of collagen, thereby reducing its tensile strength (Yeowell and
Walker, 2000; Figure 3). In contrast, elevated LH expression in
human synovium biopsies has been associated with increased
collagen cross-linking and OA-related fibrosis (Remst et al., 2013).
In osteogenesis imperfecta, elevated levels of LH, P3H and P4H, have
been detected in patient fibroblasts. This upregulation was associated
with impaired binding of HSP47 to procollagen type I and disrupted
triple helix stability, presumably representing an overcompensation
therefor (Syx et al., 2021). In contrast, lysyl hydroxylation levels
were decreased in cartilage biopsies of Morquio syndrome A
patients, which contributes to the early development of OA that is
characteristic for this lysosomal storage disease (Bank et al., 2009).

2.2.2 Glycosyltransferases and sugar transporters
the
modification. It constitutes a complex multistep process of attaching

Glycosylation is most common posttranslational
sugars to asparagine (N-glycans) and serine or threonine residues
(O-glycans) to form extensively branched glycan structures.
These reactions are catalyzed by approximately 200 different
glycosyltransferases (GTs) (Ellgaard and Helenius, 2003) and require
the supply with glycosylation substrates by dedicated nucleotide
sugar transporters in the ER (Kang et al, 2025). Glycosylation
mostly affects secretory proteins and is important for folding and
secretion (Figure 1). It also diversifies the proteome and regulates
cell signaling, interaction and adhesion (Schjoldager et al., 2020). As
part of the ER quality control system, GT tags incompletely folded
proteins by adding a glucose molecule (Figure 2). This prevents
premature exit of incompletely folded proteins from the ER and
enables renewed interaction with chaperones and folding enzymes.
Thereby, GT functions as a folding sensor, regulating the retention
of proteins in the ER (Ellgaard and Helenius, 2003).

2.2.2.1 Sugar transporters
Uridine diphosphate (UDP)-sugars serve as glycosylation

substrates and are transported to the ER and Golgi by nucleotide
sugar transporters of the solute carrier family (SLC35). Here,
UDP-sugars are used to synthesize proteoglycan core proteins
and their attached glycosaminoglycan (GAG) chains. Due to the
abundant expression of proteoglycans in cartilage, chondrocytes
maintain appropriate intracellular levels of UDP-sugars (Qu et al.,
2007). Mutations in SLC35 transporters reduce substrate availability
for ER-resident GT (Figure 3). This impairs glycan-branching
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and GAG synthesis, manifesting in chondrodysplasia phenotypes
(Hiraoka et al, 2007). In line with this, a recent study detected
reduced expression of SLC35 in OA chondrocytes which correlated
with loss of proteoglycans (Kang et al., 2025; Table 2).

2.2.2.2 GTs in skeletal development
Similarly, GT mutations can disrupt skeletal
development. For instance, missense mutations in xylosyltransferase
1 (XYLT1I) which initiates the addition of GAGs to proteoglycan core
proteins, are associated with dwarfism and skeletal abnormalities
(Schreml et al., 2014; Taieb et al, 2023). Mechanistically, loss

of Xyltl reduced proteoglycan glycosylation and GAG chain

normal

elongation, promoting chondrocyte hypertrophy and disrupting
matrix organization in growth plate cartilage (Taieb et al., 2023;
Figure 3; Table2). Mutations in [1,4-galactosyltransferase-7
(B4GALT?7) (Seidler et al., 2006), N-acetylglucosaminyltransferase
(EXTL3) (Guo et al, 2017) and chondroitin sulfate synthase 1
(CHSYI) (Wilson et al., 2012) show similar effects on proteoglycan
glycosylation and ECM structure. These mutations have been
implicated in skeletal and connective tissue disorders such as EDS
and chondrodysplasia which are reviewed elsewhere (Paganini et al.,
2019; Dubail and Cormier-Daire, 2021). In contrast, inactivating
mutations of the polypeptide N-Acetylgalactosaminyltransferase
3 (GALNT3) are associated with increased production of bone
matrix. These GALNT3 mutations lead to increased bone mass,
hyperphosphataemia and extraskeletal calcification mediated by
reduced FGF23 glycosylation (Esapa et al., 2012). These findings
demonstrate complex and heterogeneous functions of GTs in
cartilage and bone development.

2.2.2.3 GTs in degenerative arthritis

Gene expression analysis of human OA cartilage showed an
upregulation of various GTs involved in synthesis, substitution and
branching of N- and O-glycans. This was associated with distinct
glycophenotypes depending on the degree of cartilage degeneration
(Toegel et al., 2013). Altered N-glycation patterns detected by mass
spectrometry and HPLC analysis even preceded OA-changes in
human cartilage samples (Matsuhashi et al., 2008). A recent study by
Tran and colleagues also found elevated O-glycosylation of lectins
driven by ER-resident GALNTSs in synovial membrane biopsies of
OA and RA patients (Tran et al., 2025). These findings suggest a role
for aberrant GT function in OA pathogenesis.

Glycosylation is not restricted to secreted proteins of the
cartilage matrix. Intracellular proteins can also be glycosylated
by addition of single O-linked GlcNAc monosaccharides. These
are attached by O-GlcNAc transferases (OGT) and can be readily
removed by specific glucosaminidases (OGA) (Chatham et al.,
2021). In OA cartilage, increased O-GlcNAcylation and elevated
OGT expression have been detected (Tardio et al., 2014). Similarly,
O-GlcNAcylation was also upregulated during hypertrophic
differentiation of chondrocytes (Andrés-Bergos et al., 2012), which
represent one of the hallmark changes in OA cartilage (Table 2).
In fact, accumulation of O-GlcNAc-modified proteins alone
induced hypertrophy (Andrés-Bergos et al., 2012). Corroborating
these findings, a recent study by Kang and colleagues detected
increased O-GlcNAcylation in OA cartilage which promoted
the
degrading metalloproteinases (Kang et al, 2025). Interestingly,

secretion of pro-inflammatory cytokines and matrix-
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pharmacological inhibition of OGT reduced O-GlcNAcylation,
alleviated cartilage destruction, suppressed synovitis and reduced
osteophyte formation in a mouse model of OA (Kang et al,
2025). Conversely, inhibition of OGA increased O-GlcNAcylation
and accelerated OA progression. Thus, OGT-mediated O-
GlcNAcylation may play a driving role in OA pathogenesis,
potentially providing a new target for therapeutic interventions.

Downstream targets of OGT in OA cartilage include the
lipid metabolism gene ACSF (Zhang et al, 2024b) and the
NLRP3 activator NEK7 (He et al., 2024). Upstream regulators
driving elevated OGT expression in OA cartilage mostly remain
elusive. Several studies have identified inflammatory mediators
such as ILla and TNF-a to promote OGT expression in OA
chondrocytes (Tardio et al., 2014) and RA synovial fibroblasts
(Kim H. B. et al, 2015), respectively. OGT activity has further
been linked to insulin during hypertrophic differentiation of
ATDC5 cells (Andrés-Bergos et al, 2012). The regulation of
OGT activity in OA chondrocytes and cartilage remains to be
investigated.

2.2.3 Transcription factors

Besides enzymes for protein folding and post-translational
processing, the ER contains a range of transcription factors that
guard its homeostasis. Disruption of the complex ER folding
machinery can interfere with protein folding and cause an
accumulation of misfolded proteins in the ER lumen. Attempting
to restore ER homeostasis, these membrane-anchored transcription
factors regulate signaling in response to ER stress. Activating
transcription factor 6 (ATF6), inositol-requiring enzyme-1 (IRE1)
and protein kinase R-like endoplasmic reticulum kinase (PERK)
are the most well-established transcription factors. They represent
the three major axes of ER stress transduction (Figure 2), activating
downstream signaling pathways that are collectively referred to as
the unfolded protein response (UPR). In addition to their function
as ER stress transducers, they are also important regulators of
skeletal development and function (Horiuchi et al., 2016). For
instance, ATF6 regulates chondrogenesis and promotes chondrocyte
hypertrophy, mineralization and endochondral bone growth via
interaction with Runx2 (Xiong et al., 2015; Guo et al., 2016; Table 2).

The role of the ATF6, IRE1 and PERK axes of the UPR in
cartilage pathophysiology has been extensively reviewed elsewhere
(Hughes et al., 2017; Rellmann et al., 2021). Instead, we will focus
on a few lesser-known transcription factors and their implications
for cartilage homeostasis, including members of the OASIS and
BBF2H7 families.

2.2.3.1 BBF2H7 and OASIS in chondrogenesis
OASIS and BBF2H7 transcription factors that are structurally

homologous to ATF6 (Horiuchi et al, 2016). In contrast to
the ubiquitous expression of ATF6, OASIS and BBF2H7 are
preferentially expressed in osteoblasts and chondrocytes, regulating
their respective differentiation and exerting important functions
in skeletal development (Murakami et al, 2009; Asada et al,
2011). OASIS is crucial for bone formation by promoting collagen
type 1 transcription in osteoblasts. Thus, deletion of OASIS
severely reduced bone density and osteoblast activity (Table 2).
This was accompanied by an expansion of the ER and an
accumulation of bone matrix proteins (Murakami et al., 2009;
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Murakami et al, 2011). These effects could be rescued by
overexpressing OASIS in osteoblasts (Murakami et al, 2011),
highlighting its requirement for proper bone formation during
development. Similarly, ATF2, a family member of ATF6, also plays
a crucial role in osteoblast differentiation by increasing RUNX2
expression and promoting matrix mineralization (Ding et al., 2023).
ATF2 deficiency therefore reduced proliferation and differentiation
of growth plate chondrocytes and impaired bone growth in vivo
(Beier et al., 2000; Table 2).

BBF2H?7 structurally resembles OASIS but is mainly expressed
in chondrocytes during long bone development (Saito et al.,
2009; Asada et al., 2011; Table 2). Thus, its absence causes severe
chondrodysplasia with disrupted matrix production, organization
and composition, resulting in early postnatal death (Saito et al.,
2009). Growth plate cartilage missing BBF2H7 had a narrowed
hypertrophic zone with reduced ECM proteins. In the proliferating
zone, chondrocytes lacked the characteristic columnar organization
and contained enlarged rough ER with aggregations of collagen
type I and COMP. Targets of BBF2H7 include proteins that are
involved in vesicular trafficking of proteins form ER to Golgi
which is particularly important for chondrocytes to cover the
high demand of ECM protein secretion during development
(Asada et al, 2011; Figure 3). Additionally, BBF2H7 is able
to suppress chondrocyte apoptosis in growth plate cartilage by
activating other ER-resident transcription factors such as activating
transcription factor 5 (ATF5) (Izumi et al., 2012). These findings
indicate a bifunctional role for BBF2H7 in chondrogenesis via
stimulation of ECM production and suppression of ER stress-
induced apoptosis.

2.2.3.2 Sterol regulatory element-binding proteins in
chondrogenesis, degenerative and inflammatory arthritis

Sterol regulatory element-binding proteins (SREBPs) are
transcription factors of the basic helix-loop-helix leucine zipper
(bHLH-LZ) family that regulate genes involved in cholesterol
and lipid metabolism (Yokoyama et al., 1993). They exist in three
isoforms and are synthesized in inactive precursor forms. Inactive
precursor SREBPs remain bound to the ER membrane in the
presence of lipids. When lipid levels are depleted, SREBPs are
proteolytically cleaved and released from the ER to enter the nucleus
(Yokoyama et al., 1993). Here, they activate the transcription of
genes for lipid synthesis and uptake (Yang et al., 2000). SREBPs can
also induce PERK signaling and have been linked to ER stress and
autophagy via PERK response pathways (Hu et al., 2020; Figure 3).
During chondrogenesis, SREBP-1 and SREBP-2 were upregulated
in ATDC5 cells (Allendorf, 2009). In this context, SREBP-1 has
been shown to regulate the transcription of frizzled-related protein
2 (Sfrp2) (Kim M.-]. et al., 2015) that supports canonical Wnt
signaling, an important signaling pathway in cartilage homeostasis
and bone formation (de Castro et al., 2021; Figure 4).

SREBPs have also been investigated in the context of OA, as this
is often accompanied by lipid metabolism alterations (Xu et al., 2024;
Table 2). Genetic association studies of OA patients identified single
nucleotide polymorphisms in the SREBP gene that elevated SREBP
protein levels and promoted OA development (Kostopoulou et al.,
2012). In line with this, SRBEP expression was upregulated in
articular cartilage and chondrocytes of OA patients compared to
healthy controls. This upregulation was accompanied by reduced
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SOX9 and collagen type II levels as well as upregulated levels of TGE-
B, MMP13 and collagen type X, marking increased chondrocyte
hypertrophy (Kostopoulou et al., 2012; Tao et al., 2015; Figure 4).
In intervertebral disc degeneration, active SREBP was essential for
cholesterol-induced ER stress and promoted ECM degradation and
cell death via pyroptosis (Yan et al, 2021). SREBP had similar
catabolic effects on bone, promoting osteoclastogenesis and bone
loss upon activation by HSP90 (Cheng et al., 2023).

Further, SREBPs the
transcription of pro-inflammatory mediators, NfkB activation and

can promote inflammation via

macrophage polarization (Xu et al., 2024; Figure 4). In gout, SREBPs
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contribute to monosodium urate crystal-induced inflammation via
YAP signaling. SREBP overexpression promoted hyperuricemia
and endothelial inflammation, while pharmacological inhibition of
SREBP alleviated gout-induced inflammation (Zhao et al., 2021).
These findings suggest SREBP as a promising therapeutic target in
degenerative and inflammatory joint diseases.

2.2.4 Lipogenic enzymes

While glycoproteins constitute the large majority of the
cartilage matrix, lipids make up only 1% of the total weight
(Stockwell, 1967). Nonetheless, they are essential for various cellular
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and mechanical processes in the joint, including chondrocyte
differentiation, mineralization and joint lubrication (Steinmeyer,
2025). Above all, lipids such as phospholipids and sphingolipids are
essential components of cell membranes. Phospholipids contain a
glycerol backbone, whereas sphingolipids are built on a sphingosine
base. Both are synthesized in the smooth ER by different
enzymes and multiple intermediates (Tidhar and Futerman, 2013).
Substrates for phospholipid synthesis include phosphatidylcholine
and phosphatidylethanolamine. Phospholipase A2 (PLA2) and
lysophosphatidylcholine acyltransferase (LPLAT) are key enzymes
in the synthesis of phospholipids, responsible for their de- and
re-acylation (Figure 2). Precursors of sphingolipids include serine
and ceramide, relying on serine palmitoyltransferases (SPTLC) and
ceramide synthases (Steinmeyer, 2025). While there is progress in
unraveling the complex lipid metabolism in cartilage, there is limited
data on ER-specific changes in lipid synthesis.

2.24.1 Lipogenic enzymes in chondrogenesis and
osteogenesis

As a key enzyme in phospholipid synthesis, LPLATs have been
shown to regulate chondrocyte differentiation and mineralization.
Specifically, LPLAT4 expression and activity increased during
chondrogenic differentiation of ATDC5 cells, particularly in the
stage of hypertrophy and mineralization (Tabe et al., 2017). LPLAT
isoform 2 also mediates the formation of lipid droplets during
osteoblast differentiation (Figure 2). In line with this, LPLAT2
knockdown inhibited the expression of chondrogenic markers,
decreased proteoglycan content and reduced lipid droplet number
(Tabe et al.,, 2024). Loss of LPLAT4 further inhibited alkaline
phosphatase (ALP) activity, which is a commonly used marker
for mineralization. Recently, the same group has detected increased
expression of LPLAT?2 and associated BMP/Smad activation during
osteoblast differentiation (Tabe et al., 2024). Consistently, LPLAT2
knockdown inhibited osteoblast differentiation and reduced
ALP activity (Figure 4). Thus, LPLATs modulate differentiation
by activating osteo- and chondrogenic signaling pathways.

2.2.4.2 Lipogenic enzymes in degenerative and

inflammatory arthritis
Alterations in the lipid metabolism are also commonly reported

in arthritic joints and have been established as a key player in OA
pathogenesis (Tsezou et al., 2010; Yang et al., 2021). For instance,
increased expression of PLA2 was detected in articular cartilage
and synovium of OA patients (Pruzanki et al., 1991; Leistad et al.,
2011). PLA2 hydrolyses membrane phospholipids to release free
fatty acids and lysophospholipids that can be re-acylated by LPLATs
(Kitaetal,, 2019; Figure 2). As PLA2 is a key enzyme in phospholipid
remodeling, it is not surprising that elevated phospholipid levels
have been detected in OA synovial fluid (Eichner et al., 2025).
This effect was already detected in early stages of the disease,
preceding radiological changes. Therefore, lipidomic alterations may
be a promising indicator for early OA development (Eichner et al.,
2025). In addition to its involvement in lipid synthesis in the ER,
PLA2 itself can also be secreted, having been detected in synovial
fluid of OA and RA patients (Pruzanki et al., 1991). Extracellular
PLAZ2 has pro-inflammatory activities, promoting the production of
inflammatory mediators such as prostaglandins (Leistad et al., 2011;
Figure 4). In line with this, PLA2 expression positively correlated
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with histological inflammation (Jin et al., 2024) and nanoparticle-
mediated inhibition of PLA2 was able to reduce inflammation and
slow down OA progression (Wei et al., 2021).

Similarly, SPTLC, a key enzyme in sphingolipid synthesis, is highly
expressed in OA cartilage, particularly in the deep zone (Mori et al.,
2014; Lii et al,, 2023). Accordingly, elevated levels of sphingolipid
precursors have detected in OA synovial fluid (Kosinska et al,
2013). These were associated with chondrocyte apoptosis and matrix
degradation (Sabatini et al., 2000). However, SPTLC subunit 2
(SPTLC2) reportedly serves chondroprotective functions. Lentiviral
overexpression of SPTLC2 in articular cartilage and enhanced
chondrocyte viability, decreased apoptosis and increased cell numbers
(Litetal, 2023). SPTLC2 overexpression also increased the expression
of ECM proteins, while inhibiting the expression of catabolic matrix
metalloproteinases. Thereby, SPTLC2 enhanced matrix integrity
and protected against cartilage degradation. Silencing of SPTLC2
caused opposite effects, promoting chondrocyte apoptosis and matrix
degeneration (Lii et al., 2023). Although there is limited data available,
the beforementioned studies suggest that lipid-synthesizing enzymes
may crucially contribute to cartilage pathophysiology, affecting
chondrogenesis, mineralization and inflammation.

3 Summary and conclusion

Hyaline cartilage is a tissue with unique biomechanical
properties and versatile function during skeletal development and
function. It contains a dense ECM that mainly consist of large
glycoproteins and is produced by chondrocytes. To meet the high
protein demand, chondrocytes have a distinct rough ER that serves
as the major site of protein synthesis, folding and post-translational
processing. Here, the ER harbors a vast collection of enzymes
that catalyze versatile post-translational modifications to secure
proper folding and maturation of newly synthesized ECM proteins.
These enzymes guide skeletal development and are essential for the
formation and function of the cartilage matrix.

Loss or malfunction of ER-resident proteins in skeletal cells can
affect a multitude of cellular processes, including gene expression,
protein secretion and ECM function. This can have far-reaching
consequences for cartilage, bone and the entire skeletal system.
Altered gene expression and cell differentiation in growth plate
cartilage can disrupt chondrogenesis and bone formation. In
addition, imbalances in Ca** metabolism can affect cell signaling
and impair mineralization during skeletal development, manifesting
in chondrodysplasia and bone deformities.

Reduced chaperone function during aging impairs the
secretion and crosslinking of ECM proteins (e.g., collagens and
proteoglycans). Disrupted ECM production compromises cartilage
organization and stability, rendering the tissue susceptible to
degradation by proteases (e.g., MMPs). Aberrant processing and
secretion of proteins also causes ER stress. Excess ER stress can
induce apoptosis, further contributing to cartilage loss during
aging and OA.

It is clear that ER-resident proteins are crucial for viability and
function of chondrocytes and other cells of the skeletal system.
However, due to the high complexity of the ER protein processing
machinery, the specific roles of ER-resident enzymes in skeletal
homeostasis are incompletely understood. Their contribution to
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skeletal diseases also remains elusive and remain a promising topic
for future research.
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