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Mitochondrial dynamics, involving fission and fusion, are vital for maintaining 
mitochondrial quality, shape, and function in heart cells. This review explores 
how key regulators—Dynamin-related protein 1 (Drp1), mitofusins 1 and 2 
(Mfn1/2), and Optic Atrophy 1 (OPA1)—control these processes in the heart. Drp1 
facilitates fission, while Mfn1/2 and OPA1 mediate outer and inner membrane 
fusion. Their activities are finely tuned by modifications, gene regulation, and 
stress pathways. Disruptions in these dynamics can impair functions like energy 
production, calcium balance, ROS management, and mitophagy, contributing 
to heart diseases. Abnormal fission and fusion are also linked to conditions 
such as sepsis, ischemia/reperfusion injury, and diabetic cardiomyopathy. This 
review aims to offer a thorough analysis of recent advancements in the 
understanding of dysregulated mitochondrial dynamics and their contribution 
to cardiac pathology. Additionally, it evaluates emerging therapeutic strategies 
that target the balance between mitochondrial division and fusion. We posit 
that precise modulation of the activities of Drp1, Mfn1/2, and OPA1 presents 
significant potential for the treatment of cardiac diseases. However, achieving 
tissue specificity and temporal control remains a critical challenge for clinical 
translation.
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 1 Introduction

Mitochondria are involved in many key cellular functions, such as cellular respiration, 
cell differentiation, apoptosis (Song and Dorn, 2015), and calcium signaling (Garbincius 
and Elrod, 2022). The organelle’s shape is most closely related to its primary function of 
oxidative phosphorylation. Mitochondria have an outer and inner membrane. The outer 
mitochondrial membrane (OMM) separates mitochondrial contents from the cytosol. The 
inner mitochondrial membrane (IMM) is convoluted into cristae and contains proteins for 
various mitochondrial functions (Gao and Hu, 2021). Between the two membranes is the 
intermembrane space (IMS), which contains the proton gradient needed for ATP synthesis 
(Horvath and Daum, 2013). Inside the IMM is the mitochondrial matrix, which contains 
other proteins and mitochondrial DNA (mtDNA) (Yan et al., 2019).
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The OMM is important because it compartmentalizes 
mitochondrial contents to protect the cytosol from biochemical 
reactions occurring within the organelle. The OMM also 
regulates mitochondrial morphology based on cellular needs 
and mediates removal of damaged mitochondria (Chu et al., 
2013). The IMM is also important as it is the site for many 
mitochondrial functions, including the electron transport 
chain (ETC), phospholipid metabolism, and regulation of 
apoptotic signaling (Westermann, 2010). Dysfunction of these 
mitochondrial processes is associated with many diseases, 
including cancer, diabetes, and neurodegenerative diseases
(Rainbolt et al., 2015).

Mitochondria are particularly important in myocardial cells, 
including cardiac myocytes (CM) and cardiac fibroblasts (CF), 
as the heart is an organ that consumes a lot of energy. In fact, 
CMs exhibit the highest mitochondrial density among cell types, 
with mitochondria occupying approximately 40% of the cell 
volume, and consequently possess the highest respiratory capacity 
(Da Dalt et al., 2023). Mitochondria in adult cardiac muscle fibers 
are highly organized and divided into three subpopulations: those 
compacted between contractile filaments in lanes parallel to the 
long axis (interfibrillar), those found adjacent to sarcolemma 
(subsarcolemmal) (Chen et al., 2012), and those found around 
the nucleus (perinuclear) (Sanchis-Gomar et al., 2016). The 
subpopulations demonstrate unique functional specializations. 
Interfibrillar mitochondria (IFM) predominantly generate ATP 
to directly energize the contractile apparatus (Vendelin et al., 
2005). Subsarcolemmal mitochondria (SSM) are strategically 
located to facilitate ion transport across the sarcolemma and may 
also play a role in cellular signaling (Dorn and Kitsis, 2015). 
Perinuclear mitochondria (PNM) are hypothesized to supply 
energy for nuclear processes and potentially contribute to the 
regulation of gene expression associated with mitochondrial 
biogenesis (Zhu et al., 2022). These mitochondria are essential for 
the proper functioning of the CM and CF, and by extension, of the
heart itself.

Mitochondria play a pivotal role in cardiac energy metabolism 
and cellular survival, making their dynamic remodeling through 
fission and fusion processes crucial for maintaining myocardial 
health. Future research should focus on elucidating the differential 
contributions of mitochondrial subpopulations to the progression of 
cardiac diseases. 

2 Mitochondrial dynamics and 
myocardial function: theoretical 
foundations

2.1 Evolution of mitochondrial dynamics 
concepts in cardiac cells

The dynamics of mitochondria within cardiac myocytes have 
been the subject of extensive research, leading to a substantial 
evolution in conceptual understanding over time. Foundational 
studies, including those that have quantitatively assessed the 
spatial distribution and motility of mitochondria in adult rat 
cardiomyocytes and non-beating HL-1 cells, were particularly 
influential (Beraud et al., 2009).

Recent research has challenged the traditional notion that 
mitochondria in adult cardiomyocytes are static entities. For 
instance, certain studies have reexamined mitochondrial dynamics 
and proposed that the assertion of high mitochondrial dynamics 
may not be applicable to all cell types (Dorn, 2019). Historically, 
investigations involving in vivo experimental manipulation of 
mitochondrial fusion and fission genes in cardiomyocytes provided 
limited evidence for mitochondrial dynamics (Dorn, 2018). 
However, these studies have illuminated the role of dynamic 
factors in regulating mitochondrial mass. This indicates that 
targeting mitochondrial dynamics proteins within the cardiac 
system could potentially uncover novel functions of these factors 
in biological pathways. 

2.2 Mitochondrial dynamics

The prevailing perspective posits that mitochondria are not 
static organelles; rather, they demonstrate dynamic behavior, 
frequently forming interconnected networks with filamentous 
structures that, in certain cell types, facilitate the transmission of 
signals between mitochondria in wave-like patterns (Bhandari et al., 
2015). Within cells, these networks often undergo remodeling 
through mitochondrial division and fusion processes (Baker et al., 
2014). Mitochondrial dynamics, encompassing fission, fusion, and 
transport processes, are essential for mitochondrial quality control 
(Cahill et al., 2015; Heidenreich et al., 2022). Figure 1 depicts the 
detailed process of mitochondrial fusion and fission, highlighting 
the mechanisms of action of key molecular components. HR1 
(Heptad Repeat Domain 1) represents a crucial functional domain 
within the mitochondrial outer membrane fusion proteins, 
Mitofusin 1 and 2 (Mfn1/Mfn2). This domain encompasses a 
conserved amphipathic helix, spanning residues 393 to 410, 
which integrates into the membrane, specifically targeting regions 
characterized by packing defects. This integration destabilizes the 
lipid bilayer, facilitating the fusion of the outer mitochondrial 
membrane independently of HR2-mediated docking. Such fusion 
is vital for the maintenance of the mitochondrial network, 
as the absence of HR1 significantly impairs cellular fusion 
processes (Daste et al., 2018).

Mitochondrial dynamics play crucial roles in numerous 
cellular functions. These include the segregation of mtDNA 
and proteins during mitosis, mitophagy, apoptosis, and cell 
differentiation. Additionally, dynamics are involved in calcium 
regulation (Gonzalez et al., 2014), distribution of mitochondria-
derived metabolites, oxygen sensing, maintenance of mitochondrial 
morphology and function, and modulation of mtDNA 
replication (Archer, 2013). These dynamic processes facilitate the 
positive cellular regulation of mitochondria, and any imbalance in 
mitochondrial dynamics can result in pathological conditions such 
as inflammation or heart failure.

Mitochondrial fission and fusion are orchestrated by four 
GTPases belonging to the mitochondrial dynein family: Mfn1 
and Mfn2 facilitate fusion of the mitochondrial OMM, while 
OPA1 is responsible for fusion of the mitochondrial IMM. 
Drp1 governs mitochondrial fission. The regulation of these 
proteins is multifaceted, encompassing transcriptional control, 
alternative splicing, and post-translational modifications (Sharp 
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FIGURE 1
Molecular mechanisms governing mitochondrial fission and fusion. In the left panel, the cytoplasmic dynamin-related protein 1 (Drp1, depicted in blue) 
phosphorylates Ser616 (highlighted in yellow) via anchoring proteins, specifically Fis1 (shown in gray) and MFF1 (illustrated in pink), at sites of contact 
with the endoplasmic reticulum (ER, represented as gray tubules). Drp1 undergoes oligomerization into GTP-hydrolyzing helical polymers that facilitate 
membrane constriction and drive mitochondrial division. In the right panel, mitochondrial fusion proteins Mfn1 (colored red) and Mfn2 (colored 
orange) form antiparallel dimers through interactions with the HR1 domain. GTP hydrolysis induces a conformational change that enables the 
formation of the outer mitochondrial membrane (OMM) fusion pore. Optic atrophy 1 (OPA1, shown in dark green) is localized within the inner 
mitochondrial membrane (IMM) and produces a soluble short form (S-OPA1, also in dark green) via proteolytic cleavage by OMA1 (at the S1 site, 
marked with a red T-shape) and YME1L (at the S2 site, marked with a blue T-shape). Both L-OPA1 and S-OPA1 assemble into GTP-dependent 
complexes that facilitate IMM fusion and cristae reorganization.

and Archer, 2015). Additionally, these proteins are responsive 
to various physiological stimuli. For instance, conditions such 
as starvation and stress suppress division and encourage the 
formation of mitochondrial networks through fusion, whereas 
mitochondrial damage and depolarization inhibit fusion. Short-
term stress conditions enhance fusion, whereas prolonged stress 
leads to mitochondrial fragmentation (Redpath et al., 2013; 
Tao et al., 2018). Moreover, the processes of fission and fusion 
are influenced by the activity of the endoplasmic reticulum 
(ER) and the PINK1-Parkin mitophagy pathway (Liu et al., 
2023). In murine models, the genetic ablation of factors involved 
in cellular division and fusion results in embryonic lethality, 
highlighting the essential role of these processes in ensuring 
survival (Adebayo et al., 2021). Conversely, in humans, genetic 
syndromes arising from mutations in these genes are nonfatal 
and primarily impact specific regions of the nervous system
(Malakauskaite et al., 2024).

While mitochondrial dynamics are well-characterized in 
non-cardiac myocytes, the spatiotemporal regulation of these 

processes in actively contracting cardiac myocytes necessitates 
further investigation. Critical areas of uncertainty include the 
mechanisms by which mechanical stress from contraction 
influences the localization of Drp1 and Mfn2, as well as potential 
variations in cristae dynamics across distinct subsets of cardiac
mitochondria. 

3 Important molecules affecting 
mitochondrial dynamics

Mitochondrial dynamics involve numerous critical molecules, 
each responsible for regulating distinct processes. This chapter 
primarily elucidates the specific roles, activation, and regulatory 
mechanisms of four key molecules: Drp1, Mitofusin-1, Mitofusin-
2, and OPA1. Table 1 provides a summary of the functions and 
regulatory pathways of these core kinetic proteins. Table 2 provides 
a summary of molecular regulatory mechanisms of key proteins in 
mitochondrial dynamics.
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TABLE 1  Summary of functions and regulation of core mitochondrial dynamics proteins.

Molecule Function Mechanisms of regulation Cardiac phenotype in 
deficiency/Knockout

Drp1 Mediates fission
Phosphorylation (S616: activation) Mitochondrial elongation (impaired fission)

Impaired mitophagy
Heart failurePhosphorylation (S637: inhibition)

Mfn2
Mediates outer membrane fusion Transcriptional upregulation (e.g., by PGC1α) Impaired respiration

Increased ROS
CardiomyopathyRegulates ER-mitochondria tethering (MAMs) Ubiquitin-mediated degradation (e.g., by Parkin)

OPA1
Mediates inner membrane fusion Proteolytic cleavage (OMA1/YME1L) Cristae disorganization

Reduced ATP production
Increased susceptibility to I/R injuryMaintains cristae structure Balance of L- and S-OPA1 isoforms

TABLE 2  Molecular regulatory mechanisms of key mitochondrial dynamics proteins.

Protein Regulatory mechanism Specific regulatory events

Drp1 Post-translational modifications Phosphorylation (e.g., S616: activation; S637: inhibition), ubiquitination, 
SUMOylation, S-nitrosylation, acetylation

Mfn1/2

Transcriptional regulation Upregulated by PGC1α

Post-translational modification (ubiquitination and degradation) Ubiquitin-mediated degradation (e.g., by Parkin) (PINK1-Parkin pathway); 
regulated by BAT3 (under specific conditions)

OPA1

Proteolytic processing Cleaved by proteases OMA1 (at S1 site) and YME1L (at S2 site); cleavage 
generates soluble S-OPA1

Alternative splicing Generates multiple isoforms: L-OPA1 (a, b) and S-OPA1 (c, d, e)

3.1 Drp1, role of Drp1 in mitochondrial 
dynamics, how Drp1 activity is regulated

Drp1 is a predominantly cytosolic member of the dynamin 
family of GTPases, playing a crucial role in mitochondrial fission 
(Tao et al., 2018; Kraus et al., 2021). Upon activation, Drp1 
is recruited to the OMM, where it oligomerizes, hydrolyzes 
GTP, and forms spiral structures around mitochondria, thereby 
constricting the membranes to initiate mitochondrial fission 
(Tilokani et al., 2018). This recruitment and constriction process 
can be facilitated by forces generated by the actin cytoskeleton 
(Mears and Ramachandran, 2022). This assembly process involves 
interactions with OMM-spanning proteins, often occurring at 
contact sites between mitochondria and the ER (Wai et al., 2015). 
At the endoplasmic reticulum-mitochondria contact sites (MERCs), 
actin polymerization associated with the endoplasmic reticulum, 
which is nucleated by proteins such as the ARP2/3 complex 
and its regulators can produce forces that facilitate mitochondrial 
constriction preceding the action of Drp1 or work in conjunction 
with Drp1 during the fission process (Gatti et al., 2025). The fission 
assembly is further facilitated by non-GTPase proteins, including 
mitochondrial fission protein 1 (Fis1), mitochondrial fission factor 
1 (MFF1), Mid49, and Mid51. Additionally, ER tubules encircle 
mitochondria prior to fission (Seo et al., 2019).

Drp1 activity is modulated by various post-translational 
modifications, such as phosphorylation (Gao et al., 2022), 

ubiquitination (Sulkshane et al., 2021), sumoylation (Jin et al., 
2021), N-nitrosylation, and acetylation (Hu Q. et al., 2020). 
Phosphorylation plays a dual role: it can either activate or 
inhibit Drp1. Specifically, phosphorylation at Drp1-serine 616 
activates the protein and promotes its translocation to the 
OMM, while phosphorylation at Drp1-serine 637 exerts an 
inhibitory effect (Kim et al., 2019). The dynamic phosphorylation 
and dephosphorylation of these sites have implications in the 
development of pathological conditions.

Through a series of overexpression and knockout studies, 
Drp1 has been implicated in mitochondrial fragmentation, 
mitophagy, and apoptosis. In drosophila, Drp1 overexpression 
induces mitochondrial fragmentation without affecting cardiac 
function (Jenkins et al., 2024). While some studies suggest that 
increased mitochondrial fission can confer protection against 
apoptosis. For instance, mitochondrial fission promotes anti-
apoptotic mechanisms by activating protective signaling pathways, 
such as the Reperfusion Injury Salvage Kinase (RISK) pathway 
and the cAMP response element-binding protein (CREB) pathway 
(Rosdah et al., 2016). Simultaneously, mitochondrial fission plays a 
crucial role in preserving mitochondrial function and homeostasis. 
Proper and moderate mitochondrial division is essential for 
maintaining the appropriate number, distribution, and functionality 
of mitochondria, thereby ensuring the stability of the internal 
environment, including energy supply and redox balance. When the 
regulatory mechanisms governing mitochondrial division operate 
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effectively, they can prevent detrimental outcomes such as excessive 
cellular apoptosis and safeguard the survival of cardiomyocytes 
(Long et al., 2020), others indicate that Drp1 is crucial for apoptosis, 
a process that involves mitochondrial fragmentation (Ansari et al., 
2022). Drp1 has been demonstrated to facilitate bax oligomerization 
and cytochrome c release (Pena-Blanco and Garcia-Saez, 2018). 
Consequently, there have been efforts to inhibit Drp1 to mitigate 
I/R injury (Zeng et al., 2022). Drp1, along with other regulators of 
mitochondrial morphology, is encoded by the nuclear genome. 
Consequently, alterations in mitochondrial form and function 
are likely to exhibit tissue-specific characteristics. Research has 
demonstrated that Drp1 is crucial for the normal development 
and functioning of the heart and brain. However, its short-term 
inhibition in the context of ischemia-reperfusion (IR) injury has 
been shown to confer cardioprotective and neuroprotective effects, 
suggesting its potential as a therapeutic target in cardiac arrest 
scenarios (Sharp, 2015). However, it is hypothesized that a basal 
level of Drp1 activity may be necessary for maintaining mitophagy 
and ATP synthesis.

Furthermore, it is noteworthy that mitochondrial division 
process 1 (MTFP1), also referred to as MTP18, is a protein 
located in the mitochondrial inner membrane (IMM) that has 
emerged as a crucial regulator of mitochondrial division. It operates 
downstream of, and in conjunction with, Drp1. The expression 
of MTFP1 is transcriptionally regulated by the PI3K/Akt/mTOR 
signaling pathway, thereby linking cell growth and metabolic signals 
directly to the mitochondrial fission machinery (Morita et al., 2017; 
Tabara et al., 2024). MTFP1 facilitates mitochondrial division by 
promoting the recruitment and assembly of Drp1 oligomers at the 
division site. Recent research has uncovered new roles for MTFP1 
in regulating bioenergetic efficiency and sensitivity to cell death, as 
well as highlighting its significance in preventing pathogenic cardiac 
remodeling (Donnarumma et al., 2022).

The loss of Drp1 in cardiac tissue is associated with 
lethality. Specifically, the knockout of Drp1 in the heart impairs 
mitochondrial quality control and mitophagy, resulting in enlarged 
and abnormal mitochondria with reduced numbers (Tong et al., 
2020). Previous studies have shown that cardiomyocyte-specific 
knockdown of Drp1 in mice leads to impaired mitochondrial quality 
control and mitophagy. This damage leads to the accumulation of 
enlarged and abnormal mitochondria and ultimately contributes 
to programmed cardiomyocyte necrosis through mPTP opening, 
myocardial fibrosis and fatal heart failure, but whether DRP1 is 
directly involved in the execution of mitophagy is still controversial 
(Tong et al., 2023). This condition leads to programmed 
cardiomyocyte necrosis, myocardial fibrosis, and ultimately, 
fatal heart failure. The heart failure observed may be attributed 
to diminished mitophagy and the accumulation of damaged 
mitochondria. This reduction in mitophagy is characterized by 
an initial acceleration of early mitophagic processes, followed by 
impaired mitochondrial import into lysosomes, leading to fission 
without proper mitophagic degradation and a general loss of 
mitochondria (Lin et al., 2022). Necrosis is eventually induced 
through the activation of the mitochondrial permeability transition 
pore (mPTP) (Duan et al., 2021). Conversely, other studies have 
shown that inhibition of Drp1 reduces cytochrome c release, thereby 
preventing cell death.

Although Drp1 is recognized as the primary GTPase 
governing mitochondrial fission, it is crucial to acknowledge the 
identification of alternative, Drp1-independent fission pathways 
under certain conditions. For instance, mechanisms of division 
that are independent of Drp1 have been identified in contexts 
such as bacterial infection-induced division, the formation of 
mitochondrial-derived vesicles (MDVs), and division during 
autophagy. Furthermore, the review underscores the significance 
of these DrP1-independent division mechanisms (Pagliuso et al., 
2018). Nonetheless, Drp1 remains the central and predominant 
regulator of mitochondrial fission in the majority of physiological 
and pathological contexts. 

3.2 Mitofusin-1/2 (Mfn1/2), role of Mfn1/2 
in mitochondrial dynamics, how Mfn1/2 
activity is regulated

Mitofusin-1 (Mfn1) is a dynamin-like GTPase that, along with 
Mitofusin-2 (Mfn2), consistently spans the outer mitochondrial 
membrane (OMM) via two transmembrane segments, with their 
N-terminal GTPase domains oriented towards the cytoplasm 
(Tabara et al., 2025). The mitofusins play a crucial role in the 
fusion of the OMM, operating as either Mfn1/Mfn2 heterodimers, 
Mfn2/Mfn2 homodimers, or Mfn1/Mfn1 homodimers (Hall et al., 
2014). Beyond their role in OMM fusion, mitofusins also facilitate 
the interaction between cardiac mitochondria and the sarcoplasmic 
reticulum (SR), thereby enhancing calcium signaling as part 
of the endoplasmic reticulum stress response. Additionally, the 
expression levels of both mitofusins are elevated in human 
heart failure (Chen et al., 2012).

Both mitofusins are transcriptionally regulated by peroxisome 
proliferator-activated receptor gamma coactivator1-α (PGC1α) 
(Dorn et al., 2015), which is also implicated in mitochondrial 
biogenesis. In addition to transcriptional regulation, mitofusins 
may undergo post-translational ubiquitin-mediated degradation, 
potentially regulated by human leukocyte antigen B-associated 
transcript 3 (BAT3). BAT3 interacts with Mfn2 and is essential 
for the degradation of mitofusins under conditions of Drp1 
depletion, possibly by facilitating their recruitment to the 
proteasome. Furthermore, the ubiquitin-mediated degradation 
of mitofusins may also be regulated by Parkin, an E3 
ubiquitin ligase, thereby linking mitofusins to the PINK1-Parkin 
mitophagy pathway (Deng et al., 2024).

The two mitofusins appear to be functionally redundant in terms 
of mitochondrial fusion, as evidenced by the minimal alterations 
in mitochondrial morphology observed in MEF cells when one 
mitofusin is absent (Hu et al., 2021). In contrast, the simultaneous 
absence of both mitofusins results in significantly shorter and 
partially depolarized mitochondria. Despite their redundancy, Mfn1 
and Mfn2 exhibit distinct functional characteristics. Specifically, 
Mfn1 demonstrates more efficient GTPase activity and plays a role 
in remodeling the OMM (Papanicolaou et al., 2012). Consequently, 
the loss of either Mfn1 or Mfn2 can only be partially compensated 
by the presence of the other protein. Notably, the deficiency of one 
mitofusin leads to the upregulation of the other.

Both mitofusins are essential for development, as the absence 
of either mitofusin in the germline results in lethality, likely 
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attributable to defects in placental development (Dorn, 2015). While 
selective ablation of Mfn1 is generally well-tolerated, the loss of 
Mfn2 leads to functional impairments (Rovira-Llopis et al., 2017; 
Zhang et al., 2022). CM-specific knockout of either mitofusin 
confers protection against I/R injury in cardiac muscle; however, the 
knockout of both mitofusins results in rapidly fatal cardiac failure. 
In adult mouse hearts, CM-specific ablation of both mitofusins 
results in an increased number of small mitochondria, impaired 
respiration, elevated ROS levels, and eccentric cardiomyopathy 
due to impaired mitophagy, despite the absence of CM loss. 
In Drosophila, CM-specific silencing of MARF, the Drosophila
equivalent of mitofusin, leads to the formation of small, depolarized 
mitochondria in hypercontractile heart tubes and increased ROS 
production (Jiang et al., 2022). Mice deficient in mitofusins in 
skeletal muscle develop a lethal mitochondrial myopathy, likely 
due to a significant reduction in mtDNA levels and an increase in 
mtDNA point mutations and deletions (El-Hattab et al., 2017). 

3.3 OPA1, role of OPA1 in mitochondrial 
dynamics, how OPA1 activity is regulated

OPA1 is a dynamin-like GTPase located in the IMS and 
anchored within the IMM (Noone et al., 2022). OPA1 is responsible 
for IMM fusion and is a key regulator of the fusion/fission balance, 
as well as other processes. Its activity is regulated by proteolytic 
processing (Yang et al., 2015).

The OPA1 protein contains major cleavage sites, S1 and 
S2, cleaved by the proteases OMA1 and YME1L, respectively 
(Anand et al., 2014). These sites will be examined in greater detail 
in the subsequent sections. Cleavage at these sites generates soluble 
forms of OPA1 (S-OPA1) that lack the transmembrane domain. 
Additionally, OPA1 can undergo alternative splicing, resulting in 
isoforms that exhibit differential expression across various tissues. 
There are five known isoforms of OPA1: a, b, c, d, and e. Isoforms 
a and b are classified as long forms (L-OPA1), whereas isoforms 
c, d, and e are considered short forms (S-OPA1) (Rainbolt et al., 
2016). Some studies suggest that constitutive OPA1 processing is 
essential for maintaining normal mitochondrial morphology, with 
L-OPA1 and S-OPA1 hypothesized to collaborate in facilitating 
mitochondrial fusion and assembling complexes that preserve 
cristae structure (Fry et al., 2024). Conversely, other research 
indicates that L-OPA1 alone is sufficient for fusion, while S-OPA1 
is associated with mitochondrial fission. “Notably, GTPase-inactive 
S-OPA1 has been observed to partially localize to mitochondria-
associated ER membranes (MAMs) (Fogo et al., 2024).

OPA1 has multiple functions beyond mediating mitochondrial 
fusion. It plays a crucial role in maintaining the proper architecture 
of the IMM cristae, as evidenced by several studies (Zhang et al., 
2014). The morphology of cristae is vital for tissue homeostasis and 
the regulation of cell death. Both long and short forms of OPA1 
(L-OPA1 and S-OPA1) form complexes that are essential for the 
maintenance of cristae structure. OPA1 facilitates the formation 
of tight cristae junctions, thereby modulating apoptotic cristae 
remodeling and protecting cells from apoptosis. The stabilization 
of cristae by OPA1 enhances mitochondrial respiratory efficiency 
and reduces mitochondrial dysfunction, cytochrome c release, and 
ROS production (Liang et al., 2024). Moreover, OPA1 is involved in 

the regulation of oxidative phosphorylation and the stabilization of 
ETC complexes, which leads to an increase in respiratory capacity 
(Su et al., 2023b). Furthermore, OPA1 regulates mtDNA. Some 
studies suggest that OPA1 may reduce mtDNA copy number by 
inhibiting replication or promoting the accumulation of deletions. 
By promoting fusion, OPA1 contributes to mitochondrial elongation 
and network formation (He et al., 2022).

While OPA1 does not enhance mitochondrial biogenesis 
or inhibit autophagy, it is crucial for sustaining mitochondrial 
functional integrity (Wang et al., 2024). It is known that OPA1 
undergoes degradation in depolarized mitochondria. In cases of 
heart failure (HF), OPA1 levels are reduced, although it remains 
uncertain whether this reduction is a consequence of HF or a 
contributing factor (Schwartz et al., 2022). Mutations in OPA1 cause 
autosomal dominant optic atrophy (DOA), a neurodegenerative 
disorder primarily affecting the optic nerve. Overexpression of 
OPA1 has been shown to confer protection against mitochondrial 
diseases and apoptotic stimuli, and it can induce mitochondrial 
elongation (Cartes-Saavedra et al., 2023). While some studies 
suggest that OPA1 overexpression may be toxic in mice, mild 
overexpression does not appear to impact lifespan. Controlled 
OPA1 overexpression mitigates injury in highly metabolically 
active organs. This protection is achieved by reducing cristae 
remodeling, cytochrome c release, and mitochondrial dysfunction, 
thereby counteracting ischemic damage. Additionally, it can induce 
physiological cardiac hypertrophy and potentially reduce body 
weight, although it may also increase the risk of spontaneous 
tumorigenesis.

A reduction in OPA1 levels has numerous adverse consequences, 
attributable to the multifaceted roles of OPA1. This reduction 
can result in compromised mitochondrial fusion and cristae 
architecture, heightened vulnerability to apoptosis, respiratory 
dysfunction, and excessive ROS production (Pernas and Scorrano, 
2016). In the absence of OPA1, OMMs can still undergo fusion, 
but IMMs cannot, leading to metabolic disturbances and preventing 
mixing of matrix contents between mitochondria (Nyenhuis et al., 
2023). In Drosophila, OPA1 silencing in cardiac tissue results in 
cardiac dysfunction, mitochondrial depolarization, and increased 
ROS production (Dorn et al., 2011). In mice, both constitutive 
and tissue-specific ablation of OPA1 is embryonically lethal, while 
heterozygous OPA1 ± mice exhibit late-onset cardiac dysfunction 
at 1 year of age, characterized by reduced heart size and function. 
These mice exhibit small, fragmented mitochondria with damaged 
cristae. Furthermore, mitochondrial density is reduced, and their 
arrangement between myofilaments is disorganized. These defects 
culminate in impaired cardiac mitochondrial function and reduced 
ATP production. Additionally, they exhibit a decreased mtDNA 
copy number and may eventually develop blindness (Huang et al., 
2017). The concomitant increase in ROS renders the myocardium 
more susceptible to I/R injury. Nonetheless, some studies reported 
no significant increase in apoptosis or cardiomyocyte loss in these 
heterozygous OPA1 ± mice.

Drp1, Mfn1/2, and OPA1 constitute a cohesive regulatory 
network that responds to metabolic stress. Post-translational 
modifications, including Drp1 phosphorylation and OPA1 cleavage, 
serve as critical intervention nodes that significantly impact the 
mitochondrial quality control system. Future research should aim to 
elucidate the distinct outcomes associated with various intervention 
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FIGURE 2
Comparison of mitochondrial dynamics imbalance in four disease models.

nodes, thereby enhancing our understanding of the intricate 
regulation of mitochondrial quality control. 

4 Imbalance of mitochondrial fission 
and fusion in myocardial pathologies

In this section, we examine the aberrant regulation of 
mitochondrial fission and fusion processes in various myocardial 
pathologies. We elucidate alterations in key molecular regulators 
across different pathological conditions and the resultant functional 
consequences. Additionally, we compile intervention strategies 
suggested by contemporary research. Figure 2 provides a summary 
of the dynamic changes in protein expression and the effects of 
interventions in models of these diseases.

4.1 Sepsis

Sepsis-associated organ failure is characterized by increased 
ROS production and mitochondrial dysfunction (Lira Chavez et al., 
2023). An imbalance in mitochondrial fission and fusion processes 
may contribute to the pathophysiology of sepsis. Some sepsis 
models have demonstrated a reduction in Mfn2 mRNA levels and 
an elevation in Drp1 mRNA levels, which are associated with 
mitochondrial fragmentation (Ying et al., 2017; Wu et al., 2023). 
Recent research on MFN2 splice variants, specifically ERMIT2 and 

ERMIN2, has elucidated their pivotal function in sustaining ER-
mitochondria tethering and calcium transfer (Naon et al., 2023). 
These findings may offer novel insights into the mitochondrial 
dysfunction associated with sepsis. The efficacy of treatments in 
restoring mitochondrial fusion varies across different sepsis models, 
although recovery has been observed in lipopolysaccharide (LPS)-
treated animals. The compound mdivi-1, a Drp1 inhibitor, has been 
shown to preserve mitochondrial function and mitigate apoptosis 
in a caecal ligation and puncture model of sepsis (Deng et al., 
2020). The study conducted by Bordt et al. (2017) offers a significant 
revision to the traditional understanding, demonstrating that Mdivi-
1 is not a specific inhibitor of DRP1. Instead, it primarily exerts its 
effects through the reversible inhibition of mitochondrial complex I, 
a mechanism that operates independently of Drp1. This compound’s 
capacity to modulate reactive oxygen species (ROS), particularly by 
inhibiting reverse electron transport (RET) ROS, may elucidate its 
protective effects observed in various disease models. Furthermore, 
RCAN1 deficiency has been shown to aggravate sepsis-induced 
cardiac remodelling and dysfunction by accelerating pathological 
mitochondrial fission (Zhuang et al., 2022). 

4.2 Myocardial ischemia/reperfusion injury

Numerous studies have established a correlation between I/R 
injury and dysregulation of mitochondrial fission/fusion dynamics 
(Bai et al., 2023). Specifically, mitochondria in ischemic cells 
undergo Drp1-dependent fission. However, studies have shown 
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that the TBC1D15-Drp1 interaction, which mediates mitochondrial 
homeostasis, confers cardio protection against myocardial I/R injury 
(Sun et al., 2022). Drp1-mediated fission promotes mitochondrial 
ROS production, elevates cytosolic calcium levels, and impairs 
diastolic relaxation (Tao et al., 2018; Du et al., 2022). Consequently, 
inhibiting mitochondrial fission represents a protective strategy 
against I/R injury. Inhibiting Drp1, either by overexpressing 
a dominant-negative form or using mdivi-1, has been shown 
to enhance cell survival and delay mitochondrial permeability 
transition pore (mPTP) opening following simulated I/R injury in 
cardiomyocytes (Ong et al., 2010). Additionally, the Drp1 inhibitor 
P110 has demonstrated efficacy in reducing brain I/R injury 
when administered at reperfusion (Liu et al., 2022). Separately, 
inhibition of Drp1 (and Fis1) has been shown to decrease right 
ventricular dysfunction in pulmonary hypertension models of I/R 
(Tian et al., 2017). However, it is important to consider that a low 
level of chronic Drp1 activation may be necessary for processes 
such as mitophagy and ATP synthesis (Schmitt et al., 2018). 
Furthermore, additional Drp1 inhibitors, such as Drpitor1a, have 
demonstrated potential cardioprotective effects. Drpitor1a has been 
shown to decrease infarct size and enhance cardiac function in 
a mouse model of myocardial ischemia-reperfusion (I/R) injury 
by directly inhibiting the GTPase activity of Drp1 and mitigating 
mitochondrial over division (Piao et al., 2024). Conversely, S1QELs, 
which are specific inhibitors of mitochondrial complex I superoxide 
production, have exhibited significant myocardial protection in an 
I/R injury model by specifically inhibiting Q superoxide production 
at the complex I site (Watson et al., 2019).

Ischemic preconditioning (IPC)—a phenomenon characterized 
by brief ischemic episodes that confer protection against subsequent 
prolonged ischemia-reperfusion (I/R) injury—plays a pivotal 
role in modulating mitochondrial dynamics to achieve cardio 
protection. IPC effectively enhances fusion processes dependent 
on OPA1 and MFN2, thereby reducing infarct size and preserving 
mitochondrial function (Leurcharusmee et al., 2022). Despite 
the challenges associated with the clinical translation of IPC, its 
underlying mechanisms highlight the therapeutic potential of 
targeting mitochondrial dynamics in the context of I/R injury.

The immunoproteasome subunit β2i ameliorates myocardial 
ischemia/reperfusion injury by regulating mitochondrial fusion 
(Su et al., 2023a). Overexpression of OPA1 confers protection against 
ischemic damage, whereas heterozygous OPA1 ± mice exhibit 
increased ROS, rendering the myocardium more susceptible to 
ROS-induced I/R injury. Genetic inhibition of the OPA1-mediated 
cristae remodeling pathway also offers protection against ischemic 
damage in both cardiac and cerebral tissues (Varanita et al., 2015). 

4.3 Diabetic myocardial dysfunction

Mitochondrial dysfunction has been implicated in the 
pathogenesis of type 1 diabetes, type 2 diabetes, and obesity, 
with diabetes serving as a risk factor for HF (Belosludtsev et al., 
2020). In type 2 diabetes, cardiomyocytes exhibit damaged 
and depolarized mitochondria, characterized by impaired 
fatty acid oxidation, reduced mitochondrial content, decreased 
oxidative phosphorylation capacity, and increased ROS production 
(Pinti et al., 2019). Various studies have demonstrated that 

individuals with diabetes exhibit reduced expression of 
mitochondrial fusion proteins, such as Mfn2, Mfn1, and OPA1 
(Hu S. et al., 2020). As evidenced by studies (Naon et al., 2023), 
a decrease in MFN2 expression results in compromised lipid 
transfer between the endoplasmic reticulum and mitochondria, 
subsequently inducing endoplasmic reticulum stress and 
inflammation. These mechanisms may play a contributory role 
in the pathogenesis of diabetic cardiomyopathy. Cellular models of 
diabetes reveal mitochondrial fragmentation and diminished fusion 
(Chang et al., 2022). In cardiomyocytes, exposure to high glucose 
levels results in the formation of short and small mitochondria, 
whereas in pancreatic β-cells, a reduction in OPA1 levels is observed 
prior to the onset of diabetes (Vasquez-Trincado et al., 2016). Mouse 
models of diabetes exhibit mitochondrial fragmentation, potentially 
linked to increased OPA1 cleavage. Furthermore, endothelial cells 
in diabetic models display elevated Drp1 levels, decreased OPA1, 
and consequently, enhanced mitochondrial fission.

Mitochondrial dynamics and ROS production in the 
diabetic heart have a bidirectional relationship. While diabetes-
induced increases in mitochondrial ROS production influence 
mitochondrial dynamics, enhanced mitochondrial fission 
may also contribute to elevated ROS production in the 
diabetic heart (Atici et al., 2023). Downregulation of Mfn2 
exacerbates diabetic cardiomyopathy (Hu et al., 2019), and 
recent studies have shown that brain natriuretic peptide (BNP) 
protects against diabetic cardiomyopathy by promoting OPA1-
mediated mitochondrial fusion through activation of the PKG-
STAT3 pathway (Chang et al., 2023).

The inhibition of mitochondrial fission has been demonstrated 
to enhance muscle insulin signaling and systemic insulin sensitivity, 
while also reducing ROS production and cell death (Wang et al., 
2023). Elevating OPA1 levels can prevent high glucose-induced 
mitochondrial fragmentation and dysfunction (Liu et al., 2021). 
Nonetheless, mitochondrial fragmentation might represent an 
adaptive response to high glucose under specific cellular contexts. 
Insulin treatment of cardiomyocytes or skeletal muscle cells can 
elevate OPA1 levels and promote mitochondrial fusion. In cells 
deficient in OPA1 and Mfn2, the effects of insulin are compromised. 

4.4 Doxorubicin-induced myocardial 
apoptosis

Doxorubicin (DOX), an anthracycline antibiotic, is extensively 
used in the treatment of various malignancies. However, its clinical 
application is limited by dose-dependent cardiotoxicity, which arises 
partly from mitochondrial damage, particularly given the heart’s 
high mitochondrial density (Kong et al., 2022). DOX administration 
causes mitochondrial dysfunction, characterized by impaired 
oxidative phosphorylation, reduced ATP production, mtDNA 
damage, elevated ROS production, and mitochondrial calcium 
overload. The pathogenesis of DOX-induced cardiomyopathy may 
involve dysregulated mitochondrial biogenesis and accelerated 
mitochondrial fragmentation (Songbo et al., 2019).

In murine cardiomyocytes, DOX has been demonstrated 
to induce mitochondrial fragmentation (Riba et al., 2017). 
In cardiomyocytes, DOX administration reduces the levels of 
fusion proteins, including Mfn1, Mfn2, and OPA1, shifting the 
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TABLE 3  Summary of mitochondrial quality control-targeting drugs in cardiovascular disease models.

Disease Drugs/Compounds Effect

Sepsis mdivi-1 Preserve mitochondrial function and mitigate 
apoptosis

Myocardial ischemia/reperfusion injury

mdivi-1 Enhances cell survival and delays mPTP opening

P110 Reduces infarct size and adverse remodeling 
(myocardial I/R)

Diabetic cardiomyopathy brain natriuretic peptide (BNP) Protects against DCM by promoting OPA1-mediated 
fusion

Doxorubicin-induced myocardial apoptosis

mdivi-1 Alleviates cardiotoxicity by inhibiting Drp1-mediated 
fission and attenuating aberrant 
PINK1/Parkin-mitophagy

ciclosporin A Upregulates Mfn2 and OPA1, promoting fusion

melatonin and metformin Enhance mitochondrial biogenesis and function

mitochondrial fission/fusion balance toward fission (Tang et al., 
2017; Prathumsap et al., 2022). This DOX-induced mitochondrial 
fission is not primarily linked to cell division or apoptosis but is 
associated with mitophagy, suggesting it may represent an adaptive 
response to DOX-induced stress (Songbo et al., 2019).

Recent research has increasingly focused on mitochondrial 
quality control systems as potential therapeutic targets to 
mitigate DOX-induced cardiotoxicity. Mdivi-1 alleviates DOX-
induced cardiotoxicity by inhibiting Drp1 phosphorylation and 
mitochondrial fission (Gharanei et al., 2013). It also attenuates DOX-
induced overactivation of PINK1/Parkin-mediated mitophagy, 
potentially contributing to the preservation of mitochondrial 
mass and function (Yin et al., 2018). Furthermore, cyclosporine 
A contributes to the maintenance of mitochondrial fusion by 
upregulating Mfn2 and OPA1 (Marechal et al., 2011). Additionally, 
melatonin and metformin, both widely used clinically, can enhance 
mitochondrial biogenesis by preserving mitochondrial function 
and homeostasis (Arinno et al., 2021). Furthermore, the function of 
the novel MTFP1 in doxorubicin (DOX)-induced cardiotoxicity 
remains unclear. However, studies have demonstrated that 
knockdown of Mtfp1 can reduce cardiomyocyte loss associated with 
DOX-induced cardiotoxicity. Consequently, modulating MTFP1 
expression may represent a novel therapeutic strategy for managing 
chemotherapy-induced cardiotoxicity (Aung et al., 2017). Table 3 
provides a summary of the role of mitochondrial quality control 
drugs in cardiovascular disease models.

5 Conclusion

Mitochondrial dynamics, governed by proteins such as 
Drp1, Mfn1/2, and OPA1, are essential for maintaining cardiac 
homeostasis by regulating energy production, quality control, 
and cell survival. Disruption of the fission/fusion balance is 
a key pathogenic mechanism in various myocardial diseases. 
In sepsis, decreased Mfn2 and increased Drp1 levels lead to 
mitochondrial fragmentation and dysfunction. During I/R injury, 

excessive Drp1-dependent fission exacerbates damage, whereas 
OPA1 overexpression or Drp1 inhibition exerts protective effects, 
albeit with potential impairment of basal mitophagy. Diabetic 
cardiomyopathy is marked by reduced expression of fusion proteins 
(Mfn1, Mfn2, OPA1), increased fission, and overproduction 
of reactive oxygen species (ROS), which contribute to insulin 
resistance and cardiac dysfunction. Similarly, doxorubicin-
induced cardiotoxicity features downregulation of fusion proteins 
and increased fission, associated with dysregulated mitophagy. 
Targeting specific dynamin-related proteins, such as with Drp1 
inhibitors (mdivi-1, P110) or strategies to enhance OPA1 or 
Mfn2, has demonstrated considerable therapeutic potential 
in preclinical models. However, the functional redundancy 
and multifaceted roles of these regulators—especially their 
involvement in critical processes such as mitophagy, apoptosis, and 
development—underscore the complexity of such interventions. 
Despite significant advances, several controversies and limitations 
remain. The dual—sometimes opposing—roles of dynamics 
proteins in fusion, fission, mitophagy, and apoptosis complicate 
therapeutic targeting. Many studies rely on genetically modified 
mouse models, which may not fully recapitulate human disease 
pathophysiology. Furthermore, tissue-specific and temporal 
regulation of these proteins is still poorly understood. Future 
research should prioritize elucidating the tissue-specific regulation 
and temporal dynamics of these processes during disease 
progression. Additionally, developing strategies to precisely 
modulate these pathways to restore mitochondrial and cardiac 
function, without compromising essential cellular activities, 
is crucial.
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