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Cardiac mitochondria generate ATP, via oxidative phosphorylation (OXPHOS) 
to sustain continuous and forceful myocardial contraction, thereby meeting 
systemic metabolic demands. Mitochondrial biogenesis and energy metabolism 
depend on proteostasis, which can be disrupted by stressors such as 
hypoxia, leading to impaired cardiac function. As a result, the study of 
mitochondrial energy metabolism and proteostasis under stress has become 
a key focus in cardiovascular research. The mitochondrial unfolded protein 
response (UPRmt) plays a “double-edged sword” role—either protective or 
detrimental—depending on the type, intensity, and duration of the stressor. 
This has sparked interest in strategies aimed at enhancing its adaptive signaling 
while inhibiting maladaptive pathways. Acting as mediators of intercellular 
communication, mitokines may transmit local mitochondrial stress signals to 
mitochondria in distant cells and tissues. This review analyzes and summarizes 
the role of UPRmt in regulating mitochondrial factors and explores the 
mechanisms through which fibroblast growth factor 21 (FGF21), secreted by the 
liver and skeletal muscle, influences protein homeostasis in cardiac myocytes. 
These insights aim to offer new avenues for the development of targeted UPRmt 
therapies and rehabilitation strategies for heart diseases.
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 1 Introduction

Cardiac diseases such as acute myocardial infarction (MI), chronic heart failure 
(HF), and ischemia–reperfusion injury pose serious threats to human health, with 
mitochondrial dysfunction being a central pathological mechanism. As a highly energy-
dependent organ, the heart contains limited ATP reserves and thus relies on mitochondria 
to continuously generate ATP via oxidative phosphorylation (OXPHOS) to sustain 
contractile function. Mitochondria occupy 30%–40% of cardiomyocyte volume and 
are distributed among myofibrils, beneath the sarcolemma, and around the nucleus. 
They contribute to energy metabolism and signal transduction through calcium ions 
(Ca2+), reactive oxygen species (ROS), and other molecules (Nguyen et al., 2019; 
Hinton et al., 2024). Studies have shown that ischemic heart disease–induced heart 
failure with reduced ejection fraction (HFrEF) and metabolic abnormality–induced heart 
failure with preserved ejection fraction (HFpEF)—such as that seen in hypertension

Frontiers in Cell and Developmental Biology 01 frontiersin.org

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2025.1652353
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2025.1652353&domain=pdf&date_stamp=2025-10-29
mailto:shenly@jlu.edu.cn
mailto:shenly@jlu.edu.cn
mailto:liubin3333@vip.sina.com
mailto:liubin3333@vip.sina.com
https://doi.org/10.3389/fcell.2025.1652353
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcell.2025.1652353/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1652353/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1652353/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Gao et al. 10.3389/fcell.2025.1652353

and obesity—are associated with mitochondrial respiratory 
chain dysfunction, abnormal ROS accumulation, mitochondrial 
DNA (mtDNA) heteroplasmy, and impaired biogenesis 
(Karamanlidis et al., 2011; Duan et al., 2019; Peoples et al., 2019; 
Elorza and Soffia, 2021). Mitochondrial damage contributes to the 
progression of myocardial infarction and heart failure by activating 
pathways such as apoptosis/necrosis and the NLRP3 inflammasome 
(Halestrap et al., 2004; Wang et al., 2023). Consequently, increasing 
attention has been paid to mitochondria as therapeutic targets in 
cardiac diseases.

Cardiomyocyte metabolic dysfunction is closely associated with 
mitochondrial damage. The mitochondrial protein homeostasis in 
injured cardiomyocytes not only determines the mitochondrial 
function but also dictates the fate of mitochondria. Mitochondrial 
damage, such as oxidative stress, unfolded proteins, and impairment 
of the electron transport system, can disrupt mitochondrial protein 
import, thereby triggering the Mitochondrial Stress Response 
(MSR) in mammalian cells. The MSR coordinates a series of adaptive 
responses, including the activation of the Mitochondrial Unfolded 
Protein Response (UPRmt), through multi-layered protein quality 
control mechanisms (adjustments in protein production, folding, 
and clearance) to restore mitochondrial function and maintain 
cellular homeostasis (Higuchi-Sanabria et al., 2018; Smyrnias et al., 
2019; Hetz et al., 2020). Research on UPRmt has become an 
indispensable part of cardiovascular disease research (Chang et al., 
2021; Liu et al., 2022). The UPRmt activated by hemodynamic 
overload, neurohumoral stress, etc., can mitigate the exacerbation 
of mitochondrial dysfunction in cardiomyocytes and prevent 
myocardial contractile failure caused by cardiac dysfunction 
(Wang et al., 2019). With the increasing understanding of the role 
of stress in heart disease, people have begun to pay attention to 
the impact of psychological stress, environmental stress, and even 
exercise stress on heart disease, especially the pathways by which 
stress affects mitochondrial function and its role in maintaining the 
homeostasis of cells, tissues, or organs (Canada et al., 2021).

After mitochondrial perturbations in specific tissues of 
Caenorhabditis elegans. (for example, in neurons), MSR also 
occurred in distal tissues (such as in intestine), resulting in 
systemic effects such as lifespan extension (Durieux et al., 2011), 
indicating that local mitochondrial stress can communicate with 
other mitochondria in distant cells and tissues. Mitochondrial 
stress-induced mitokines are considered as intercellular and 
inter-organismal communication molecules that play a critical 
role in maintaining cellular homeostasis (Zhang et al., 2024). 
Growing evidence suggests that mitokines induced by appropriate 
physical activity may help reduce metabolic risk factors associated 
with heart failure (HF). Regular moderate exercise and tailored 
dietary strategies have been shown to support healthy aging 
and aid in cardiac rehabilitation. Mitokines are increasingly 
recognized as key mediators of exercise-induced physiological 
responses, as well as targets for dietary interventions and 
potential modulators of longevity. Moreover, tissue-specific 
mitochondrial dysfunction in organs such as the liver or skeletal 
muscle can initiate a mitochondrial stress response (MSR) in 
remote organs by stimulating the secretion of FGF21, thereby 
modulating systemic metabolic homeostasis (Nunnari and 
Suomalainen, 2012; Kang et al., 2021). These findings suggest that 
mitokines may serve as an entry point for further investigation into 

the roles of UPRmt-related molecules in cardiac diseases such as 
heart failure. 

2 Mitochondrial unfolded protein 
response (UPRmt) and cardiac 
diseases

Mitochondrial–nuclear communication is essential for 
maintaining cellular function under stress. Mitochondria produce 
ATP via the tricarboxylic acid (TCA) cycle and OXPHOS and are 
involved in vital cellular processes such as energy metabolism, which 
require tight coordination between the nuclear and mitochondrial 
genomes. Under stress conditions, the accumulation of misfolded 
mitochondrial proteins, respiratory chain dysfunction, and 
excessive ROS production disrupt mitochondrial proteostasis. This 
triggers the mitochondrial stress response (MSR) in mammalian 
cells—a feedback network mediated by both anterograde signaling 
(from the nucleus to the mitochondria) and retrograde signaling 
(from the mitochondria to the nucleus). This bidirectional 
communication regulates protein homeostasis and mitochondrial 
quality control to repair or eliminate damaged organelles and 
maintain energy metabolic balance (Quirós et al., 2016; Naresh 
and Haynes, 2019).

The mitochondrial stress response (MSR) encompasses multiple 
response patterns that enhance mitochondrial adaptability and 
multifunctionality through the coordinated activation of several 
stress-response pathways (Quirós et al., 2016). As the first 
stress-protective response, UPRmt activates protein refolding or 
removes misfolded proteins to resist mitochondrial damage-
mediated imbalance of protein homeostasis, which is considered 
the initial defense mechanism for cells to resist external stress 
(Sun et al., 2024). Researchers have identified four main UPRmt 
axes: the transcriptional canonical UPRmt axis, the mitochondrial 
intermembrane space (IMS) UPRmt axis, the translational canonical 
UPRmt axis, and the Sirtuin UPRmt axis (Cilleros-Holgado et al., 
2023). Although the component molecules in different axes vary, 
these different UPRmt axes may be activated simultaneously and 
coordinate with each other, thus forming a complete UPRmt 
functional network. As an adaptive transcriptional response, the 
UPRmt is a retrograde signal from the mitochondria to the nucleus 
(Anderson and Haynes, 2020; Cilleros-Holgado et al., 2023), after 
which the nucleus sends new instructions to the mitochondria, 
forming a feedback regulatory loop.

The main mechanism of the classical UPRmt is as follows: 
when mitochondrial proteins are misfolded or protein import 
disorders, ATF5 cannot enter the mitochondria and initiate 
protective gene transcription. ATF5 is translocated to nucleus, where 
it activates the transcription of mitochondrial chaperones (such as 
mtHsp70, Hsp60, and Hsp10), mitochondrial proteases (such as 
ClpP, LonP1, OMI/HTRA2, paraplegin, YME1L, MPP, and OMA1), 
and antioxidants (thioredoxin 2), etc. (Dietl and Maack, 2017; 
Svaguša et al., 2020; Sun et al., 2024). Other UPRmt effectors, 
such as CHOP and ATF4, are also involved in the integrated stress 
response (ISR), another crucial component of the MSR. The ISR 
senses various stress signals through four specific kinases (PERK, 
GCN2, PKR, HRI), which regulate the phosphorylation of the 
translation initiation factor eIF2α. This phosphorylation suppresses 
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global protein synthesis (Costa-Mattioli and Walter, 2020; Guo et al., 
2020; Urbina-Varela et al., 2020; Ryoo, 2024), while selectively 
promoting the translation of transcription factors such as ATF4, 
CHOP, and ATF5. These transcription factors, in turn, regulate 
the expression of LONP1, ClpP, and YME1L, which cleave or 
process damaged or irreparable proteins not managed by HSPs 
(Palam et al., 2011; Svaguša et al., 2020).

Although perspectives vary regarding the relationship between 
the ISR and UPRmt, the prevailing view is that ISR activation is 
essential for UPRmt function in mammals. Specifically, translation 
attenuation via ISR is a prerequisite for the transcriptional 
response to mitochondrial dysfunction (Pakos-Zebrucka et al., 2016; 
Quirós et al., 2017; Samluk et al., 2019). Evidence indicates that 
HRI, a cytoplasmic eIF2α kinase, mediates ISR activation following 
mitochondrial impairment. Mitochondrial dysfunction activates the 
metalloprotease OMA1, which cleaves DELE1. The cleaved DELE1 
then translocates to the cytoplasm, oligomerizes, and binds directly 
to cytoplasmic HRI, stimulating eIF2α phosphorylation and thereby 
initiating the ISR (Fessler et al., 2020; Guo et al., 2020; Fessler et al., 
2022). This pathway, as an indispensable component of UPRmt, 
maintains cellular homeostasis and restores mitochondrial function 
in response to stress. Moreover, mitochondrial dysfunction can 
reduce cytoplasmic aspartate and asparagine levels, which promotes 
GCN2-mediated eIF2α phosphorylation and triggers associated 
metabolic shifts (Mick et al., 2020; Misra et al., 2021). As a 
component of the adaptive transcriptional arm of UPRmt, the 
ISR attenuates global protein synthesis while allowing preferential 
translation of the transcription factors CHOP, ATF4, and ATF5 
through upstream open reading frames (uORFs) (Vattem and Wek, 
2004; Zhou et al., 2008; Quirós et al., 2017; Lu et al., 2022). This 
coordination of gene transcription and protein translation enables 
UPRmt and ISR to collaboratively regulate mitochondrial protein 
synthesis, folding, and degradation, ultimately restoring cellular 
homeostasis (Lu et al., 2022). These findings indicate that UPRmt 
acts as a central hub integrating multiple stress response pathways. 
Exploring UPRmt in cardiomyocytes is particularly valuable for 
understanding mitochondrial stress responses and their functional 
implications in cardiac pathophysiology (Figure 1).

Research into UPRmt during cardiac pathology is rapidly 
expanding. UPRmt activation, triggered by hemodynamic overload 
and neurohumoral stress, can mitigate mitochondrial dysfunction 
in cardiomyocytes and prevent contractile failure associated with 
heart disease. ATF5, a key transcription factor in UPRmt, has 
been shown to contribute to cardioprotection (Wang et al., 2019). 
Additionally, studies indicate that under hypoxic conditions, the 
UPRmt-induced protease LonP1 reduces ROS levels by degrading 
misfolded proteins and modulates mitochondrial bioenergetics, 
thereby exerting protective effects on the heart (Kuo et al., 
2015; Venkatesh et al., 2019). However, prolonged or severe 
oxidative stress decreases LonP1 activity, which disrupts respiratory 
chain function and leads to left ventricular systolic dysfunction 
(Hoshino et al., 2014). Wai et al. reported that cardiac-specific 
deletion of YME1L, another downstream effector of UPRmt, results 
in the development of heart failure (Wai et al., 2015). Moreover, 
downregulation of the UPRmt-regulated endonuclease G causes 
excessive ROS production, impairs mtDNA replication, and induces 
cardiac hypertrophy in rodents (Blasco et al., 2018). UPRmt also 
facilitates the clearance and degradation of misfolded proteins 

in damaged mitochondria following myocardial infarction (MI), 
further supporting its role in cardiac function regulation.

Clinical data show that patients with high myocardial expression 
of UPRmt markers (ATF5, Hsp60, LonP1) exhibit significantly 
reduced myocardial fibrosis and lower cardiomyocyte mortality 
rates (Smyrnias et al., 2019). Mitochondria-targeted drugs, such 
as oligomycin, have been shown to alleviate lipopolysaccharide-
induced cardiac dysfunction by specifically activating UPRmt 
(Wang Y. et al., 2021). Patients with low expression of HSP10, 
HSP60, HTRA2, OMA1, SPG7, and YME1L who have ischemic 
cardiomyopathy, dilated cardiomyopathy, or both require earlier 
heart transplantation or left ventricular assist device support 
(Bakovic et al., 2025). These findings suggest that appropriate 
activation of UPRmt may suppress myocardial injury. Although 
many studies have demonstrated that UPRmt activation promotes 
mitochondrial repair, enhances innate immune responses against 
pathogens, supports metabolic adaptation, and even extends 
lifespan, its role remains controversial. Some studies suggest 
that chronic or excessive UPRmt activation can trigger pro-
inflammatory and apoptotic pathways, worsening tissue damage and 
accelerating heart disease progression (Kuo et al., 2015; Wang et al., 
2016). Thus, UPRmt is considered a “double-edged sword,” and 
further research is needed to elucidate strategies for enhancing its 
beneficial effects to protect cardiac function.

3 Mitokines

Under stress conditions, specific organs release signaling 
molecules that act as mediators of intercellular communication, 
regulating systemic homeostasis via autocrine, paracrine, or 
especially endocrine pathways (Herrlich et al., 2022). Mitochondrial 
stress can trigger the release of distinct molecules into the 
circulation, which subsequently influence mitochondrial biology 
in distant target tissues to coordinate systemic responses. These 
molecules are referred to as mitokines (Durieux et al., 2011). 
Mitokines, secreted in response to mitochondrial stress or the 
mitochondrial unfolded protein response (UPRmt secreted in 
response to mitochondrial stress or UPRmt, facilitate interorgan 
crosstalk and coordinate metabolic regulation (Kim et al., 2013; 
Keipert et al., 2014). They primarily include signaling molecules 
encoded by nuclear DNA (e.g., GDF15 and FGF21) and those 
encoded by mitochondrial DNA (e.g., humanin, HN). Circulating 
mitokine levels are associated with aging and may play a role in the 
development of age-related chronic conditions, including metabolic, 
cardiovascular, and neurodegenerative diseases (Burtscher et al., 
2023). Among these, FGF21 was the first mitokine identified 
in mammals and, along with GDF15, remains one of the most 
extensively studied mitokines. 

3.1 FGF21

FGF21, a mitokine, is an evolutionarily conserved endocrine 
metabolic regulator encoded by a gene located on human 
chromosome 19. It produces a 209-amino-acid secreted protein 
with a signal peptide. It binds to FGFR at the N-terminus 
and anchors to KLB at the C-terminus to form a ternary 
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FIGURE 1
Hypothetical model of UPRmt signaling transduction in cardiomyocytes.

complex, initiating receptor dimerization and phosphorylation 
cascades that activate downstream pathways (Ding et al., 2012; 
Aaldijk et al., 2023; Chen et al., 2023). As a member of the 
endocrine FGF19 subfamily, FGF21 can be released into the 
bloodstream (Beenken and Mohammadi, 2009; Potthoff et al., 
2012)and regulate metabolism within and between tissues via
autocrine, paracrine, and endocrine mechanisms. While the liver 
is the primary source of circulating FGF21, other tissues such as 
the heart and adipose tissue can locally express it under stress 
conditions, thereby exerting protective effects through autocrine 
or paracrine signaling.

FGF21 is a metabolic hormone predominantly secreted 
by the liver, where it functions as a key energy sensor and 
nutrient regulator. In response to nutritional stressors such 
as starvation, amino acid restriction, and high-fat diet (HFD) 
intake, hepatic expression of FGF21 and its co-receptor KLB is 
upregulated, enabling the liver to adapt to diverse nutritional 
stimuli (Inagaki et al., 2007; Iizuka et al., 2009; Potthoff, 2017). 
Beyond modulating insulin activity, FGF21 also plays pivotal 
roles in regulating glucose and lipid metabolism, as well as 

facilitating adaptation to ketogenic conditions (Wang F. et al., 
2021). Furthermore, acute and chronic stressors—such as 
exercise, oxidative stress, and fluctuations in glucose or 
lipid levels—have been shown to increase FGF21 levels in 
experimental models (Feingold et al., 2012; Gómez-Sámano et al., 
2017). Studies have shown that FGF21 is also induced by 
mitochondrial stress and UPRmt, functioning as a mitokine 
to regulate systemic metabolism and promote cellular stress 
resistance (Ost et al., 2016).

As a dual-function hormone involved in both metabolism 
and cellular stress responses, FGF21 expression is regulated by 
a diverse array of mechanisms. Multiple transcription factors, 
including peroxisome proliferator-activated receptor alpha 
(PPARα), activating transcription factor 4 (ATF4), carbohydrate 
response element-binding protein (ChREBP), and CCR4-NOT 
transcription complex subunit 6-like protein (CNOT6L), regulate 
FGF21 transcription under different physiological and pathological 
conditions. Hepatic FGF21 can be upregulated in response 
to both nutrient deficiency (e.g., starvation, ketogenic diet, 
methionine/choline-deficient diet) and nutrient excess (e.g., high 
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FIGURE 2
Expression and secretion of FGF21 in response to mitochondrial stress.

monosaccharide intake). During nutrient deprivation, fatty acids 
activate PPARα, which in turn induces FGF21 expression as a 
downstream target (Badman et al., 2007). ATF4 also promotes 
FGF21 expression under amino acid restriction and oxidative 
stress. Under conditions of carbohydrate overload, ChREBP induces 
FGF21 to regulate de novo lipogenesis in the liver and adipose 
tissue (Tan et al., 2023). The FGF21 promoter contains two ATF4 
binding elements (AARE1 and AARE2), to which ATF4 can 
directly bind (Maruyama et al., 2016). Furthermore, ATF5, a 
transcription factor in the CREB/ATF family and closely related 
to ATF4 and CHOP, is implicated in stress-responsive FGF21 
regulation (Yamazaki et al., 2010). In stress conditions, FGF21 
contributes not only to glucose and lipid metabolism but also to 
the mitochondrial unfolded protein response (UPRmt), promoting 
cellular homeostasis through mechanisms such as reactive oxygen 
species (ROS) scavenging and inhibition of apoptosis (Itoh and 
Ohta, 2013; Planavila et al., 2015a). 

3.2 GDF15

GDF15, also known as macrophage inhibitory cytokine-1 (MIC-
1), is a member of the transforming growth factor-β (TGF-
β) superfamily, GDF15 binds to the GDNF family receptor α-
like (GFRAL) receptor, recruiting and activating the co-receptor 
RET to initiate downstream signaling pathways involved in 
appetite regulation and energy homeostasis (Emmerson et al., 
2017; Hsu et al., 2017; Mullican et al., 2017; Yang et al., 
2017). GFRAL- or GDF15-deficient mice exhibit increased food 
intake and weight gain, whereas exogenous GDF15 administration 
reduces food intake and promotes weight loss. Moreover, in 
obesity, membrane-bound matrix metalloproteinase 14 (MT1-
MMP/MMP14) inhibits GDF15 signaling by blocking GFRAL. 
Animal studies demonstrate that MT1-MMP knockout restores 

GFRAL expression, attenuating weight gain and food intake in 
obese mice, suggesting this pathway as a potential therapeutic target 
for obesity (Chow et al., 2022).

Under normal physiological conditions, GDF15 is expressed at 
low levels in most organs. However, its expression is significantly 
upregulated in response to tissue damage or stress in organs such as 
the liver, kidneys, heart, and lungs. GDF15 expression is regulated 
by two parallel systems: the UPRmt and ISR (Costa-Mattioli and 
Walter, 2020; Suárez-Rivero et al., 2022a). During mitochondrial 
stress, UPRmt activates GDF15 transcription, while ISR modulates 
its expression via the transcription factor ATF4 (Patel et al., 2019; 
Kang et al., 2021; Miyake et al., 2021). Additionally, transcription 
factors such as ATF5 and CHOP are involved in this process. 
The specific cellular environment and stress type influence the 
activation of these transcription factors and subsequent GDF15 
expression (Zhao et al., 2002; Fiorese et al., 2016). Notably, 
despite partial impairment of UPRmt and GDF15 regulation in 
ATF4, ATF5, or CHOP knockout models, other UPRmt factors 
and alternative mechanisms can maintain stress responses and 
GDF15 functionality. This complex regulatory network suggests that 
GDF15 expression results from the synergistic action of multiple 
stress pathways, with mechanisms varying by cell type and stress 
condition (Figure 2). 

3.3 Mitochondria-derived peptides

Mitochondria-derived peptides (MDPs) are a novel class of 
microproteins encoded by mitochondrial DNA, consisting of 
bioactive peptides with fewer than 100 amino acids (Saghatelian 
and Couso, 2015; Miller et al., 2022; Kong et al., 2023). Eight 
MDPs have been identified, with humanin (HN) and mitochondrial 
open reading frame 12c-encoded peptide (MOTS-c) being the 
most extensively studied exercise-induced mitokines, playing 
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pivotal roles in cellular homeostasis, cytoprotection, and metabolic 
regulation.

HN, a 24-amino acid polypeptide encoded by mitochondrial 
16S rRNA gene, is predominantly expressed in tissues requiring 
high energy metabolism such as the heart, brain, liver, colon, 
and skeletal muscle. It exerts anti-apoptotic and antioxidant effects 
through three primary mechanisms: (1) activation of the PI3K/AKT 
signaling pathway, (2) enhancement of mitochondrial respiratory 
chain activity, and (3) suppression of pro-inflammatory JNK/p38 
signaling pathways (Guo et al., 2003; Cai et al., 2021). MOTS-c, 
another critical MDP member, is regulated by mitochondrial stress 
responses. It improves insulin resistance and promotes metabolic 
homeostasis through AMPK activation via folate cycle inhibition. 
Under glucose restriction conditions, MOTS-c undergoes nuclear 
translocation to modulate antioxidant gene expression, thereby 
enhancing cellular stress resistance (Kim et al., 2018). Both MDPs 
demonstrate exercise-responsive expression patterns, suggesting 
their potential as exercise mimetics. 

3.4 Mitokines and cardiac diseases

FGF21 and GDF15, as sensitive indicators of mitochondrial 
stress, are increasingly recognized for their potential to bridge 
interconnected pathways involving oxidative stress, chronic 
inflammation, and insulin resistance in cardiovascular disease 
research (Table 1). Elevated circulating GDF15 levels have been 
consistently associated with adverse outcomes in obesity-related 
metabolic disorders, heart failure, and atherosclerosis, underscoring 
their diagnostic and prognostic significance (Adela and Banerjee, 
2015). While GDF15 is considered a potential prognostic biomarker, 
the regulatory role of its GFRAL-RET signaling pathway in cardiac 
tissues remains unclear .

The antagonistic effect of FGF21 on atherosclerosis is 
attributed to its ability to induce adiponectin secretion in 
adipocytes and suppress hepatic cholesterol biosynthesis. FGF21 
ameliorates atherosclerosis by inhibiting hepatic SREBP2 expression 
and promoting adipocyte-derived adiponectin production 
(Lin et al., 2015). As a regulator of mitochondrial homeostasis 
in cardiomyocytes under oxidative stress, FGF21’s maintenance 
of mitochondrial dynamics is critical for cardiomyocyte function, 
positioning it as a key therapeutic target for HF (Planavila et al., 
2013; Planavila et al., 2015a; Yan et al., 2023). Diabetes constitutes 
another major cause of myocardial damage, exerting a dual assault 
on the heart through chronic hyperglycemia-induced coronary 
artery disease and direct impairment of cardiomyocyte function, 
thereby significantly increasing the risks of heart failure and 
sudden death (Marx et al., 2023). FGF21 protects against diabetic 
cardiomyopathy by preventing mitochondrial dysfunction via the 
AMPK/FOXO3/SIRT3 signaling axis (Jin et al., 2022). Notably, 
FGF21 exerts tissue-specific effects by interacting with organ-
selective FGFR/KLB receptor complexes. The distribution of 
FGFR subtypes varies by organ: FGFR1/2 is highly expressed in 
adipose tissue, FGFR4 is predominantly found in the liver, and 
both FGFR1 and KLB are enriched in the heart (Gälman et al., 
2008; Suzuki et al., 2008; Fon Tacer et al., 2010; Yang et al., 
2012; Planavila et al., 2013; Li, 2019). This spatial receptor 
distribution underpins the FGF21-mediated metabolic network, 

positioning FGF21 as a pivotal signaling hub that coordinates 
cross-tissue reprogramming of glucose and lipid metabolism 
(Fon Tacer et al., 2010; Moure et al., 2021). Therefore, taking FGF21 
as a focal point, this provides new support for exploring moderate 
exercise and dietary strategies that promote healthy aging and 
cardiac rehabilitation. In the next section, we will use FGF21 as 
an example to investigate the role of UPRmt-regulated mitokines in
cardiac diseases. 

4 The action of FGF21 in cardiac 
diseases

Under cardiac stress conditions, FGF21 is expressed and 
secreted by cardiomyocytes, where it exerts local autocrine and 
paracrine effects. FGF21 produced by cardiomyocytes protects 
against hypertrophic damage (Planavila et al., 2013) and functions 
as an antioxidant within the heart, preventing the accumulation 
of ROS through autocrine signaling (Itoh and Ohta, 2013). In 
addition, fibroblast growth factors (FGFs) released via paracrine 
and endocrine mechanisms have been shown to exert anti-
hypertrophic, antioxidative, and anti-apoptotic effects under both 
physiological and pathological conditions (Itoh and Ohta, 2013; 
Liu et al., 2013; Planavila et al., 2015a). These findings suggest 
that, beyond its metabolic regulatory roles, FGF21 also functions 
as a stress-responsive factor critical for maintaining cardiomyocyte 
homeostasis.

Various physiological conditions—such as fasting (Fazeli et al., 
2015), high sugar intake (Lundsgaard et al., 2017), and dietary 
protein restriction (Laeger et al., 2014)—can alter circulating 
FGF21 levels in humans. However, some studies indicate that 
a ketogenic diet does not significantly affect plasma FGF21 
concentrations in humans (Christodoulides et al., 2009). In diet-
induced obesity models, increased FGF21 expression appears to be 
associated with multiple factors, including organelle stress (such as 
endoplasmic reticulum and mitochondrial stress) (Kim and Lee, 
2014) and the phenomenon of FGF21 resistance (Fisher et al., 
2010). While FGF21 is detectable in muscle biopsies under 
normal conditions (albeit at lower levels than in the liver) (Fisher 
and Maratos-Flier, 2016), stressed skeletal muscle tissue can 
significantly upregulate and secrete FGF21 (Dogan et al., 2014; 
Salminen et al., 2017; Forsström et al., 2019). Recent findings 
further demonstrate that the heart functions not only as a source 
of FGF21 but also as a target tissue (Planavila et al., 2013;
Jovaisaite and Auwerx, 2015).

Preclinical research indicates that FGF21 plays a bidirectional 
regulatory role in pathological states such as myocardial infarction, 
pressure-overload-induced cardiac hypertrophy, and heart failure. 
The heart serves both as a site of FGF21 synthesis—where 
cardiomyocytes secrete it via the SIRT1-PPARα signaling 
pathway—and as a major target tissue, with high local expression 
of the FGFR1/KLB receptor complex (Planavila et al., 2013; 
Planavila et al., 2015b; Tucker et al., 2023). In acute myocardial 
ischemia models, FGF21 activates the FGFR1/KLB-ERK signaling 
pathway in cardiomyocytes, leading to phosphorylation of CREB 
and upregulation of PGC1α, forming a protective regulatory 
cascade. PGC1α in turn suppresses NF-κB-mediated inflammatory 
responses and enhances fatty acid oxidation. It also induces the 
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TABLE 1  The action of FGF21 and GDF15 in cardiac diseases.

Mitokine Source of 
production

Causes of stress Effects on the 
heart

Stress pathway References

FGF21

Liver Fasting, Hunger, Protein 
restriction

Ketones metabolism↑
Fatty acid oxidation↑

MAPK/ERK Badman et al. (2007),
Itoh and Ohta (2013),

Tan et al. (2023)

Pancreas Insulin resistance,
Obesity

Antioxidant defense↑ Ucps/Sods Itoh and Ohta (2013),
Planavila et al. (2015a),

Zhang et al. (2015),
Ferrer-Curriu et al. 

(2021), Ma et al. (2021)

Adipose tissue Cold, Sympathetic 
excitement

Anti-apoptotic capacity↑ FGF21-p38 
MAPK/AMPK

Patel et al. (2014),
Joki et al. (2015),

Zhang et al. (2015)

Skeletal muscle Mitochondrial stress
Muscle atrophy

Myocardial 
hypertrophy↓

Myocardial fibrosis↓
Ventricular remodeling↓

MAPK,
SIRT1-PGC1α,

NF-κB

Itoh and Ohta (2013),
Planavila et al. (2013),

Xu et al. (2019),
Sun et al. (2023)

Cardiomyocytes Myocardial infarction, 
Stress overload

Myocardial 
ischemia/reperfusion 

injury↓

FGFR1/KLB-PI3K-
Akt1-BAD

Liu and Wu (2010),
Liu et al. (2012),
Liu et al. (2013)

GDF15

Heart and 
Cardiovascular System

Heart failure, myocardial 
infarction,

Hypertrophic 
cardiomyopathy

Myocardial function↑
Myocardial 

hypertrophy↓

PI3K-Akt,
SMAD2/3,

Akt, ERK1/2

Kempf et al. (2006),
Xu et al. (2006)

Liver Hepatitis, Hepatic 
Fibrosis

Kidney Acute Kidney Injury, 
Chronic Kidney Disease

Potent anorectic action,
Regulate systemic 

metabolic flexibility,
Regulate oxidative and 

lipolytic functions,
Regulate cardiac insulin 

sensitivity

Chung et al. (2017),
Ost et al. (2020),

Kang et al. (2021)Skeletal muscle Mitochondrial stress,
Intense exercise

expression of mitochondrial antioxidant proteins such as UCP3 
and SOD2, collectively reducing ROS accumulation and improving 
mitochondrial function (Planavila et al., 2013; Planavila et al., 2015a; 
Zhang et al., 2015). Additionally, activation of the FGF21–p38 
MAPK/AMPK pathway can inhibit apoptotic signaling, thereby 
attenuating ischemia-reperfusion injury and myocardial fibrosis 
(Patel et al., 2014; Joki et al., 2015; Zhang et al., 2015).

In chronic pathological models, endogenous FGF21 provides 
compensatory and protective effects through regulation of the 
heart-liver metabolic axis. Under pressure overload, cardiac 
fibroblasts secrete FGF21 via a DPP-4 inhibitor-sensitive pathway, 
acting on cardiomyocytes in a paracrine manner to enhance 
stress resilience and confer cardioprotection. Moreover, hepatic 
congestion associated with heart failure with preserved ejection 
fraction (HFpEF) induces hepatic FGF21 expression, which in turn 
regulates cardiac metabolism as part of a compensatory protective 
mechanism—constituting a protective feedback loop between 
organs (Furukawa et al., 2021; Tucker et al., 2023). Gene knockout 
studies have confirmed that cardiac-specific deletion of FGF21 
disrupts the myocardial antioxidant defense system, as evidenced by 

reduced UCP3/SOD2 expression, increased ROS accumulation, and 
aggravated cardiomyocyte apoptosis and pathological remodeling 
(Ferrer-Curriu et al., 2021; Ma et al., 2021). Pharmacological 
studies have shown that administration of exogenous FGF21 at 
supraphysiological concentrations markedly improves conditions 
such as obesity, insulin resistance, and nonalcoholic fatty liver 
disease. However, the metabolic effects of FGF21 exhibit species-
specific differences: while rodents experience significant weight 
loss, humans show only modest improvements (Xu et al., 2009; 
Fisher et al., 2011; BonDurant et al., 2017; Geng et al., 2020).

Importantly, the cardioprotective effects of FGF21 appear 
to be dose-dependent. At physiological concentrations, FGF21 
primarily maintains mitochondrial homeostasis through the UPRmt 
mechanism, whereas at elevated concentrations (such as those 
released from endothelial cells during ischemia), it reduces infarct 
size by suppressing inflammatory and oxidative stress cascades 
(Liu et al., 2013; Patel et al., 2014). These findings underscore 
FGF21’s role as a central regulator of cardiac metabolic and redox 
homeostasis, offering new insights and directions for understanding 
its function in inter-organ signal communication.
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However, controversies remain regarding FGF21’s physiological 
and pathological roles. Elevated circulating FGF21 levels have been 
observed not only in patients with heart failure but also in those 
with coronary heart disease (Lin et al., 2010). In Opa1−/− mice with 
mitochondrial dysfunction, serum FGF21 levels are significantly 
elevated. Interestingly, while skeletal muscle in these mice shows 
upregulated expression of KLB and FGFR, no notable changes are 
observed in other tissues (Tezze et al., 2017). Moreover, in mice with 
mitochondrial respiratory chain deficiencies, both skeletal muscle-
derived FGF21 (SM-FGF21) mRNA and serum FGF21 levels 
are increased (Tyynismaa et al., 2010). Correspondingly, elevated 
serum FGF21 has been detected in humans with mitochondrial 
respiratory chain defects in muscle, suggesting its potential 
utility as a biomarker for diagnosing mitochondrial myopathies 
(Suomalainen et al., 2011). Mechanistic studies indicate that ATF4 
may drive FGF21 overexpression and mitochondrial dysfunction in 
skeletal muscle, potentially mediated by excessive ROS production 
(Kim et al., 2013). Although obese individuals often exhibit 
elevated serum FGF21 levels, these increases are not associated 
with metabolic improvements. Some animal studies propose that 
reduced expression of FGFR1 and KLB in adipose tissue may 
impair FGF21 signaling, a phenomenon referred to as “FGF21 
resistance” (Markan, 2018).

It is important to note that the current literature does not clearly 
distinguish between the physiological functions of endogenous 
FGF21 and the pharmacological effects of exogenous FGF21. Many 
studies exploring FGF21’s pharmacological effects employ Fgf21 
transgenic mouse models or administer FGF21 at supraphysiological 
doses. Such experimental approaches may partly explain the 
observed discrepancies between endogenous and exogenous FGF21 
effects, while also underscoring the critical knowledge gaps that 
remain in elucidating the functional networks of FGF21 and other 
mitochondrial regulatory factors. 

5 Inter-organ communication of 
FGF21 and cardiac diseases

In a mouse model of myocardial ischemia, the liver responds 
by upregulating the expression and release of cardioprotective 
proteins such as FGF21, contributing to cardiac protection 
during myocardial infarction (Liu and Wu, 2010). Recent studies 
using microarray gene expression and proteomic profiling have 
demonstrated elevated FGF21 protein levels in both hepatic 
and adipose tissues following myocardial infarction in mice. 
Similarly, in ischemia/reperfusion (I/R) injury models, hepatocytes 
increase FGF21 expression and release it into circulation, where it 
interacts with the FGFR1/KLB receptor complex on cardiomyocytes 
to initiate the cardioprotective FGFR1/KLB–PI3K–Akt1–BAD 
signaling cascade. Furthermore, FGF21 accumulation is observed 
in diseased myocardial tissue, and serum FGF21 levels show 
a strong positive correlation with cardiac FGFR3 expression. 
These findings support the notion that hepatocyte-derived FGF21 
exerts endocrine-mediated protection on ischemic cardiomyocytes 
(Liu and Wu, 2010; Liu et al., 2012; Liu et al., 2013). Inhibition 
of mineralocorticoid receptor (MR) expression or treatment 
of hepatocytes with the MR antagonist spironolactone has 
been shown to enhance FGF21-mediated cardiac repair and 

reverse pathological remodeling following myocardial infarction 
(Greenberg et al., 2006; Sun et al., 2023). These findings suggest that 
liver-derived endocrine FGF21 plays a crucial role in alleviating 
myocardial ischemic injury and may provide new avenues for 
targeting UPRmt to promote cardiac recovery post-infarction.

In response to acute or chronic exercise, multiple tissues 
including the liver, brain, heart, pancreas, intestine, and adipose 
tissue release hundreds of exercise-induced factors. Key cytokines 
secreted by muscle fibers include FGF21, irisin, interleukin-
6 (IL-6), interleukin-15, apelin, actin, and myonectin (Thyfault 
and Bergouignan, 2020). Aerobic exercise, such as structured 
training in mice, induces FGF21 expression in skeletal muscle, 
and the endocrine FGF21 entering circulation has been shown 
to exert cardioprotective effects (Yan et al., 2017). Increasing 
evidence suggests that mitokines induced by moderate exercise 
may mitigate metabolic risk factors associated with heart failure. 
Experimental and multi-omics studies on physical exercise indicate 
that mitokines from skeletal muscle and other tissues regulate 
cardiac function via endocrine mechanisms (Jin et al., 2024). Under 
basal physiological conditions, skeletal muscle is not considered 
the primary source of FGF21 (Fon Tacer et al., 2010). However, 
although liver-derived FGF21 is dominant in humans, in mice 
skeletal muscle may significantly contribute to circulating FGF21 
levels during exercise (Tezze et al., 2019), suggesting a potential role 
of muscle in FGF21 secretion.

In addition to exercise, factors such as fasting, insulin, and 
mitochondrial stress can also induce FGF21 expression in skeletal 
muscle, highlighting mitochondrial stress as a key stimulus for 
increased FGF21 production in humans (Izumiya et al., 2008; 
Kim et al., 2013; Keipert et al., 2014; Pereira et al., 2017; Tezze et al., 
2017). Upregulation of FGF21 expression has also been observed 
in mitochondrial dysfunction models involving suppression of 
mitochondrial fusion factor optic atrophy one and mitochondrial 
DNA stress in mitochondrial myopathy (Pereira et al., 2017; 
Tezze et al., 2017; Forsström et al., 2019). Moreover, skeletal 
muscle-derived FGF21 has been shown to modulate cardiac 
remodeling in mouse models of myocardial infarction (Joki et al., 
2015). Exercise training has been demonstrated to reduce cardiac 
fibrosis induced by a high-fat diet (Yan et al., 2017). In mouse 
skeletal muscle, the upregulation and secretion of FGF21 depend 
on activation of the phosphatidylinositol 3-kinase (PI3K)/Akt1 
signaling pathway (Izumiya et al., 2008; Keipert et al., 2014). 
FGF21-mediated adaptive responses to metabolic stress in skeletal 
muscle are therefore regarded as key regulatory mechanisms 
in disease progression and metabolic control (Baskin et al., 
2015). Additionally, FGF21-mediated nucleocytoplasmic signaling 
reciprocally influences mitochondrial function, reinforcing the 
notion that mitokines collectively contribute to muscle mass 
maintenance, attenuation of hypertriglyceridemia, and improved 
insulin sensitivity.

To enhance the effectiveness of cardiac rehabilitation, 
researchers have begun to explore how mechanical stress in skeletal 
muscle and localized changes in temperature, oxygen consumption, 
and metabolism regulate mitokines such as FGF21. This research 
aims to uncover the mechanisms underlying cross-talk between the 
cardiovascular, respiratory, immune, and nervous systems, and the 
broader physiological effects of these interactions (Burtscher et al., 
2021; Jin et al., 2024). Such insights will further advance the field of 
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FIGURE 3
FGF21 generation and its role in interorgan crosstalk.

mitochondrial pathophysiology (Figure 3). A deeper understanding 
of how UPRmt-induced factors like FGF21 are modulated under 
various physiological and pathological conditions—and how they 
affect systemic health—may offer new therapeutic strategies to 
harness their beneficial effects and promote healthy aging.

6 Application potential of targeting 
UPRmt/FGF21

The UPRmt and ISR have emerged as promising therapeutic 
targets for mitochondrial diseases, owing to their central roles in 
maintaining cellular metabolic homeostasis and the elucidation 
of their molecular mechanisms. ging evidence demonstrates that 
diverse compounds can modulate the UPRmt or related signaling 
pathways. For instance, tetrahydrocurcumin (THC), the main 
metabolite of curcumin, activates the UPRmt through the PGC-
1α/ATF5 axis, thereby reducing reactive oxygen species (ROS) 
production, improving mitochondrial dysfunction, and preventing 
pathological cardiac hypertrophy (Zhang et al., 2020). Pterostilbene, 
a structural analog of the sirtuin activator resveratrol, has also been 
shown to activate the UPRmt via the SIRT/FOXO3a/PGC1α/NRF1 
signaling pathway and alleviate pathological changes associated with 
mitochondrial dysfunction (Germain, 2016; Suárez-Rivero et al., 
2022b). Recent in vivo research demonstrated that administration 
of doxycycline, a UPRmt activator that acts through ATF5, offers 
cardioprotective effects in a murine model of ischemia/reperfusion 
(I/R) injury (Wang et al., 2019). Other studies indicate that choline 
improves mitochondrial function via the SIRT3/AMPK/UPRmt 
axis, thereby inhibiting myocardial hypertrophy in mice (Xu et al., 
2019). In neurodegenerative models, nicotinamide riboside (NR) 
has been shown to activate the UPRmt, helping to maintain 
mitochondrial protein homeostasis and mitigate neurodegenerative 

phenotypes in mice with amyotrophic lateral sclerosis (ALS) 
(Zhou et al., 2020). These findings collectively suggest that targeting 
the UPRmt holds therapeutic potential (Table 2).

However, the clinical translation of these compounds is still 
hindered by significant limitations, including low bioavailability 
and off-target effects. THC and pterostilbene suffer from poor oral 
bioavailability and metabolic instability; choline, as a nutritional 
supplement, lacks specificity in its effects, making it difficult to 
attribute to the specific activation of UPRmt; NR undergoes complex 
metabolism in vivo, potentially affecting multiple NAD+-dependent 
pathways; and long-term use of doxycycline as an antibiotic may 
lead to resistance and microbiome dysbiosis. Although preclinical 
studies have demonstrated their potential therapeutic effects, there 
remains a lack of reliable drugs capable of precisely modulating 
the UPRmt pathway. Therefore, advancing the development of 
therapeutic strategies targeting UPRmt requires further exploration 
of compound optimization, delivery strategies, and rigorous safety 
evaluations.

Recent laboratory and clinical studies have increasingly revealed 
the cardioprotective effects of FGF21. Therapeutic strategies for 
cardiovascular diseases based on FGF21 primarily revolve around 
its pleiotropic metabolic regulatory functions. Numerous long-
acting FGF21 analogs and monoclonal antibodies that agonize 
the FGFR1-KLB receptor complex have also been developed. 
Due to the effects of FGF21 analogs on parameters such as 
blood pressure and heart rate, current research in cardiovascular 
diseases remains largely confined to the preclinical stage. Multiple 
FGF21 analogs (e.g., Pegbelfermin, Efruxifermin) and receptor 
agonists (e.g., MK-3655) indirectly protect cardiac function by 
improving systemic insulin sensitivity, reducing inflammation, and 
alleviating lipotoxicity. Particularly in diabetic cardiomyopathy, 
these drugs can ameliorate myocardial metabolic disorders, inhibit 
fibrosis progression, while their triglyceride-lowering effects 

Frontiers in Cell and Developmental Biology 09 frontiersin.org

https://doi.org/10.3389/fcell.2025.1652353
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Gao et al. 10.3389/fcell.2025.1652353

TABLE 2  Representative drugs with potential UPRmt-activating effects.

Treatment Targets Pathological condition Health benefits/effects References

Tetrahydrocurcumin Activate PGC1α/ATF5 axis Pathological Cardiac Hypertrophy Resist pathological cardiac 
hypertrophy and improve 
mitochondrial function

Zhang et al. (2020)

Pterostilbene Increase the NAD+/NADH ratio 
and Sirt3 activity

Mitochondrial diseases Improve pathological alterations in 
mutant fibroblasts and induced 

neurons

Suárez-Rivero et al. (2022b)

Choline Activate SIRT3-AMPK pathway Ventricular hypertrophy Preserve the ultrastructure and 
function of mitochondria in the 
context of cardiac hypertrophy; 
attenuate cardiac dysfunction

Xu et al. (2019)

Nicotinamide ribose Activate NAD+/Sirtuins pathway Amyotrophic lateral sclerosis Modulate mitochondrial 
proteostasis and improve the adult 

neurogenesis in the brain of 
SOD1G93Amice

Zhou et al. (2020)

(e.g., PF-05231023) and lipid profile improvements help mitigate 
atherosclerotic burden (Chen et al., 2025).

To date, six randomized clinical trials have evaluated the 
therapeutic potential of four human FGF21 analogs or mimetics 
in T2DM or obesity (Zhang et al., 2024). FGF21 demonstrates 
direct cardioprotective effects and potential therapeutic prospects 
for improving myocardial energetics and function in obesity and 
T2DM through its pleiotropic actions (metabolic improvement, 
inflammation reduction, and fibrosis suppression), with related 
drugs currently in clinical development. Future development of 
targeted delivery systems for FGF21 analogs, as well as the 
advancement of tissue-selective FGF21 receptor agonists and FGF21 
sensitizers, may enhance the efficacy and safety of FGF21-based 
therapies. 

7 Conclusions and prospects

The mitochondrial unfolded protein response (UPRmt) plays a 
vital role in maintaining mitochondrial homeostasis and metabolic 
balance in cardiomyocytes. Evidence from animal studies suggests 
that certain pharmacological agents can alleviate cardiovascular 
diseases by activating stress response pathways, highlighting the 
potential of UPRmt and its associated mitokines as novel therapeutic 
targets. Based on current research, several key issues need to be 
addressed in future studies: ① The threshold between the protective 
and deleterious effects of UPRmt remains unclear. Although some 
molecular markers have been identified, further investigation 
is needed to determine which markers are most suitable for 
evaluating UPRmt activity. ② With the aid of advanced research 
technologies, the regulatory interactions between UPRmt and 
mitokines—both at the interorgan and intercellular levels—require 
more in-depth exploration. ③ The relationship between the 
integrated stress response (ISR) and UPRmt is still not fully 
understood. Further analysis of the intersecting signaling pathways 

that activate or influence UPRmt is needed. Continued research in 
these areas is expected to provide robust evidence to support the 
development of UPRmt- and mitokine-targeted therapies, deepen 
our understanding of their roles in cardiac function regulation, 
and ultimately contribute to improved treatment and rehabilitation 
strategies for heart disease.
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