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Introduction

Canonical autophagy mediates the quality control of damaged organelles selectively, 
such as the clearance of mitochondria (mitophagy) and lysosomes (lysophagy) (Picca et al., 
2023; Vargas et al., 2023). Selective autophagy receptors recognize organelle cargoes, some 
of which depend on cargo ubiquitination (Vargas et al., 2023). Lysosome-related organelles 
(LROs) are a variety of secretory compartments, including melanosomes in pigment cells, 
Weibel–Palade bodies (WPBs) in endothelial cells, lamellar bodies (LBs) in type II alveolar 
epithelial cells, major histocompatibility complex (MHC) class II compartments in antigen-
presenting cells (APCs), and secretory granules (SGs) in mast cells (Delevoye et al., 
2019). However, it remains unclear whether autophagy regulates the clearance of LROs 
or which autophagy receptors, if any, are involved. Two recent studies have uncovered 
the mechanisms underlying the selective autophagy of melanosomes (melanophagy)—the 
first studies on LRO selective autophagy (Lee et al., 2024; Park et al., 2024), which shares 
a common strategy with other types of selective autophagy. Noncanonical autophagy has 
been implicated in the formation, maturation, and secretion of various LROs (Ushio et al., 
2011; Torisu et al., 2013; Ramkumar et al., 2017; Morishita et al., 2020; Li et al., 2022; 
Sarango et al., 2022; Omari et al., 2024), suggesting the complex roles of autophagy in LRO 
regulation, which requires in-depth research on LRO autophagy.

In this opinion piece, we compare the molecular mechanisms reported by recent studies 
on melanophagy. We also discuss the current understanding of the roles of autophagy, 
mostly noncanonical, in regulating LRO biogenesis and secretion, and we propose future 
studies investigating the role of autophagy in LRO homeostasis.

Selective autophagy of melanosomes 
(melanophagy)

Selective autophagy of damaged organelles has been extensively studied (Vargas et al., 
2023). In general, after cellular organelles get damaged by stress, specific E3 ligases mediate 
the polyubiquitination of specific cargo substrates on or in the organelles which become 
accessible upon damage; selective autophagy receptors interact with both polyubiquitinated 
cargo substrates and lipidated ATG8/LC3/GABARAP family proteins to recruit an isolation 
membrane to the cargo—the damaged organelles; with isolation membrane growth and 
closure, an autophagosome enclosing the cargo is formed, which then fuses with a 
lysosome, leading to the degradation of the cargo inside (Figure 1A). This process shares
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FIGURE 1
The roles of autophagy in maintaining homeostasis of lysosome-related organelles (LROs). (A) General scheme of selective autophagy, LC3-associated 
phagocytosis (LAP), and secretory autophagy. A selective autophagy receptor recognizes specific cargo substrates, which are usually polyubiquinated 
on cargo organelles, conferring the selectivity. The selective autophagy receptor recruits an isolation membrane by interacting with the lipidated 
ATG8/LC3/GABARAP family proteins, and the subsequent events (isolation membrane growth and closure, autophagosome formation and fusion with 
a lysosome, and autolysosome formation and degradation; dark blue arrows) are the same as those of canonical, degradative autophagy. During LAP, 
the surface receptor recognizes an extracellular pathogen, and then a LAPosome decorated with lipidated LC3 is formed to internalize pathogens 
before fusing with a lysosome and degrading the cargo (light blue arrows). Secretory autophagy consists of various processes, where 
autophagosomes, amphisomes (autophagosomes that have fused with late endosomes), or autolysosomes may fuse with the plasma membrane to 
release their contents (dark purple arrows). “Cyto” refers to the cytoplasm, whereas Ex refers to the extracellular space. For simplicity, the lipidated LC3 
is not shown in autophagosomes, amphisomes, or autolysosomes. (B) Mechanisms of melanophagy. Two recent studies revealed the molecular 
mechanisms of selective autophagy of melanosomes—melanophagy. Upon β-mangostin stress, melanosome proteins are polyubiquinated by the E3 
ubiquitin ligase RCHY1 and recognized by the selective autophagy receptor OPTN, which recruits the active protein kinase TBK1 and gets 
phosphorylated. Upon TCTE stress, melanosome protein MLANA is polyubiquinated by the E3 ubiquitin ligase ITCH, which gets phosphorylated by the 
active protein kinase PTK2, and it is also recognized by OPTN. OPTN interacts with lipidated LC3B on the isolation membrane to target melanosomes 
for degradation via canonical autophagy. (C) Different roles of autophagy in maintaining LRO homeostasis. (1) LAP regulates the loading of antigen 
peptides into MHC class II compartments in antigen-presenting cells. TAX1BP1 plays a noncanonical role in stabilizing CD74/MHC class II for proper 
presentation (light purple arrow). (2) In mast cells, CD63-positive secretory granules fuse with amphisomes and release inflammatory mediators and 
exosomes. (3) In endothelial cells, secretory autophagy regulates the release of the von Willebrand factor (VWF) from Weibel–Palade bodies. (4) In type 
II alveolar epithelial cells, fusion with autophagosomes leads to the maturation of lamellar bodies, and secretory autophagy regulates the release of 
surfactant. (5) In melanocytes, LC3B and ATG4B regulate melanosome transport on microtubules and actin filaments, respectively; this process is 
considered noncanonical as autophagic degradation is not involved (light purple arrow).

the same machinery as bulk or nonselective autophagy, including 
the ULK1 complex, ATG9, the class III phosphatidylinositol 
3-kinase (PI3K) complex, and the ATG8 conjugation system. 
However, some selective autophagy receptors are resident proteins 
in the cargo organelles (i.e., ER-phagy); thus, polyubiquitination is 
not required (Vargas et al., 2023). Phosphorylation of E3 ubiquitin 
ligases or selective autophagy receptors by certain protein kinases 

can further regulate the process of selective autophagy (Vargas 
et al., 2023).

It is surprising that little is known about whether selective 
autophagy of LROs occurs or not. Melanosomes are LROs found 
in pigment cells, such as skin melanocytes and retinal pigment 
epithelial cells. Recently, two groups of researchers reported that 
autophagy plays a canonical role in melanosome degradation 

Frontiers in Cell and Developmental Biology 02 frontiersin.org

https://doi.org/10.3389/fcell.2025.1638905
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Wang et al. 10.3389/fcell.2025.1638905

(Park et al., 2020; Lee et al., 2024; Park et al., 2024), demonstrating 
the first example of LRO selective autophagy. β-Mangostin reduces 
the amount of intracellular and extracellular f melanosomes in α-
melanocyte-stimulating hormone (MSH)-stimulated melanocytes, 
and this effect is reversed by autophagy inhibition via ATG5 (a 
component of the ATG8-conjugation system) knockdown, FIP200 
(a subunit of the ULK1 complex) knockdown, or 3-methyladenine 
treatment (a class III PI3K inhibitor) (Lee et al., 2024). Similarly, 
3,4,5-trimethoxycinnamate thymol ester (TCTE) inhibits skin 
pigmentation in an autophagy-dependent manner, as TCTE reduces 
α-MSH-stimulated pigmentation, and this reduction is restored by 
ATG5 knockdown (Park et al., 2020). Furthermore, β-mangostin 
induces the degradation of melanosomes but not of mitochondria, 
the endoplasmic reticulum (ER), or peroxisomes, indicating that 
the process is selective (Lee et al., 2024). If β-mangostin and TCTE 
induce selective autophagy of melanosomes (melanophagy), which 
selective autophagy receptors and possible E3 ubiquitin ligases 
participate in the process?

As summarized in Table 1, OPTN/optineurin has been 
identified as the melanophagy receptor. It was screened alongside 
several known selective autophagy receptors, including NBR1, 
SQSTM1/p62, FUNDC1, NDP52, NIX, and TAX1BP1 (Lee et al., 
2024; Park et al., 2024). K63-linked polyubiquitination of total 
melanosome proteins increases with β-mangostin treatment, while 
polyubiquitination of the melanosome marker MLANA/Melan-
A increases with TCTE stimulation. OPTN co-localizes with 
melanosomes via its ubiquitin-binding domain (UBD) and 
interacts with MLANA in response to stress, completing the 
step of cargo recognition. OPTN also binds to lipidated LC3B 
to recruit the isolation membrane to melanosomes. The E3 
ubiquitin ligases RCHY1 and ITCH have been identified to 
regulate the polyubiquitination of melanosome cargo substrates. 
TBK1 phosphorylates OPTN (on mouse Ser 187, corresponding 
to human Ser 177) to activate OPTN during β-mangostin-
induced melanophagy, and OPTN is also required for TBK1 
activation on melanosomes. PTK2 phosphorylates ITCH to 
promote the polyubiquitination of MLANA during TCTE-induced 
melanophagy. Taken together, the molecular mechanism of 
melanophagy follows the selective autophagy paradigm, with two 
pathways being characterized: β-mangostin–RCHY1–TBK1–OPTN 
and TCTE–PTK2–ITCH–MLANA–OPTN (Figure 1B).

It is uncertain whether selective autophagy of other types 
of LROs exists or not. Since LROs are usually too big for 
efficient proteasomal degradation, we think it is highly likely that 
autophagic/lysosomal degradation is utilized to clear unwanted or 
damaged LROs. Future studies can utilize similar strategies as in 
the abovementioned melanophagy studies to identify the selective 
autophagy receptors and regulators of other LROs.

The roles of noncanonical autophagy 
in regulating the biogenesis and 
secretion of LROs

The canonical role of autophagy is to recognize cargoes, pack 
them in double-membraned autophagosomes, and target them 
for lysosomal degradation, which is crucial for quality control 
of organelles under stress, as in the processes of melanophagy. 

During the past decade, the noncanonical (non-degradative 
or autophagosome-independent) role of autophagy has been 
extensively investigated (Piletic et al., 2023; Deretic et al., 2024) 
and implicated in regulating the internalization of extracellular 
components, the secretion of soluble or membrane-enclosed 
cargoes, and the noncanonical functions of autophagy proteins. 
Previous studies have suggested that autophagy plays distinct roles 
in the biogenesis, maturation, motility, and secretion of LROs, the 
majority of which are noncanonical (Figure 1C).

During the biogenesis of melanosomes (melanogenesis), 
UVRAG, a subunit of the class III PI3K complex 2 that mediates 
autophagosome maturation into autolysosomes, is required for 
cell pigmentation independent of class III PI3K complex 2 
activity; instead, UVRAG interacts with the BLOC-1 complex 
and regulates the stability and distribution of BLOC-1, leading 
to proper melanogenic cargo-sorting (Yang et al., 2018). LC3B, 
a major ATG8 family protein in autophagosomes, localizes to 
melanosomes to facilitate transport on microtubules, whereas 
ATG4B, which regulates LC3B lipidation and delipidation, mediates 
melanosome translocation to actin filaments and transport 
(Ramkumar et al., 2017). Beclin 1, another subunit of the class 
III PI3K complex, along with LC3B and ATG7, has been suggested 
to activate MITF, the major transcription factor for melanogenic 
gene expression; however, the underlying molecular mechanisms 
remain unknown (Lee et al., 2022).

MHC class II molecules, which are mainly expressed in B 
cells, monocytes, macrophages, and dendritic cells, among others, 
present antigenic peptides on the cell surface to CD4+ T cells 
(Rock et al., 2016; Pishesha et al., 2022). The antigenic peptides 
presented by MHC class II molecules are processed in specialized 
endolysosomal compartments, MHC class II compartments, and 
they are loaded onto MHC class II molecules for presentation. 
These processes involve both canonical and noncanonical autophagy 
(Münz, 2022). The autophagy receptor TAX1BP1 not only 
facilitates autophagic degradation of intracellular antigens and 
their delivery to MHC class II compartments but also stabilizes the 
invariant chain CD74/MHC class II complex to ensure the proper 
presentation of high-affinity peptides (Sarango et al., 2022). LC3-
associated phagocytosis (LAP) is a type of noncanonical autophagy 
(degradative, autophagosome-independent) and functions in 
immune responses, where ATG8/LC3 is conjugated to single-
membraned phagosomes, relying on a subset of canonical autophagy 
machinery such as the UVRAG/Beclin 1-containing class III PI3K 
complex and the ATG8-conjugation system but not the ULK1 
complex (Peña-Martinez et al., 2022). LAP accelerates extracellular 
antigen internalization and processing for MHC class II under the 
regulation of ATG4B oxidation (Ligeon et al., 2021; Münz, 2022).

Secretory autophagy or autophagy-dependent secretion (New 
and Thomas, 2019; Piletic et al., 2023), another type of noncanonical 
autophagy (non-degradative, most likely autophagosome-
dependent), regulates the content release of several LROs, including 
WPBs in endothelial cells, LBs in type II alveolar epithelial cells, 
and SGs in mast cells. The secretion of the von Willebrand factor 
(VWF) from WPBs requires the autophagy machinery because 
autophagy inhibition (through ATG5 or ATG7 knockdown, or by 
using inhibitors of lysosomes/autolysosomes, such as chloroquine 
or bafilomycin A1) blocks VWF secretion. WPBs are also found 
close to or within LC3-positive autophagosomes (Torisu et al., 
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TABLE 1  Comparison of two recent studies on melanophagy.

Research Lee et al. (2024) Park et al. (2024)

Stress β-Mangostin 3,4,5-Trimethoxycinnamate thymol ester (TCTE)

Cell type Melanocyte (B16F10) Melanocyte (B16F10)

Cargo for degradation Melanosome Melanosome

Selective autophagy receptor OPTN OPTN

ATG8 protein LC3B LC3B

Polyubiquitinated cargo substrate K63-linked, substrates not specified MLANA

E3 ubiquitin ligase RCHY1 ITCH

Upstream kinase TBK1 PTK2

Phosphorylated substrate (site) OPTN (mouse S187) ITCH (site not specified)

Inhibitor ATG5↓, FIP200↓
3-Methyladenine (→class III PI3K)

BX-795 (→TBK1)

ATG5↓
Dichlone (→ITCH)

Y15 (→PTK2)

2013). Similarly, the secretion of surfactant from lung LBs relies 
on autophagy because autophagy inhibition (through FIP200 or 
ATG7 knockout, or by using 3-Methyladenine treatment) impairs 
lung LB maturation and surfactant protein secretion. Furthermore, 
lung LBs fuse with LC3B-positive autophagosomes (Morishita et al., 
2020; Li et al., 2022). The degranulation process of mast cells, during 
which mast cells release inflammatory mediators such as histamine 
and β-hexosaminidase from SGs upon antigen stimulation, is also 
autophagy (ATG7)-dependent (Ushio et al., 2011). CD63-positive 
SGs fuse with LC3-positive late endosomes (amphisomes) and 
release exosomes upon stimulation (Omari et al., 2024).

Investigating the roles of autophagy in 
regulating the homeostasis of LROs

As discussed above, autophagy and autophagy proteins participate 
in different aspects of LRO homeostasis, ranging from the 
formation and cargo sorting of LROs to the content release and 
breakdown of LROs (Figure 1). We believe that crucial questions 
should be addressed in the field, such as whether selective autophagy 
of LROs other than melanosomes takes place, what the molecular 
mechanisms underlying noncanonical autophagy of LROs are, 
and how canonical and noncanonical autophagy are coordinated 
in the same type of LROs. 

In addition to screening known autophagy receptors, as in 
melanophagy studies, we propose that LRO cargoes and autophagy 
receptors be investigated using a proteomic approach. In autophagy-
deficient cells (e.g., with FIP200 or ATG5 deletion), cargoes and 
autophagy receptors shall decrease in lysosomes and increase in whole 
cells. Therefore, proteomic analyses of purified lysosomes (i.e., through 
LysoIP (Abu-Remaileh et al., 2017)) and of the whole-cell lysate from 
autophagy-sufficient and autophagy-deficient cells can help to narrow 
down the list of cargoes and autophagy receptors (Herhaus et al., 

2024). Candidate LRO cargoes and autophagy receptors can then be 
found by comparing them with LRO proteomes. Alternatively, ATG8 
family proteins can be used as bait to search for autophagy receptors 
in purified LROs. To validate whether a candidate autophagy receptor 
is selective for certain LROs, the following criteria should be met: (1) 
deletion of the candidate autophagy receptor increases the level of 
LRO cargoes, (2) the candidate autophagy receptor localizes to the 
LROs, and this co-localization is likely enhanced under stress, (3) the 
candidate autophagy receptor interacts with ATG8 family proteins, and 
(4) the candidate autophagy receptor is a resident protein of the LROs, 
or interacts with LRO cargoes in a polyubiquitination-dependent 
manner. Regarding the MHC class II compartments, known lysophagy 
receptors (TAX1BP1 and p62) should be on the shortlist. 

The autophagy machinery can regulate the internalization 
of extracellular components during LC3-associated phagocytosis 
(LAP), micropinocytosis (LAM), and endocytosis (LANDO) 
processes (Magné and Green, 2022; Deretic et al., 2024). It 
would be interesting to test whether LAM or LANDO impacts 
MHC class II compartments in addition to LAP. Secretory 
autophagy also consists of different processes, such as LC3-
dependent extracellular vesicle loading and secretion (LDELS) 
and secretory autophagy during lysosome inhibition (SALI), 
among others (Debnath and Leidal, 2022; Deretic et al., 2024). 
It is important to elucidate the molecular details of the secretory 
autophagy in WPBs, lung LBs, and mast cell SGs. These LROs 
co-localize with LC3 and require ATG7 (a component of the 
ATG8-conjugation system) for secretion; however, little is known 
about whether upstream autophagy proteins such as the ULK1 
complex, ATG9, or the class III PI3K complex are necessary for 
secretion and whether induction of autophagy is sufficient to 
promote the secretion of these LROs. Damaged mitochondria 
can be released into the extracellular space in an autophagy-
dependent manner rather than degradation via mitophagy (Nicolás-
Avila et al., 2020; Gong et al., 2024). It will be intriguing if damaged
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LROs could be released from cells, similar to damaged 
mitochondria, serving as an alternative path for clearance.

With a better understanding of how canonical and non-
canonical autophagy regulate different stages of the life cycle of 
LROs, we expect that key autophagy proteins and modulators that 
coordinate the different roles of autophagy in maintaining the 
homeostasis of LROs will soon be uncovered.
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