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Progesterone (P4) is essential for pregnancy establishment and maintenance. 
Clinically, P4 is widely used to regulate the menstrual cycle, maintain pregnancy, 
and treat luteal phase deficiency. However, P4 administration protocols, 
particularly regarding routes, dosage, and timing remain poorly defined. 
Although excessive P4 impairs embryo implantation and decidualization in mice, 
the underlying mechanism remains unclear. Our data show that decidualization 
in day 8 pregnant mice and artificial decidualization in day 8 pseudopregnant 
mice are impaired by 4 mg or 8 mg/mouse P4. The mRNA levels of Prl8a2 and 
Prl3c1, markers of in vitro decidualization are significantly downregulated by 10 
or 20 μM P4. The uterine fluorescent signal of indoleamine 2,3-dioxygenase 1 
(IDO1) and protein levels of tryptophan 2,3-dioxygenase (TDO) are increased 
after ovariectomized mice are treated with excessive P4. Treatment of uterine 
stromal cells with excessive P4 also significantly upregulates the protein levels 
of IDO1 and TDO, and kynurenine (Kyn) secretion. Epacadostat (IDO1 antagonist) 
or RU486 (progesterone receptor antagonist) effectively block P4-induced Kyn 
elevation. The mRNA levels of Prl8a2 and Prl3c1 and the protein levels of 
BMP2 are significantly inhibited by Kyn. The high-dose of P4 activates the aryl 
hydrocarbon receptor (AhR) and its downstream targets CYP1A1 and CYP1B1. 
Under in vitro decidualization, the mRNA levels of Prl8a2 and Prl3c1 are inhibited 
by 2-OH-E2 and 4-OH-E2, the catalytic products of CYP1A1 and CYP1B1, 
respectively. CH-223191, a specific AhR antagonist, effectively counteracts the 
effects of Kyn on Cyp1a1, Cyp1b1, and Prl8a2 expression. Additionally, nucleolar 
size in stromal cells is increased both in vivo and in vitro following excessive P4

treatment. Our findings suggest that excessive P4 impairs mouse decidualization 
via the Kyn-AhR pathway.
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 1 Introduction

Embryo implantation and decidualization are pivotal steps for a successful 
pregnancy. Decidualization involves the conversion of endometrial fibroblastic 
stromal cells into specialized decidual cells, which establish a nutrient and
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immunologically privileged environment for fetal development 
(Gellersen and Brosens, 2014). Deficiency in embryo implantation 
and decidualization can lead to adverse pregnancy outcomes, 
including delayed embryo development, preeclampsia, miscarriage, 
and preterm birth (Cheng et al., 2023). Ovarian estrogen (E2) and 
progesterone (P4) closely regulate this process in mice and humans 
(Paria et al., 2000). P4 is essential for embryo implantation in all 
studied species (Wetendorf and DeMayo, 2012). In mice, pregnancy 
maintenance until parturition relies on continuous P4 secretion 
from the corpus luteum (Maurya et al., 2021). P4 primarily functions 
through progesterone receptors (PR), including PR-A and PR-B. 
Mice lacking both PR-A and PR-B (Pgr−/−) exhibit ovarian and 
uterine defects (Lydon et al., 1995; Lydon et al., 1996).

In clinical practice, P4 is widely used for the conservative 
management of luteal phase deficiency (LPD) and for treating 
threatened and recurrent abortion (Soules et al., 1977; Daya et al., 
1988). LPD is a pregnancy disorder associated with infertility 
and spontaneous abortion, and the potential etiologies include 
inadequate P4 duration, inadequate P4 levels, or endometrial P4
resistance (Jones, 1976). Nevertheless, little agreement exists on 
LPD diagnosis and treatment (Karamardian and Grimes, 1992). 
Although P4 has a significant positive impact on reproductive 
outcomes in assisted reproduction, the scientific debate remains 
open regarding P4 administration protocols, particularly concerning 
routes of administration, dosage, timing, and potential interactions 
with other drugs (Garg et al., 2024). A previous study showed 
that P4 supplementation in natural frozen embryo transfer cycles 
does not increase the pregnancy rate (Eftekhar et al., 2013). A 
prospective study also demonstrates that P4 has no any significant 
positive impact on pregnancy outcomes in cases of threatened 
miscarriage (Boza et al., 2016). Women experiencing recurrent 
miscarriage exhibit reduced endometrial P4 levels. However, it 
remains unclear whether reduced P4 levels can predict or contribute 
to adverse pregnancy outcomes (McLindon et al., 2023). Concerns 
exist about progestin use in pregnancy, particularly the potential risk 
of genital anomalies (e.g., hypospadias in males, female virilization) 
and non-genital malformations (Carmichael et al., 2005). For 
clinicians, supplementing P4 for all possible LPD patients is an 
empirical practice. P4 as luteal phase support may carry the risk of 
overconsumption and has adverse effects on pregnancy outcomes. 
Consequently, it is indispensable to further examine whether 
excessive P4 has any influence on pregnancy outcomes.

Tryptophan (Trp), an essential amino acid, is necessary during 
pregnancy (Badawy, 2015; Badawy et al., 2016; Hoang et al., 2023; 
Xue et al., 2023). Trp is mainly metabolized through kynurenine 
(Kyn) pathway, which is closely associated with various diseases 
through its metabolites (Stone and Darlington, 2002). Indoleamine-
2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), 
two key enzymes, regulate the first and rate-limiting step of the 
Kyn pathway (Austin et al., 2010). IDO and TDO are implicated 

Abbreviations: AhR, Aryl hydrocarbon receptor; E2, Estrogen; IDO, 
Indoleamine 2,3-dioxygenase; Kyn, Kynurenine; LPD, Luteal phase 
deficiency; NCL, Nucleolin; Prl3c1, Prolactin family 3, subfamily C, 
member 1; Prl8a2, Prolactin family 8, subfamily A, member 2; Progesterone, 
P4; PR, Progesterone receptor; PI, Propidium iodide; Trp, Tryptophan; 
TDO, Tryptophan 2,3-dioxygenase; 2-OH-E2, 2-hydroxyestradiol; 4-OH-E2, 
4-hydroxyestradiol; DAPI, 4′,6-diamidino-2-phenylindole.

in various diseases, including inflammation, cancer, diabetes, and 
mental disorders (Ye et al., 2019). The aryl hydrocarbon receptor 
(AhR), a ligand-activated transcription factor, is involved in the 
metabolism of polycyclic aromatic hydrocarbons and estrogens 
through regulating cytochrome P450 enzymes CYP1A1 and 
CYP1B1 upon activation by Kyn (Yin et al., 2016; Pacheco and 
Elizondo, 2023). Furthermore,CYP1A1 and CYP1B1 participate in 
the metabolism of estrogen and generate 2-hydroxyestradiol (2-
OH-E2) and 4-hydroxyestradiol (4-OH-E2), respectively (Lee et al., 
2003). P4 regulates TDO2 expression in endometrium and breast 
tissue, contributing to both normal tissue function and tumor 
growth (Li et al., 2014; Liu et al., 2020; Hutchinson et al., 
2022). Furthermore, activation of the IDO/TDO/Kyn/AhR pathway 
plays a crucial role in promoting tumor growth (Pacheco and 
Elizondo, 2023).

In this study, we examined whether excessive P4 has any effects 
on Kyn-AhR pathway during early pregnancy. Our data showed 
that excessive P4 activates Kyn-AhR pathway that suppresses mouse 
decidualization. 

2 Materials and methods

2.1 Animal treatments

All animal experiments were approved by the Institutional 
Animal Care and Use Committee of South China Agricultural 
University. Adult CD1 mice (6–8 weeks old) were maintained 
in a temperature- and light-regulated environment with a 14 h 
light/10 h dark photoperiod. Pregnant and pseudopregnant female 
mice were obtained by mating with fertile or vasectomized male 
mice, respectively. The day when the vaginal plug was detected was 
defined as day 1 of pregnancy (D1) or pseudopregnancy.

The P4 doses used in this experiment were based on our 
previous study (Liang et al., 2018). To investigate effects of excessive 
P4 on early pregnancy, pregnant mice were subcutaneously injected 
with 2, 4, or 8 mg of P4 (P0130, Sigma-Aldrich, St. Louis, MO) in 
100 μL of sesame oil (S9057, Macklin, Shanghai, China) at 9:00 AM 
daily from days 3–7. Control mice received 100 μL of sesame oil. On 
day 8, the mice were sacrificed to collect uteri for further analysis.

To further examine effects of P4, ovariectomized mice rested for 
2 weeks were subcutaneously injected with 2, 4, or 8 mg of P4 in 
100 μL of sesame oil for 1, 3, or 7 consecutive days. Control mice 
received 100 μL of sesame oil. Mice were sacrificed 24 h after the last 
injection to collect uteri for further analysis. 

2.2 Artificial decidualization

Artificial decidualization was induced as previously 
described (Liang et al., 2018). Briefly, on day 4 of pseudopregnancy, 
10 μL of sesame oil was injected into one uterine horn to 
induce decidualization, and the contralateral horn served as 
a control. Female mice undergoing artificial decidualization 
were subcutaneously injected with 4 mg P4 daily from days 
5–7, while controls received 100 μL of sesame oil. On day 8 
of pseudopregnancy, mice were sacrificed to collect uteri for 
further analysis. 
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2.3 Cell isolation, culture and treatments

Mouse endometrial stromal cells were isolated and cultured as 
previously described (Li et al., 2023a). Briefly, the uteri of day 4 
pseudopregnant mice were longitudinally incised and digested with 
HBSS (PB180321, Procell, Wuhan, China) containing 1% trypsin 
(0,458, VWR, Radnor, PA) and 6 mg/mL dispase (82,003,500, 
Sigma-Aldrich, St. Louis, MO). After the uteri were rinsed in HBSS 
to remove luminal epithelial cells, the remaining tissue was further 
digested with 0.15 mg/mL collagenase I (2,691,550, Gibco, Grand 
Island, NY). The collected stromal cells were cultured in DMEM/F12 
medium (D2906, Sigma-Aldrich, St. Louis, MO) supplemented with 
10% FBS (164,210, Procell, Wuhan, China).

Mouse stromal cells were induced for in vitro decidualization 
using 10 nM E2 (HY-B0141, MedChemExpress, NJ, USA) and 
1 μM P4 as previously described (Chen et al., 2023). The P4
doses for the in vitro experiments were based on previous studies 
(Liang et al., 2018; Suthaporn et al., 2021). To investigate the 
effects of excessive P4 on decidualization, stromal cells under 
in vitro decidualization were treated with different doses of P4
and analyzed the mRNA levels of Prl8a2 and Prl3c1, markers 
of mouse in vitro decidualization. To examine effects of Kyn on 
decidualization, stromal cells under in vitro decidualization were 
treated with different concentrations of L-kynurenine (HY-104026; 
MedChemExpress, NJ, USA). 

2.4 Kynurenine assay

Kynurenine amount was measured as previously 
described (Chen et al., 2024a). Briefly, the cultured medium was 
collected from cultured stromal cells and centrifuged at 5,000×g 
for 10 min to remove cellular debris. Total 360 μL supernatant was 
mixed with 180 μL of 30% trichloroacetic acid (TCA; T6399, Sigma-
Aldrich, St. Louis, MO) and incubated at 50 °C for 30 min. After the 
mixture was centrifuged at 3,000 × g for 10 min, the supernatant 
was thoroughly mixed with an equal volume of Ehrlich reagent 
(2% p-dimethylaminobenzaldehyde, D109644, Aladdin, Shanghai, 
China) and incubated for 12–30 min. The absorbance was measured 
at 492 nm to calculate the concentration using a standard curve of 
L-kynurenine. 

2.5 RNA extraction and real-time PCR

qPCR was performed as previously described (Li et al., 2024). 
Total RNAs were extracted from mouse uterine tissue or mouse 
stromal cells using TRIzol (AG21101, Accurate Biology, Changsha, 
China). cDNA was synthesized from RNA using the HiScript 
II Q RT SuperMix kit (R222-01-AB, Vazyme, Nanjing, China). 
qPCR was performed using the SYBR Premix (Q311-02-AA, 
Vazyme, Nanjing, China). The data were analyzed using the 2−ΔΔCt 
method and normalized to mouse Rpl7. The primer sequences 
were listed in Table 1.

TABLE 1  Primer sequences used in this study.

Primer sequences

Mouse -Cyp1a1- sense CAGAAGGTGATGGCAGAG

Mouse -Cyp1a1- antisense ACGGAGGACAGGAATGAA

Mouse -Cyp1b1- sense CTGGACTTGGAGGATGTG

Mouse -Cyp1b1- antisense GCTGGAGAATCGCATTGA

Mouse-Prl8a2-sense AGCCAGAAATCACTGCCACT

Mouse-Prl8a2-antisense TGATCCATGCACCCATAAAA

Mouse-Prl3c1-sense GCCACACGATATGACCGGAA

Mouse-Prl3c1-antisense GGTTTGGCACATCTTGGTGTT

Mouse-Rpl7-sense GCAGATGTACCGCACTGAGATTC

Mouse-Rpl7-antisense ACCTTTGGGCTTACTCCATTGATA

2.6 Western blot

Western blot was performed as previously described (Chen et al., 
2024b). After tissues or cultured cells were lysed with RIPA 
(R0010, Solarbio, Beijing, China), the protein concentration 
was determined by the BCA method (23,225, Thermo Fisher 
Scientific, Waltham, MA). The samples were separated via SDS-
polyacrylamide gel electrophoresis and transferred onto a PVDF 
membrane (Immobilon® -P, IPVH00010, Millipore, Billerica, MA). 
After blocked with 5% nonfat milk (A600669, Sangon Biotech, 
Shanghai, China), the PVDF membranes were incubated with each 
primary antibody and secondary antibody (1:5,000). The signal was 
detected using the ECL chemiluminescence kit (Millipore). The 
primary antibodies utilized in this study include IDO1 (51,851, 
Cell Signaling Technology, Danvers, MA), TDO (ab259359, Abcam, 
Cambridge, United Kingdom), BMP2 (A0231, ABclonal, Wuhan, 
China), SNAIL (3879T, Cell Signaling Technology, Danvers, MA), 
AhR (A00225-4, Boster, Wuhan, China), CYP1A1 (GTX55582, 
GeneTex), CYP1B1 (GTX104424, GeneTex), and α-TUBULIN 
(2144S, Cell Signaling Technology, Danvers, MA), GAPDH 
(SC-32233, Santa Cruz Biotechnology, Dallas, TX), Histone H3 
(ab176842, Abcam, Cambridge, United Kingdom). 

2.7 Immunofluorescence

Immunofluorescence was performed as previously 
described (Li et al., 2023b). Briefly, paraffin sections were dewaxed 
and rehydrated. Antigen retrieval was achieved with citrate buffer 
(pH 6.0) or Tris/EDTA buffer (pH 9.0). Cell membranes were 
permeabilized with 0.1% Triton X-100 (T0694, Sangon Biotech, 
Shanghai, China) in PBS. After non-specific binding was blocked 
with horse serum (ZLI-9024, ZSGB-BIO, Beijing, China) for 1 h, 
sections were incubated with each primary antibody overnight 
at 4 °C and Alexa 488-conjugated secondary antibody (169,549, 
Jackson ImmunoResearch, West Grove, PA) at 37 °C for 30 min. 
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Nuclei were counterstained with propidium iodide (PI, P4170, 
Sigma-Aldrich, St. Louis, MO) or 4′,6-diamidino-2-phenylindole 
(DAPI, D9542, Sigma-Aldrich, St. Louis, MO). Fluorescence signals 
were captured using a Nikon C2 confocal microscope. The primary 
antibodies used in this study include IDO1 (66,528-1, Proteintech, 
Wuhan, China), Phospho-AhR (PA5-36025, Invitrogen, Carlsbad, 
CA), AhR (A00225-4, Boster, Wuhan, China) and Nucleolin (14,574, 
Cell Signaling Technology, Danvers, MA). 

2.8 Cytoplasmic and nuclear extracts

The nuclear and cytoplasmic extractions were conducted as 
previously described (Deng et al., 2014). Cultured cells were washed 
twice with pre-chilled PBS, incubated with Buffer B (5 mM EDTA 
in PBS) on ice for 5 min and scraped off from culture plates. After 
centrifuged at 1,000 g for 5 min at 4 °C, the pellet was resuspended 
in Buffer A (10 mM HEPES, 10 mM KCl, 0.1 mM EDTA with 
fresh added dithiothreitol and phenylmethylsulfonyl fluoride) and 
shaked at 4 °C for 20 min, mixed with 2.5% Nonidet P-40 and 
vortexed for 10 s. Following centrifugation at 15,000 g for 5 min at 
4 °C, the supernatant was collected as cytoplasmic protein. The 
remaining pellet was resuspended in Buffer C (20 mM HEPES, 
0.4 M NaCl, 1 mM EDTA, freshly added DTT and PMSF), vortexed, 
and centrifuged at 18,000 g for 5 min at 4 °C, and collected the 
supernatant as nuclear protein. 

2.9 Statistical analysis

Data are presented as mean ± standard deviation. The two-tailed 
Student’s t-test was used to compare two groups. For more than two 
groups, one-way ANOVA was conducted with post hoc tests: LSD 
(if equal variances were assumed based on Levene’s test) or Games-
Howell (if variances were unequal). Statistical significance was set 
at ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. 

3 Results

3.1 Excessive P4 impairs decidualization in 
mice

To examine effects of excessive P4 on decidualization, pregnant 
mice were subcutaneously injected with 4 mg or 8 mg of P4 in 
100 μL sesame oil daily from days 3–7 of pregnancy. Compared 
with controls, the decidual weight of implantation site on day 8 was 
significantly reduced by 4 mg or 8 mg P4 treatments (Figure 1A). 
Alkaline phosphatase is a marker of mouse decidualization (Yee 
and Kennedy, 1988). The staining density of alkaline phosphatase 
activity in day 8 pregnant uterus was also significantly decreased by 
4 mg or 8 mg P4 (Figure 1B). Under artificial decidualization, the 
decidual weight on day 8 pseudopregnant mice was significantly 
reduced by 4 mg P4 treatments from days 5–7 (Figure 1C). Prl8a2
and Prl3c1 serve as markers for mouse in vitro decidualization 
(Rasmussen et al., 1997). Under in vitro decidualization, Prl8a2
mRNA was significantly downregulated by 20 μM P4, while no 
significant changes were observed by 0.16, 0.8, or 4 μM P4 treatment 

for 2 days (Figure 1D). Meanwhile, Prl3c1 mRNA levels were 
significantly reduced by 10 μM or 20 μM P4 (Figure 1D).

3.2 P4 activates the IDO1/TDO-Kyn 
pathway

Trp is crucial during pregnancy and mainly metabolized via 
Kyn pathway (Badawy, 2015; Badawy et al., 2016; Hoang et al., 
2023; Xue et al., 2023). TDO, IDO1 and IDO2 are the key rate-
limiting enzymes in Kyn pathway and essential for pregnancy 
(Munn et al., 1998). Because excess P4 is detrimental for pregnancy, 
we wondered whether Kyn pathway was affected by excess P4. When 
ovariectomized mice were treated with 4 mg or 8 mg P4 for 7 days, 
uterine Kyn levels were significantly increased (Figure 2A). IDO1 
immunofluorescence signals in the uterine luminal epithelium were 
clearly increased after ovariectomized mice were treated with 4 mg 
or 8 mg P4 for 24 h, while 2 mg P4 had no obvious effect (Figure 2C). 
Uterine TDO protein levels were also upregulated by 2 mg or 4 mg 
P4, but not by 8 mg P4 (Figure 2D).

After stromal cells were treated with 0.16, 0.8, 4, or 20 μM 
P4 for 2 days, Kyn secretion was significantly increased, which 
was abrogated by RU486, an antagonist of progesterone receptor 
(Figure 2B). IDO1 and TDO protein levels were also significantly 
increased after stromal cells were treated with 0.16, 0.8, or 
4 μM P4 for 3 days (Figure 2E). P4-induced increases in IDO1 
and TDO protein levels were blocked by RU486 treatments 
(Figure 2F). Epacadostat, a selective inhibitor of IDO1, effectively 
suppressed P4-induced increases in IDO1 protein levels and Kyn 
secretion (Figures 2G,H). 

3.3 Kyn impairs decidualization of mouse 
stromal cells and activates AhR

Because high-dose P4 increases Kyn levels, we explored 
whether Kyn had any effects on decidualization. Under in 
vitro decidualization, Prl8a2 mRNA levels were significantly 
downregulated in a dose-dependent manner by 0.25, 0.5, or 1 mM 
Kyn (Figure 3A). Meanwhile, Prl3c1 mRNA levels were upregulated 
by 0.5 mM Kyn, but downregulated by 1 mM Kyn (Figure 3A). 
BMP2 is essential for decidualization (Wang and Dey, 2006). BMP2 
protein levels were downregulated after stromal cells were treated 
with 0.2, or 1 mM Kyn, whereas 0.04 mM Kyn had no detectable 
change on BMP2 protein levels for 2 days (Figure 3B). SNAIL, a key 
player during the epithelial-mesenchymal transition, is decreased 
during decidualization (Zhang et al., 2013; Serrano-Gomez et al., 
2016). SNAIL protein levels were significantly upregulated after 
stromal cells were treated with 0.2, or 1 mM Kyn rather than 
0.04 mM Kyn for 2 days (Figure 3B).

Kyn is an effective AhR agonist (DiNatale et al., 2010). Treatment 
of stromal cells with 1 mM Kyn increased the fluorescence 
intensity of nuclear AhR, which was abrogated by CH-223191, 
a specific AhR antagonist (Figure 3C). CYP1A1 and CYP1B1 
are downstream targets of AhR (Denison and Whitlock, 1995; 
Nebert and Dalton, 2006; MacPherson et al., 2013). Under in vitro
decidualization, Cyp1a1 and Cyp1b1 mRNA levels were significantly 
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FIGURE 1
Excessive P4 impairs mouse decidualization. (A) Representative images and the decidual weights of implantation site on day 8 of pregnancy after 
pregnant mice were daily treated with P4 (4 mg or 8 mg) from days 3–7. (B) Alkaline phosphatase staining of day 8 uteri after pregnant mice were 
treated daily with P4 (4 mg or 8 mg) from days 3–7. (C) Representative images and the decidual weights of day 8 pseudopregnant uteri after 
pseudopregnant mice under artificial decidualization were treated daily with 4 mg P4 from days 5–7. (D) Effects of P4 treatment on Prl8a2 and Prl3c1
mRNA levels under in vitro decidualization for 2 days. The qPCR values were normalized to the Rpl7 mRNA level. All images are the representative of at 
least three biologically independent experiments. ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001.
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FIGURE 2
P4 activates the IDO1/TDO-Kyn pathway. (A) Kyn levels in uterine tissues after ovariectomized mice were subcutaneously injected with 2 mg, 4 mg, or 
8 mg P4 per mouse for 7 consecutive days. (B) Kyn levels in culture medium after stromal cells were treated with P4 with or without RU486 for 2 days.
(C) Uterine IDO1 immunofluorescence after ovariectomized mice were treated with P4 (2 mg, 4 mg, 8 mg) for 24 h. Nuclei were counter-stained with 
DAPI. Le, luminal epithelia; St, stroma. Scale bar, 50 μm. n = 3 mice per group. (D) Uterine TDO protein levels after ovariectomized mice were treated 
with P4 for 24 h. (E) Western blot analysis of IDO1 and TDO protein levels in stromal cells treated with P4 for 3 days. (F) IDO1 and TDO protein levels in 
stromal cells treated with 4 μM P4 with or without RU486 for 2 days. (G) IDO1 protein levels in stromal cells treated with 4 μM P4 with or without 
Epacadostat for 2 days. (H) Kyn levels in the culture medium after stromal cells were treated with 4 μM P4 with or without Epacadostat for 2 days. All 
images are the representative of at least three biologically independent experiments. ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001.
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FIGURE 3
Kyn impairs decidualization of mouse stromal cells and activates AhR. (A) Prl8a2 and Prl3c1 mRNA levels after stromal cells were treated with Kyn for 
2 days under in vitro decidualization. (B) Western blot analysis and quantification of BMP2 and SNAIL protein levels in stromal cells treated with Kyn for 
2 days. (C) AhR fluorescence in stromal cells treated with 1 mM Kyn with or without 10 μM CH223191 for 24 h. Nuclei were counter-stained with DAPI. 
Scale bar, 50 μm. (D) The mRNA levels of Cyp1a1 and Cyp1b1 after stromal cells were treated with Kyn for 2 days under in vitro decidualization. All 
images are the representative of at least three biologically independent experiments. ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001.
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downregulated, but upregulated in a dose-dependent manner by 
0.25, 0.5, or 1 mM Kyn (Figure 3D). 

3.4 P4 activates the AhR-CYP1A1/CYP1B1 
signaling pathway

We further explored whether excessive P4 could directly activate 
the AhR pathway. When ovariectomized mice were treated with 
2 or 4 mg P4, p-AhR immunofluorescence in stromal cells was 
enhanced (Figure 4A). The mRNA levels of Cyp1a1 and Cyp1b1 were 
significantly increased after ovariectomized mice were treated with 
2, 4, or 8 mg P4 for 7 days (Figure 4B). Furthermore, CYP1A1 and 
CYP1B1 protein levels in uterine tissues of ovariectomized mice 
significantly increased after 4 mg or 8 mg P4 treatment (Figure 4C). 
After stromal cells were treated with 2.5, 5, 10, or 20 μM P4 for 
2 days, nuclear AhR protein levels were clearly elevated (Figure 4D). 
In addition, nuclear AhR fluorescence in stromal cells was enhanced 
after treatment with 0.8, 4, or 20 μM P4 for 48 h (Figure 4E).

3.5 Kyn inhibits stromal decidualization 
through activating AhR

Under in vitro decidualization, Kyn significantly suppressed 
Prl8a2 mRNA levels, but upregulated Cyp1a1 and Cyp1b1 mRNA 
levels, which were reversed by CH-223191, a specific AhR 
antagonist (Figures 5A,B). CYP1A1 and CYP1B1 are cytochrome 
P450 enzymes that catalyze the formation of non-toxic 2-
OH-E2 and genotoxic 4-OH-E2 from E2 (Mao et al., 2023). 
Under in vitro decidualization, Prl8a2 and Prl3c1 mRNA levels 
were downregulated by 10 μM 2-OH-E2 and 10 μM 4-OH-E2, 
respectively (Figures 5C,D).

3.6 Effects of excessive P4 on nucleolus

The nucleolus plays a crucial role in ribosome biogenesis. 
The morphology, size, and activity of nucleolus are closely linked, 
exhibiting diverse reorganization patterns under stress (Yang et al., 
2018). AhR modulates nucleolar activity and enhances protein 
synthesis (Lafita-Navarro et al., 2018). Given that excess P4 was 
detrimental to pregnancy and could activate the AhR pathway, 
we investigated excess P4 effects on nucleoleus. Nucleolin (NCL), 
constituting approximately 10% of total nucleolar protein, serves 
as a nucleolar marker (Lo et al., 2006). After ovariectomized mice 
were subcutaneously injected with 2 mg or 8 mg P4 for 7 days, 
the size and NCL intensity of nucleolus in the uterine stromal 
cells were obviously increased, while there were no clear changes 
for NCL immunofluorescence in luminal and glandular epithelium 
(Figure 6A). When stromal cells were treated with 0.5, 5, or 20 μM 
P4 for 24 h, the size of nucleolar NCL immunofluorescence was also 
increased (Figure 6B).

4 Discussion

P4 is essential for establishing and maintaining 
pregnancy (Bhurke et al., 2016). However, the potential adverse 

effects of excessive P4 on pregnancy outcomes are frequently 
overlooked. In this study, we found that excessive P4 impaired 
mouse decidualization both in vivo and in vitro, potentially through 
changing tryptophan metabolism and activating AhR pathway.

Numerous studies have reported that excessive P4 adversely 
affects pregnancy outcomes. High P4 exposure from the end of 
menstruation to oocyte maturation is associated with a decreased 
probability of pregnancy (Kyrou et al., 2011). P4 levels ≥1.7 ng/mL 
before oocyte retrieval significantly reduce endometrial receptivity 
(Liu et al., 2015). Endometrial gene expression profiles are altered 
when P4 levels exceed 1.5 ng/mL at the end of the follicular 
phase (Labarta et al., 2011). Elevated P4 levels on the day of 
hCG administration during initial fresh cycles correlate with poor 
pregnancy outcomes in fresh embryo transfers but not in subsequent 
frozen-thawed embryo transfers (Venetis et al., 2013). Our previous 
study also demonstrated that excessive P4 impairs mouse embryo 
implantation and decidualization (Liang et al., 2018).

Trp, an essential amino acid for protein biosynthesis and a 
precursor of serotonin, has been detected in the ovary, uterus, 
fallopian tubes, placenta, and ovarian follicular fluid (Doherty et al., 
2011; Li et al., 2014). During pregnancy, Trp enhances maternal 
and fetal protein synthesis, participates in 5-hydroxytryptamine 
synthesis, provides neuroprotection through kynurenic acid, and 
suppresses fetal rejection reactions (Xu et al., 2017). Excess Trp 
must be metabolized early in pregnancy to avoid adverse effects. 
In mammals, over 95% of free Trp is metabolized through 
the Kyn pathway, which is closely linked to pregnancy (Stone 
and Darlington, 2002). Plasma and uterine Trp levels decrease, 
while Kyn levels increase in human, mouse, and cattle pregnancy 
(Minatogawa et al., 2003; Schrocksnadel et al., 2006; Groebner et al., 
2011). High levels of Trp in culture media inhibit embryo 
development to the blastocyst stage in vitro (McKiernan et al., 
1995). Dynamic Trp metabolism serves as a regulatory mechanism 
to control oxidative stress during pregnancy (Xu et al., 2017). Our 
previous study demonstrated that Trp deficiency in feed impairs 
mouse decidualization via the Kyn pathway (Chen et al., 2024a).

IDO1/2 and TDO2 are key rate-limiting enzymes in the Kyn 
pathway of Trp metabolism (Campesato et al., 2020). IDO1 and 
TDO2 are intimately associated with the decidualization process 
(Suzuki et al., 2001; Kudo et al., 2004). IDO1 in mouse placenta is 
important for preventing the immune rejection of fetal allografts 
(Sedlmayr et al., 2014). TDO2 can facilitate decidualization in 
mice (Tatsumi et al., 2000; Li et al., 2014), whereas overexpression 
of both IDO1 and IDO2 inhibits mouse in vitro decidualization 
(Li et al., 2015a; Li et al., 2015b). IDO1 is possibly involved 
in endometriosis pathogenesis (Mei et al., 2012). In this study, 
treatment with excessive P4 led to upregulation of IDO1 and 
TDO protein levels and increased Kyn levels in the mouse uterus 
and cultured stromal cells. Additionally, high Kyn concentrations 
inhibited mouse in vitro decidualization, suggesting that excessive 
P4 may impair decidualization by activating IDO1 and TDO. P4
is able to stimulate IDO1 and IDO2 expression in mouse uterine 
stromal cells (Li et al., 2015a; Li et al., 2015b). TDO expression is 
induced by decidualization (Tatsumi et al., 2000). Based on these 
evidences, it seems that overactivated IDO1 should be detrimental 
for decidualization.

Kyn, as an endogenous ligand of AhR, activates AhR in mouse 
stromal cells and induced the expression of downstream genes 
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FIGURE 4
P4 activates AhR pathway. (A) Uterine phosphorylated AhR immunofluorescence after ovariectomized mice were treated with 2 mg or 4 mg P4 for 
7 days. Nuclei were counter-stained with PI. Le, luminal epithelia; St, stroma. Scale bar, 20 μm. n = 3 mice per group. (B) Uterine mRNA levels of Cyp1a1
and Cyp1b1 after ovariectomized mice were treated with 2, 4 or 8 mg P4 for 7 days. (C) Western blot analysis and quantification of uterine CYP1A1 
(3 days injection) and CYP1B1 (7 days injection) protein levels after ovariectomized mice were treated with 2, 4 or 8 mg P4. (D) Western blot analysis of 
AhR protein level in nuclear and cytoplasmic fractions, and quantification of AhR in nuclear fractions after stromal cells were treated with P4 for 48 h (E)
AhR immunofluorescence in stromal cells treated with 0.8, 4, or 20 μM P4 for 48 h. Nuclei were counterstained with DAPI. Scale bar: 50 μm. All images 
are the representative of at least three biologically independent experiments. ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001.
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FIGURE 5
Kyn inhibits mouse stromal cell decidualization through activating AhR. (A) The mRNA levels of Cyp1a1 and Cyp1b1 after stromal cells under in vitro
decidualization were treated with Kyn for 48 h with or without AhR inhibitor CH223191. (B) Prl8a2 mRNA level after stromal cells under in vitro
decidualization were treated with Kyn for 24 h with or without CH223191. (C) The mRNA levels of Prl8a2 and Prl3c1 after stromal cells were treated with 
2-OH-E2 for 12 h under in vitro decidualization. (D) The mRNA levels of Prl8a2 and Prl3c1 after stromal cells were treated with 4-OH-E2 for 24 h under
in vitro decidualization. All images are the representative of at least three biologically independent experiments. ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001.

CYP1A1 and CYP1B1 in our study. AhR is essential for ovarian 
function, optimizing the fertilization environment, nurturing 
embryos, maintaining pregnancy, and regulating reproductive 
lifespan and fertility (Hernandez-Ochoa et al., 2009). AhR is 
expressed in the pre-implantation mouse uterus (Kitajima et al., 
2004). AhR mediates the reproductive toxicity induced by 

polychlorinated biphenyl congener 126 in rats (Klenov et al., 
2021). In early pregnancy, Kyn-AhR enhances NK cell cytotoxicity, 
contributing to recurrent spontaneous abortion (Yang et al., 
2021). Additionally, activation of the Trp/Kyn/AhR pathway 
promotes the growth of uterine leiomyomas (Zuberi et al., 
2023). In our study, AhR was also activated by 
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FIGURE 6
Effects of excessive P4 on nucleolus. (A) Uterine NCL immunofluorescence after ovariectomized mice were subcutaneously injected with 2 or 8 mg P4

for 7 days. Nuclei were counter-stained with DAPI. Le, luminal epithelia; St, stroma. Scale bar, 50 μm. n = 3 mice per group. (B) NCL 
immunofluorescence after stromal cells were treated with 0.5,5 or 20 μM P4 for 24 h. Nuclei were counter-stained with DAPI. Scale bar, 20 μm. All 
images are the representative of at least three biologically independent experiments.
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excessive P4, suggesting that overactivated AhR suppresses
decidualization.

CYP1A1 and CYP1B1, members of the cytochrome P450 
enzyme family, catalyze the formation of 2-OH-E2 and 4-OH-
E2 from E2, respectively (Hanna et al., 2000; Lee et al., 2003). 
CYP1B1 is highly expressed in E2 target tissues such as breast, 
ovary, and uterus (Hakkola et al., 1997). 4-OH-E2 generates 
free radicals through redox cycling with semiquinone and 
quinone forms, leading to cellular damage and contributing to 
breast and endometrial cancer development (Tsuchiya et al., 
2005). During mouse delayed implantation, 2-OH-E2 and 4-
OH-E2 show no difference in inducing implantation compared 
to E2 (Hoversland et al., 1982). However, in rats, 4-OH-E2
is less effective than E2 but more effective than 2-OH-E2
in initiating implantation (Kantor et al., 1985). Our results 
demonstrated that both 2-OH-E2 and 4-OH-E2 inhibit stromal cell
decidualization.

Furthermore, based on our NCL immunofluorescence, the 
nucleolar size was obviously increased both in uterine endometrial 
stromal cells and cultured stromal cells following excessive P4
treatment. These findings suggest that excessive P4 may affect 
endometrial function by altering nucleolar structure and function. 
The nucleolus, a prominent membraneless structure within the 
nucleus, plays a crucial role in ribosome formation. This complex 
process encompasses the transcription of ribosomal DNA (rDNA), 
the processing of ribosomal RNA (rRNA), and the subsequent 
assembly of rRNA with ribosomal proteins to generate functional 
ribosomes (Bassler and Hurt, 2019; Lafontaine et al., 2021). 
Any disruptions during ribosome biogenesis can induce nucleolar 
stress, which is marked by changes in nucleolar structure and 
functionality (Lafita-Navarro and Conacci-Sorrell, 2023). Larger 
and more nucleoli are frequently observed in tumor cells compared 
to normal cells, making abnormal nucleolar size and number 
important indicators for cancer prognosis (Derenzini et al., 
2000; Lo et al., 2006). AhR regulates nucleolar activity and 
protein synthesis (Lafita-Navarro et al., 2018). P4 and MPA 
increase Nucleolin protein levels, which is associated with the 
proliferative potential of the cells (Yokoyama et al., 1998). Future 
research could further explore how P4 affects embryo implantation 
and decidualization by influencing the expression of nucleolar-
associated proteins.

During decidualization, P4 classically affects the endometrium 
via two well-characterized receptors, PR-A and PR-B (Lydon et al., 
1996). However, the effects of P4 are also mediated by progesterone 
receptor membrane component 1 (PGRMC1) (Kaluka et al., 2015). 
PGRMC1 expression is also tightly regulated at the maternal-
fetal interface in humans and rodents (Pru and Clark, 2013). 
Uterine ablation of PGRMC1 leads to reduced fertility in female 
mice and the development of endometrial cysts (McCallum et al., 
2016). Additionally, P4 weakly binds to the nuclear glucocorticoid 
receptor (GR), which may represent a key mechanism underlying 
its anti-inflammatory effects in reproductive tissues (Shah et al., 
2019). Deficiency in uterine GR signaling results in an 
exaggerated inflammatory response during induced decidualization, 
including altered immune cell recruitment (Whirledge et al., 
2015). Although this study shows that excessive P4 disrupts 
the Kyn-AhR axis during decidualization, it is still possible 

that excessive P4 may impair decidualization through GR
signaling or PGRMC1. 

5 Conclusion

In summary, our results demonstrate that excessive P4
impairs mouse decidualization via activating Kyn-AhR pathway, 
highlighting the potential mechanisms underlying reproductive 
disorders and adverse pregnancy outcomes associated with 
abnormal P4 levels.
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