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of the Nrf2/HO-1 signaling axis
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Ferroptosis, an iron-dependent form of regulated cell death characterized by
lipid peroxidation, has emerged as a pivotal mechanism in bone disorders
including osteoporosis and osteonecrosis. The nuclear factor erythroid
2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling axis plays a
paradoxical role—contributing to cytoprotection under oxidative stress, yet
potentially promoting ferroptosis through excessive iron accumulation. This
review summarizes how the Nrf2/HO-1 pathway modulates ferroptosis across
osteoblasts, osteoclasts, and osteocytes, and its impact on bone homeostasis.
We explore the pathway's involvement in the shift from physiological bone
remodeling to pathological bone loss. Given its dual role, the Nrf2/HO-1 axis
represents both a challenge and an opportunity for therapeutic intervention.
Understanding its context-specific functions is essential for developing precise,
ferroptosis-targeted strategies in bone disease treatment.
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1 Introduction

Bone homeostasis is a fundamental physiological process that preserves the structural
integrity and mechanical function of bone tissue. This process is primarily governed by
the dynamic balance between osteoblasts and osteoclasts (Zhu et al., 2024; Zhang et al,,
2021). Osteoblasts are responsible for the synthesis and mineralization of new bone, while
osteoclasts facilitate bone remodeling by resorbing aged or damaged bone tissue (Wu et al.,
2024). Under normal physiological conditions, bone formation and resorption are tightly
coupled to maintain bone mass and microarchitectural stability (Ze et al., 2025). However,
this equilibrium is highly sensitive to the bone microenvironment and is regulated by various
factors, including growth factors, cytokines, mechanical loading, oxidative stress, and
metabolic byproducts (Gheorghe et al., 2024). Once the regulatory network is disordered, it
can easily lead to abnormal bone metabolism, manifested as bone loss, bone microstructure
destruction and decreased biomechanical properties.

In clinical settings, bone homeostasis imbalance is closely associated with several
metabolic bone disorders, most notably osteoporosis. The core pathological mechanism
of osteoporosis involves an increased rate of bone resorption relative to bone formation,
leading to trabecular microfracture, decreased bone mineral density (BMD), and a
heightened risk of fracture (Sun et al., 2023; Tao et al., 2020). In recent years, osteonecrosis,
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particularly in the context of vertebral compression fractures, has
drawn increasing attention. Studies suggest that impaired local
blood supply, elevated oxidative stress, and osteocyte dysfunction
post-fracture may contribute to osteocyte death and subsequent
bone tissue necrosis, thereby impeding bone regeneration and repair
(Cabrera et al., 2022; Li et al., 2023a). Furthermore, conditions such
as stress-related bone injury, hormone-induced osteonecrosis, and
chemotherapy-associated osteotoxicity are frequently accompanied
by varying degrees of bone homeostasis disruption. However, the
underlying mechanisms remain poorly understood and warrant
systematic investigation at the cellular and molecular levels.

Cell death plays a pivotal role in both maintaining bone
homeostasis and contributing to bone pathology. While earlier
research has focused on classical cell death pathways such as
apoptosis (Yao et al, 2023) and autophagy (Montaseri et al.,
2020; Laha et al, 2022), recent attention has turned toward
ferroptosis (Jiang et al., 2024)—a distinct, non-apoptotic form
of programmed cell death characterized by iron-dependent lipid
peroxidation. Ferroptosis is primarily driven by the inactivation of
glutathione peroxidase 4 (GPX4), dysregulation of intracellular iron
homeostasis, and excessive accumulation of reactive oxygen species
(ROS), ultimately resulting in lipid membrane rupture and loss of
cellular function (Wang et al., 2021). Although ferroptosis has been
implicated in tumorigenesis, neurodegeneration, and cardiovascular
diseases, its role in bone homeostasis, particularly in regulating
osteoblast survival and function, remains inadequately understood.

Among the various signaling pathways that regulate ferroptosis,
the Nrf2 and its downstream effector HO-1 constitute a key
axis for oxidative stress defense, iron metabolism, and ROS
detoxification (Wang et al., 2022). Under oxidative stress, Nrf2
dissociates from Keapl repression, translocates to the nucleus,
and induces the expression of a suite of antioxidant and iron-
handling genes, including HO-1 (Guo et al., 2021). HO-1 catabolizes
heme into ferrous iron (Fe*), carbon monoxide (CO), and
biliverdin (BV), thereby exerting cytoprotective effects under certain
physiological conditions (Laporte et al., 2019). However, the Fe?*
released in this process may also exacerbate lipid peroxidation
and trigger ferroptosis under pathological conditions, suggesting
that the Nrf2/HO-1 pathway may play a dual regulatory role in
determining osteocyte fate. On one hand, this pathway can suppress
ferroptosis and protect osteoblast function by mitigating lipid
ROS accumulation and preserving iron homeostasis (Iseda et al.,
2022). On the other hand, persistent activation of this axis
under certain stimuli may promote ferroptosis due to iron
overload, impair bone formation, and ultimately disrupt bone
homeostasis (Liu G. Z. et al., 2021).

Therefore, elucidating the precise regulatory mechanisms of
the Nrf2/HO-1 pathway in osteocyte ferroptosis has significant
implications for understanding the pathogenesis of bone metabolic
diseases and identifying novel therapeutic targets. This review
aims to comprehensively examine the role of ferroptosis in bone
homeostasis, with a particular focus on the bidirectional effects
of the Nrf2/HO-1 signaling pathway in osteocyte ferroptosis.
Furthermore, it explores the current research progress and
therapeutic prospects of targeting this pathway in conditions such
as osteoporosis and vertebral osteonecrosis, thereby providing a
theoretical foundation for future studies and precision medicine
approaches in bone metabolic disorders.
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2 The Nrf2/HO-1 pathway: structure
and function

2.1 Structure and function of Nrf2

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal
member of the Cap 0’ Collar (CNC) family of transcription
factors. As a key regulator of the cellular antioxidant defense
system, Nrf2 exerts its biological functions through the coordinated
action of multiple functional domains (Karunatilleke et al.,
2021). Among these, the Neh2 domain, located at the N-
terminus, is critically involved in the interaction with Kelch-
like ECH-associated protein 1 (Keapl), which facilitates the
ubiquitination and proteasomal degradation of Nrf2 under basal
conditions (Wang M. et al., 2019). In contrast, the C-terminal basic
leucine zipper (bZIP) domain is essential for DNA binding and
transcriptional activation (Zhang S. et al., 2022).

Under physiological (non-stressed) conditions, Keapl—primarily
localized in the cytoplasm—acts as a major negative regulator
of Nrf2. It forms a part of an E3 ubiquitin ligase complex,
with Cullin3 (Cul3) serving as the scaffold protein, promoting
continuous ubiquitin-dependent degradation of Nrf2 and thereby
maintaining its low basal expression (Alonso-Pifieiro et al,
2021). However, upon exposure to oxidative stress, electrophilic
agents, or metabolic perturbations, key cysteine residues in Keapl
(notably Cysl151, Cys273, and Cys288) undergo oxidation or
covalent modification. These modifications induce conformational
changes in Keapl, impairing its ability to bind and target Nrf2 for
degradation (Pribil Pardun et al., 2024).

As a result, stabilized Nrf2 accumulates in the cytoplasm and
translocates into the nucleus, where it forms heterodimers with small
Maf proteins. This complex specifically binds to the antioxidant
response element (ARE) within the promoter regions of target
genes, thereby initiating the transcriptional activation of a wide
array of cytoprotective genes, including heme oxygenase-1 (HO-1),
NAD(P)H quinone dehydrogenase 1 (NQO1), glutamate-cysteine
ligase modifier subunit (GCLM), and ferritin heavy chain 1
(FTH1), among others (Zhai et al., 2022). Taken together, Nrf2
is widely regarded as the master regulator of intracellular redox
homeostasis. Its activation plays a central role in orchestrating
antioxidant responses, regulating metal ion metabolism, and
suppressing various forms of regulated cell death—including
ferroptosis—thereby maintaining cellular integrity under stress
conditions.

2.2 HO-1: Nrf2 downstream target genes
and their metabolites function

Heme oxygenase-1 (HO-1) is one of the most prominent
target genes in the Nrf2 transcriptional regulatory network (Song
and Long, 2020). It encodes a rate-limiting enzyme responsible
for the degradation of heme into three key metabolites: carbon
monoxide (CO), ferrous iron (Fe?*), and biliverdin (BV). Biliverdin
can subsequently be converted into bilirubin (BR) by the enzyme
biliverdin reductase (Li et al., 2023b).

These metabolites—CO, Fe?**, and BV—exert significant
pleiotropic effects in maintaining cellular homeostasis and
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modulating stress responses. As an intracellular signaling molecule,
CO has anti-apoptotic, anti-inflammatory, and vasoregulatory
properties (Wang et al., 2020). Meanwhile, BV and its derivative
BR are fat-soluble antioxidants that can efficiently scavenge
peroxides within the cell membrane’s phospholipid bilayer, thus
mitigating oxidative damage (XieF. et al, 2023). In terms of
iron metabolism, the proteins ferritin, ferroportin (FPN), and
transferrin receptor 1 (TfR1) constitute the iron homeostasis system,
ensuring the safe transport, storage, and regulation of intracellular
iron levels (Bogdan et al., 2016).

However, under conditions of sustained high expression of HO-
1 or when iron regulation is impaired, excessive accumulation of
Fe** can exacerbate oxidative stress. This is due to the Fenton
reaction, where Fe’* catalyzes the generation of highly reactive
hydroxyl radicals (¢OH), promoting lipid peroxidation and acting
as a key driver of ferroptosis (Chen B. et al., 2024).

Thus, HO-1 exhibits a dose-dependent or context-dependent
dual regulatory role in cellular stress defense and ferroptosis
induction. Moderate activation of HO-1 confers protective effects
against cellular damage, while excessive activation or dysregulation
of downstream pathways can transform HO-1 into a pathogenic
factor, contributing to cellular dysfunction and ferroptotic cell death.

2.3 Multiple biological functions of
Nrf2/HO-1 pathway

The Nrf2/HO-1 signaling pathway is not only a central axis
of the cellular antioxidant response but also plays a pivotal role
in the regulation of several fundamental physiological processes.
It orchestrates a tightly coordinated cytoprotective network
that includes the following core functions: (1) Maintenance of
Redox Homeostasis: Nrf2 mitigates the accumulation of ROS by
upregulating a range of antioxidant enzymes, including HO-I,
glutathione synthetase, superoxide dismutase (SOD), and catalase
(CAT). Through this regulation, Nrf2 prevents mitochondrial
dysfunction, DNA fragmentation, and protein oxidation, serving
as the first line of defense against oxidative stress-induced cellular
injury (Bu et al,, 2023). (2) Iron Metabolism Remodeling and
Homeostatic Regulation: Nrf2 modulates the expression of multiple
genes involved in iron metabolism, such as ferritin, ferroportin
(FPN), transferrin receptor 1 (TfR1), and hepcidin. These genes
work in concert with Fe’* released via HO-1-mediated heme
degradation to maintain iron homeostasis (Kajarabille and Latunde-
Dada, 2019). This regulatory mechanism is essential in protecting
cells from iron overload-induced cytotoxicity, particularly under
conditions of high metabolic activity or pathological iron
accumulation. (3) Lipid Peroxidation Defense and Ferroptosis
Suppression: In addition to its role in redox and iron balance, Nrf2
also regulates the expression of lipid peroxidation defense genes,
such as glutathione peroxidase 4 (GPX4), ferritin heavy chain 1
(FTHL), and SLC7AL11. These factors are essential for suppressing
lipid ROS accumulation, preserving membrane integrity, and
thereby inhibiting ferroptosis (Zhang et al., 2025). Notably, Nrf2
deficiency is often associated with GPX4 downregulation and
increased phospholipid-derived ROS, which are critical initiating
events in the ferroptotic cascade (Liao et al., 2024) (Figure 1).
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Therefore, the Nrf2/HO-1 pathway serves as an integrated
protective mechanism in response to various cellular stressors,
regulating redox homeostasis, iron balance, and lipid peroxidation
networks in a synergistic manner. However, its biological function
exhibits
variations. Some studies indicate that, under certain stimuli, this

significant  tissue-specific and pathology-dependent
pathway may shift from a protective to a disease-promoting role,
highlighting the complexity of its regulatory mechanisms.

3 Ferroptosis and its emerging role in
bone homeostasis

This section comprehensively examines ferroptosis from
two perspectives: first, we elucidate the molecular mechanisms
underlying this unique form of regulated cell death; second, we
explore how ferroptosis differentially affects various bone cell types
and its implications for bone homeostasis.

3.1 Molecular mechanisms of ferroptosis

3.1.1 The concept and molecular characteristics
of ferroptosis

Ferroptosis is a distinct form of programmed cell death
characterized by the iron-dependent accumulation of lipid
peroxides, and it exhibits molecular and morphological features that
are fundamentally different from those of apoptosis, autophagy, and
necrosis (Ji et al.,, 2022; Sun et al., 2024). The hallmark of ferroptosis
is the oxidation of polyunsaturated fatty acid (PUFA) residues in
the phospholipid bilayer of the cell membrane. Morphologically,
it is typically accompanied by reduced mitochondrial volume,
loss of cristae, and diminished membrane potential, while the
overall integrity of the plasma membrane remains largely unaffected
(Xie Y. et al., 2023; Kim et al., 2023). Unlike apoptosis, ferroptosis
does not involve the activation of caspase family proteins,
but is instead driven by lipid ROS accumulation and GPX4
dysfunction (Zhong et al., 2022).

3.1.2 The main molecular mechanisms of
ferroptosis

At the molecular level, ferroptosis is critically dependent on
the activity of GPX4, the only known antioxidant enzyme capable
of directly reducing phospholipid hydroperoxides within cellular
membranes (Dos Santos and Friedmann-Angeli, 2024; Tao et al,
2025). The enzymatic function of GPX4 relies on glutathione
(GSH) as an electron donor (Zhang Y. et al., 2022). When GPX4 is
inactivated or when intracellular GSH is depleted, lipid peroxides
accumulate within the membrane, resulting in irreversible oxidative
damage (Wang et al, 2023). In parallel, free Fe** within the
cytoplasm contributes to the Fenton reaction, generating hydroxyl
radicals (¢OH) that further propagate lipid peroxidation cascades,
acting as a key driving force of ferroptosis (Liu et al., 2023; Song et al.,
2024). Ferroptosis is co-regulated by multiple signaling networks,
and its core regulatory mechanism can be summarized into the
following functional modules (Figures 2A,B).
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Structural composition, regulatory mechanism, and functional effects of the Nrf2/HO-1 pathway. Under steady-state conditions, Nrf2 is localized in the
cytoplasm and forms a complex with Keapl, which binds to the Cul3-E3 ubiquitin ligase complex through the BTB, IVR, and DC domains. This complex
mediates the ubiquitination and degradation of Nrf2 in the proteasome, maintaining low levels of its expression. Upon oxidative stress, cysteine
residues in Keapl undergo oxidative modification, allowing Nrf2 to escape degradation and accumulate in the cytoplasm. Nrf2 then translocates to the
nucleus, forms a heterodimer with small Maf proteins, binds to the ARE, and induces the transcription of downstream target genes. As an important
target gene of Nrf2, HO-1 encodes a heme-degrading enzyme that catalyzes the cleavage of heme into CO, Fe®*, and BV, which is converted to BR by
biliverdin reductase. The released Fe?* participates in the regulation of cellular iron homeostasis through FTH/FTL, FPN, and TfR1, and collectively

contributes to antioxidant defense and ferroptosis inhibition.

3.1.2.1 SLC7A11-GSH-GPX4 antioxidant axis

System Xc~, composed of SLC7A11/SLC3A2 heterodimers,
mediates the exchange of extracellular cystine for intracellular
glutamate and serves as the upstream pathway for intracellular
GSH synthesis (Jin et al., 2024). Downregulation of SLC7A11
expression or its functional inhibition markedly reduces
intracellular GSH levels, resulting in GPX4 inactivation. This

process ultimately impairs the cellular capacity to neutralize
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lipid peroxides, representing a critical step in the induction of
ferroptosis (Yan et al., 2023).

3.1.2.2 Iron metabolism and transport mechanisms
Dysregulation of iron metabolism is a crucial prerequisite

for ferroptosis (Jia et al., 2024). Transferrin receptor 1 (TFR1)
facilitates cellular iron uptake, ferritin heavy chain (FTHI)
mediates intracellular Fe** storage, and FPN governs iron
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(A) Molecular Mechanisms of Ferroptosis
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Ferroptosis mechanisms and bone cell responses. (A) Core ferroptosis mechanism showing Fe?* -dependent lipid peroxidation, mitochondrial
dysfunction, and GPX4 inactivation leading to cell death. (B) Three key regulatory pathways: SLC7A11-GSH-GPX4 antioxidant axis for lipid peroxide
removal; ACSL4/LPCAT3-mediated PUFA incorporation into membranes; iron metabolism via TFR1/FPN1 regulating Fenton reaction and ROS
production. (C) Differential ferroptosis sensitivity in bone cells: osteoblasts (OBs) and MSCs show high susceptibility with impaired differentiation;
osteoclasts (OCs) exhibit bidirectional ROS response affecting NFATc1/c-Fos expression; osteocytes (OCYs) demonstrate sensitivity through Nrf2/HO-1
pathway. (D) Ferroptosis impact on bone homeostasis showing disrupted balance between bone formation and resorption, with potential intervention
targets including SLC7A11 regulation, GPX4 stabilization, and iron chelation.
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export (Bogdan et al, 2016; Deng et al, 2023). The balance
between these iron regulatory proteins determines the labile
iron pool within cells, which directly influences ferroptosis
susceptibility.

3.1.2.3 ACSL4/LPCAT3-mediated PUFA acylation and

peroxidation
Long-chain  acyl-CoA  synthetase 4 (ACSL4) and

lysophosphatidylcholine acyltransferase 3 (LPCAT3) cooperatively
catalyze the acylation and incorporation of polyunsaturated
fatty acids (PUFAs) into membrane phospholipids, generating
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molecules such as phosphatidylethanolamine-adrenic acid (PE-
AdA) and phosphatidylethanolamine-arachidonic acid (PE-AA).
These PUFA-containing phospholipids serve as direct substrates for
iron-catalyzed lipid peroxidation (Wei et al., 2023; Dang et al., 2022).
Upon GPX4 inactivation, these phospholipid PUFAs become prime
targets for oxidative damage, leading to cell membrane dysfunction
and the subsequent activation of ferroptotic cell death signaling.

3.1.2.4 Fenton reaction-mediated oxidative toxicity

Excessive iron influx, inadequate storage capacity, or impaired
export leads to accumulation of labile Fe?*, which enhances Fenton
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reaction activity, amplifies ROS production, and triggers lipid
peroxidation-induced cellular damage (Chen and Chen, 2022). The
Fenton reaction (Fe** + H,0, > Fe** + «OH + OH") generates
highly reactive hydroxyl radicals that initiate and propagate lipid
peroxidation cascades, ultimately leading to ferroptotic cell death.

3.2 Ferroptosis in bone homeostasis

Bone homeostasis depends on the precise coupling between
osteogenesis and bone resorption (Lin et al., 2022; Huo G. et al,
2024). As a regulated way of cell death, ferroptosis shows
significant heterogeneity in the response patterns of different bone-
related cells (Figures 2 C,D).

3.2.1 Osteoblasts

Osteoblasts dominate the synthesis and mineralization of bone
matrix and are highly sensitive to iron metabolism and ROS
levels (Shou et al., 2024). Studies have shown that elevated iron
load or activation of ferroptosis pathway can downregulate the
expression of GPX4 and SLC7A11, resulting in accumulation of
lipid peroxidation and inhibition of osteoblast differentiation and
mineralization (Iantomasi et al., 2023; Huo K. et al.,, 2024). This
phenomenon suggests that the regulation of ferroptosis axis can be
a new strategy for the intervention of bone formation disorders.

3.2.2 Osteoclasts

Osteoclasts achieve bone renewal by absorbing bone, and are
functionally opposite to osteoblasts (Liu N. et al., 2021). Different
from osteoblasts, osteoclasts have a certain tolerance to ROS, and
their differentiation and activity depend on the activation of ROS
signaling pathway to a certain extent (Qi et al., 2024; Feng et al.,
2023). It has been found that the increase of Fe?* level can upregulate
the expression of NFATc] and c-Fos in osteoclast precursors and
enhance their differentiation ability (Kim et al., 2019; Wang et al.,
2018). However, excessive lipid peroxidation may still cause
osteoclast dysfunction, suggesting that its response to ferroptosis
may be bidirectional and worthy of further exploration.

3.2.3 Mesenchymal stem cells (MSCs)

MSCs are precursor cells of osteoblasts, and maintaining
their “stemness” is of decisive significance for bone regeneration
(Zheng et al., 2022). Iron overload can induce the decrease of
mitochondrial membrane potential and the increase of lipid ROS
in MSCs, resulting in the decrease of pluripotency (Li M. et al.,
2023; An et al, 2023). The GPX4 knockout model suggests
that impaired antioxidant capacity accelerates MSCs senescence
and osteogenic differentiation disorder, which is an important
mechanism basis for ferroptosis-mediated bone regeneration defects
(Yang et al., 2014; Bersuker et al., 2019).

3.2.4 Osteocytes

As the terminal differentiation product of osteoblasts, osteocytes
are the key executive units of stress perception and remodeling
regulation of bone tissue (Samsa et al., 2016; Abd et al., 2018).
Although the current research on ferroptosis in bone cells is
limited, preliminary evidence has shown that it is highly sensitive to
oxidative stress and changes in iron homeostasis, and may mediate
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ferroptosis response in pathological processes such as osteonecrosis
and fracture repair disorders (Xu et al., 2022). The role of Nrf2/HO-
1 axis in this process remains to be systematically studied and has
important research potential.

In summary, ferroptosis, as a new type of programmed cell death
mode, is characterized by lipid peroxidation accumulation and iron-
dependent ROS burst caused by GPX4 inactivation. This process
is synergistically driven by SLC7A11-GSH-GPX4 antioxidant axis,
PUFA lipid acylation pathway and iron metabolism disorder. There
are significant differences in the sensitivity of different types of
bone-associated cells to ferroptosis: osteoblasts and MSCs are highly
susceptible to ferroptosis, and their impaired function directly
inhibits bone formation. Osteoclasts have a positive response to
early oxidative stress signals, and may also lose bone resorption
capacity when oxidative damage is excessive; as the center of bone
homeostasis regulation, the role of osteocytes in ferroptosis needs
to be systematically elucidated. These heterogeneous reactions not
only reveal the complexity of ferroptosis in the regulation of bone
homeostasis, but also provide a new perspective for understanding
its bidirectional regulation in metabolic bone diseases such as
osteoporosis and osteonecrosis. Future research should focus on
ferroptosis threshold recognition of different osteocyte subtypes,
specific molecular regulatory networks, and precise definition of
intervention window period, so as to develop new anti-bone
loss drugs.

4 Modulation of ferroptosis by
Nrf2/HO-1 in bone physiology and
pathophysiology

Ferroptosis is a type of programmed cell death characterized
by iron-dependent lipid peroxidation accumulation. In recent
years, it has been considered to play an important role in the
regulation of bone homeostasis (Xiong et al., 2022; Gao et al,
2019). Nrf2 and its downstream effector HO-1 together constitute
the key signal axis of cellular anti-oxidative stress and iron
metabolism regulation, which not only participates in the defense
of oxidative damage, but also plays a significant regulatory role
in ferroptosis during the maintenance of bone metabolic balance
(Montoya et al., 2021; Ma et al., 2022). Studies have shown that
Nrf2/HO-1 signaling pathway is involved in the fate determination
of osteoblasts and osteoclasts by regulating antioxidant defense,
iron ion homeostasis and lipid metabolism, thus affecting the
dynamic balance between bone formation and bone resorption
(Wang N. et al., 2019; Malakoti et al., 2022).

4.1 Nrf2/HO-1 pathway regulates
osteoblast function through ferroptosis
modulation

In osteoblasts, the Nrf2/HO-1 signaling axis, as a core pathway
regulating cellular antioxidant capacity and iron metabolism, is
critical for inhibiting ferroptosis and protecting osteogenic function
(Wu and Huang, 2024; Tonelli et al., 2018). Nrf2 transcriptionally
activates a series of antioxidant enzymes, including GPX4, to
effectively remove lipid peroxides in cell membrane phospholipids,
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thereby limiting the occurrence of ferroptosis (Fan et al., 2017;
Yang et al., 2016). As the core enzyme of ferroptosis defense system,
GPX4 can reduce phospholipid peroxides by GSH, which is a key
factor to maintain the membrane integrity and functional stability
of osteoblasts (Fang et al., 2020; Huang et al., 2024).

In addition to lipid oxidation, Nrf2 can also upregulate
the expression of ferritin heavy chain 1 (FTHI1), enhance the
intracellular iron storage capacity, reduce the level of free Fe’',
and inhibit the production of hydroxyl radicals (¢OH) caused by
Fenton reaction, thus blocking the iron-catalyzed lipid oxidation
reaction chain (Zeng et al., 2023; Liu et al., 2020). This mechanism
fundamentally curbs the risk of activation of ferroptosis in
osteoblasts.

In addition, HO-1, as a classical target gene of Nrf2, catalyzes the
degradation of heme to produce products-CO, BV and Fe**, which
can participate in anti-apoptosis and anti-inflammatory processes
under certain conditions. At the same time, it cooperates with the
iron homeostasis system to regulate the Fe?* load level (Martinez-
Casales et al., 2021; Lv et al, 2024). Although the activation of
HO-1 has ferroptosis potential in some contexts, its mild induction
in osteoblasts is more likely to be biased towards inhibiting
lipid peroxidation and ROS accumulation, thereby exerting a
protective effect (Figure 3).

In summary, the Nrf2/HO-1 pathway constructs a multi-
level barrier of osteoblasts to ferroptosis stress by integrating
and regulating redox homeostasis, lipid antioxidant system and
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iron metabolism pathway. Its activation can not only slow down
cell damage and apoptosis during bone formation, but also
enhance osteogenic ability and promote bone matrix deposition and
mineralization, which is expected to become a potential target for
maintaining bone homeostasis and preventing bone loss.

4.2 Bidirectional control of osteoclast
activity by Nrf2/HO-1-mediated ferroptosis

The role of Nrf2/HO-1 pathway in osteoclasts shows a
certain bidirectionality. Moderate Nrf2 activation has a protective
effect on osteoclasts, but excessive HO-1 metabolites may
promote osteoclast activity and lead to excessive bone resorption
(Pan et al., 2021; Fang et al., 2024).

Moderate activation of Nrf2 can upregulate the expression
of antioxidant enzymes and reduce the accumulation of ROS,
thereby reducing the damage of osteoclasts caused by oxidative
stress (Li et al., 2018). Oxidative stress is an important regulator of
osteoclast function. Excessive ROS can cause osteoclast damage and
aggravate bone resorption (Ji et al., 2023; XiaHumulus lupulus et al.,
2023). Therefore, Nrf2 plays a protective role in bone metabolism by
maintaining the antioxidant capacity of osteoclasts (Figure 4A).

However, excessive HO-1 metabolites, such as Fe?*, may have
adverse effects. Ferroptosis is triggered by free radicals generated
by Fenton reaction, which promote lipid peroxidation (Cai et al.,
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2024; Chen et al, 2023). Ferroptosis is a form of osteoclast
death, and excessive Fe** can lead to excessive bone resorption
(Chen Y. etal., 2024; Qu et al., 2024). Therefore, the role of Nrf2/HO-
1 pathway in osteoclasts requires fine regulation. Moderate HO-1
activity has a protective effect on bone resorption, while excessive
HO-1 activation may promote bone resorption and affect bone
homeostasis (Figure 4B).

Taken together, this two-way regulatory mechanism reveals
the importance of the precise balance of the Nrf2/HO-1 signaling
axis in osteoclasts. Moderate activation has anti-ferroptosis
and homeostasis maintenance effects, while excessive activation
promotes ferroptosis and osteoclast dysfunction. This finding
provides a new perspective for understanding the molecular
mechanism of abnormal osteoclast activity in various bone
metabolic diseases, and also lays a foundation for the development
of precise treatment strategies for ferroptosis and bone resorption
imbalance.

4.3 HO-1 metabolites determine osteocyte
survival via ferroptosis regulation

HO-1 produces a series of metabolites by degrading heme,
including CO, Fe*" and BV (Tun et al., 2020). These metabolites play
an important role in the regulation of bone cell fate.

As one of the products of HO-1, CO has antioxidant properties
(Zhang et al., 2020). At low concentrations, CO can protect bone
cells by reducing the accumulation of ROS, improve mitochondrial
function, and enhance the antioxidant capacity of cells (Wang et al.,
2024). The inhibitory effect of CO on oxidative stress in osteocytes
helps maintain bone homeostasis (Van Phan et al., 2013). Fe* is
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another important product of HO-1. Although it is essential for
the physiological function of bone cells, excessive Fe** will generate
free radicals through Fenton reaction, induce lipid peroxidation, and
eventually lead to ferroptosis (Yang and Shang, 2022). As a form of
iron-dependent cell death, ferroptosis poses a threat to the survival
of bone cells. Therefore, the excessive accumulation of Fe** may
have a negative impact on the health of bone cells. BV is another
product produced during the degradation of heme by HO-1, which
has a strong antioxidant effect (Wu and Hsieh, 2022). BV can remove
excessive ROS and reduce the damage of oxidative stress to bone
cells, thereby maintaining bone homeostasis (Zhou et al., 2021). Its
antioxidant properties make it a key factor in protecting bone cells
in HO-1 metabolites (Figure 5).

In summary, the regulation of HO-1 metabolites on the fate
of osteocytes is highly environmentally dependent, and produces
distinct biological effects under different cell types and different
concentrations, which constitutes the molecular basis for the fine
regulation of bone homeostasis. This environment-specific and cell-
specific mode of action provides a new theoretical framework
for understanding the pathological mechanism of bone metabolic
diseases and developing targeted treatment strategies.

4.4 Nrf2/HO-1-ferroptosis axis in
pathogenesis of bone metabolic diseases

The role of Nrf2/HO-1 pathway in bone metabolic diseases,
especially in osteoporosis and osteonecrosis, has received extensive
attention (Li et al., 2019; Hu et al., 2022). In these diseases, decreased
expression or functional inactivation of Nrf2 is often accompanied
by increased ferroptosis, excessive bone resorption, and bone loss.
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the
osteoporosis, the expression of Nrf2 is significantly decreased,
which is closely related to the inhibition of osteogenesis and
the decrease of bone mineralization function (Liu et al.,, 2024).

In animal model of estrogen deficiency-induced

Studies have shown that Nrf2 activation can upregulate the
expression of antioxidant enzymes, reduce oxidative stress and
ferroptosis, thereby inhibiting bone resorption, promoting bone
formation, improving bone structure, and slowing the process
of osteoporosis and osteonecrosis (Xue et al., 2019). In addition,
HO-1, as a downstream effector molecule of the Nrf2 pathway, its
inducer can promote bone repair by reducing ROS accumulation
and inhibiting bone resorption in the early stage (Han et al,
2022; Liu et al, 2025). Therefore, the regulation of Nrf2/HO-1
pathway has potential application prospects in the treatment of
bone metabolic diseases such as osteoporosis and osteonecrosis
(Figure 6).

Therefore, Nrf2 dysfunction caused by estrogen deficiency
or glucocorticoid treatment leads to increased oxidative stress,
iron metabolism disorders and lipid peroxidation, and ultimately
damages bone structure. Based on these findings, multi-
target treatment strategies from Nrf2 activators to ferroptosis
inhibitors have shown clinical application prospects. However,
there are still many challenges in this field. The regulatory
mechanism of Nrf2/HO-1 pathway in different bone cells has
not been fully elucidated. The targeted delivery and long-
term safety of therapeutic drugs need to be verified, and
the
further study.

interaction with other bone metabolic networks needs
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5 Therapeutic targeting of the
Nrf2/HO-1-ferroptosis axis in bone
diseases

The Nrf2/HO-1 pathway plays a pivotal role in regulating bone
homeostasis through modulation of ferroptosis, providing novel
therapeutic strategies for various bone diseases (Zhang et al., 2023).
This section discusses targeted interventions based on specific bone
pathologies, highlighting how manipulation of the Nrf2/HO-1-
ferroptosis axis can effectively improve disease outcomes (Table 1).

5.1 Therapeutic strategies for osteoporosis

Osteoporosis,
and increased fracture risk, has emerged as a primary target
for Nrf2/HO-1 pathway modulation. Nrf2 agonists have
shown remarkable efficacy in preclinical osteoporosis models.
Sulforaphane, through alkylation of Keapl Cysl51 residues,
promotes Nrf2 nuclear translocation and ARE activation, leading
to increased HO-1 and NQO1 expression (Lin et al., 2014). In
ovariectomized rat models, sulforaphane treatment significantly
improved BMD and trabecular architecture (Thaler et al., 2016).

Melatonin represents another promising therapeutic agent
for diabetic osteoporosis. By activating the MT2-ERK/AKT-
Nrf2/HO-1 cascade, melatonin reduces ROS levels, upregulates

characterized by decreased bone density

SLC7A11 expression, and increases GPX4 activity, thereby
protecting osteoblasts from ferroptosis and improving bone mineral
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deferiprone), and ferroptosis inhibitors (ferrostatin-1) targeting different nodes of the pathway.

density (Hu et al., 2022) (Yan et al,, 2022). Similarly, traditional
Chinese medicine components have demonstrated efficacy:
quercetin enhances osteoblast mineralization through PI3K/AKT-
mediated Nrf2 activation, while simultaneously suppressing NF-kB
inflammatory signaling (Xiao et al., 2023; Mao et al., 2024).

For postmenopausal osteoporosis, a-tocopherol (Vitamin
E) functions as a lipid-chain termination agent, reinforcing
membrane antioxidant barriers and improving implant
biocompatibility (Lovati et al., 2018). These diverse approaches
underscore the multifaceted therapeutic potential of targeting the

Nrf2/HO-1 pathway in osteoporosis management.

5.2 Interventions for osteonecrosis

Osteonecrosis,
osteonecrosis, involves excessive ferroptosis and compromised

particularly glucocorticoid-induced
bone vascularization. Iron chelators have emerged as crucial
therapeutic agents in this context. Deferoxamine (DFO) blocks
the Fenton reaction by chelating Fe?*, leading to HIF-la
stabilization and enhanced VEGF release, thereby promoting
vascularization and osteogenesis in bone defect models
(Guo et al., 2023; Shen et al., 2024).

The nano-delivery system has shown particular promise
for osteonecrosis treatment. Curcumin-loaded nanoparticles
enhance bone defect repair through p62-mediated Keapl
sustained  Nrf2

antioxidant/anti-inflammatory

activation and
(Wang, 2024;

degradation, in

dual

resulting
effects
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Astaneh et al, 2024). This targeted delivery approach
improves bioavailability while minimizing systemic side effects
(Cheng et al., 2017; Chen Y. J. et al., 2024).

Combined therapeutic strategies have proven especially
effective. The synergistic use of DFO with lipid antioxidants like
Ferrostatin-1 addresses both iron overload and lipid peroxidation,
providing comprehensive protection against ferroptotic cell death

in osteonecrosis (Guo et al., 2023; Valanezhad et al., 2021).

5.3 Applications in inflammatory bone
diseases

Inflammatory bone diseases, including rheumatoid arthritis

and osteoarthritis, present unique
due to the interplay between inflammation and oxidative
stress. Dimethyl fumarate targets this dual pathology through

Keapl alkylation, promoting GSH synthesis while inhibiting

therapeutic ~ challenges

ferroptosis. In osteolytic models, this approach reduces osteoclast
activity and upregulates Runx2 expression (Sanchez-de-
Diego et al., 2021; Yamaguchi et al., 2018).

For rheumatoid arthritis, HO-1 modulation requires careful
balance. Tin protoporphyrin IX, a competitive HO-1 inhibitor,
reduces CO production and suppresses excess HO-1-mediated
bone resorption, effectively inhibiting bone loss in arthritis models
(Ibafiez et al., 2011). This highlights the importance of context-
dependent HO-1 regulation (Kajarabille and Latunde-Dada, 2019;
Li et al,, 2020; Yang et al., 2022; Castany et al., 2016).
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Small-molecule chelation of labile iron> | ROS
Keap1 Cys151 binding->ultra-potent Nrf2

Bidentate Fe** coordination- | bone-matrix iron

activation | NF-kB->potent
antioxidant/anti-inflammatory

Deferiprone
Deferasirox

Compound

|

Transfusion-induced
Chronic overload
Bardoxolone methyl (CDDO-Me)

Disease category

Iron Overload Disorders
Emerging Therapies

TABLE 1 (Continued) Therapeutic interventions targeting the Nrf2/HO-1-ferroptosis axis in bone diseases: Mechanisms and clinical applications.
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Tanshinone 1IIA offers a multifaceted approach for
radiation-induced bone injury through SIRT1-mediated Nrf2
deacetylation, driving ARE-dependent antioxidant expression
while suppressing p38/MAPK inflammatory signaling. This
dual action helps restore bone marrow microenvironment
(Cao et al., 2024; Cheng et al., 2024).

5.4 Treatment of iron overload-related
bone disorders

Chronic iron overload conditions, such as those seen in
transfusion-dependent thalassemia, require specialized therapeutic
approaches. Deferiprone provides small-molecule chelation of
labile iron, effectively preserving bone density in transfusion-
induced iron overload (Shen et al, 2024). Similarly, deferasirox
coordinates bidentate Fe>* binding to reduce bone-matrix iron
accumulation, significantly decreasing fracture risk in chronic iron
overload patients (Casale et al., 2014).

These iron-specific interventions demonstrate the critical
importance of maintaining iron homeostasis in bone health,
particularly in patients with systemic iron metabolism disorders.

5.5 Emerging therapeutic modalities and
future directions

Novel therapeutic agents continue to emerge. Bardoxolone
methyl (CDDO-Me), currently in Phase I trials, represents an
ultra-potent Nrf2 activator through Keap1 Cys151 binding, offering
potential trabecular bone protection with combined antioxidant and
anti-inflammatory properties (Yang et al., 2023).

Advanced delivery systems are revolutionizing treatment
approaches. Bone-targeted nanoparticle formulations enable precise
delivery of Nrf2 agonists or traditional medicine components
directly to affected bone tissue, maximizing therapeutic efficacy
while minimizing off-target effects (Astaneh et al, 2024;
Cheng et al., 2017; Chen Y. J. et al., 2024).

The integration of combination therapies—utilizing Nrf2
activators (Xiao et al, 2023; Cao et al., 2024), iron chelators
(Guo et al, 2023), and ferroptosis inhibitors (Valanezhad et al.,
2021)—represents the future of personalized bone disease
treatment, allowing clinicians to address the specific pathological
mechanisms underlying each patient’s condition.

6 Conclusion and prospects

Whether ferroptosis constitutes an indispensable driver of
osteonecrosis or osteoporosis remains an open question. Although
Fe?* accumulation, lipid peroxidation, and the ensuing oxidative
stress have been consistently observed in diverse bone-pathology
models—most notably in glucocorticoid-induced osteoporosis and
osteonecrosis—definitive proof that ferroptosis is a “necessary
condition” for disease initiation is still lacking. It is increasingly
apparent that ferroptosis may represent a critical facet of disease
progression rather than the singular pathogenic mechanism. Adding
further complexity, the Nrf2 signaling axis exerts dichotomous
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effects: on one hand, activation of Nrf2 promotes the transcription
of antioxidant enzymes, mitigates oxidative damage, and suppresses
ferroptosis, thereby safeguarding osteocytic integrity; on the other
hand, chronic or excessive Nrf2 activation can drive overproduction
of HO-1 metabolites (including labile Fe?*), thereby potentiating
ferroptotic cell death and skeletal deterioration. Dissecting these
“protective” versus “pathogenic” roles of Nrf2—particularly in
a cell-type-and time-dependent manner (e.g., osteoblasts versus
osteoclasts, early versus late disease stages)—remains a formidable
challenge. Moreover, the translational gap between animal models
and human clinical specimens is still wide: while preclinical data
are abundant, robust validation in patient cohorts is insufficient.
Future research must therefore integrate sophisticated in vivo and
ex vivo platforms, and prioritize the development of bone-targeted,
tissue-specific Nrf2 modulators capable of finely tuning redox
homeostasis without eliciting systemic iron overload.

Overall, the Nrf2/HO-1 signaling cascade emerges as a
pivotal regulator of bone homeostasis, intricately linking oxidative
stress, iron metabolism, and regulated cell death pathways.
Investigations into ferroptosis have unveiled novel insights
into the mechanistic interplay between iron dysregulation and
osteocellular injury, offering a fresh conceptual framework for
osteoporosis and osteonecrosis pathogenesis. Looking ahead,
the precise manipulation of the Nrf2/HO-1 axis—particularly
through bone-targeted, cell-contextual therapeutics—holds promise
for transformative interventions in skeletal disease. Realizing
this potential will require surmounting key obstacles, including
delineation of cell-type specificity, temporal window optimization,
and the refinement of delivery systems to ensure localized
efficacy while minimizing off-target effects. With continued
multidisciplinary advances, targeted modulation of the Nrf2/HO-1
pathway is poised to inaugurate a new era of precision medicine in
bone pathology.
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