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Ferroptosis, an iron-dependent form of regulated cell death characterized by 
lipid peroxidation, has emerged as a pivotal mechanism in bone disorders 
including osteoporosis and osteonecrosis. The nuclear factor erythroid 
2–related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling axis plays a 
paradoxical role—contributing to cytoprotection under oxidative stress, yet 
potentially promoting ferroptosis through excessive iron accumulation. This 
review summarizes how the Nrf2/HO-1 pathway modulates ferroptosis across 
osteoblasts, osteoclasts, and osteocytes, and its impact on bone homeostasis. 
We explore the pathway’s involvement in the shift from physiological bone 
remodeling to pathological bone loss. Given its dual role, the Nrf2/HO-1 axis 
represents both a challenge and an opportunity for therapeutic intervention. 
Understanding its context-specific functions is essential for developing precise, 
ferroptosis-targeted strategies in bone disease treatment.
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 1 Introduction

Bone homeostasis is a fundamental physiological process that preserves the structural 
integrity and mechanical function of bone tissue. This process is primarily governed by 
the dynamic balance between osteoblasts and osteoclasts (Zhu et al., 2024; Zhang et al., 
2021). Osteoblasts are responsible for the synthesis and mineralization of new bone, while 
osteoclasts facilitate bone remodeling by resorbing aged or damaged bone tissue (Wu et al., 
2024). Under normal physiological conditions, bone formation and resorption are tightly 
coupled to maintain bone mass and microarchitectural stability (Ze et al., 2025). However, 
this equilibrium is highly sensitive to the bone microenvironment and is regulated by various 
factors, including growth factors, cytokines, mechanical loading, oxidative stress, and 
metabolic byproducts (Gheorghe et al., 2024). Once the regulatory network is disordered, it 
can easily lead to abnormal bone metabolism, manifested as bone loss, bone microstructure 
destruction and decreased biomechanical properties.

In clinical settings, bone homeostasis imbalance is closely associated with several 
metabolic bone disorders, most notably osteoporosis. The core pathological mechanism 
of osteoporosis involves an increased rate of bone resorption relative to bone formation, 
leading to trabecular microfracture, decreased bone mineral density (BMD), and a 
heightened risk of fracture (Sun et al., 2023; Tao et al., 2020). In recent years, osteonecrosis,
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particularly in the context of vertebral compression fractures, has 
drawn increasing attention. Studies suggest that impaired local 
blood supply, elevated oxidative stress, and osteocyte dysfunction 
post-fracture may contribute to osteocyte death and subsequent 
bone tissue necrosis, thereby impeding bone regeneration and repair 
(Cabrera et al., 2022; Li et al., 2023a). Furthermore, conditions such 
as stress-related bone injury, hormone-induced osteonecrosis, and 
chemotherapy-associated osteotoxicity are frequently accompanied 
by varying degrees of bone homeostasis disruption. However, the 
underlying mechanisms remain poorly understood and warrant 
systematic investigation at the cellular and molecular levels.

Cell death plays a pivotal role in both maintaining bone 
homeostasis and contributing to bone pathology. While earlier 
research has focused on classical cell death pathways such as 
apoptosis (Yao et al., 2023) and autophagy (Montaseri et al., 
2020; Laha et al., 2022), recent attention has turned toward 
ferroptosis (Jiang et al., 2024)—a distinct, non-apoptotic form 
of programmed cell death characterized by iron-dependent lipid 
peroxidation. Ferroptosis is primarily driven by the inactivation of 
glutathione peroxidase 4 (GPX4), dysregulation of intracellular iron 
homeostasis, and excessive accumulation of reactive oxygen species 
(ROS), ultimately resulting in lipid membrane rupture and loss of 
cellular function (Wang et al., 2021). Although ferroptosis has been 
implicated in tumorigenesis, neurodegeneration, and cardiovascular 
diseases, its role in bone homeostasis, particularly in regulating 
osteoblast survival and function, remains inadequately understood.

Among the various signaling pathways that regulate ferroptosis, 
the Nrf2 and its downstream effector HO-1 constitute a key 
axis for oxidative stress defense, iron metabolism, and ROS 
detoxification (Wang et al., 2022). Under oxidative stress, Nrf2 
dissociates from Keap1 repression, translocates to the nucleus, 
and induces the expression of a suite of antioxidant and iron-
handling genes, including HO-1 (Guo et al., 2021). HO-1 catabolizes 
heme into ferrous iron (Fe2+), carbon monoxide (CO), and 
biliverdin (BV), thereby exerting cytoprotective effects under certain 
physiological conditions (Laporte et al., 2019). However, the Fe2+

released in this process may also exacerbate lipid peroxidation 
and trigger ferroptosis under pathological conditions, suggesting 
that the Nrf2/HO-1 pathway may play a dual regulatory role in 
determining osteocyte fate. On one hand, this pathway can suppress 
ferroptosis and protect osteoblast function by mitigating lipid 
ROS accumulation and preserving iron homeostasis (Iseda et al., 
2022). On the other hand, persistent activation of this axis 
under certain stimuli may promote ferroptosis due to iron 
overload, impair bone formation, and ultimately disrupt bone 
homeostasis (Liu G. Z. et al., 2021).

Therefore, elucidating the precise regulatory mechanisms of 
the Nrf2/HO-1 pathway in osteocyte ferroptosis has significant 
implications for understanding the pathogenesis of bone metabolic 
diseases and identifying novel therapeutic targets. This review 
aims to comprehensively examine the role of ferroptosis in bone 
homeostasis, with a particular focus on the bidirectional effects 
of the Nrf2/HO-1 signaling pathway in osteocyte ferroptosis. 
Furthermore, it explores the current research progress and 
therapeutic prospects of targeting this pathway in conditions such 
as osteoporosis and vertebral osteonecrosis, thereby providing a 
theoretical foundation for future studies and precision medicine 
approaches in bone metabolic disorders. 

2 The Nrf2/HO-1 pathway: structure 
and function

2.1 Structure and function of Nrf2

Nuclear factor erythroid 2–related factor 2 (Nrf2) is a pivotal 
member of the Cap ‘n’ Collar (CNC) family of transcription 
factors. As a key regulator of the cellular antioxidant defense 
system, Nrf2 exerts its biological functions through the coordinated 
action of multiple functional domains (Karunatilleke et al., 
2021). Among these, the Neh2 domain, located at the N-
terminus, is critically involved in the interaction with Kelch-
like ECH-associated protein 1 (Keap1), which facilitates the 
ubiquitination and proteasomal degradation of Nrf2 under basal 
conditions (Wang M. et al., 2019). In contrast, the C-terminal basic 
leucine zipper (bZIP) domain is essential for DNA binding and 
transcriptional activation (Zhang S. et al., 2022).

Under physiological (non-stressed) conditions, Keap1—primarily 
localized in the cytoplasm—acts as a major negative regulator 
of Nrf2. It forms a part of an E3 ubiquitin ligase complex, 
with Cullin3 (Cul3) serving as the scaffold protein, promoting 
continuous ubiquitin-dependent degradation of Nrf2 and thereby 
maintaining its low basal expression (Alonso-Piñeiro et al., 
2021). However, upon exposure to oxidative stress, electrophilic 
agents, or metabolic perturbations, key cysteine residues in Keap1 
(notably Cys151, Cys273, and Cys288) undergo oxidation or 
covalent modification. These modifications induce conformational 
changes in Keap1, impairing its ability to bind and target Nrf2 for 
degradation (Pribil Pardun et al., 2024).

As a result, stabilized Nrf2 accumulates in the cytoplasm and 
translocates into the nucleus, where it forms heterodimers with small 
Maf proteins. This complex specifically binds to the antioxidant 
response element (ARE) within the promoter regions of target 
genes, thereby initiating the transcriptional activation of a wide 
array of cytoprotective genes, including heme oxygenase-1 (HO-1), 
NAD(P)H quinone dehydrogenase 1 (NQO1), glutamate–cysteine 
ligase modifier subunit (GCLM), and ferritin heavy chain 1 
(FTH1), among others (Zhai et al., 2022). Taken together, Nrf2 
is widely regarded as the master regulator of intracellular redox 
homeostasis. Its activation plays a central role in orchestrating 
antioxidant responses, regulating metal ion metabolism, and 
suppressing various forms of regulated cell death—including 
ferroptosis—thereby maintaining cellular integrity under stress 
conditions. 

2.2 HO-1: Nrf2 downstream target genes 
and their metabolites function

Heme oxygenase-1 (HO-1) is one of the most prominent 
target genes in the Nrf2 transcriptional regulatory network (Song 
and Long, 2020). It encodes a rate-limiting enzyme responsible 
for the degradation of heme into three key metabolites: carbon 
monoxide (CO), ferrous iron (Fe2+), and biliverdin (BV). Biliverdin 
can subsequently be converted into bilirubin (BR) by the enzyme 
biliverdin reductase (Li et al., 2023b).

These metabolites—CO, Fe2+, and BV—exert significant 
pleiotropic effects in maintaining cellular homeostasis and 
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modulating stress responses. As an intracellular signaling molecule, 
CO has anti-apoptotic, anti-inflammatory, and vasoregulatory 
properties (Wang et al., 2020). Meanwhile, BV and its derivative 
BR are fat-soluble antioxidants that can efficiently scavenge 
peroxides within the cell membrane’s phospholipid bilayer, thus 
mitigating oxidative damage (Xie F. et al., 2023). In terms of 
iron metabolism, the proteins ferritin, ferroportin (FPN), and 
transferrin receptor 1 (TfR1) constitute the iron homeostasis system, 
ensuring the safe transport, storage, and regulation of intracellular 
iron levels (Bogdan et al., 2016).

However, under conditions of sustained high expression of HO-
1 or when iron regulation is impaired, excessive accumulation of 
Fe2+ can exacerbate oxidative stress. This is due to the Fenton 
reaction, where Fe2+ catalyzes the generation of highly reactive 
hydroxyl radicals (•OH), promoting lipid peroxidation and acting 
as a key driver of ferroptosis (Chen B. et al., 2024).

Thus, HO-1 exhibits a dose-dependent or context-dependent 
dual regulatory role in cellular stress defense and ferroptosis 
induction. Moderate activation of HO-1 confers protective effects 
against cellular damage, while excessive activation or dysregulation 
of downstream pathways can transform HO-1 into a pathogenic 
factor, contributing to cellular dysfunction and ferroptotic cell death. 

2.3 Multiple biological functions of 
Nrf2/HO-1 pathway

The Nrf2/HO-1 signaling pathway is not only a central axis 
of the cellular antioxidant response but also plays a pivotal role 
in the regulation of several fundamental physiological processes. 
It orchestrates a tightly coordinated cytoprotective network 
that includes the following core functions: (1) Maintenance of 
Redox Homeostasis: Nrf2 mitigates the accumulation of ROS by 
upregulating a range of antioxidant enzymes, including HO-1, 
glutathione synthetase, superoxide dismutase (SOD), and catalase 
(CAT). Through this regulation, Nrf2 prevents mitochondrial 
dysfunction, DNA fragmentation, and protein oxidation, serving 
as the first line of defense against oxidative stress-induced cellular 
injury (Bu et al., 2023). (2) Iron Metabolism Remodeling and 
Homeostatic Regulation: Nrf2 modulates the expression of multiple 
genes involved in iron metabolism, such as ferritin, ferroportin 
(FPN), transferrin receptor 1 (TfR1), and hepcidin. These genes 
work in concert with Fe2+ released via HO-1-mediated heme 
degradation to maintain iron homeostasis (Kajarabille and Latunde-
Dada, 2019). This regulatory mechanism is essential in protecting 
cells from iron overload-induced cytotoxicity, particularly under 
conditions of high metabolic activity or pathological iron 
accumulation. (3) Lipid Peroxidation Defense and Ferroptosis 
Suppression: In addition to its role in redox and iron balance, Nrf2 
also regulates the expression of lipid peroxidation defense genes, 
such as glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 
(FTH1), and SLC7A11. These factors are essential for suppressing 
lipid ROS accumulation, preserving membrane integrity, and 
thereby inhibiting ferroptosis (Zhang et al., 2025). Notably, Nrf2 
deficiency is often associated with GPX4 downregulation and 
increased phospholipid-derived ROS, which are critical initiating 
events in the ferroptotic cascade (Liao et al., 2024) (Figure 1).

Therefore, the Nrf2/HO-1 pathway serves as an integrated 
protective mechanism in response to various cellular stressors, 
regulating redox homeostasis, iron balance, and lipid peroxidation 
networks in a synergistic manner. However, its biological function 
exhibits significant tissue-specific and pathology-dependent 
variations. Some studies indicate that, under certain stimuli, this 
pathway may shift from a protective to a disease-promoting role, 
highlighting the complexity of its regulatory mechanisms. 

3 Ferroptosis and its emerging role in 
bone homeostasis

This section comprehensively examines ferroptosis from 
two perspectives: first, we elucidate the molecular mechanisms 
underlying this unique form of regulated cell death; second, we 
explore how ferroptosis differentially affects various bone cell types 
and its implications for bone homeostasis. 

3.1 Molecular mechanisms of ferroptosis

3.1.1 The concept and molecular characteristics 
of ferroptosis

Ferroptosis is a distinct form of programmed cell death 
characterized by the iron-dependent accumulation of lipid 
peroxides, and it exhibits molecular and morphological features that 
are fundamentally different from those of apoptosis, autophagy, and 
necrosis (Ji et al., 2022; Sun et al., 2024). The hallmark of ferroptosis 
is the oxidation of polyunsaturated fatty acid (PUFA) residues in 
the phospholipid bilayer of the cell membrane. Morphologically, 
it is typically accompanied by reduced mitochondrial volume, 
loss of cristae, and diminished membrane potential, while the 
overall integrity of the plasma membrane remains largely unaffected 
(Xie Y. et al., 2023; Kim et al., 2023). Unlike apoptosis, ferroptosis 
does not involve the activation of caspase family proteins, 
but is instead driven by lipid ROS accumulation and GPX4 
dysfunction (Zhong et al., 2022). 

3.1.2 The main molecular mechanisms of 
ferroptosis

At the molecular level, ferroptosis is critically dependent on 
the activity of GPX4, the only known antioxidant enzyme capable 
of directly reducing phospholipid hydroperoxides within cellular 
membranes (Dos Santos and Friedmann-Angeli, 2024; Tao et al., 
2025). The enzymatic function of GPX4 relies on glutathione 
(GSH) as an electron donor (Zhang Y. et al., 2022). When GPX4 is 
inactivated or when intracellular GSH is depleted, lipid peroxides 
accumulate within the membrane, resulting in irreversible oxidative 
damage (Wang et al., 2023). In parallel, free Fe2+ within the 
cytoplasm contributes to the Fenton reaction, generating hydroxyl 
radicals (•OH) that further propagate lipid peroxidation cascades, 
acting as a key driving force of ferroptosis (Liu et al., 2023; Song et al., 
2024). Ferroptosis is co-regulated by multiple signaling networks, 
and its core regulatory mechanism can be summarized into the 
following functional modules (Figures 2A,B).
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FIGURE 1
Structural composition, regulatory mechanism, and functional effects of the Nrf2/HO-1 pathway. Under steady-state conditions, Nrf2 is localized in the 
cytoplasm and forms a complex with Keap1, which binds to the Cul3-E3 ubiquitin ligase complex through the BTB, IVR, and DC domains. This complex 
mediates the ubiquitination and degradation of Nrf2 in the proteasome, maintaining low levels of its expression. Upon oxidative stress, cysteine 
residues in Keap1 undergo oxidative modification, allowing Nrf2 to escape degradation and accumulate in the cytoplasm. Nrf2 then translocates to the 
nucleus, forms a heterodimer with small Maf proteins, binds to the ARE, and induces the transcription of downstream target genes. As an important 
target gene of Nrf2, HO-1 encodes a heme-degrading enzyme that catalyzes the cleavage of heme into CO, Fe2+, and BV, which is converted to BR by 
biliverdin reductase. The released Fe2+ participates in the regulation of cellular iron homeostasis through FTH/FTL, FPN, and TfR1, and collectively 
contributes to antioxidant defense and ferroptosis inhibition.

3.1.2.1 SLC7A11-GSH-GPX4 antioxidant axis
System Xc−, composed of SLC7A11/SLC3A2 heterodimers, 

mediates the exchange of extracellular cystine for intracellular 
glutamate and serves as the upstream pathway for intracellular 
GSH synthesis (Jin et al., 2024). Downregulation of SLC7A11 
expression or its functional inhibition markedly reduces 
intracellular GSH levels, resulting in GPX4 inactivation. This 
process ultimately impairs the cellular capacity to neutralize 

lipid peroxides, representing a critical step in the induction of 
ferroptosis (Yan et al., 2023). 

3.1.2.2 Iron metabolism and transport mechanisms
Dysregulation of iron metabolism is a crucial prerequisite 

for ferroptosis (Jia et al., 2024). Transferrin receptor 1 (TFR1) 
facilitates cellular iron uptake, ferritin heavy chain (FTH1) 
mediates intracellular Fe2+ storage, and FPN governs iron 
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FIGURE 2
Ferroptosis mechanisms and bone cell responses. (A) Core ferroptosis mechanism showing Fe2+-dependent lipid peroxidation, mitochondrial 
dysfunction, and GPX4 inactivation leading to cell death. (B) Three key regulatory pathways: SLC7A11-GSH-GPX4 antioxidant axis for lipid peroxide 
removal; ACSL4/LPCAT3-mediated PUFA incorporation into membranes; iron metabolism via TFR1/FPN1 regulating Fenton reaction and ROS 
production. (C) Differential ferroptosis sensitivity in bone cells: osteoblasts (OBs) and MSCs show high susceptibility with impaired differentiation; 
osteoclasts (OCs) exhibit bidirectional ROS response affecting NFATc1/c-Fos expression; osteocytes (OCYs) demonstrate sensitivity through Nrf2/HO-1 
pathway. (D) Ferroptosis impact on bone homeostasis showing disrupted balance between bone formation and resorption, with potential intervention 
targets including SLC7A11 regulation, GPX4 stabilization, and iron chelation.

export (Bogdan et al., 2016; Deng et al., 2023). The balance 
between these iron regulatory proteins determines the labile 
iron pool within cells, which directly influences ferroptosis
susceptibility. 

3.1.2.3 ACSL4/LPCAT3-mediated PUFA acylation and 
peroxidation

Long-chain acyl-CoA synthetase 4 (ACSL4) and 
lysophosphatidylcholine acyltransferase 3 (LPCAT3) cooperatively 
catalyze the acylation and incorporation of polyunsaturated 
fatty acids (PUFAs) into membrane phospholipids, generating 

molecules such as phosphatidylethanolamine-adrenic acid (PE-
AdA) and phosphatidylethanolamine-arachidonic acid (PE-AA). 
These PUFA-containing phospholipids serve as direct substrates for 
iron-catalyzed lipid peroxidation (Wei et al., 2023; Dang et al., 2022). 
Upon GPX4 inactivation, these phospholipid PUFAs become prime 
targets for oxidative damage, leading to cell membrane dysfunction 
and the subsequent activation of ferroptotic cell death signaling. 

3.1.2.4 Fenton reaction-mediated oxidative toxicity
Excessive iron influx, inadequate storage capacity, or impaired 

export leads to accumulation of labile Fe2+, which enhances Fenton 
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reaction activity, amplifies ROS production, and triggers lipid 
peroxidation-induced cellular damage (Chen and Chen, 2022). The 
Fenton reaction (Fe2+ + H2O2 → Fe3+ + •OH + OH−) generates 
highly reactive hydroxyl radicals that initiate and propagate lipid 
peroxidation cascades, ultimately leading to ferroptotic cell death. 

3.2 Ferroptosis in bone homeostasis

Bone homeostasis depends on the precise coupling between 
osteogenesis and bone resorption (Lin et al., 2022; Huo G. et al., 
2024). As a regulated way of cell death, ferroptosis shows 
significant heterogeneity in the response patterns of different bone-
related cells (Figures 2 C,D). 

3.2.1 Osteoblasts
Osteoblasts dominate the synthesis and mineralization of bone 

matrix and are highly sensitive to iron metabolism and ROS 
levels (Shou et al., 2024). Studies have shown that elevated iron 
load or activation of ferroptosis pathway can downregulate the 
expression of GPX4 and SLC7A11, resulting in accumulation of 
lipid peroxidation and inhibition of osteoblast differentiation and 
mineralization (Iantomasi et al., 2023; Huo K. et al., 2024). This 
phenomenon suggests that the regulation of ferroptosis axis can be 
a new strategy for the intervention of bone formation disorders. 

3.2.2 Osteoclasts
Osteoclasts achieve bone renewal by absorbing bone, and are 

functionally opposite to osteoblasts (Liu N. et al., 2021). Different 
from osteoblasts, osteoclasts have a certain tolerance to ROS, and 
their differentiation and activity depend on the activation of ROS 
signaling pathway to a certain extent (Qi et al., 2024; Feng et al., 
2023). It has been found that the increase of Fe2+ level can upregulate 
the expression of NFATc1 and c-Fos in osteoclast precursors and 
enhance their differentiation ability (Kim et al., 2019; Wang et al., 
2018). However, excessive lipid peroxidation may still cause 
osteoclast dysfunction, suggesting that its response to ferroptosis 
may be bidirectional and worthy of further exploration. 

3.2.3 Mesenchymal stem cells (MSCs)
MSCs are precursor cells of osteoblasts, and maintaining 

their “stemness” is of decisive significance for bone regeneration 
(Zheng et al., 2022). Iron overload can induce the decrease of 
mitochondrial membrane potential and the increase of lipid ROS 
in MSCs, resulting in the decrease of pluripotency (Li M. et al., 
2023; An et al., 2023). The GPX4 knockout model suggests 
that impaired antioxidant capacity accelerates MSCs senescence 
and osteogenic differentiation disorder, which is an important 
mechanism basis for ferroptosis-mediated bone regeneration defects 
(Yang et al., 2014; Bersuker et al., 2019). 

3.2.4 Osteocytes
As the terminal differentiation product of osteoblasts, osteocytes 

are the key executive units of stress perception and remodeling 
regulation of bone tissue (Samsa et al., 2016; Abd et al., 2018). 
Although the current research on ferroptosis in bone cells is 
limited, preliminary evidence has shown that it is highly sensitive to 
oxidative stress and changes in iron homeostasis, and may mediate 

ferroptosis response in pathological processes such as osteonecrosis 
and fracture repair disorders (Xu et al., 2022). The role of Nrf2/HO-
1 axis in this process remains to be systematically studied and has 
important research potential.

In summary, ferroptosis, as a new type of programmed cell death 
mode, is characterized by lipid peroxidation accumulation and iron-
dependent ROS burst caused by GPX4 inactivation. This process 
is synergistically driven by SLC7A11-GSH-GPX4 antioxidant axis, 
PUFA lipid acylation pathway and iron metabolism disorder. There 
are significant differences in the sensitivity of different types of 
bone-associated cells to ferroptosis: osteoblasts and MSCs are highly 
susceptible to ferroptosis, and their impaired function directly 
inhibits bone formation. Osteoclasts have a positive response to 
early oxidative stress signals, and may also lose bone resorption 
capacity when oxidative damage is excessive; as the center of bone 
homeostasis regulation, the role of osteocytes in ferroptosis needs 
to be systematically elucidated. These heterogeneous reactions not 
only reveal the complexity of ferroptosis in the regulation of bone 
homeostasis, but also provide a new perspective for understanding 
its bidirectional regulation in metabolic bone diseases such as 
osteoporosis and osteonecrosis. Future research should focus on 
ferroptosis threshold recognition of different osteocyte subtypes, 
specific molecular regulatory networks, and precise definition of 
intervention window period, so as to develop new anti-bone 
loss drugs. 

4 Modulation of ferroptosis by 
Nrf2/HO-1 in bone physiology and 
pathophysiology

Ferroptosis is a type of programmed cell death characterized 
by iron-dependent lipid peroxidation accumulation. In recent 
years, it has been considered to play an important role in the 
regulation of bone homeostasis (Xiong et al., 2022; Gao et al., 
2019). Nrf2 and its downstream effector HO-1 together constitute 
the key signal axis of cellular anti-oxidative stress and iron 
metabolism regulation, which not only participates in the defense 
of oxidative damage, but also plays a significant regulatory role 
in ferroptosis during the maintenance of bone metabolic balance 
(Montoya et al., 2021; Ma et al., 2022). Studies have shown that 
Nrf2/HO-1 signaling pathway is involved in the fate determination 
of osteoblasts and osteoclasts by regulating antioxidant defense, 
iron ion homeostasis and lipid metabolism, thus affecting the 
dynamic balance between bone formation and bone resorption 
(Wang N. et al., 2019; Malakoti et al., 2022). 

4.1 Nrf2/HO-1 pathway regulates 
osteoblast function through ferroptosis 
modulation

In osteoblasts, the Nrf2/HO-1 signaling axis, as a core pathway 
regulating cellular antioxidant capacity and iron metabolism, is 
critical for inhibiting ferroptosis and protecting osteogenic function 
(Wu and Huang, 2024; Tonelli et al., 2018). Nrf2 transcriptionally 
activates a series of antioxidant enzymes, including GPX4, to 
effectively remove lipid peroxides in cell membrane phospholipids, 

Frontiers in Cell and Developmental Biology 06 frontiersin.org

https://doi.org/10.3389/fcell.2025.1615197
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Nan et al. 10.3389/fcell.2025.1615197

FIGURE 3
Anti-ferroptosis regulation by Nrf2/HO-1 pathway in osteoblasts. (A) Oxidative stress induces Nrf2 dissociation from Keap1, nuclear translocation, and 
ARE binding for antioxidant gene transcription. (B) Nrf2 activation upregulates antioxidant genes: GPX4 for lipid peroxide reduction; FTH1 for iron 
storage; SLC7A11 for GSH synthesis; HO-1 for heme degradation into CO, Fe2+, and BV. (C) Ferroptosis inhibition through multiple mechanisms: 
FTH1-mediated iron sequestration prevents Fenton reaction; GPX4/GSH system eliminates lipid peroxides; HO-1 metabolites (BV/CO) suppress ROS. 
This protective pathway enhances osteoblast survival, differentiation, and mineralization, with increased expression of osteogenic markers (RUNX2, 
Osterix, ALP, OCN, Col1) and mineralized nodule formation.

thereby limiting the occurrence of ferroptosis (Fan et al., 2017; 
Yang et al., 2016). As the core enzyme of ferroptosis defense system, 
GPX4 can reduce phospholipid peroxides by GSH, which is a key 
factor to maintain the membrane integrity and functional stability 
of osteoblasts (Fang et al., 2020; Huang et al., 2024).

In addition to lipid oxidation, Nrf2 can also upregulate 
the expression of ferritin heavy chain 1 (FTH1), enhance the 
intracellular iron storage capacity, reduce the level of free Fe2+, 
and inhibit the production of hydroxyl radicals (•OH) caused by 
Fenton reaction, thus blocking the iron-catalyzed lipid oxidation 
reaction chain (Zeng et al., 2023; Liu et al., 2020). This mechanism 
fundamentally curbs the risk of activation of ferroptosis in 
osteoblasts.

In addition, HO-1, as a classical target gene of Nrf2, catalyzes the 
degradation of heme to produce products-CO, BV and Fe2+, which 
can participate in anti-apoptosis and anti-inflammatory processes 
under certain conditions. At the same time, it cooperates with the 
iron homeostasis system to regulate the Fe2+ load level (Martínez-
Casales et al., 2021; Lv et al., 2024). Although the activation of 
HO-1 has ferroptosis potential in some contexts, its mild induction 
in osteoblasts is more likely to be biased towards inhibiting 
lipid peroxidation and ROS accumulation, thereby exerting a 
protective effect (Figure 3).

In summary, the Nrf2/HO-1 pathway constructs a multi-
level barrier of osteoblasts to ferroptosis stress by integrating 
and regulating redox homeostasis, lipid antioxidant system and 

iron metabolism pathway. Its activation can not only slow down 
cell damage and apoptosis during bone formation, but also 
enhance osteogenic ability and promote bone matrix deposition and 
mineralization, which is expected to become a potential target for 
maintaining bone homeostasis and preventing bone loss. 

4.2 Bidirectional control of osteoclast 
activity by Nrf2/HO-1-mediated ferroptosis

The role of Nrf2/HO-1 pathway in osteoclasts shows a 
certain bidirectionality. Moderate Nrf2 activation has a protective 
effect on osteoclasts, but excessive HO-1 metabolites may 
promote osteoclast activity and lead to excessive bone resorption 
(Pan et al., 2021; Fang et al., 2024).

Moderate activation of Nrf2 can upregulate the expression 
of antioxidant enzymes and reduce the accumulation of ROS, 
thereby reducing the damage of osteoclasts caused by oxidative 
stress (Li et al., 2018). Oxidative stress is an important regulator of 
osteoclast function. Excessive ROS can cause osteoclast damage and 
aggravate bone resorption (Ji et al., 2023; XiaHumulus lupulus et al., 
2023). Therefore, Nrf2 plays a protective role in bone metabolism by 
maintaining the antioxidant capacity of osteoclasts (Figure 4A).

However, excessive HO-1 metabolites, such as Fe2+, may have 
adverse effects. Ferroptosis is triggered by free radicals generated 
by Fenton reaction, which promote lipid peroxidation (Cai et al., 
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FIGURE 4
Environment-dependent bidirectional regulation of Nrf2/HO-1 signaling in osteoclasts. (A) Moderate Nrf2 activation: Oxidative stress induces 
Keap1-Nrf2 dissociation, nuclear translocation, and ARE-mediated gene expression. This upregulates GSH synthesis, GPX4 activity, and FTH1 
expression, reducing ROS/lipid peroxidation and inhibiting ferroptosis. Normal NFATc1/c-Fos activation maintains balanced osteoclast function and 
bone resorption. (B) Excessive HO-1 activation: Insufficient Nrf2 function with abnormally high HO-1 expression causes excessive heme degradation 
and Fe2+ accumulation. GSH depletion and inadequate GPX4 activity, combined with Fenton reaction-generated ROS, promote ferroptosis. Iron 
overload triggers aberrant NFATc1/c-Fos signaling, leading to osteoclast hyperfunction and excessive bone resorption, disrupting bone homeostasis.

2024; Chen et al., 2023). Ferroptosis is a form of osteoclast 
death, and excessive Fe2+ can lead to excessive bone resorption 
(Chen Y. et al., 2024; Qu et al., 2024). Therefore, the role of Nrf2/HO-
1 pathway in osteoclasts requires fine regulation. Moderate HO-1 
activity has a protective effect on bone resorption, while excessive 
HO-1 activation may promote bone resorption and affect bone 
homeostasis (Figure 4B).

Taken together, this two-way regulatory mechanism reveals 
the importance of the precise balance of the Nrf2/HO-1 signaling 
axis in osteoclasts. Moderate activation has anti-ferroptosis 
and homeostasis maintenance effects, while excessive activation 
promotes ferroptosis and osteoclast dysfunction. This finding 
provides a new perspective for understanding the molecular 
mechanism of abnormal osteoclast activity in various bone 
metabolic diseases, and also lays a foundation for the development 
of precise treatment strategies for ferroptosis and bone resorption 
imbalance. 

4.3 HO-1 metabolites determine osteocyte 
survival via ferroptosis regulation

HO-1 produces a series of metabolites by degrading heme, 
including CO, Fe2+ and BV (Tun et al., 2020). These metabolites play 
an important role in the regulation of bone cell fate.

As one of the products of HO-1, CO has antioxidant properties 
(Zhang et al., 2020). At low concentrations, CO can protect bone 
cells by reducing the accumulation of ROS, improve mitochondrial 
function, and enhance the antioxidant capacity of cells (Wang et al., 
2024). The inhibitory effect of CO on oxidative stress in osteocytes 
helps maintain bone homeostasis (Van Phan et al., 2013). Fe2+ is 

another important product of HO-1. Although it is essential for 
the physiological function of bone cells, excessive Fe2+ will generate 
free radicals through Fenton reaction, induce lipid peroxidation, and 
eventually lead to ferroptosis (Yang and Shang, 2022). As a form of 
iron-dependent cell death, ferroptosis poses a threat to the survival 
of bone cells. Therefore, the excessive accumulation of Fe2+ may 
have a negative impact on the health of bone cells. BV is another 
product produced during the degradation of heme by HO-1, which 
has a strong antioxidant effect (Wu and Hsieh, 2022). BV can remove 
excessive ROS and reduce the damage of oxidative stress to bone 
cells, thereby maintaining bone homeostasis (Zhou et al., 2021). Its 
antioxidant properties make it a key factor in protecting bone cells 
in HO-1 metabolites (Figure 5).

In summary, the regulation of HO-1 metabolites on the fate 
of osteocytes is highly environmentally dependent, and produces 
distinct biological effects under different cell types and different 
concentrations, which constitutes the molecular basis for the fine 
regulation of bone homeostasis. This environment-specific and cell-
specific mode of action provides a new theoretical framework 
for understanding the pathological mechanism of bone metabolic 
diseases and developing targeted treatment strategies. 

4.4 Nrf2/HO-1-ferroptosis axis in 
pathogenesis of bone metabolic diseases

The role of Nrf2/HO-1 pathway in bone metabolic diseases, 
especially in osteoporosis and osteonecrosis, has received extensive 
attention (Li et al., 2019; Hu et al., 2022). In these diseases, decreased 
expression or functional inactivation of Nrf2 is often accompanied 
by increased ferroptosis, excessive bone resorption, and bone loss.
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FIGURE 5
Multidimensional regulation of HO-1 metabolites on bone cell fate. (A) HO-1 catalyzes heme degradation to produce CO, Fe2+, and BV, differentially 
affecting three bone cell types. (B) In osteoblasts: CO reduces ROS and activates CREB/BDNF signaling; Fe2+ shows dual effects—moderate levels 
stabilize HIF-1α supporting bone formation, while excess induces ferroptosis; BV/BR inhibits lipid peroxidation and activates Nrf2/GPX4, promoting 
osteogenic differentiation. (C) In MSCs: CO activates p38 MAPK/VEGF promoting proliferation; Fe2+ accumulation depletes GSH impairing stemness; 
BV/BR enhances viability via NF-κB inhibition and Wnt/β-catenin activation. Dose-dependent responses are critical for MSC-based therapies. (D) In 
osteoclasts: CO inhibits RANKL signaling reducing osteoclastogenesis; Fe2+ effects are concentration-dependent—low levels maintain function, high 
levels promote excessive resorption; BV/BR suppresses TRAP/MMP-9 expression inhibiting bone resorption.

In the animal model of estrogen deficiency-induced 
osteoporosis, the expression of Nrf2 is significantly decreased, 
which is closely related to the inhibition of osteogenesis and 
the decrease of bone mineralization function (Liu et al., 2024). 
Studies have shown that Nrf2 activation can upregulate the 
expression of antioxidant enzymes, reduce oxidative stress and 
ferroptosis, thereby inhibiting bone resorption, promoting bone 
formation, improving bone structure, and slowing the process 
of osteoporosis and osteonecrosis (Xue et al., 2019). In addition, 
HO-1, as a downstream effector molecule of the Nrf2 pathway, its 
inducer can promote bone repair by reducing ROS accumulation 
and inhibiting bone resorption in the early stage (Han et al., 
2022; Liu et al., 2025). Therefore, the regulation of Nrf2/HO-1 
pathway has potential application prospects in the treatment of 
bone metabolic diseases such as osteoporosis and osteonecrosis
(Figure 6).

Therefore, Nrf2 dysfunction caused by estrogen deficiency 
or glucocorticoid treatment leads to increased oxidative stress, 
iron metabolism disorders and lipid peroxidation, and ultimately 
damages bone structure. Based on these findings, multi-
target treatment strategies from Nrf2 activators to ferroptosis 
inhibitors have shown clinical application prospects. However, 
there are still many challenges in this field. The regulatory 
mechanism of Nrf2/HO-1 pathway in different bone cells has 
not been fully elucidated. The targeted delivery and long-
term safety of therapeutic drugs need to be verified, and 
the interaction with other bone metabolic networks needs
further study. 

5 Therapeutic targeting of the 
Nrf2/HO-1-ferroptosis axis in bone 
diseases

The Nrf2/HO-1 pathway plays a pivotal role in regulating bone 
homeostasis through modulation of ferroptosis, providing novel 
therapeutic strategies for various bone diseases (Zhang et al., 2023). 
This section discusses targeted interventions based on specific bone 
pathologies, highlighting how manipulation of the Nrf2/HO-1-
ferroptosis axis can effectively improve disease outcomes (Table 1).

5.1 Therapeutic strategies for osteoporosis

Osteoporosis, characterized by decreased bone density 
and increased fracture risk, has emerged as a primary target 
for Nrf2/HO-1 pathway modulation. Nrf2 agonists have 
shown remarkable efficacy in preclinical osteoporosis models. 
Sulforaphane, through alkylation of Keap1 Cys151 residues, 
promotes Nrf2 nuclear translocation and ARE activation, leading 
to increased HO-1 and NQO1 expression (Lin et al., 2014). In 
ovariectomized rat models, sulforaphane treatment significantly 
improved BMD and trabecular architecture (Thaler et al., 2016).

Melatonin represents another promising therapeutic agent 
for diabetic osteoporosis. By activating the MT2-ERK/AKT-
Nrf2/HO-1 cascade, melatonin reduces ROS levels, upregulates 
SLC7A11 expression, and increases GPX4 activity, thereby 
protecting osteoblasts from ferroptosis and improving bone mineral 
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FIGURE 6
Nrf2/HO-1 pathway in bone metabolic diseases: pathology and therapeutic strategies. (A) Osteoporosis: Estrogen deficiency downregulates 
Nrf2/GPX4/HO-1, increasing ROS accumulation and decreasing GSH/GSSG ratio, resulting in trabecular bone loss, reduced cortical thickness, and 
fracture risk. (B) Osteonecrosis: Glucocorticoid treatment inactivates Nrf2 pathway, causing Fe2+ accumulation and lipid peroxidation, triggering 
ferroptosis. (C) Multi-target therapeutic network: Nrf2 activators (sulforaphane, melatonin), antioxidants (vitamin E, quercetin), iron chelators (DFO, 
deferiprone), and ferroptosis inhibitors (ferrostatin-1) targeting different nodes of the pathway.

density (Hu et al., 2022) (Yan et al., 2022). Similarly, traditional 
Chinese medicine components have demonstrated efficacy: 
quercetin enhances osteoblast mineralization through PI3K/AKT-
mediated Nrf2 activation, while simultaneously suppressing NF-κB 
inflammatory signaling (Xiao et al., 2023; Mao et al., 2024).

For postmenopausal osteoporosis, α-tocopherol (Vitamin 
E) functions as a lipid-chain termination agent, reinforcing 
membrane antioxidant barriers and improving implant 
biocompatibility (Lovati et al., 2018). These diverse approaches 
underscore the multifaceted therapeutic potential of targeting the 
Nrf2/HO-1 pathway in osteoporosis management. 

5.2 Interventions for osteonecrosis

Osteonecrosis, particularly glucocorticoid-induced 
osteonecrosis, involves excessive ferroptosis and compromised 
bone vascularization. Iron chelators have emerged as crucial 
therapeutic agents in this context. Deferoxamine (DFO) blocks 
the Fenton reaction by chelating Fe2+, leading to HIF-1α 
stabilization and enhanced VEGF release, thereby promoting 
vascularization and osteogenesis in bone defect models 
(Guo et al., 2023; Shen et al., 2024).

The nano-delivery system has shown particular promise 
for osteonecrosis treatment. Curcumin-loaded nanoparticles 
enhance bone defect repair through p62-mediated Keap1 
degradation, resulting in sustained Nrf2 activation and 
dual antioxidant/anti-inflammatory effects (Wang, 2024; 

Astaneh et al., 2024). This targeted delivery approach 
improves bioavailability while minimizing systemic side effects 
(Cheng et al., 2017; Chen Y. J. et al., 2024).

Combined therapeutic strategies have proven especially 
effective. The synergistic use of DFO with lipid antioxidants like 
Ferrostatin-1 addresses both iron overload and lipid peroxidation, 
providing comprehensive protection against ferroptotic cell death 
in osteonecrosis (Guo et al., 2023; Valanezhad et al., 2021). 

5.3 Applications in inflammatory bone 
diseases

Inflammatory bone diseases, including rheumatoid arthritis 
and osteoarthritis, present unique therapeutic challenges 
due to the interplay between inflammation and oxidative 
stress. Dimethyl fumarate targets this dual pathology through 
Keap1 alkylation, promoting GSH synthesis while inhibiting 
ferroptosis. In osteolytic models, this approach reduces osteoclast 
activity and upregulates Runx2 expression (Sánchez-de-
Diego et al., 2021; Yamaguchi et al., 2018).

For rheumatoid arthritis, HO-1 modulation requires careful 
balance. Tin protoporphyrin IX, a competitive HO-1 inhibitor, 
reduces CO production and suppresses excess HO-1-mediated 
bone resorption, effectively inhibiting bone loss in arthritis models 
(Ibáñez et al., 2011). This highlights the importance of context-
dependent HO-1 regulation (Kajarabille and Latunde-Dada, 2019; 
Li et al., 2020; Yang et al., 2022; Castany et al., 2016).
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Tanshinone IIA offers a multifaceted approach for 
radiation-induced bone injury through SIRT1-mediated Nrf2 
deacetylation, driving ARE-dependent antioxidant expression 
while suppressing p38/MAPK inflammatory signaling. This 
dual action helps restore bone marrow microenvironment 
(Cao et al., 2024; Cheng et al., 2024). 

5.4 Treatment of iron overload-related 
bone disorders

Chronic iron overload conditions, such as those seen in 
transfusion-dependent thalassemia, require specialized therapeutic 
approaches. Deferiprone provides small-molecule chelation of 
labile iron, effectively preserving bone density in transfusion-
induced iron overload (Shen et al., 2024). Similarly, deferasirox 
coordinates bidentate Fe3+ binding to reduce bone-matrix iron 
accumulation, significantly decreasing fracture risk in chronic iron 
overload patients (Casale et al., 2014).

These iron-specific interventions demonstrate the critical 
importance of maintaining iron homeostasis in bone health, 
particularly in patients with systemic iron metabolism disorders. 

5.5 Emerging therapeutic modalities and 
future directions

Novel therapeutic agents continue to emerge. Bardoxolone 
methyl (CDDO-Me), currently in Phase I trials, represents an 
ultra-potent Nrf2 activator through Keap1 Cys151 binding, offering 
potential trabecular bone protection with combined antioxidant and 
anti-inflammatory properties (Yang et al., 2023).

Advanced delivery systems are revolutionizing treatment 
approaches. Bone-targeted nanoparticle formulations enable precise 
delivery of Nrf2 agonists or traditional medicine components 
directly to affected bone tissue, maximizing therapeutic efficacy 
while minimizing off-target effects (Astaneh et al., 2024; 
Cheng et al., 2017; Chen Y. J. et al., 2024).

The integration of combination therapies—utilizing Nrf2 
activators (Xiao et al., 2023; Cao et al., 2024), iron chelators 
(Guo et al., 2023), and ferroptosis inhibitors (Valanezhad et al., 
2021)—represents the future of personalized bone disease 
treatment, allowing clinicians to address the specific pathological 
mechanisms underlying each patient’s condition. 

6 Conclusion and prospects

Whether ferroptosis constitutes an indispensable driver of 
osteonecrosis or osteoporosis remains an open question. Although 
Fe2+ accumulation, lipid peroxidation, and the ensuing oxidative 
stress have been consistently observed in diverse bone‐pathology 
models—most notably in glucocorticoid‐induced osteoporosis and 
osteonecrosis—definitive proof that ferroptosis is a “necessary 
condition” for disease initiation is still lacking. It is increasingly 
apparent that ferroptosis may represent a critical facet of disease 
progression rather than the singular pathogenic mechanism. Adding 
further complexity, the Nrf2 signaling axis exerts dichotomous
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effects: on one hand, activation of Nrf2 promotes the transcription 
of antioxidant enzymes, mitigates oxidative damage, and suppresses 
ferroptosis, thereby safeguarding osteocytic integrity; on the other 
hand, chronic or excessive Nrf2 activation can drive overproduction 
of HO-1 metabolites (including labile Fe2+), thereby potentiating 
ferroptotic cell death and skeletal deterioration. Dissecting these 
“protective” versus “pathogenic” roles of Nrf2—particularly in 
a cell‐type–and time‐dependent manner (e.g., osteoblasts versus 
osteoclasts, early versus late disease stages)—remains a formidable 
challenge. Moreover, the translational gap between animal models 
and human clinical specimens is still wide: while preclinical data 
are abundant, robust validation in patient cohorts is insufficient. 
Future research must therefore integrate sophisticated in vivo and 
ex vivo platforms, and prioritize the development of bone‐targeted, 
tissue‐specific Nrf2 modulators capable of finely tuning redox 
homeostasis without eliciting systemic iron overload.

Overall, the Nrf2/HO-1 signaling cascade emerges as a 
pivotal regulator of bone homeostasis, intricately linking oxidative 
stress, iron metabolism, and regulated cell death pathways. 
Investigations into ferroptosis have unveiled novel insights 
into the mechanistic interplay between iron dysregulation and 
osteocellular injury, offering a fresh conceptual framework for 
osteoporosis and osteonecrosis pathogenesis. Looking ahead, 
the precise manipulation of the Nrf2/HO-1 axis—particularly 
through bone‐targeted, cell‐contextual therapeutics—holds promise 
for transformative interventions in skeletal disease. Realizing 
this potential will require surmounting key obstacles, including 
delineation of cell‐type specificity, temporal window optimization, 
and the refinement of delivery systems to ensure localized 
efficacy while minimizing off‐target effects. With continued 
multidisciplinary advances, targeted modulation of the Nrf2/HO-1 
pathway is poised to inaugurate a new era of precision medicine in 
bone pathology.
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