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Purpose: Prostate cancer (PCa) is occult and remains largely incurable once
it metastasizes. Our research aims to identify the key miRNAs and construct
MiRNA-mRNA networks for PCa.

Methods: The microarray dataset GSE112264, consisting of 1,591 male serum
samples, and tissue miRNA data from TCGA, including 497 prostate cancer
and 52 normal samples, were included in the analysis. Differentially expressed
miRNAs (DE-miRNAs) were detected, and miRTarBase was used to predict the
common target genes. Then, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses were performed
for the target genes. The protein—protein interaction (PPI) network, which
revealed the top 10 hub genes, was constructed using the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape. The expression
of the potential hub genes was examined using the UALCAN database. Finally,
GSE112264, TCGA datasets, and clinical samples were used to verify the
consistency of miRNA expressions in serum and tissue.

Results: A total of 948 target genes of the two overlapped downregulated
mMiRNAs (miR-146a-3p and miR-136-3p) were predicted. Functional enrichment
analysis indicated that significant DE-miRNAs were related to PCa-related
pathways, such as protein binding, the mammalian target of rapamycin (mTOR)
signaling pathway, and porphyrin and chlorophyll metabolisms. Four hub genes
were identified from the PPl network, namely, NSF, HIST2H2BE, IGF2R, and
CADMI, and verified to be aberrantly expressed in the UALCAN database.
Experiment results indicated that only miR-136-3p was markedly reduced in
both serum and tissue.

Conclusion: In this study, we established the miIRNA-mRNA network, offering
potential PCa targets.

microRNA, prostate cancer, biomarkers, bioinformatics, regulatory network
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Introduction

Prostate cancer (PCa) is the second most common cancer among
men worldwide. Localized PCa is usually treated with surgery and
radiation therapy, which are ineffective at the distant metastasis
stage (Sartor and de Bono, 2018). PCa is characterized by distant
metastasis, which most commonly occurs in the bones, liver, lungs,
and brain (Kfoury et al,, 2021). Metastatic and advanced PCa
induces drug resistance to current therapies, which contributes to
the poor prognosis. Nearly 80% of patients treated with androgen
deprivation therapy finally become unresponsive, resulting in a
median survival of only 14 months (Shafi et al., 2013). Therefore,
the identification of pathophysiological mechanism and diagnostic
biomarkers needs further investigation.

Recently, developments in microRNAs (miRNAs), which are
endogenous single-stranded noncoding RNAs regulating gene
expression post-transcriptionally, provided new insights into the
pathogenesis of cancer (Lu and Rothenberg, 2018; Kanavarioti et al.,
2024; Wu et al, 2024; Hor et al, 2023). Different types of
tumors can be regulated by miRNAs, which function as either
tumor suppressors or oncogenes, such as miR-21, which has both
oncogenic and onco-suppressor functions (Hashemi et al., 2023).
MiRNAs involved in PCa tumorigenesis are usually found to be
deregulated, influencing many processes at the molecular and
cellular levels (Padmyastuti et al., 2023; Slabdkova et al., 2021;
Wang et al., 2024; Lu et al, 2023; Armstrong et al., 2024). For
example, miR-24, functioning as a cancer suppressor, is frequently
downregulated in PCa cells (Cheng et al., 2021). Another oncogene,
miR-888, promotes PCa growth by suppressing retinoblastoma-like
protein 1, which can directly bind to the transcriptional factor
E2F and regulate cell cycle progression from the G1 to S phase
(Hasegawa et al., 2018). Furthermore, a study reports an exovesicle-
derived miR-20a-5p, which can regulate PCa cell proliferation and
inflammation through the RORA gene (Sdnchez et al., 2024). The
potential utility of miRNA as biomarkers has been widely reported in
the past decade (Fabris et al., 2016). Despite that, there are very few
studies analyzing the miRNA-mRNA regulatory network in PCa.
Research on the role of miRNA in PCa is crucial for early diagnosis
and effective treatment.

In this research, we screened out differentially expressed
miRNAs (DE-miRNAs) in serum and tissue samples of PCa
using bioinformatics methods (Barrett et al., 2013; Blum et al,
2018). As predicted by miRTarBase, miR-146a-3p and miR-136-
3p are two of the most downregulated miRNAs. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were used for detecting potential
biological functions of the 948 target genes through Database
for Annotation, Visualization, and Integrated Discovery (DAVID).
We also developed the protein-protein interaction (PPI) network
using Cytoscape to reveal regulatory mechanisms of miRNA-mRNA
networks. The expression of the top 10 target genes was further
validated using the UALCAN database. We further validated our
findings using the UALCAN database by obtaining serum samples
from PCa and benign prostatic hypertrophy patients and measuring
expression levels of miR-146a-3p and miR-136-3p in these samples.
Only miR-136-3p maintained consistency in the serum and tissue.
In this study, we aim to identify PCa-associated miRNAs through

Frontiers in Cell and Developmental Biology

02

10.3389/fcell.2025.1605297

various bioinformatic analyses and validate the consistency of miR-
136-3p expression between serum and tissue samples. For this
reason, our findings may provide a simpler diagnosis of PCa using
blood without biopsy.

Methods
MiRNA microarray data

Serum miRNA data related

acquired from GSE112264 expression profile data in GEO

to prostate cancer were

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgitacc=GSE112264),
and tissue data were downloaded from TCGA (https://
portal.gdc.cancer.gov/). The dataset GSE112264 was generated using
the GPL21263 platform, comprising 809 prostate cancer samples for
the tumor group and 241 negative prostate cancer and 41 non-
cancer samples for the control group (Urabe et al., 2019). Then, we
obtained tissue miRNA data from TCGA database containing 497
prostate cancer and 52 normal samples.

Identification of PCa-related miRNAs

We preprocessed serum miRNA data from PCa patients and
the control group in the GSE112264 dataset using the online tool
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) (Barrett et al.,
2013). EdgeR was used to analyze DE-miRNAs associated with
PCa in the TCGA database (Robinson et al, 2010). We set
adjusted the p-value < 0.05 and |fold change (FC)| 21 as screening
thresholds. The common DE-miRNAs from GSE112264 and TCGA
are illustrated in Venn diagrams (http://bioinfogp.cnb.csic.es/tools/
venny/index.html) (Jia et al., 2021).

Prediction of potential target genes of
DE-miRNAs

The web tool miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/
php/index.php), a specialized collection of experimental evidence
supporting the miRNA-mRNA network, was introduced to
predict the target genes of the common DE-miRNAs from
GSE112264 and TCGA (Hua et al., 2020).

Functional and pathway enrichment
analyses

GO and KEGG pathway enrichment analyses were processed
for these filtered DEGs. GO was extensive in annotating genes,
gene products, and sequences. Similarly, KEGG is an interactive
dataset for biological explanation and functional analysis of
genome sequences, conducted using the clusterProfiler package
(Kanehisa et al.,, 2017). DAVID (http://david-d.ncifcrf.gov/) offers
the functional annotation and pathway enrichment analysis on
significant target genes (Dennis et al., 2003). A p-value < 0.05 was
considered statistically significant.
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Construction of the protein—protein
interaction network and identification of
hub genes

The PPI network was constructed to illustrate the association
among the screened genes using the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) (http://string-
db.org). The PPI node pairs with a combined score >0.4
were considered significant and introduced into subsequent
analysis. The hub genes were selected and illustrated according
to degree using the CytoHubba plugin of Cytoscape software
(version 3.6.3) (Szklarczyk et al., 2023).

Target gene expression analysis based on
the UALCAN database

The  UALCAN
analysis.html)

database
portal

(http://ualcan.path.uab.edu/

is a for evaluating protein-coding
transcriptome data and survival analysis with data obtained
from TCGA (Chandrashekar et al., 2022). In this study, we compared
the expression of the top 10 genes associated with miR-146a-
3p and miR-136-3p, respectively, between normal and primary

tumor samples.

Patients’ sample collection before blood
and tissue sampling

We procured serum and tissue specimens from individuals
diagnosed with prostate cancer (PCa) (n = 22) and benign prostatic
hyperplasia (BPH) (n = 19) at the First Affiliated Hospital of
University of South China. Initially, the blood samples were

subjected to centrifugation at 3000 g for 10 min at 4 °C to isolate
the serum. The supernatant was decanted, and the residual cellular
debris was further eliminated through centrifugation at 3000 g for
10 min at 4 °C. Eventually, the serum samples were partitioned and
preserved at —80 °C for subsequent processing (Wang et al., 2015).

RNA isolation and qRT-PCR for clinical
samples

The method for extracting total RNA from clinical samples and
conducting qRT-PCR strictly followed the manufacturer’s guidelines
(TaKaRa, Kusatsu, Japan). All procedures were conducted in
triplicate. In accordance with the manufacturer’s recommendations,
miRNA levels were normalized to the internal control (5S rRNA).
Real-time quantitative PCR was performed using an ABI 7500
Detection System (Applied Biosystems, CA, United States). The
2722Ct method was used to determine the relative expression of
target genes. GAPDH or U6 served as the internal reference control.
All primers were listed as follows: MiR-136-3p: forward, 5'-CAU
CAU CGU CUC AAA U-3' and reverse, 5'-GTG CAG GGT CCG
AGG T-3'; U6: forward, 5'-TGC GGG TGC TCG CTT CGG CAG
C-3' and reverse, 5'-GTG CAG GGT CCG AGG T-3'.
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Statistical analysis

Statistical analysis was performed using the two-tailed Student’s
t-test to assess statistical significance between the two experimental
groups for clinical sample validation using SPSS v20.0. The
correlation of the miRNA expression levels in serum and tissue was
analyzed using Pearson correlation in GraphPad Prism 8.3.0. The
area under the curve (AUC) and 95% confidence intervals (CIs)
were calculated using ROC analysis with the pROC R package to
evaluate the discriminatory power of the miRNAs in distinguishing
the PCa group from the control group. Sensitivity was plotted against
1-specificity for the binary classifier. A p-value <0.05 was considered
statistically significant.

Results

Identification of DE-miRNAs and target
genes

A total of 386 DE-miRNAs were screened out from the
GSE112264 dataset, including 337 upregulated miRNAs and 49
downregulated miRNAs. A total of 54 DE-miRNAs, comprising
20 upregulated miRNAs and 34 downregulated miRNAs, were
extracted from TCGA. For better visualization, the volcano plot and
the Venn plot are presented in Figure 1. According to the adjusted
p-value and logFC, miR-146a-3p and miR-136-3p (Table 1) were
found to be the common downregulated miRNAs after the overlap
of GSE112264 and TCGA. A total of 948 potential target genes were
predicted for the two downregulated miRNAs through miRTarBase.

Functional enrichment analysis

GO and KEGG functional annotation analyses were performed
on these target genes mentioned above. The top 20 enriched GO
items are listed in Figures 2A-C. Two GO terms from the category
of biological process (BP) were enriched, including transcription
and regulation of transcription. In terms of cellular components
(CCs), downregulated DE-miRNAs were mainly enriched in the
nucleus and cytoplasm. In the molecular function (MF) ontology,
the most significant GO terms were protein binding. Additionally,
three KEGG pathways were enriched for the downregulated genes,
namely, porphyrin and chlorophyll metabolisms, the mammalian
target of rapamycin (mTOR) signaling pathway, and long-term
depression. The detailed results are presented in Figure 2D.

Construction of the protein—protein
interaction network and identification of
hub genes

The PPI network was constructed using STRING, and then,
a total of 853 nodes and 3,370 edges were mapped in the PPI
network of miR-146a-3p and miR-136-3p. The combined scores
higher than 0.4 in PPIs were used for constructing the PPI networks.
The CytoHubba plugin was used to analyze and visualize the top 10
genes, as shown in Figure 3.
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PCa-related upregulated DE-miRNAs in TCGA and GSE112264.
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Identification of DE-miRNAs in serum and tissue samples of PCa patients. (A) DE-miRNAs between 497 prostate cancer and 52 normal tissue samples
from TCGA; (B) DE-miRNAs between 809 prostate cancer and 282 control serum samples (including 241 negative prostate cancer and 41 non-cancer
controls) from GSE112264; (C) Venn diagram of PCa-related downregulated DE-miRNAs in TCGA and GSE112264; and (D) Venn diagram of

TABLE 1 PCa-related miRNAs overlapped in GSE112264 and TCGA.

miRNA 1D GSE112264 TCGA
log,FC adj. log,FC adj.
P-value P-value
has-miR-136- -1.01 2.09E-09 -1.56 4.02E-03
3p
has-miR- -1.02 2.33E-10 -1.67 1.14E-02
146a-3p

Hub gene expression in PCa using the
UALCAN database

We examined the expression levels of miR-146a-3p and miR-
136-3p in PCa using the UALCAN database, and the results
are shown in Figure 4 and Table 2. For miR-146a-3p, NSF and
HIST2H2BE in PCa tissues were significantly increased compared
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with normal tissues, while CD44, H1F1A, PAX6, and RB1 showed
the reverse tendency. For miR-136-3p, IGF2R and CADM1 were
significantly elevated in PCa tissues, while NF1B, TGFB2, and
SNTB2 were significantly downregulated. It is well known that
miRNAs negatively regulate target genes at the transcriptional level.
Therefore, the significantly upregulated genes (NSE, HIST2H2BE,
IGF2R, and CADM1) could be potentially modulated through miR-
146a-3p and miR-136-3p.

Validation of miR-146a-3p and miR-136-3p
expressions in GEO, TCGA, and clinical
samples

To validate the consistency of expression levels in serum and
tissue samples, we compared the expression of the downregulated
miRNAs (miR-146a-3p and miR-136-3p) using a public database. As
shown in Figure 5, miR-146a-3p and miR-136-3p were significantly
downregulated in the PCa serum sample compared with the
negative prostate biopsy and non-cancer patients. Similarly, the
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FIGURE 4
MRNA expressions of NSF, HIST2H2BE, IGF2R, and CADM1 from the UALCAN database.

TABLE 2 p-value of the top 10 hub genes for miR-146a-3p and miR-136-3p from the UALCAN database.

miR-136-3p

Gene symbol p-value ‘ Gene symbol Degree
SUMOI 33 7.94E-01 IGF2R 4 4.93E-02
CD44 32 1.44E-03 NECAPI 3 9.27E-02
HIST2H2BE 31 1.03E-02 SH3KBPI 3 1.50E-01
HIFIA 29 6.82E-03 IGFBP5 3 1.48E-02
FOX03 29 2.10E-01 NEIB 2 5.22E-03
RBI 29 2.43E-06 SEC24D 2 7.54E-01
HGF 28 2.99E-01 TGFB2 2 9.62E-04
PAX6 27 4.47E-05 CADMI 1 6.40E-05
NSF 27 1.55E-15 SNTB2 1 4.44E-04
EPS15 27 6.14E-01 SHROOM?2 1 L.61E-01
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FIGURE 5

The expression and potential identification of miR-136-3p and miR-146a-3p in serum and tissue samples from the public database. (A,B) The
expressions of miR-136-3p and miR-146a-3p in serum between the PCa group and the negative prostate biopsy and non-cancer group; (C) the
potential of miR-136-3p and miR-146a-3p in serum for the identification of PCa from the GSE112264 dataset; (D,E) the expressions of miR-136-3p and
miR-146a-3p in serum between the PCa group and the negative prostate biopsy group; (F) the potential of miR-136-3p and miR-146a-3p in serum for
the identification of PCa excluding non-cancer patients; (G,H) the expressions of miR-136-3p and miR-146a-3p in tissue between the PCa group and
the normal group; and (1) the potential of miR-136-3p and miR-146a-3p in tissue for the identification of PCa from TCGA.

same tendency was found after excluding the non-cancer sample
from the control group. In the TCGA database, miR-136-3p was
confirmed to be markedly downregulated in PCa tissue samples,

but a similar tendency for miR-146a-3p was not observed, as
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indicated by its poor AUC. The diagnostic potential of miR-146a-
3p and miR-136-3p in PCa was assessed by plotting ROC curves
with 95% CI. In serum samples, the AUC values of miR-146a-
3p and miR-136-3p for distinguishing the PCa group from the
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TABLE 3 Biomarker indices of miR-136-3p and miR-146a-3p from serum and tissue databases using the ROC curve.

miRNA  AUC (95% ClI) Sensitivity Specificity Youden Best cut-off p-value
(95% Cl) (95% Cl) index
PCa vs negative miR-136-3p 0.619 (0.590-0.648) 66.87 (63.5-70.1) 57.8 (51.8-63.6) 0.2467 0.557 <0.0001
prostate biopsy and
non-cancer group miR-146a-3p 0.644 (0.614-0.672) 66.63 (63.3-69.9) 62.06 (56.1-67.7) 0.2868 0.302 <0.0001
PCa vs negative miR-136-3p 0.692 (0.663-0.720) 62.67 (59.2-66.0) 68.88 (62.6-74.7) 0.3115 0.302 <0.0001
prostate biopsy and
non-cancer group miR-146a-3p 0.701 (0.672-0.728) 60.37 (57.1-64.0) 73.44 (67.4-78.9) 0.3401 0.072 <0.0001
miR-136-3p 0.809 (0.774-0.841) 87.68 (84.5-90.4) 69.23 (54.9-81.3) 0.5691 92 <0.0001
TCGA
miR-146a-3p 0.533 (0.490-0.575) 98.59 (97.1-99.4) 11.54 (4.4-23.4) 0.1012 7 0.3801

TABLE 4 Baseline characteristics of patients; N represents the number.

Characteristic Number (%)

All patients, N 21
Age, years, n (%)
<60 9 (42.9)
260 12 (57.1)
PSA, ng/mL, n (%)
<4 5(23.8)
>4 16 (76.2)
Gleason score, n (%)
<7 13 (61.9)
>7 8(38.1)
Pathologic stage, n (%)
T2 11 (52.4)
T3 10 (47.6)

control group were 0.644 (95% CI: 0.614-0.672) and 0.619 (95%
CI: 0.590-0.648), respectively. Furthermore, when only negative
prostate biopsy samples were chosen as the control group, the
AUC values of miR-146a-3p and miR-136-3p were 0.701 (95%
CI: 0.672-0.728) and 0.692 (95% CI: 0.663-0.720), respectively.
For tissue samples, the AUC of miR-136-3p still showed a high
level of 0.809 (95% CI: 0.774-0.841), while that of miR-146a-
3p decreased to 0.533 (95% CI: 0.490-0.575). Detailed data are
shown in Table 3. The different results of miR-146a-3p in serum
and tissue samples suggested that miR-146a-3p might not be a
reliable biomarker. We further examined miR-136-3p expression in
clinical PCa and BPH samples using qRT-PCR, and the baseline
characteristic is listed in Table 4. As shown in Figure 6, miR-136-
3p is significantly downregulated both in PCa serum and tissue
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samples. The Spearman correlation test also confirmed the positive
correlation between the expression in serum and tissue. We also
examined the expression levels of miR-146a-3p in serum and
tissue; both serum and tissue samples showed significant differences
between PCa and BPH patients, while correlation analysis revealed
no significant association between serum and tissue (R%<0.001; p
= 0.9116). Overall, these results suggested that miR-136-3p could
serve as a clinical diagnostic biomarker for PCa using only a blood
sample.

Discussion

PCa claims thousands of lives every year, mainly due to
its drug resistance and invasiveness, despite multiple new drug
approvals in recent years. The early diagnoses of PCa have
become a very important issue. Liquid biopsy is a scientific
source of biomarkers and is currently a major focus of clinical
research. This approach can provide direct assistance for disease
diagnosis using blood, urine, and other body fluids and allows
for sustainable monitoring of the disease’s response to treatment
(Raza et al., 2022; Detassis et al., 2024; Sequeira et al., 2023;
Mao et al., 2023; Vaidyanathan et al, 2016). However, the
heterogeneity of biomarkers in serum and tissue remains to be
considered. MiRNAs play a critical role in the regulation of cancer
progression and serve as biomarkers at various stages of PCa.
Scientists have reported that inhibiting miR-4719 and miR-6756-
5p to upregulate IL-24 may represent a therapeutic strategy for
aggressive PCa (Das et al., 2019).

In this study, we aimed to identify potential biomarkers
for PCa by detecting miRNAs from serum and tissue datasets.
The differential expression analysis was performed using a
public database. Two miRNAs, miR-146a-3p and miR-136-
3p, both downregulated in serum and tissue, were identified.
Recent research suggested that miR-146a-3p is related to the
occurrence and progression of diseases, including asthma, allergic
rhinitis, and Paget’s disease (Duan et al, 2023; Xia et al.,, 2023;
Stephens et al,, 2020). Similarly, miR-136-3p is also reported
to inhibit tumorigenesis (Xu, 2020). However, it has not been
reported that miR-146a-3p and miR-136-3p may participate in
the progression of PCa. It is significant to explore the functions
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FIGURE 6

Relative expression of miR-136-3p in serum and tissue from clinical samples using qRT-PCR. (A,B) Expression of miR-136-3p in serum and tissue
samples from PCa and BPH patients measured using gRT-PCR; (C) the potential of miR-136-3p for the identification of PCa from clinical serum and
tissue samples; (D) the correlation of expression of miR-136-3p in serum and tissue samples; and (E,F) the expression of miR-146a-3p in serum and
tissue samples from PCa and BPH patients measured using gRT-PCR.
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of miR-146a-3p and miR-136-3p in PCa and elucidate their
mechanisms. Next, the researchers predicted 948 target genes
that might be regulated using the two common downregulated
miRNAs and performed functional enrichment analysis. The results
demonstrated that these target genes were enriched in protein
binding, porphyrin and chlorophyll metabolisms, and the mTOR
signaling pathway.

To our knowledge, numerous RNA-binding proteins are
involved in regulating the post-transcriptional processes and have
a profound impact on RNA metabolism (Corley et al., 2020).
It has been well documented that protein binding is closely
associated with tumor migration and invasion (Wang et al,
2022). The activation of the mTOR pathway is the major
promoter of various cellular activities, including protein synthesis,
tumor proliferation and invasion, autophagy, and cellular
metabolism (Hua et al., 2019; Mossmann et al.,, 2018). Recent
studies have indicated that the complex interactions within
the PI3K-AKT-mTOR pathway may promote PCa progression
and influence the resistance of tumor cells to mTOR-targeted
therapy (Dai et al., 2021).

According to the PPI network, the top 10 hub genes of
two downregulated miRNAs were screened out. With further
evaluation using the UALCAN database, we found that NSE
HIST2H2BE, IGF2R, and CADM1 were identified as hub genes with
higher degrees. A few studies have reported these genes in other
diseases and cancers. N-ethylmaleimide-sensitive factor (NSF) is an
ATPase involved in intracellular vesicle trafficking, mostly found in
eukaryotic cells, and is, therefore, considered a potential therapeutic
target (Calvert et al,, 2007). HIST2H2BE was demonstrated to
regulate cancer progression and development. The upregulation
of HIST2H2BE has been found in gastric cancer and invasive
ductal carcinoma (Guo et al., 2010; He et al., 2021). However, the
association with PCa still needs to be investigated. IGF2R, the hub
gene predicted in this study, functions as a receptor for insulin-
like growth factor 2. Apart from the intracellular trafficking of
lysosomal enzymes, mutation or loss of this gene has been confirmed
to be associated with various cancers, including gastrointestinal
cancer, renal tumors, and osteosarcoma (Oates et al., 1998; Xu et al.,
1997; Broqueza et al., 2021). However, the underlying mechanism
by which IGF2R promotes the progression of PCa, especially its
crosstalk with microRNA, remains unsolved. The final predicted
gene, CADMLI, is also involved in several processes, including
cell recognition, positive regulation of cytokine secretion, and
natural killer cell-mediated susceptibility to cytotoxicity (Li et al.,
2021). The functions of these hub genes encompass intracellular
transport (NSF), epigenetic regulation (HIST2H2BE), growth factor
signaling regulation (IGF2R), and cell adhesion (CADM]1), all of
which are core biological processes closely associated with cancer
development and progression, including tumor cell proliferation,
survival, invasion, and metastasis. It is generally assumed that
miRNAs negatively regulate their target genes, but the specific
regulatory pathway remains to be investigated.

Then, we validated the expression and prognostic roles of miR-
146a-3p and miR-136-3p in the public database and clinical PCa
patients. Only miR-136-3p was downregulated both in serum and
tissue samples according to GEO and TCGA. A consistent trend
was confirmed through qRT-PCR analysis of clinical samples. The
observed consistency raises the question of whether blood-based
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assessment of miR-136-3p could replace biopsies for early diagnosis.
Compared to the traditional biomarker such as PSA, the clinical
applicability of miR-136-3p needs further rigorous experiments
and clinical trials. However, miR-146a-3p heterogeneity in serum
versus tissue compels us to reflect on the underlying reasons.
Previous studies have also found inconsistency; Skog et al. (2008)
detected tumor-specific miRNAs in the serum of patients with
glioblastoma, but tissue expression levels were not fully correlated
with those in serum. The miRNAs in the multi-source serum of
circulating miRNAs may originate from organs other than tumor
tissue (such as liver and immune cells) or extracellular vesicles
(exosomes and microparticles), and miRNAs in tissue samples more
directly reflect the local microenvironment (Turchinovich et al.,
2011). Valadi et al. (2007) confirmed that extracellular vesicles
can transfer miRNAs from donor cells to recipient cells, resulting
in incomplete consistency between circulating miRNAs and tissue
sources. Non-tumor cells, such as tumor-associated fibroblasts
(CAFs) and immune cells, may secrete specific miRNAs into the
bloodstream, while miRNAs in tissue samples mainly come from
tumor cells themselves. Researchers found that breast cancer cells
secrete miRNA through exosomes, but CAFs also contribute to the
circulating miRNA (Melo et al., 2014). Disease stages and dynamic
changes may also contribute to the secretion mode of miRNA. Early-
stage tumors may preferentially secrete specific miRNAs into the
bloodstream (such as miR-21 as an early diagnostic marker), while
late-stage tumor tissues may experience changes in miRNA release
patterns due to necrosis (Chen et al., 2008).

In conclusion, we confirmed that miR-136-3p is poorly
expressed in PCa serum and tissue samples and might serve as a
biomarker in PCa. However, our study has some limitations: (1)
only two target genes with overlapping downregulated miRNAs were
identified for further enrichment analysis; (2) the hub genes of miR-
136-3p showed low degree, and detailed molecular mechanisms of
miR-136-3p downregulation in PCa patients are lacking; (3) more
clinical survival data need to be included for detecting prognosis
efficiency; and (4) why miR-146a-3p shows a different tendency
between serum and tissue remains to be investigated.

Conclusion
In our study, we confirmed that miR-136-3p plays an important
role in the progression of PCa through bioinformatics analysis and

qRT-PCR validation. These findings provide new approaches for
targeting miR-136-3p as a biomarker of PCa.
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