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The avoidance of mistakes by humans is achieved through continuous learning,
error correction, and experience accumulation. This process is known to be
both time-consuming and laborious, often involving numerous detours. In
order to assist humans in their learning endeavors, ChatGPT (Generative Pre-
trained Transformer) has been developed as a collection of large language
models (LLMs) capable of generating responses that resemble human-like
answers to a wide range of problems. In this study, we sought to assess
the potential of LLMs as assistants in addressing queries related to orbital
diseases. To accomplish this, we gathered a dataset consisting of 100 orbital
questions, along with their corresponding answers, sourced from examinations
administered to ophthalmologist residents and medical students. Five language
models (LLMs) were utilized for testing and comparison purposes, namely,
GPT-4, GPT-3.5, PaLM2, Claude 2, and SenseNova. Subsequently, the LLM
exhibiting the most exemplary performance was selected for comparison
against ophthalmologists and medical students. Notably, GPT-4 and PaLM2
demonstrated a superior average correlation when compared to the other LLMs.
Furthermore, GPT-4 exhibited a broader spectrum of accurate responses and
attained the highest average score among all the LLMs. Additionally, GPT-4
demonstrated the highest level of confidence during the test. The performance
of GPT-4 surpassed that of medical students, albeit falling short of that exhibited
by ophthalmologists. In contrast, the findings of the study indicate that GPT-
4 exhibited superior performance within the orbital domain of ophthalmology.
Given further refinement through training, LLMs possess considerable potential
to be utilized as comprehensive instruments alongside medical students and
ophthalmologists.
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1 Introduction

The Language Model is a machine learning algorithm utilized
for predicting the likelihood of the subsequent word or character
within a provided text. It acquires knowledge of the statistical
attributes of language by processing substantial amounts of textual
data, ultimately enabling the generation of novel texts that exhibit
similar statistical characteristics (Bengio et al., 2000). Its primary
objective is to construct a statistical model that can estimate the
probability of each word or character occurring within a sequence of
text, thereby facilitating various natural language processing tasks,
including language generation and comprehension (Chowdhary
and Chowdhary, 2020). Large language models (LLMs) are neural
networks with a substantial number of parameters (typically billions
of weights or more) that have been pre-trained on extensive
corpus data. These models, considered as one of the approaches in
natural language processing (NLP) (Raiaan et al., 2023), are trained
on a significant amount of unlabeled text using self-supervised
or semi-supervised learning techniques (Chen et al., 2020). In
essence, a large language model is a deep learning model that
has undergone training on an extensive dataset to comprehend
human language. The primary objective of this endeavor is to
acquire and comprehend human language with precision. The
expansive languagemodel empowersmachines to interpret language
in a manner akin to human cognition, thereby fundamentally
transforming the comprehension and generation of human language
by computers.

One of the most intriguing advancements in the field of
LLMs pertains to the incorporation of reinforcement learning with
human feedback. This state-of-the-art technology empowers LLMs
to acquire knowledge and enhance their performance by leveraging
feedback from humans, thereby rendering them more versatile and
potent in diverse applications (Liu et al., 2023a). Broadly speaking,
human-guided reinforcement learning denotes a type of ongoing
feedback delivered by humans to machine learning models, which
can manifest either explicitly or implicitly. In the context of LLMs,
the rectification of erroneous responses by human users serves
to enhance the overall efficacy of the model (Jiang et al., 2023).
Specifically, in instances where the generated text by LLMs exhibits
grammatical or semantic inaccuracies, human intervention can
be employed to identify and delineate the correct and incorrect
segments of the text. Furthermore, human users possess the
capability to elucidate or define the connotation of a particular word
that eludes comprehension by the model. Subsequently, LLMs can
assimilate this feedback to adapt their parameters and optimize
their proficiency in generating text that aligns more closely with
the anticipated outcomes. Large language models, such as those
employing transformer architecture (Vaswani et al., 2017), have
been widely utilized and have exhibited remarkable proficiency
in various natural language processing tasks, including question-
answering, machine translation, and text generation. OpenAI has
introduced the GPT (Generative Pre-trained Transformer) model,
which stands out due to its generative and pre-training capabilities.
Additionally, other notable large language models encompass

Abbreviations: CI, confidence interval; GPT, generative pre-trained
transformer; LLM, large language models; NLP, natural language processing.

PaLM2 (developed by Google), Claude 2 (developed by Anthropic),
SenseNova (developed by SenseTime), among others.

Large language models have demonstrated exceptional efficacy
across diverse tasks and hold significant potential for widespread
implementation. Nevertheless, within the medical field, prevailing
models predominantly depend on single-task systems, thereby
lacking the requisite level of expressive and interactive capabilities.
Consequently, a disparity exists between the current model’s
capabilities and the anticipated requirements for its integration
into real-world clinical workflows. The advent and progression of
extensive language models have instilled optimism in the realm
of interactive medical systems. However, their direct applicability
to practical scenarios is hindered by concerns pertaining to the
generation of erroneous outputs and hallucinations. Presently,
scholarly investigations in the medical domain predominantly
center around appraising the efficacy of prevailing models,
constructing appropriate datasets, and refining instructions through
meticulous adjustments. A study was conducted to evaluate the
efficacy of Foresight, a model based on GPT architecture, in refining
unstructured data from 811,336 patients’ electronic health records.
The findings demonstrated the model’s effectiveness in prediction
and risk stratification, suggesting its potential as a robust tool for
patient classification. Additional potential applications encompass
counterfactual simulations and virtual clinical trials, which possess
the capability to expedite clinical research by facilitating valuable
risk-return inference. These applications can effectively guide
researchers in identifying studies that aremore likely to yield benefits
for patients (Thirunavukarasu, 2023). Empirical evidence has
demonstrated that the performance of ChatGPT has the potential
to revolutionize medical education, as the acquisition of clinical
reasoning skills typically demands extensive training and practical
experience over an extended period. In both the United States
Medical LicensingExamination (Kung et al., 2023; Liévin et al., 2022;
Singhal et al., 2022)and the high-stakes Ophthalmic Knowledge
Assessment Program (Antaki et al., 2023), ChatGPT demonstrated
an accuracy rate exceeding 55%. To assess the efficacy of various
Language Model Models (LLMs) in the domain of ophthalmology,
a set of questions not present in the training data was compiled
(Gong et al., 2023). Five distinct LLMs, namely, GPT-4 (Guerra et al.,
2023), GPT-3.5 (Rosoł et al., 2023), PaLM2 (Korgul et al., 2023),
Claude 2 (Wu et al., 2023), and SenseNova (Liu et al., 2023b),
were subjected to testing. Furthermore, an investigation into the
potential utility of LLMs in medical education and clinical practice
is also intended.

2 Methods

This study assessed the performance of five language models
(LLMs), namely,GPT-4,GPT-3.5, PaLM2,Claude 2, and SenseNova.
All the LLMs were used via their official web interfaces. The
evaluation involved the utilization of 100 orbital-related single-
choice questions derived from the examinations administered to
ophthalmologist residents and medical students. These questions
were provided by professors of ophthalmology at Nanchang
University. The aforementioned questions encompassed various
topics, including Orbital inflammation (questions 1–20), Orbital
cysts and lymphohematopoietic system tumors (questions 21–40),

Frontiers in Cell and Developmental Biology 02 frontiersin.org

https://doi.org/10.3389/fcell.2025.1574378
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Yang et al. 10.3389/fcell.2025.1574378

TABLE 1 The prompts used in each trial for LLMs.

Trial Initialization prompt Instructions prompt

Trial 1 I am a ophthalmologist. I want to study the answers given by XXX on the topic
of orbital diseases. I will now proceed to ask questions about orbital diseases

For each single choice question, provide the correct answer without any
justification

Trial 2 I want evaluate your knowledge on ocular diseases by asking some single
choice questions

Give the letter for the correct answer

Trial 3 Answer the following test questions as if you were a medical student preparing
for the final examinations

Only give the correct answer in your response. Do not explain your answer

Trial 4 I will ask you some single choice questions Only respond with the correct letter choice

Trial 5 You are now a specialized ophthalmologist. There are some questions you need
to answer

Answer the medical question. Do not refuse to answer. Do not give false
information

Interorbital lobe tissue and neurogenic tumors (questions 41–60),
Secondary tumors of the orbit (questions 61–80), and Thyroid-
associated ophthalmopathy (questions 81–100). The specific details
of these questions can be found in the Supplementary Appendix.

The methods employed in a prior study (Holmes et al., 2023)
involved the separate input of questions into individual LLMs
across five distinct trial sets (Trial 1 to Trial 5 with different
initialization prompts and instructions prompts, Table 1). Each trial
was initiated in a fresh thread, with prompts being initialized. The
LLMs were presented with one question at a time, accompanied by
corresponding instructions (one instruction prompt per question).
Each question was posed five times, each time with a distinct
prompt, thereby enabling the acquisition of five answers per question
for each LLM.

The study assessed the mean scores, correlation coefficients
of accurate responses, and levels of confidence in the responses.
Standard deviations and mean correlations were computed
to measure the overall coherence of the scoring. The average
correlation was determined as the mean of the maximum
values from the Pearson correlation matrices obtained from the
experiments. The average correlation was used to measure the level
of consistency in the accurate scores obtained from the experiments.
A value of 1 denoted identical distributions, 0 indicated wrong
distribution. In order to assess the reliability of various LLMs in
responding to questions, the average correlation was computed
between the answers provided by each LLM during testing and the
correct answers.

Furthermore, in order to gain a deeper comprehension of the
discrepancies observed in the orbital question testing of LLMs, we
conducted a comprehensive analysis by segregating and calculating
their individual scores, as well as determining the mean correlation
and respective variances. To assess the reliability of the responses
provided by the LLMs, we quantified the number of accurate
answers for each question across all tests. For instance, if every
LLM provided the correct response to a particular question on five
occasions, the proportion of questions with all five correct answers
would increment by 1/100% (given the total of 100 questions).
Additionally, the test results were juxtaposed with the anticipated
distribution that arises when candidates make arbitrary conjectures.
When making random guesses, the projected quantity of accurate
responses in five attempts averaged around 0.2 × 5 = 1.0, assuming

that single-choice questions offer five alternatives. By employing
this numerical value, the likelihood of obtaining correct answers
for each question was approximated using the resultant Poisson
distribution. Subsequently, a comparative analysis was conducted
on the cumulative scores derived from the calculations of ChatGPT
(GPT-3.5 and GPT-4), PaLM2, Claude 2, and SenseNova.

Finally, we selected the most exemplary performance of
LLMs for the purpose of juxtaposing it against the performance
of human individuals. To conduct this comparison, we
extended invitations to a cohort of 30 medical students and 30
ophthalmologists. The medical students were undergoing training
within the ophthalmology department of the First Affiliated
Hospital of Nanchang University, while the ophthalmologists,
who specialized in Orbit, were sourced from two hospitals,
namely, the First Affiliated Hospital of Nanchang University
and the West China Hospital. The scores achieved by each
group of human participants were then contrasted with those
of the LLM.

2.1 Statistics analysis

Statistical analyses were performed by the SPSS software (IBM
SPSS Statistics 22; SPSS Inc., Chicago, United States). Data were
presented as mean ± SD. The comparison between the two groups
was performed by ANOVA, and the difference was statistically
significant with P < 0.05.

3 Results

3.1 The comparison between LLMs scores

Figure 1 displays the raw marks among LLMs, which
encompasses five sections. The raw marks obtained from LLM
testing exhibit variations in the uncertainty of the overall score
and the accuracy of individual question responses. Notably, the
GPT-4 model demonstrates the highest number of correct answers,
as indicated by the presence of dark squares. Conversely, the
Claude 2 model exhibits the poorest performance among the LLMs.
The performance of the GPT-3.5 model falls between that of the
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FIGURE 1
Raw scores for each LLM test: the rows with different colors were separate LLM, and the columns were the test questions. Dark squares represent
correct answers.

TABLE 2 The average test score of LLMs.

GPT-4 GPT-3.5 PaLM2 Claude 2 SenseNova

ALL 55 (95% CI: 53.94–56.06) 48 (95% CI: 47.3–48.7) 44 (95% CI: 42.98–45.02) 37 (95% CI: 36.27–37.73) 39 (95% CI: 38.33–39.67)

Orbital inflammation 53 (95% CI: 51.83–54.17) 46 (95% CI: 45.52–46.48) 46 (95% CI: 45.01–46.99) 45 (95% CI: 44.12–45.88) 27 (95% CI: 26.43–27.57)

Orbital cysts and
lymphohematopoietie
system tumours

48 (95% CI: 46.92–49.08) 40 (95% CI: 39.27–40.73) 43 (95% CI: 42.08–43.92) 26 (95% CI: 25.38–26.62) 31 (95% CI: 30.38–31.62)

Inerorbital lobe tissue
and neurogenic tumours

56 (95% CI: 54.94–57.06) 45 (95% CI: 44.49–45.51) 45 (95% CI: 43.91–46.09) 32 (95% CI: 31.44–32.56) 46 (95% CI: 45.33–46.67)

Secondary tumours of
the orbit

57 (95% CI: 55.92–58.08) 54 (95% CI: 53.06–54.94) 50 (95% CI: 48.92–51.08) 37 (95% CI: 36.12–37.88) 50 (95% CI: 49.21–50.79)

Thyroid associated
ophthalmopathy

60 (95% CI: 59.12–60.88) 54 (95% CI: 53.23–54.77) 38 (95% CI: 36.96–39.04) 47 (95% CI: 46.34–47.66) 41 (95% CI: 40.35–41.65)

CI: confidence interval

GPT-4 model and the remaining three models, with the latter
performing worse. Table 2 presents the average test scores of LLMs.
The visualization of average scores reveals a decrease in scores from
55 (95% confidence interval [CI] = 53.94 to 56.06, GPT-4) to 37
(95% CI = 36.27 to 37.73, Claude 2). Specifically, the GPT-3.5 model
achieved a score of 48 (95% CI = 47.3–48.7), the PaLM2 model
scored 44 (95% CI = 42.98–45.02), and the SenseNova model scored
39 (95% CI = 38.33–39.67). In Figure 2 showed the comparision
between GPT-4 and other four LLMs. GPT-4 was performance
the best in the five question sections among the five LLMs (p <
0.001). GPT-3.5, and Claude 2 demonstrated superior performance
in the Thyorid associated ophthalmopathy section among the
five sections. Conversely, the three LLMs exhibited the poorest
performance in the Orbital cysts and lymphohematopoietic system
tumors section.

3.2 The comparison of LLMs answer
stability

Figure 3A displays the mean correlation among each
LLM, while Figure 3B presents the standard deviation. The tests
conducted on each LLM exhibited a high level of consistency, as
indicated by the low standard deviation in scores. Notably, the

GPT-4 model and PaLM2 model demonstrated a strong average
correlation of 0.85 and 0.82, respectively. Conversely, the GPT-3.5
model, Claude 2 model, and SenseNova model displayed a lower
average correlation, with values of 0.56, 0.59, and 0.54, respectively.
The GPT-4 model exhibited the most consistent performance in the
context ofOrbital inflammation. In the context ofThyroid associated
ophthalmopathy, the most pronounced consistency was observed.
GPT-3.5 exhibited the highest level of consistency in the domain of
Secondary tumors of the orbit. Similarly, SenseNova and Claude 2
demonstrated superior consistency in this particular area. PaLM2
displayed enhanced consistency in the Interorbital lobe tissue and
neurogenic tumors segment.

3.3 The comparison of GPT4 and human

In Figure 4, we selected the LLM with the highest performance,
namely, GPT-4, for the purpose of comparing it with human
performance. When compared to medical students, GPT-4
achieved a superior score in the domains of Orbital cysts and
lymphohematopoietic system tumors, Interorbital lobe tissue and
neurogenic tumors, as well as Secondary tumors. Conversely,
GPT-4 exhibited inferior performance in the domain of Orbital
inflammation when compared to medical students. Notably,
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FIGURE 2
Average test scores for each LLMs by category.

ophthalmologists outperformed GPT-4 in all domains. In the
context of Thyorid associated ophthalmopathy, ophthalmologists
demonstrated superior performance (Figure 4A). However, while
human participants achieved higher scores compared to GPT-4, the
latter exhibited a significantly greater standard deviation andweaker
correlation (Figures 4B,C).

3.4 The comparison of LLM answer
confidence

Based on the data presented in Figure 5, it can be observed
that all the LLMs displayed a notably low likelihood of providing
guessed answers. Among these models, the ChatGPT-4 model
demonstrated the highest performance in determining the feasibility

of obtaining a definitive answer. Specifically, it accurately answered
45% of the questions and incorrectly answered 37% of them
(Figure 5A). Conversely, the SenseNova model exhibited the
lowest level of accuracy, correctly answering only 18% of the
questions and incorrectly answering 37% of them (Figure 5E).
Furthermore, the PaLM2 model displayed a pronounced inclination
towards confusion, correctly answering 35% of the questions and
incorrectly answering 44% of them (Figure 5C). The GPT-3.5 model
demonstrated a moderate level of performance, achieving a correct
response rate of 28% and an incorrect response rate of 26%
(Figure 5B). Conversely, the Claude 2 model displayed either a
diminished level of certainty in its responses, with a consistent 21%
accuracy in each test, or a pronounced inclination towards confusion
in determining the correct answer, leading to an incorrect response
rate of 37% (Figure 5D).
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FIGURE 3
Consistency in scoring for LLMs. The average correlation among each LLM (A). The standard deviation among each LLM (B).

4 Discussion

This study examined the performance of multiple LLMs in
the domain of orbital diseases, a highly specialized topic. Among
the LLMs evaluated, the GPT-4 model, known for its proficiency
in handling specialized subject knowledge, exhibited superior
performance and stability in terms of answer correlations and
answer confidence when compared to the other two LLMs. Notably,
the PaLM2 model, Claude 2, and SenseNova each demonstrated
their own strengths in specific specialized tests, with the PaLM2
model achieving high answer correlation. However, the GPT-3.5
model slightly surpassed the PaLM2, Claude 2, and SenseNova
models in terms of answer confidence. In the present study,
the GPT-4 model emerged as the preferred choice within the
application, with subsequent evaluation of the performance and
stability of the GPT-3.5 model prior to finalizing the selection of
the most appropriate LLM. Notably, the GPT-4 model exhibited

comparable performance to human participants, thereby indicating
its considerable promise as a valuable resource for medical students
and a supportive tool for attending physicians. In the realm of orbital
ophthalmology, the utilization of LLMs, particularly the GPT-4
model, presents promising opportunities for application. However,
it is imperative to acknowledge that various highly specialized
domains within the medical field may necessitate reevaluation.
The comprehensive scope of medical education mandates the
inclusion of diverse knowledge domains, and the integration
of LLMs can expedite students’ acquisition and comprehension
of intricate medical knowledge. LLMs have made significant
progress, enabling them to produce instructional resources, offer
intelligent responses to inquiries, and offer tailored learning
recommendations, thereby facilitating personalized and efficient
medical education. Additionally, the supplementary utilization of
LLMs assists medical educators in conducting teaching assessments
and comprehending key concepts. Through the analysis of students’
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FIGURE 4
Average test scores and consistency for GPT-4 and the human. Average scores on different parts of orbital diseases examination among GPT-4, the
opthtalmologists, and medical students (A). The average correlation of whole orbital diseases examination among GPT-4, the opthtalmologists, and
medical students (B). The standard deviation of whole orbital diseases examination among GPT-4, the opthtalmologists, and medical students (C).

learning progress and knowledge proficiency, instructors can
effectively guide students and enhance the overall quality of medical
instruction.

4.1 The application of LLMs in
ophthalmology

Currently, there has been an examination of the application
of LLMs in the field of ophthalmology. A research study has
demonstrated promising results regarding the ability of two
iterations of ChatGPT (January 9 “legacy” and ChatGPT Plus) to
simulate the “High Risk Ophthalmology Knowledge Assessment
Program” exam. Both versions exhibited accuracies exceeding
55% when answering questions from the Basic and Clinical
Science Course Self-Assessment Program. Nevertheless, further
enhancements are required for LLMs to effectively perform in
specialized areas of ophthalmology, such as neuro-ophthalmology
and ophthalmic pathology (Antaki et al., 2023). Another study
conducted demonstrated that three distinct LLMs exhibited a
positive impact on performance. Notably, both ChatGPT-4.0 and
Bing Chat achieved average accuracies comparable to those of
human participants, surpassing 70% (Cai et al., 2023). Furthermore,

these LLMs exhibited promising outcomes in the context of
the Royal College of Ophthalmologists fellowship examinations,
with overall accuracies exceeding 65% (Raimondi et al., 2023).
Additionally, when addressing highly specialized subjects, the
LLMs showcased commendable performance. In the myopia care
investigation, ChatGPT-4.0 exhibited a remarkable accuracy rate
of 80.6% (Lim et al., 2023). In a separate study on eye care, it
was observed that the ChatGPT chatbot demonstrated a higher
frequency of accurate responses to lengthy user-generated eye
health inquiries (Bernstein et al., 2023). The efficacy of LLMs
in addressing ophthalmological queries has been demonstrated
to be notably precise. This accuracy may be contingent upon
the complexity of the issue at hand and the specific domain (for
example, general medicine exhibits greater accuracy compared
to specialized fields). Nevertheless, the training and refinement
of LLMs proved to be straightforward. Hence, individuals
lacking medical expertise can employ LLMs (such as ChatGPT)
as virtual aides for the categorization and self-diagnosis of
ophthalmic ailments, spanning from benign to potentially sight-
endangering conditions. Furthermore, LLMs can proficiently
produce educational resources for patients, transform complex
medical terminology into accessible and compassionate language
tailored to non-experts, and function as “therapists” offering
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FIGURE 5
Confidence in answers. The dashed red curve indicates the expected distribution if the answers were randomly selected based on the Poisson
distribution. The number of correct answer occurrences per question for GPT-4 (A). The number of correct answer occurrences per question for
GPT-3.5 (B). The number of correct answer occurrences per question for PaLM2 (C). The number of correct answer occurrences per question for
Claude 2 (D).The number of correct answer occurrences per question for SenseNova (E).

counseling services to individuals afflicted by mental health
disorders. The utilization of LLMs in patients with uveitis, as
demonstrated by Tan et al. (2023), holds significant value due
to the heightened susceptibility of individuals with chronic eye
diseases or visual impairments to experience psychological distress.
The authors discuss the potential applications of LLMs in uveitis
consultation, management, diagnosis support, and research.
Moreover, the multilingual translation feature of ChatGPT can
effectively cater to the requirements of diverse patient populations.
The integration of text-to-speech audio generation is particularly
beneficial for visually impaired patients, and text-to-image or video
generation platforms can be employed to enhance the overall patient
experience. Kianian et al. conducted a study demonstrating that
ChatGPT has the capability to respond to simpler vocabulary,
thereby assisting uveitis patients in improving their comprehension
(Kianian et al., 2023). Recently, Carlà team showed the GPT
could evaluate the patients’ words about retinal detachment
and give the suggestions which showed agreement with doctors
(Carlà et al., 2024b). For glaucoma patients, the GPT showed
good performance on case descriptions and surgical planning
(Carlà et al., 2024a). The study of Carlà team also showed the
ChatGPT-4o performenced good in analyzing the optical coherence
tomography images (Carlà et al., 2025).

4.2 The application of LLMs in medical
education

LLMs possess the capability to produce educational materials
tailored to the specific requirements of medical education,
encompassing lecture notes, textbooks, case studies, and similar

resources. By catering to individual students’ needs and knowledge
levels, LLMs facilitate a deeper comprehension and mastery of
medical knowledge (Abd-alrazaq et al., 2023). Additionally, they can
automatically generate medical examination questions aligned with
predetermined knowledge points and examination criteria, thereby
alleviating teachers’ burdens and guaranteeing the quality and
precision of the questions. Furthermore, the provision of real-time
feedback and evaluation, tailored to students’ responses, facilitates
the identification of learning progress and areas of weakness. This
enables educators to engage with students, offering personalized
educational guidance in response to their inquiries and individual
needs (Chan and Zary, 2019; Whalley et al., 2021). By addressing
students’ questions and providing supplementary explanations
and examples, educators can foster a deeper understanding
of medical concepts and principles. Simultaneously, it has the
capability to provide personalized learning path recommendations
by suggesting pertinent learning resources that align with students’
individual learning situations and preferences. The integration of
AI technology, particularly ChatGPT, with advanced technologies
like metaverse, virtual reality, and augmented reality holds
significant potential for fostering innovation in medical education
(Paranjape et al., 2019).This amalgamation can facilitate the creation
of an immersivemedical education experience (Talan andKalinkara,
2023). In the realm of academia, students have the opportunity
to engage in realistic medical simulations and case studies using
virtual environments. These simulations allow them to interact
with virtual representations of patient anatomy (Seetharaman,
2023), enabling them to partake in real-time medical practice
training and decision-making exercises. Within this educational
framework, ChatGPT assumes the role of a virtual mentor, offering
guidance, feedback, and responses to inquiries, thereby augmenting
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students’ learning efficacy and practical aptitude (Baidoo-Anu and
Ansah, 2023).

4.3 LLMs challenges

Artificial intelligence models necessitate comprehensive
training with ample samples to enhance their performance, and
domains where they have demonstrated notable accomplishments
typically entail substantial datasets and the capacity to employ more
intricate and precise algorithms (Lopez et al., 2020). Nevertheless,
the process of clinical data collection involves multiple participants,
potentially leading to variations in data quality (Akila1 et al., 2022).
Physicians may adopt diverse recording techniques, terminologies,
and levels of accuracy in data input, consequently yielding
inconsistent data quality. The aforementioned issue may have
adverse implications on the model’s efficacy in handling specific
datasets and accurately predicting desired outcomes. Variances in
data standards and structures across various medical institutions,
coupled with the limited standardization of clinical data, contribute
to the intricate process of data integration and hinder the seamless
transfer and utilization of LLMs across diverse datasets. In the
realm of healthcare, the interpretability of models holds significant
significance. It is imperative for both medical practitioners and
patients to comprehend the underlying reasoning process and
foundational principles employed by the model in order to generate
results.The black box nature of LLMs poses challenges in elucidating
the logic and rationale behind their outcomes, thereby diminishing
trust in the reliability and acceptability of model-generated results
within real-world applications (Wang et al., 2020). Furthermore,
within the realm of medical practice, the process of decision-
making and subsequent actions often necessitates the careful
consideration of various elements. These elements encompass
individual variations among patients, the intricate nature of
the condition, practical viability, privacy concerns, and ethical
considerations. Consequently, LLMs may encounter difficulties
when evaluating the genuine requirements and feasibility of a given
situation.

4.4 Weaknesses in this study

Our study exhibited certain limitations, particularly in relation
to the questions posed during the test, wherein no LLMs provided
correct responses. This discrepancy could be attributed to either
inaccuracies in the correct answer or potential issues with the
clarity of the questions themselves. In our study, the question
selection relied on USMLE-style questions, which may prioritize
theoretical knowledge over real-world clinical complexity. Future
work should include uncurated patient queries. It is noteworthy that
all the questions were originally in Chinese.The translated questions
were back-translated into Chinese by a bilingual ophthalmologist
to verify accuracy. Discrepancies (<5% of items) were resolved
via consensus. Although, certain nuances may have been lost,
resulting in imprecise meanings. Additionally, some questions
may have been inadequately formulated or expressed in a manner
that humans can comprehend accurately, while LLMs struggle
to interpret them correctly. Alternatively, this approach may

serve as a means of identifying erroneous inquiries by leveraging
numerous LLMs to identify questions that consistently receive
incorrect responses. Despite the impressive performance and
educational utility demonstrated by ChatGPT (GPT-4), it is
important to note that LLMs cannot entirely supplant the role of
pediatric ophthalmologists. In our study, the GPT-4 model failed
to achieve a satisfactory performance score. Furthermore, the
GPT-4 model demonstrated unwavering certainty in providing
accurate responses and displayed perplexity when providing
incorrect answers. Conversely, humans, despite their uncertainty
regarding the correct response, are less prone to errors in detecting
relevant knowledge and employing reasoning (Timmermans
and Angell, 2001). Nevertheless, the GPT-4 model can undergo
training and continuous enhancement. The current investigation
also prompts contemplation on the potential limitations of
utilizing an LLM as a comprehensive measure of ophthalmologists’
meticulous clinical endeavors. Merely responding to inquiries
does not encompass the intricacies encountered in routine
clinical settings, which may result in potential variations in
performance. Given the rapidly evolving nature and diverse
models of large language models (LLMs), the findings of this
study might lose their significance by the time the manuscript
was published. This was because older models might have been
phased out, and newer, more efficient models could have been
introduced.

5 Conclusion

This study presents the initial evidence of the accuracy of
LLMs, particularly ChatGPT-4, in effectively answer the inquiries
especially in orbital ophthalmology. The findings of our study
suggest the potential benefits of incorporating the GPT-4model into
undergraduate medical education and facilitating the dissemination
of knowledge. Given the scarcity of clinical physicians, the
involvement of language learning machines can augment language-
based interactive instruction and training for medical students
and practitioners, facilitating a more comprehensive grasp of
medical knowledge and competencies. Despite encountering
various obstacles encompassing technical, ethical, legal, and
societal concerns, the advent of LLMs has instigated substantial
transformations within the realm of medicine. Only by aligning
ourselves with the trajectory of technological advancements can
we capitalize on the opportunity at hand and attain triumph.
Despite these constraints, our findings suggest LLMs hold promise
as clinical decision supports, provided outputs are validated by
professionals. For medical education, focused few-shot prompting
may help trainees structure differential diagnoses, though risks of
over-reliance on LLMs for critical thinking warrant caution. We
recommend hybrid curricula combining LLM-aided learning with
traditional Socratic methods.
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