

OPEN ACCESS

APPROVED BY

Pablo Domínguez de María, Sustainable Momentum, SL, Spain

*CORRESPONDENCE Alan Steven, ⋈ kjwx109@gmail.com

RECEIVED 09 October 2025 ACCEPTED 28 October 2025 PUBLISHED 07 November 2025

CITATION

Steven A (2025) Correction: How to develop a sustainable palladium-catalyzed cross-coupling reactions for active ingredient manufacture.

Front. Catal. 5:1720991.
doi: 10.3389/fctls.2025.1720991

COPYRIGHT

© 2025 Steven. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

Correction: How to develop a sustainable palladium-catalyzed cross-coupling reactions for active ingredient manufacture

Alan Steven*

Euroapi, Haverhill, United Kingdom

KEYWORDS

palladium, cross-coupling, turnover, catalysis, metrics, workflow

A Correction on

How to develop a sustainable palladium-catalyzed cross-coupling reactions for active ingredient manufacture

by Steven A (2025). Front. Catal. 5:1635370. doi: 10.3389/fctls.2025.1635370

There was a mistake in Table 1 as published. A table cell contains 2 separate equations, but their present juxtaposition in the published version means it is not clear that they are in fact separate. The corrected Table 1 appears below, where the existence of two separate equations has been made more clear. The equations themselves have been additionally modified slightly to clarify their meaning.

$$TOF(t) = \frac{1}{[Cat](t)} \cdot \frac{d[Prod]}{dt},$$

$$TOF_0 = \frac{1}{[Cat]_0} \cdot \left(\frac{d[Prod]}{dt}\right)_0$$

The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Steven 10.3389/fctls.2025.1720991

TABLE 1 Metrics relevant to the development of a high turnover palladium-catalyzed cross-coupling.

Metric	Comment	Formula	
Process mass intensity	Simple	mass of all input materials (including water) mass of product corrected for assay	
	Used by non-technical stakeholders		
	Does not account for input material preparation or waste destruction		
Catalyst loading	≤0.1 mol/mol% for a highly active catalyst	$\frac{\text{moles of catalyst}}{\text{moles of limiting reactant}} \cdot 100\%$	
	<0.5 mol/mol% API production (pharmaceutical commercialisation)		
	<2 mol/mol% (late pharmaceutical development)		
	<5 mol/mol% (early pharmaceutical development)		
	<0.1 mol/mol% fine chemical and agrochemical production		
Turnover frequency (TOF)	Catalyst productivity ^{a,b}	$TOF(t) = \frac{1}{[Cat](t)} \cdot \frac{d[Prod]}{dt}$	$TOF_0 = \frac{1}{[Cat]_0} \cdot \left(\frac{d[Prod]}{dt}\right)_0$
	Reaction time ≤12 h to avoid bottlenecking process		
Turnover number (TON)	Time integral of TOF equating to total number of turnovers the catalyst can	$TON = \int_0^\infty TOF(t) \cdot \frac{[Cat](t)}{[Cat]_0} dt$	
	achieve until its total decay ^b	$TON = (initial\ TOF) \cdot \frac{(catalyst\ hal\ f-life)}{ln\ 2}$ where catalyst deactivation is (pseudo)first order	

^aWhen quoted alongside the temperature, solvent and concentration, a useful proxy for catalyst productivity is: moles of substrate converted to product (moles of catalyst used) (time)

bThe calculation of TOF, or TON, is most meaningful for the initial rate region before catalyst degradation can make an impact, and when product formation is pseudo-linear with time (Kozuch and Martin, 2012). Rather than being considered solely in isolation, they are better applied as part of the evaluation of very similar conditions side by side, as with the effect of changing the ligand. There are standard conditions (1 M for limiting reactant, 0 °C) whose use simplifies reporting requirements.