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Hypertension (HTN) is a chronic medical condition characterized by systolic 

blood pressure of ≥140 mmHg and diastolic blood pressure >80 mmHg upon 

repeated measurements. It is one of the most common non-communicable 

diseases affecting 30% of the global population. Sub-Saharan Africa (SSA) has 

a high burden of infectious diseases, which contribute to the increased 

prevalence of hypertension. Furthermore, SSA has the highest number of 

people living with chronic infectious diseases, such as human 

immunodeficiency virus (HIV) and tuberculosis (TB). The pathogenesis of 

these conditions is associated with chronic, low-grade inflammation and 

immune activation that complicates various homeostatic functions, leading to 

increased risk of non-communicable diseases among this population. 

Furthermore, persistent immune activation leads to endothelial dysfunction, 

arterial stiffness, and altered vascular tone, which contribute to elevated and 

treatment-refractory blood pressure. However, immunological factors that 

contribute to the development and pathogenesis of hypertension remain 

poorly understood. Antiretroviral therapy and anti-TB medications further 

complicate this landscape by inducing metabolic disturbances and 

modulating drug metabolism, which affects the efficacy of anti-hypertensive 

medications. There is a paucity of data and studies reporting on immune 

dysregulation associated with HTN amongst people living with chronic 

infections such as HIV and TB. This review aims to highlight this gap in 

knowledge and the need for more translational research studies to improve 

health outcomes in hypertensive individuals living with HIV and TB in SSA. 

Understanding these intertwined immunological and pathophysiological 

mechanisms is crucial to developing targeted interventions for managing 

HTN, especially in this vulnerable population.
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1 Introduction

Hypertension (HTN) is a chronic, cardiovascular condition in 

which the systolic blood pressure is ≥140 mmHg and/or diastolic 

blood pressure is >80 mmHg in the arteries upon repeated 

measurements (1). It is one of the major risk factors for 

morbidity and mortality, as it contributes to the development 

of cardiovascular conditions such as heart failure and stroke 

(2–5). It is one of the most common non-communicable 

diseases affecting 30% of the global population (6). In 2023, the 

World Health Organisation (WHO) reported that only 21% of 

adults with hypertension had their blood pressure controlled 

(7). The prevalence of hypertension in sub-Saharan Africa 

(SSA) increased significantly between the years 1999–2019 (8), 

reaching 34% in men and 48% in women (8, 9). Numerous 

factors which include increased burden of infectious disease, 

changes in diet, lifestyle and poor healthcare are contributing 

factors to this (8, 10–13). Key factors associated with the high 

prevalence of hypertension and its disparities across sub- 

Saharan Africa include dietary patterns (8, 14–16), abnormal 

body weight (both increased adiposity and underweight) (8, 

17–19), population ageing (8, 18, 20–22), socioeconomic status 

(education and income), and psychosocial stressors (8, 14, 17, 

20, 21). Infectious diseases such as coronavirus disease 2019 

(COVID-19) (23, 24), human immunodeficiency virus (HIV) 

(25, 26) and tuberculosis (TB) (27) have also been implicated in 

the development of hypertension. Resistant hypertension (RH) 

is defined as BP that remain elevated despite the concurrent 

administration of three or more antihypertensive agents of 

different classes, including a diuretic (28). The exact aetiology 

of resistant hypertension is unknown; however, it is postulated 

to be associated with multiple factors such inappropriate 

treatment and limited access to healthcare, high-salt diet, 

volume overload and hyperactivation of the sympathetic 

nervous system (29, 30).

The highest number of people living with chronic infections 

such as HIV and TB is in SSA (31, 32). People living with HIV 

(PLWHIV) and TB are at an increased risk of developing 

hypertension (33, 34) (Table 1). The high burden of chronic 

infections in SSA poses a significant public health challenge as 

weakens the already under-resourced healthcare system and 

increases the risk of non-communicable disease in the 

population (34–37). Underlying conditions such as HTN pose a 

significant public health challenge around the world (33, 34, 38). 

Furthermore, the mechanisms affecting pathogenesis of 

infectious disease in people living with chronic infections 

remains poorly understood. Therefore, there is a paucity of data 

and research studies on immune mechanisms associated with 

development of hypertension amongst people living with 

chronic infections such as HIV and TB. This review aims to 

highlight this gap in knowledge and the need for more 

translational research studies to improve health outcomes in 

hypertensive individuals living with HIV and TB in SSA. 

Understanding these intertwined immunological and 

pathophysiological mechanisms is crucial to developing targeted 

interventions for managing HTN, especially among this 

vulnerable population.

2 Inflammation and hypertension

InAammation plays a crucial role in the pathogenesis of 

hypertension (39–42). It has been shown that T lymphocytes are 

required for the full development of angiotensin II– and 

DOCA-salt–induced hypertension and vascular dysfunction in 

mice; T cells (via AT1 receptor and NADPH oxidase–dependent 

ROS and cytokine production) infiltrate perivascular tissue and 

drive vascular oxidative stress, endothelial dysfunction and 

blood-pressure elevation (43). Immune activation in 

hypertension is kick-started by well-known pro-hypertensive 

TABLE 1 Prevalence of HTN amongst different population groups living with chronic infections in SSA.

Group Prevalence Prevalence (Stratified 
by age)

ART-specific 
effects

Adjusted effect sizes References

People living 

with HIV 

(PLWHIV)

Pooled prevalence (SSA): 21.9% 

(95% CI 19.9%–23.9%). Pooled mean 

BP ≈ 120/77 mmHg.

>50% in PLWH ≥50y; ∼31%– 

41% (<35–44y) rising to 54%– 

58% (≥45y) in South African 

cohorts.

ART exposure aPR ≈ 1.23 

(Chen et al.); INSTI 

regimens linked with 

higher HTN risk (aIRR 

1.7–1.9 vs NNRTIs).

Male sex aPR 1.33; ART aPR 

1.23; CD4 ≥ 200 aPR 1.45 

(Chen et al.); INSTI vs 

NNRTI aIRR 1.76–1.92 

(Byonanebye et al.).

(108)

Active TB 

(patients with TB 

disease)

Very heterogeneous; reported 0.7%– 

38% across older studies; limited 

high-quality evidence.

Older TB patients more likely to 

have HTN; data sparse and 

variable across studies.

N/A (ART only relevant in 

co-infection).

Systematic review: no 

consistent adjusted 

association (Seegert et al., 

2017).

(35)

Latent TB 

infection (LTBI/ 

TBI)

NHANES (US): overall HTN 

prevalence ≈ 48.9%; higher crude 

prevalence in LTBI (58.5% vs 48.3%) 

but attenuated after adjustment.

Crude HTN prevalence higher 

in LTBI across all age groups; 

adjusted analyses show similar 

rates after controlling for age.

N/A (LTBI typically not 

treated with ART).

Adjusted PR ≈ 1.0 (95% CI 

0.9–1.1) after controlling for 

age, sex, BMI, diabetes, 

smoking (Salindri et al.).

(27)

HIV–TB co- 

infected 

(prospective 

cohorts)

South Africa (SAPIT/TRuTH 

cohort): incidence ≈ 1.9 per 100 

person-years; men ≈ 5.9, women 

>40y ≈ 5.0 per 100 PY.

Incidence sharply higher with 

age and sex: men 5.9/100 PY; 

women >40y 5.0/100 PY.

ART initiation post-TB 

associated with weight gain 

and increased HTN risk, 

especially with INSTI- 

based regimens.

Adjusted HRs: men aHR 

12.04; women >40y aHR 8.19; 

men <40y aHR 2.79 (Dawood 

et al., 2024).

(138)
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stimuli such as, increased sympathetic outAow (44, 45), acute and 

chronic stress (46), excessive salt intake (47, 48), gut microbial 

dysbiosis (49, 50), local oxidative-stress (51) and vascular 

dysfunction (52). A key concept is that immune cells infiltrate 

organs critical to blood pressure regulation, such as the blood 

vessels (53), kidneys, heart (54), and brain, leading to chronic 

inAammation (43, 52, 55, 56). This chronic inAammatory state 

disrupts normal organ function and contributes to the onset 

and progression of hypertension (52). The inAammatory and 

immune mechanisms driving hypertension are regulated 

through a complex interaction between innate and adaptive 

immune cells (Figure 1) (52). The early development of 

hypertension involves activation of innate immune cells, such as 

macrophages, dendritic cells, and natural killer (NK) cells, which 

initiate inAammatory responses by releasing cytokines and 

chemokines (51, 52, 57). These signalling molecules facilitate the 

recruitment of additional immune cells, including T and 

B lymphocytes, to the site of inAammation (52). Once activated, 

T cells can differentiate into effector subsets; such as T helper 1 

(Th1) and Th17 cells; which release cytokines that amplify the 

inAammatory response and contribute to vascular dysfunction 

(52, 58, 59).

3 Immunity and hypertension

Hypertension has long been associated with activation of 

immune pathways (2), here we discuss the cells of the innate 

and adaptive immune system and their role in hypertension 

development. Dendritic cells (DCs) are specialised antigen- 

presenting cells (APCs) derived from hematopoietic progenitors 

in the bone marrow and are widely distributed across various 

tissues (60, 61). They possess a unique capacity to initiate T cell 

responses by capturing, processing, and presenting antigens to 

naïve T cells. Therefore, DCs serve as key orchestrators of the 

adaptive immune system (60, 61). DCs from hypertensive mice 

exhibit elevated surface expression of the B7 ligands CD80 and 

CD86, indicative of DC maturation and activation (51, 62). 

Inhibition of these costimulatory molecules has been shown to 

prevent the development of hypertension and the activation of 

T cells in models of both angiotensin II- and DOCA-salt 

induced hypertension (51, 62). In mice, oxidative stress in 

hypertension generates reactive γ-ketoaldehydes known as 

isoketals, which accumulate in and activate DCs to drive T-cell 

responses that contribute to elevated blood pressure (51). 

Plasma levels of F2-isoprostanes, oxidative stress markers 

FIGURE 1 

Immune cells infiltrate organs critical to blood pressure regulation, such as the blood vessels, kidneys, heart, and brain; leading to chronic 

inflammation. This chronic inflammatory state disrupts normal organ function and contributes to the onset and progression of hypertension. 

Created using Bio-render.
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produced alongside isoketals, were elevated in individuals 

receiving treatment for hypertension and significantly higher in 

those with resistant hypertension (51). Additionally, isoketal- 

modified proteins were notably increased in circulating 

monocytes and dendritic cells from hypertensive patients (51). 

These findings suggest a positive feed-forward loop between 

hypertension and DCs.

Over the years, monocytes and macrophages have been 

associated with hypertension development (55). This is 

evidenced by notable increases in their numbers and alterations 

in their phenotype observed within the vasculature, kidneys, 

heart, and brain across various models of hypertension, in 

comparison to normotensive controls (55, 63–68). In humans, 

macrophage subsets are grouped by the expression of CD14 and 

CD16. This breaks the macrophage populations into 3 subsets: 

CD14++/CD16−−(“classical monocytes or macrophages”), CD14 

+/CD16+ or CD14++/CD16+ (“intermediate monocytes or 

macrophages”), and CD14dim or +/CD16++ (“nonclassical 

monocytes or macrophages”) (69, 70). CD14+ and CD16+ 

macrophages are taken to be correlates of the M1 and M2 

phenotypes (69). Directly implicating CD14+ human 

macrophages in the development of clinical hypertension is their 

robust expression of angiotensin-converting enzyme (69, 71), 

demonstrating their potential involvement in hypertension 

through participation in the renin-angiotensin-aldosterone 

system (RAAS), which may lead to feedforward activation of 

monocytes and “switching” between the M1 and M2 phenotypes 

(69). There are less studies on humans but the data that are 

available support a role for inAammation and macrophage 

polarization in essential hypertension, as well as cardiovascular 

disease (69). One study showed that the severity of hypertension 

was linked to the presence of CD68+ M1 inAammatory 

macrophages in the kidney, independent of race (69, 72). This 

indicates a possible role of macrophages in the development 

of hypertension.

Various subsets of T lymphocytes inAuence blood pressure 

regulation by modulating the local cytokine environment within 

cardiovascular regulatory organs (73). Hematopoietic stem cells 

in the bone marrow differentiate into naïve T cells which 

mature in the thymus before entering systemic circulation and 

migrating to distant tissues (73, 74). Single CD4+ T cells are 

classified as T helper cells (Th cells), CD8+ T cells are referred 

to as cytotoxic T cells, and CD1d+ T cells are known as natural 

killer T cells (73). Once an antigen is presented via the major 

histocompatibility complex (MHC) and binds to the T cell 

receptor (TCR) on the naïve CD4+ T cell, the T cell 

differentiates into distinct T helper (Th) lineages e.g., Th1, Th2, 

Th17, or T regulatory (Treg) in response to the local 

concentrations of specific cytokines. These T cell subsets 

provide helper functions by secreting specific cytokines that 

target other immune cells and modulate both vascular reactivity 

and renal sodium handling (73). Immune activation in 

hypertension is characterised by activation of T-cells via DC 

activation (75). T-cells then migrate to the vascular tree and the 

kidney causing inAammation and hypertension therefore, 

factors effecting T-cell activation and function are important 

mediators of essential hypertension (75). In an attempt to 

characterise T cells in newly diagnosed, treatment-naïve 

hypertensive individuals by assessing circulating levels of C-X-C 

chemokine receptor type 3 (CXCR3) chemokines, findings 

revealed that hypertensive patients had a higher proportion of 

immunosenescent, proinAammatory, and cytotoxic CD8+ T cells 

compared to healthy controls (76). Similarly in a different 

study, the frequency of both CD4+ and CD8+ CD45RO+ 

(memory) circulating T cells was higher in the hypertensive 

patients than in the normotensive controls (54). Hypertensive 

patients exhibited a higher frequency of CD4+ 1l-17A+ 

compared to normotensive controls. Interferon gamma (IFN-γ) 

and tumour necrosis factor-alpha (TNF-α) were also increased 

in CD4+ T cells, and CD8+ T cells of hypertensive patients 

(54). These results demonstrate the role of T-cell driven 

inAammation in mediating hypertension.

4 Immunity and HIV/TB

4.1 Immune dysregulation and the human 
immunodeficiency virus

Human immunodeficiency virus (HIV)) is an infection that 

targets and damages the immune system, specifically the CD4+ 

white blood cells that play a crucial role in immune defence 

(77). For successful entry, the virus must engage both the CD4 

receptor and one of two co-receptors on the host cell surface— 

the C-C chemokine receptor type 5 (CCR5) or the C-X-C 

chemokine receptor type 4 (CXCR4) (78–80). Beyond CD4+ 

cells, HIV infects macrophages and dendritic cells, disrupting 

antigen presentation and cytokine networks (78). By destroying 

these cells, HIV progressively weakens the body’s ability to 

fight off opportunistic infections such as tuberculosis (77). The 

combination of persistent viral replication, mucosal barrier 

breakdown, and innate immune sensing (via Toll-like receptors 

and inAammasomes) sustains a state of chronic inAammation 

and immune activation, which paradoxically accelerates 

immune exhaustion and CD4+ decline despite antiviral 

responses (81).

Despite effective antiretroviral therapy (ART), immune 

dysregulation continues as a result of persistent latent viral 

reservoirs and sustained low-level immune activation (82). T-cell 

exhaustion, characterized by increased expression of inhibitory 

receptors such as PD-1 (83, 84), TIM-3, and LAG-3 (84), 

diminishes HIV-specific immune responses (85), while 

dysregulated cytokine production drives inAammation and 

immune activation (86, 87). Chronic inAammation accelerates 

immunosenescence and promotes the development of non- 

communicable diseases, including cardiovascular disease and 

certain cancers. Therefore, immune dysregulation in HIV 

extends beyond CD4+ T-cell depletion, representing a complex 

disorder characterized by sustained immune activation, impaired 

regulatory mechanisms, and incomplete immune recovery, even 

in the context of effective ART (88, 89).

Letuka and Zulu                                                                                                                                                       10.3389/fcvm.2025.1717609 

Frontiers in Cardiovascular Medicine 04 frontiersin.org



4.2 Immune activation in Tuberculosis

Tuberculosis (TB) is a chronic infectious disease caused by the 

bacterium Mycobacterium tuberculosis (M.tb) (90). It primarily 

affects the lungs (pulmonary TB) but can also involve other 

organs (extrapulmonary TB) (90). TB is transmitted through 

airborne particles when an infected person coughs, sneezes, or 

speaks. Once inhaled, the bacteria can remain dormant (latent 

TB) or progress to active disease, especially in individuals with 

weakened immune systems (90). The innate immune system 

serves as the initial defense against M.tb infection (91). This 

largely depends on initial interactions with host innate immune 

cells, such as macrophages, dendritic cells, neutrophils, and 

natural killer cells (92). Multiple innate-like leukocytes also 

contribute to the host defense against M.tb, including non- 

conventional T-cell subsets such as mucosal-associated invariant 

T (MAIT) cells, CD1-restricted T lymphocytes, and natural 

killer T (NKT) cells (92). The initiation of innate immune 

responses to M.tb infection begins with pathogen recognition. 

During phagocytosis, conserved pathogen-associated molecular 

patterns (PAMPs) on the M.tb surface are detected by pattern 

recognition receptors (PRRs) expressed on host immune cells 

(92). In addition to phagocytosis, autophagy, apoptosis and the 

inAammasome activation, innate immune cells also trigger 

inAammatory cytokine and chemokine production to eliminate 

invading pathogens (93). M.tb manipulates host immune and 

metabolic pathways to evade clearance and establish persistent 

infection. Early studies in murine models, subsequently 

corroborated in humans (94), identified IFN-γ, TNF, and IL-1β 
as key cytokines required for effective immune control of M.tb 

(95–98). Signalling through the IL-1 receptor is modulated by 

the IL-1 receptor antagonist (IL-1ra), which competitively 

inhibits IL-1 binding (99). Elevated circulating concentrations of 

IL-1ra have been reported in individuals with active tuberculosis 

and proposed as a potential biomarker for disease activity and 

therapeutic response (100). Nonetheless, the molecular 

mechanisms underlying increased IL-1ra expression during 

active TB remain poorly understood.

5 Discussion

5.1 Intersection between infectious disease 
and non-communicable diseases

An estimated 40.8 million people were living with HIV 

globally at the end of 2024, with only 77% receiving 

antiretroviral therapy (ART) (36). The SSA region carries the 

greatest number of PLWHIV, in 2019, approximately 26 million 

individuals in SSA were living with HIV (32). Moreover, SSA 

accounted for 670,000 of the 1.5 million new HIV infections 

and 280,000 of the 650,000 AIDS-related deaths reported 

globally in 2021 (101). Hypertension is an increasingly common 

concern among adults living with HIV, particularly those 

receiving ART (102). While ART has significantly improved 

survival outcomes for PLWHIV, it has also been associated with 

an increasing burden of cardiovascular disease (103–106) 

(Figure 2). The pooled hypertension prevalence in PLWHIV in 

SSA was 21.9% alongside mean systolic blood pressure/diastolic 

blood pressure levels of 120/77 mmHg, withs significantly higher 

hypertension prevalence among males, ART users, and 

individuals with CD4 counts ≥200 cells/mm3 (107). These 

results underscore the need for cardiovascular risk integration 

into HIV care, especially as ART access and life expectancy 

continue to rise. The underlying mechanisms driving 

hypertension and cardiovascular disease in PLWHIV remain 

incompletely understood (103). In one study, the prevalence of 

hypertension among PLWHIV in SSA varied widely, ranging 

from 2.0%–50.2%, with most cases observed in individuals 

receiving ART (103). A retrospective Zambian cohort of 

PLWHIV initiating ART found that males developed 

hypertension earlier (2 years) compared to females (6 years) 

after ART initiation. In multivariable analysis, higher baseline 

SBP/MAP and use of certain ART (protease inhibitors) 

predicted incident hypertension in males but not in females (108).

Most studies report the prevalence of hypertension in 

PLWHIV, while data on the detailed mechanisms of how HIV 

and TB dysregulate the immune activation in hypertension 

remain scarce. Nonetheless, a mechanistic approach to how HIV 

dysregulates immune activation in the setting of hypertension 

can be summarised in 4 steps. (1) Chronic immune activation 

and pro-in�ammatory cytokines: In addition to traditional risk 

factors and the impact of ART on blood pressure, inAammatory 

markers such as IL-17A, IFN-γ, and CD4+ T cells have been 

linked to hypertension in PLWHIV undergoing ART (103). The 

same authors propose that HIV viral proteins and ART interact 

with the immune system to synergistically contribute to kidney 

injury, vascular dysfunction, and alterations in sympathetic 

nervous activity, ultimately promoting the development of 

hypertension (103). Similarly, in another study assessment of 

inAammatory biomarkers in plasma demonstrated an association 

between HIV-induced inAammation and increased blood 

pressure levels (109). In an attempt to investigate how T-cell 

activation/exhaustion and monocyte subsets correlate with 

arterial stiffness, the authors noted that individuals with HIV 

who displayed elevated levels of PD-1+ exhausted CD4+ and 

CD8+ T cells showed evidence of stiffer arteries early in ART 

treatment (110). (2) Microbial translocation, monocyte activation 

and endothelial injury: HIV damages gut mucosa early on, 

allowing lipopolysaccharides (LPS) into the circulation (111). 

LPS/sCD14-mediated monocyte activation sustains systemic 

inAammation and directly impairs endothelial function (112), 

linking microbial translocation to vascular dysfunction and 

hypertension risk. (3) Viral proteins and immune cell-vascular 

cross talk: HIV proteins and viral-protein-expressing immune 

cells can act on endothelial and smooth muscle cells to increase 

oxidative stress, inAammasome activation, and local cytokine 

production, promoting vasoconstriction and remodelling (103). 

Recent work using the Tg26 mouse model of HIV shows CD4+ 

T cells expressing viral proteins can drive hypertension through 

IL-1α and NOX1 pathways (113). (4) Monocyte/macrophage and 
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T-cell phenotypes that favour hypertension: HIV shifts innate and 

adaptive cell populations toward activated, inAammatory 

phenotypes (pro-inAammatory monocytes, senescent/activated 

CD8+ T cells, dysfunctional Tregs) (103). These cells infiltrate 

kidneys and vessels, producing cytokines and ROS that raise 

systemic vascular resistance and alter renal sodium handling 

(103, 113).

There is limited evidence regarding whether HIV infection 

contributes to an increased risk of resistant hypertension (RH) 

(114). A case–control study in Malawi (114) has been designed 

to evaluate these associations, though findings are not yet 

available. Current research on HIV–associated hypertension 

predominantly centres on cardiovascular disease mechanisms in 

PLWHIV; therefore, the precise contributors to hypertension 

remain poorly characterized. Comprehensive studies are 

required to assess whether the same biological pathways 

underlying HIV-related CVD are responsible for increased 

blood pressure. In addition, large multinational longitudinal 

cohorts are needed to define the mechanisms and predictors of 

hypertension in PLWHIV relative to people living without HIV 

(PWoH). The mechanisms linking immune activation or 

inAammation to hypertension and RH in the context of HIV 

remain poorly understood and require further investigation.

Although the global burden of TB is declining, it remains 

a significant public health challenge in many low- and 

middle-income countries (LMICs) (34). In 2021, 10.6 million 

individuals developed TB globally and an estimated 1.6 million 

people died from the disease (115, 116). LMICs accounted for 

80% of all TB cases and deaths, with the WHO African region 

contributing 23% of new infections (115, 116). TB ranks as the 

second deadliest infectious disease and the 13th leading cause of 

death worldwide (115, 116). TB has been implicated in the 

pathogenesis of hypertension through diverse immunological 

and pathophysiological mechanisms (34). While there is no 

specific data on immune mechanisms in TB and hypertension in 

SSA, or globally, many believe that activation of immune 

responses in TB may impair endothelial function (Figure 2), 

thereby increasing the risk of cardiovascular disease and 

potentially contributing to the development of hypertension 

(34, 117, 118). TB may cause pulmonary hypertension by 

damaging the pulmonary vessels (34, 119), and may cause 

systemic hypertension via TB infection in the kidney, thereby 

causing damage to the renal tissue, decreased renal function, 

and impaired blood pressure regulation (34, 120, 121).

There are plausible, partly well-worked mechanisms by which 

active or latent M.tb infection can dysregulate immunity in ways 

that increase blood-pressure and cardiovascular risk. The 

evidence is a mix of epidemiology, clinical case reports, 

immunology, and animal/biomarker studies; causal chains are 

biologically plausible but not yet proven in randomized trials. 

FIGURE 2 

Chronic immune activation, inflammation, endothelial dysfunction, and metabolic derangements are induced by HIV infection, TB, and their 

respective treatments. ART is associated with metabolic complications which increase the risk of hypertension. Similarly, anti-tuberculosis 

medications, such as rifampicin, can interfere with the pharmacokinetics of commonly used antihypertensive drugs leading to subtherapeutic 

drug levels and poor blood pressure control. Created using Bio-render.
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M.tb elicits strong cellular immunity (IFN-γ, TNF-α, IL-1 family, 

IL-6) (118). Persistent or recurrent antigen exposure (active 

disease, poorly controlled latent infection, or post-treatment 

immune remodelling) raises circulating pro-inAammatory 

cytokines (122) that are known drivers of vascular inAammation, 

endothelial dysfunction, arterial stiffness and BP elevation.

InAammation and immune activation in TB further 

complicate the management of hypertension. TB, as a chronic 

inAammatory condition, may trigger a complex sequence of 

immune responses that contribute to the development of 

atherosclerotic plaque formation (117). This process involves 

infection-induced antibodies cross-reacting with self-antigens, 

including heat-shock proteins (HSPs), which are a family of 

stress-responsive proteins expressed by cells under various 

physiological stress conditions (123). Human HSP60 exhibits 

approximately 40%–50% identical resemblance with heat-shock 

proteins found in Mycobacterium species (118). A similar 

mechanism may underlie the development of hypertension in 

individuals with TB (118). It has been shown that 

overexpression of HSPs can provoke autoimmune responses, 

resulting in the infiltration of macrophages and T-lymphocytes 

into renal tissue; an effect linked to hypertension in 

experimental models (118). Additionally, patients with essential 

hypertension have been found to exhibit elevated levels of anti- 

HSP70 and anti-HSP65 antibodies (118).

Immune activation in TB may exacerbate the inAammatory 

milieu that underlies hypertension by contributing to vascular 

dysfunction and elevated blood pressure (Figure 2). 

Epidemiological data further suggest a heightened risk of 

hypertension among individuals with latent TB, linking 

infectious disease status with chronic cardiovascular risk. At 

present, there is no data to suggest TB contributes to the 

development of RH, however it is not rare to come across cases 

where TB presents itself as malignant or uncontrolled 

hypertension (124).

5.2 Impact of ART and anti-TB medication 
on pathogenesis of hypertension

HIV treatment relies on combination ART to improve 

therapeutic outcomes (77). The widespread success of ART has 

been accompanied by a rising prevalence of NCDs among 

PLWHIV (125). As individuals with HIV experience longer 

lifespans due to effective ART, chronic comorbidities such as 

hypertension, have become prominent contributors to morbidity 

and mortality in this population (126–128). PLWHIV who are 

receiving combination ART have a higher risk of developing 

hypertension compared to those without HIV infection (129, 

130). Prolonged use of highly active antiretroviral therapy 

(HAART) (beyond two years) is associated with a significantly 

increased risk of systolic hypertension, even after controlling for 

age, body mass index, race, and smoking (131). Other 

cardiovascular risk factors mediated by ART include 

hypertriglyceridemia, hypercholesterolemia, and atherosclerosis 

(132), well known risk factors for hypertension (133, 134).

The WHO endorses the use of fixed-dose combination 

regimens for anti-tuberculosis therapy, comprising isoniazid, 

rifampicin, pyrazinamide, and ethambutol as the standard first- 

line treatment (135). Rifampicin may reduce the efficacy of 

various antihypertensive medications by inducing cytochrome 

P450 enzymes, thereby accelerating their metabolism (136). The 

effects of rifampicin on blood pressure control and 

antihypertensive drug levels in 24 hypertensive patients with 

end-stage chronic kidney disease undergoing maintenance 

haemodialysis was studied. All participants had stable blood 

pressure (≤140/90 mmHg) on consistent antihypertensive 

regimens before starting rifampicin-based treatment for TB 

(137). However, after rifampicin initiation, there was a 

significant decrease in plasma concentrations of commonly used 

anti hypertensives. This decrease in levels correlated well with 

worsening of hypertension (137).

6 Conclusion

The growing intersection between infectious diseases and non- 

communicable conditions represents one of the most pressing 

challenges for health systems in SSA. Among PLWHIV and TB, 

the emergence and persistence of hypertension and resistant 

hypertension have significant implications for long-term 

morbidity and mortality. This complex clinical overlap is driven 

by a convergence of factors, including chronic immune 

activation, inAammation, endothelial dysfunction, and metabolic 

derangements induced by HIV infection, TB, and their 

respective treatments. ART, while lifesaving, is associated with 

metabolic complications which increase the risk of hypertension. 

Similarly, anti-tuberculosis medications, most notably 

rifampicin, can interfere with the pharmacokinetics of 

commonly used antihypertensive drugs, leading to 

subtherapeutic drug levels and poor blood pressure control. 

Moreover, HIV and TB themselves exert profound 

immunological effects that may contribute to vascular 

inAammation and endothelial injury, further complicating the 

pathophysiology of hypertension in co-infected individuals.

In SSA, these challenges are compounded by systemic issues 

such as limited access to diagnostics, poor integration of care 

for infectious and chronic diseases, and fragmented health 

service delivery. The traditional disease-specific focus of public 

health programs has left a critical gap in managing comorbid 

non-communicable diseases in populations with high burdens of 

HIV and TB. As a result, hypertension often remains 

undiagnosed or poorly controlled, increasing the risk of 

cardiovascular events, renal disease, and premature death. To 

mitigate this growing burden, there is an urgent need for 

integrated models of care that combine infectious disease 

management with routine screening and treatment of non- 

communicable diseases, including hypertension. Future research 

should prioritize understanding the immunopathogenic 

mechanisms linking HIV, TB, and hypertension, and explore 

context-appropriate strategies to overcome drug–drug 

interactions and improve therapeutic outcomes. Strengthening 
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health systems to provide holistic, continuous, and coordinated 

care will be essential in addressing this emerging syndemic and 

improving long-term outcomes for affected populations across 

sub-Saharan Africa.
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