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Hypertension (HTN) is a chronic medical condition characterized by systolic
blood pressure of >140 mmHg and diastolic blood pressure >80 mmHg upon
repeated measurements. It is one of the most common non-communicable
diseases affecting 30% of the global population. Sub-Saharan Africa (SSA) has
a high burden of infectious diseases, which contribute to the increased
prevalence of hypertension. Furthermore, SSA has the highest number of
people living with chronic infectious diseases, such as human
immunodeficiency virus (HIV) and tuberculosis (TB). The pathogenesis of
these conditions is associated with chronic, low-grade inflammation and
immune activation that complicates various homeostatic functions, leading to
increased risk of non-communicable diseases among this population.
Furthermore, persistent immune activation leads to endothelial dysfunction,
arterial stiffness, and altered vascular tone, which contribute to elevated and
treatment-refractory blood pressure. However, immunological factors that
contribute to the development and pathogenesis of hypertension remain
poorly understood. Antiretroviral therapy and anti-TB medications further
complicate this landscape by inducing metabolic disturbances and
modulating drug metabolism, which affects the efficacy of anti-hypertensive
medications. There is a paucity of data and studies reporting on immune
dysregulation associated with HTN amongst people living with chronic
infections such as HIV and TB. This review aims to highlight this gap in
knowledge and the need for more translational research studies to improve
health outcomes in hypertensive individuals living with HIV and TB in SSA.
Understanding these intertwined immunological and pathophysiological
mechanisms is crucial to developing targeted interventions for managing
HTN, especially in this vulnerable population.
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1 Introduction

Hypertension (HTN) is a chronic, cardiovascular condition in
which the systolic blood pressure is >140 mmHg and/or diastolic
blood pressure is >80 mmHg in the arteries upon repeated
measurements (1). It is one of the major risk factors for
morbidity and mortality, as it contributes to the development
of cardiovascular conditions such as heart failure and stroke
(2-5). It is one of the most common non-communicable
diseases affecting 30% of the global population (6). In 2023, the
World Health Organisation (WHO) reported that only 21% of
adults with hypertension had their blood pressure controlled
(7). The prevalence of hypertension in sub-Saharan Africa
(SSA) increased significantly between the years 1999-2019 (8),
reaching 34% in men and 48% in women (8, 9). Numerous
factors which include increased burden of infectious disease,
changes in diet, lifestyle and poor healthcare are contributing
factors to this (8, 10-13). Key factors associated with the high
prevalence of hypertension and its disparities across sub-
Saharan Africa include dietary patterns (8, 14-16), abnormal
body weight (both increased adiposity and underweight) (8,
17-19), population ageing (8, 18, 20-22), socioeconomic status
(education and income), and psychosocial stressors (8, 14, 17,
20, 21). Infectious diseases such as coronavirus disease 2019
(COVID-19) (23, 24), human immunodeficiency virus (HIV)
(25, 26) and tuberculosis (TB) (27) have also been implicated in
the development of hypertension. Resistant hypertension (RH)
is defined as BP that remain elevated despite the concurrent
administration of three or more antihypertensive agents of
different classes, including a diuretic (28). The exact aetiology
of resistant hypertension is unknown; however, it is postulated
to be associated with multiple factors such inappropriate
treatment and limited access to healthcare, high-salt diet,
volume overload and hyperactivation of the sympathetic
nervous system (29, 30).

10.3389/fcvm.2025.1717609

The highest number of people living with chronic infections
such as HIV and TB is in SSA (31, 32). People living with HIV
(PLWHIV) and TB are at an increased risk of developing
hypertension (33, 34) (Table 1). The high burden of chronic
infections in SSA poses a significant public health challenge as
weakens the already under-resourced healthcare system and
the the
population (34-37). Underlying conditions such as HTN pose a
significant public health challenge around the world (33, 34, 38).
Furthermore, the affecting pathogenesis of
infectious disease in people living with chronic infections

increases risk of non-communicable disease in

mechanisms

remains poorly understood. Therefore, there is a paucity of data
and research studies on immune mechanisms associated with
development of hypertension amongst people living with
chronic infections such as HIV and TB. This review aims to
highlight this gap in knowledge and the need for more
translational research studies to improve health outcomes in
hypertensive individuals living with HIV and TB in SSA.
these
pathophysiological mechanisms is crucial to developing targeted

Understanding intertwined ~ immunological  and

interventions for managing HTN, especially among this

vulnerable population.

2 Inflammation and hypertension

Inflammation plays a crucial role in the pathogenesis of
hypertension (39-42). It has been shown that T lymphocytes are
required for the full development of angiotensin II- and
DOCA-salt-induced hypertension and vascular dysfunction in
mice; T cells (via AT1 receptor and NADPH oxidase-dependent
ROS and cytokine production) infiltrate perivascular tissue and
drive vascular oxidative stress, endothelial dysfunction and
blood-pressure (43).
hypertension is kick-started by well-known pro-hypertensive

elevation Immune activation in

TABLE 1 Prevalence of HTN amongst different population groups living with chronic infections in SSA.

Prevalence (Str
by age)

Group Prevalence

People living Pooled prevalence (SSA): 21.9%

>50% in PLWH >50y; ~31%-—

ART-specific References
effects

ART exposure aPR~ 1.23

Adjusted effect sizes

Male sex aPR 1.33; ART aPR

(108)

with HIV (95% CI 19.9%-23.9%). Pooled mean | 41% (<35-44y) rising to 54%- (Chen et al.); INSTI 1.23; CD4 > 200 aPR 1.45
(PLWHIV) BP ~ 120/77 mmHg. 58% (>45y) in South African regimens linked with (Chen et al.); INSTI vs

cohorts. higher HTN risk (aIRR NNRTI aIRR 1.76-1.92

1.7-1.9 vs NNRTIs). (Byonanebye et al.).
Active TB Very heterogeneous; reported 0.7%- | Older TB patients more likely to | N/A (ART only relevant in | Systematic review: no (35)
(patients with TB | 38% across older studies; limited have HTN; data sparse and co-infection). consistent adjusted
disease) high-quality evidence. variable across studies. association (Seegert et al.,
2017).

Latent TB NHANES (US): overall HTN Crude HTN prevalence higher | N/A (LTBI typically not Adjusted PR~ 1.0 (95% CI (27)

infection (LTBI/
TBI)

HIV-TB co-
infected
(prospective
cohorts)

prevalence & 48.9%; higher crude
prevalence in LTBI (58.5% vs 48.3%)
but attenuated after adjustment.
South Africa (SAPIT/TRuTH
cohort): incidence = 1.9 per 100
person-years; men ~ 5.9, women
>40y ~ 5.0 per 100 PY.
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in LTBI across all age groups;
adjusted analyses show similar
rates after controlling for age.
Incidence sharply higher with
age and sex: men 5.9/100 PY;
women >40y 5.0/100 PY.

02

treated with ART).

ART initiation post-TB
associated with weight gain
and increased HTN risk,
especially with INSTI-
based regimens.

0.9-1.1) after controlling for
age, sex, BMI, diabetes,
smoking (Salindri et al.).
Adjusted HRs: men aHR
12.04; women >40y aHR 8.19;
men <40y aHR 2.79 (Dawood
et al., 2024).

(138)
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stimuli such as, increased sympathetic outflow (44, 45), acute and
chronic stress (46), excessive salt intake (47, 48), gut microbial
dysbiosis (49, 50), local oxidative-stress (51) and vascular
dysfunction (52). A key concept is that immune cells infiltrate
organs critical to blood pressure regulation, such as the blood
vessels (53), kidneys, heart (54), and brain, leading to chronic
inflammation (43, 52, 55, 56). This chronic inflammatory state
disrupts normal organ function and contributes to the onset
and progression of hypertension (52). The inflammatory and
immune mechanisms driving hypertension are regulated
through a complex interaction between innate and adaptive
immune cells (Figure 1) (52). The early development of
hypertension involves activation of innate immune cells, such as
macrophages, dendritic cells, and natural killer (NK) cells, which
initiate inflammatory responses by releasing cytokines and
chemokines (51, 52, 57). These signalling molecules facilitate the
recruitment of additional immune cells, including T and
B lymphocytes, to the site of inflammation (52). Once activated,
T cells can differentiate into effector subsets; such as T helper 1
(Thl) and Thl17 cells; which release cytokines that amplify the
inflammatory response and contribute to vascular dysfunction

(52, 58, 59).

10.3389/fcvm.2025.1717609

3 Immunity and hypertension

Hypertension has long been associated with activation of
immune pathways (2), here we discuss the cells of the innate
and adaptive immune system and their role in hypertension
development. Dendritic cells (DCs) are specialised antigen-
presenting cells (APCs) derived from hematopoietic progenitors
in the bone marrow and are widely distributed across various
tissues (60, 61). They possess a unique capacity to initiate T cell
responses by capturing, processing, and presenting antigens to
naive T cells. Therefore, DCs serve as key orchestrators of the
adaptive immune system (60, 61). DCs from hypertensive mice
exhibit elevated surface expression of the B7 ligands CD80 and
CD86, indicative of DC maturation and activation (51, 62).
Inhibition of these costimulatory molecules has been shown to
prevent the development of hypertension and the activation of
T cells in models of both angiotensin II- and DOCA-salt
induced hypertension (51, 62). In mice, oxidative stress in
hypertension generates reactive 7y-ketoaldehydes known as
isoketals, which accumulate in and activate DCs to drive T-cell
responses that contribute to elevated blood pressure (51).
Plasma levels of F2-isoprostanes, oxidative stress markers

Immune cell infiltration e
into multiple organs Sy
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,§ '\

Heart
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FIGURE 1
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Immune cells infiltrate organs critical to blood pressure regulation, such as the blood vessels, kidneys, heart, and brain; leading to chronic
inflammation. This chronic inflammatory state disrupts normal organ function and contributes to the onset and progression of hypertension.
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produced alongside isoketals, were elevated in individuals
receiving treatment for hypertension and significantly higher in
those with resistant hypertension (51). Additionally, isoketal-
modified proteins were notably increased in circulating
monocytes and dendritic cells from hypertensive patients (51).
These findings suggest a positive feed-forward loop between
hypertension and DCs.

Over the years, monocytes and macrophages have been
(55). This is

evidenced by notable increases in their numbers and alterations

associated with hypertension development

in their phenotype observed within the vasculature, kidneys,
heart, and brain across various models of hypertension, in
comparison to normotensive controls (55, 63-68). In humans,
macrophage subsets are grouped by the expression of CD14 and
CD16. This breaks the macrophage populations into 3 subsets:
CD14++/CD16——(“classical monocytes or macrophages”), CD14
+/CD16+ or CD14++/CD16+ (“intermediate monocytes or
macrophages”), and CDIl4dim or +/CD16++ (“nonclassical
monocytes or macrophages”) (69, 70). CD14+ and CDI16+
macrophages are taken to be correlates of the M1 and M2
phenotypes  (69).
macrophages in the development of clinical hypertension is their

Directly implicating CD14+ human
robust expression of angiotensin-converting enzyme (69, 71),
demonstrating their potential involvement in hypertension
through participation in the renin-angiotensin-aldosterone
system (RAAS), which may lead to feedforward activation of
monocytes and “switching” between the M1 and M2 phenotypes
(69). There are less studies on humans but the data that are
available support a role for inflammation and macrophage
polarization in essential hypertension, as well as cardiovascular
disease (69). One study showed that the severity of hypertension
was linked to the presence of CD68+ M1 inflammatory
macrophages in the kidney, independent of race (69, 72). This
indicates a possible role of macrophages in the development
of hypertension.

Various subsets of T lymphocytes influence blood pressure
regulation by modulating the local cytokine environment within
cardiovascular regulatory organs (73). Hematopoietic stem cells
in the bone marrow differentiate into naive T cells which
mature in the thymus before entering systemic circulation and
migrating to distant tissues (73, 74). Single CD4+ T cells are
classified as T helper cells (Th cells), CD8+ T cells are referred
to as cytotoxic T cells, and CD1d+ T cells are known as natural
killer T cells (73). Once an antigen is presented via the major
histocompatibility complex (MHC) and binds to the T cell
receptor (TCR) on the naive CD4+ T cell, the T cell
differentiates into distinct T helper (Th) lineages e.g., Thl, Th2,
Th17, or T regulatory (Treg) in response to the local
concentrations of specific cytokines. These T «cell subsets
provide helper functions by secreting specific cytokines that
target other immune cells and modulate both vascular reactivity
and renal sodium handling (73). Immune activation in
hypertension is characterised by activation of T-cells via DC
activation (75). T-cells then migrate to the vascular tree and the
kidney causing inflammation and hypertension therefore,
factors effecting T-cell activation and function are important
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mediators of essential hypertension (75). In an attempt to

characterise T cells in newly diagnosed, treatment-naive
hypertensive individuals by assessing circulating levels of C-X-C
chemokine receptor type 3 (CXCR3) chemokines, findings
revealed that hypertensive patients had a higher proportion of
immunosenescent, proinflammatory, and cytotoxic CD8" T cells
compared to healthy controls (76). Similarly in a different
study, the frequency of both CD4+ and CD8+ CD45RO+
(memory) circulating T cells was higher in the hypertensive
patients than in the normotensive controls (54). Hypertensive
11-17A+

compared to normotensive controls. Interferon gamma (IFN-y)

patients exhibited a higher frequency of CD4+

and tumour necrosis factor-alpha (TNF-a) were also increased
in CD4+ T cells, and CD8+ T cells of hypertensive patients
(54). These results demonstrate the role of T-cell driven
inflammation in mediating hypertension.

4 Immunity and HIV/TB

4.1 Immune dysregulation and the human
immunodeficiency virus

Human immunodeficiency virus (HIV)) is an infection that
targets and damages the immune system, specifically the CD4+
white blood cells that play a crucial role in immune defence
(77). For successful entry, the virus must engage both the CD4
receptor and one of two co-receptors on the host cell surface—
the C-C chemokine receptor type 5 (CCR5) or the C-X-C
chemokine receptor type 4 (CXCR4) (78-80). Beyond CD4"
cells, HIV infects macrophages and dendritic cells, disrupting
antigen presentation and cytokine networks (78). By destroying
these cells, HIV progressively weakens the body’s ability to
fight off opportunistic infections such as tuberculosis (77). The
combination of persistent viral replication, mucosal barrier
breakdown, and innate immune sensing (via Toll-like receptors
and inflammasomes) sustains a state of chronic inflammation
and immune activation, which paradoxically accelerates
exhaustion and CD4"

responses (81).

immune decline despite antiviral

Despite effective antiretroviral therapy (ART), immune
dysregulation continues as a result of persistent latent viral
reservoirs and sustained low-level immune activation (82). T-cell
exhaustion, characterized by increased expression of inhibitory
receptors such as PD-1 (83, 84), TIM-3, and LAG-3 (84),
HIV-specific (85),
dysregulated cytokine production drives inflammation and

diminishes immune responses while
immune activation (86, 87). Chronic inflammation accelerates
immunosenescence and promotes the development of non-
communicable diseases, including cardiovascular disease and
certain cancers. Therefore, immune dysregulation in HIV
extends beyond CD4" T-cell depletion, representing a complex
disorder characterized by sustained immune activation, impaired
regulatory mechanisms, and incomplete immune recovery, even

in the context of effective ART (88, 89).
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4.2 Immune activation in Tuberculosis

Tuberculosis (TB) is a chronic infectious disease caused by the
bacterium Mpycobacterium tuberculosis (M.tb) (90). It primarily
affects the lungs (pulmonary TB) but can also involve other
organs (extrapulmonary TB) (90). TB is transmitted through
airborne particles when an infected person coughs, sneezes, or
speaks. Once inhaled, the bacteria can remain dormant (latent
TB) or progress to active disease, especially in individuals with
weakened immune systems (90). The innate immune system
serves as the initial defense against M.tb infection (91). This
largely depends on initial interactions with host innate immune
cells, such as macrophages, dendritic cells, neutrophils, and
natural killer cells (92). Multiple innate-like leukocytes also
contribute to the host defense against M.tb, including non-
conventional T-cell subsets such as mucosal-associated invariant
T (MAIT) cells, CDI1-restricted T lymphocytes, and natural
killer T (NKT) cells (92). The initiation of innate immune
responses to M.tb infection begins with pathogen recognition.
During phagocytosis, conserved pathogen-associated molecular
patterns (PAMPs) on the M.tb surface are detected by pattern
recognition receptors (PRRs) expressed on host immune cells
(92). In addition to phagocytosis, autophagy, apoptosis and the
inflammasome activation, innate immune cells also trigger
inflammatory cytokine and chemokine production to eliminate
invading pathogens (93). M.tb manipulates host immune and
metabolic pathways to evade clearance and establish persistent
infection. Early studies in murine models, subsequently
corroborated in humans (94), identified IFN-y, TNF, and IL-1§
as key cytokines required for effective immune control of M.tb
(95-98). Signalling through the IL-1 receptor is modulated by
the IL-1 receptor antagonist (IL-1ra), which competitively
inhibits IL-1 binding (99). Elevated circulating concentrations of
IL-1ra have been reported in individuals with active tuberculosis
and proposed as a potential biomarker for disease activity and
(100). Nonetheless, the
mechanisms underlying increased IL-1ra expression during

therapeutic  response molecular

active TB remain poorly understood.

5 Discussion

5.1 Intersection between infectious disease
and non-communicable diseases

An estimated 40.8 million people were living with HIV
globally at the end of 2024, with only 77% receiving
antiretroviral therapy (ART) (36). The SSA region carries the
greatest number of PLWHIV, in 2019, approximately 26 million
individuals in SSA were living with HIV (32). Moreover, SSA
accounted for 670,000 of the 1.5 million new HIV infections
and 280,000 of the 650,000 AIDS-related deaths reported
globally in 2021 (101). Hypertension is an increasingly common
concern among adults living with HIV, particularly those
receiving ART (102). While ART has significantly improved

Frontiers in Cardiovascular Medicine
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survival outcomes for PLWHIV, it has also been associated with
(103-106)
(Figure 2). The pooled hypertension prevalence in PLWHIV in

an increasing burden of cardiovascular disease

SSA was 21.9% alongside mean systolic blood pressure/diastolic
blood pressure levels of 120/77 mmHg, withs significantly higher
hypertension prevalence among males, ART wusers, and
individuals with CD4 counts >200 cellsymm® (107). These
results underscore the need for cardiovascular risk integration
into HIV care, especially as ART access and life expectancy
The
hypertension and cardiovascular disease in PLWHIV remain

continue to rise. underlying mechanisms driving
incompletely understood (103). In one study, the prevalence of
hypertension among PLWHIV in SSA varied widely, ranging
from 2.0%-50.2%, with most cases observed in individuals
receiving ART (103). A retrospective Zambian cohort of
PLWHIV initiating ART found that

hypertension earlier (2 years) compared to females (6 years)

males developed
after ART initiation. In multivariable analysis, higher baseline
SBP/MAP and wuse of certain ART (protease inhibitors)
predicted incident hypertension in males but not in females (108).

Most studies report the prevalence of hypertension in
PLWHIV, while data on the detailed mechanisms of how HIV
and TB dysregulate the immune activation in hypertension
remain scarce. Nonetheless, a mechanistic approach to how HIV
dysregulates immune activation in the setting of hypertension
can be summarised in 4 steps. (1) Chronic immune activation
and pro-inflammatory cytokines: In addition to traditional risk
factors and the impact of ART on blood pressure, inflammatory
markers such as IL-17A, IFN-y, and CD4" T cells have been
linked to hypertension in PLWHIV undergoing ART (103). The
same authors propose that HIV viral proteins and ART interact
with the immune system to synergistically contribute to kidney
injury, vascular dysfunction, and alterations in sympathetic
nervous activity, ultimately promoting the development of
hypertension (103). Similarly, in another study assessment of
inflammatory biomarkers in plasma demonstrated an association
between HIV-induced
pressure levels (109). In an attempt to investigate how T-cell

inflammation and increased blood
activation/exhaustion and monocyte subsets correlate with
arterial stiffness, the authors noted that individuals with HIV
who displayed elevated levels of PD-1+ exhausted CD4+ and
CD8+ T cells showed evidence of stiffer arteries early in ART
treatment (110). (2) Microbial translocation, monocyte activation
and endothelial injury: HIV damages gut mucosa early on,
allowing lipopolysaccharides (LPS) into the circulation (111).
LPS/sCD14-mediated monocyte activation sustains systemic
inflammation and directly impairs endothelial function (112),
linking microbial translocation to vascular dysfunction and
hypertension risk. (3) Viral proteins and immune cell-vascular
cross talk: HIV proteins and viral-protein-expressing immune
cells can act on endothelial and smooth muscle cells to increase
oxidative stress, inflammasome activation, and local cytokine
production, promoting vasoconstriction and remodelling (103).
Recent work using the Tg26 mouse model of HIV shows CD4+
T cells expressing viral proteins can drive hypertension through
IL-1a. and NOX1 pathways (113). (4) Monocyte/macrophage and

frontiersin.org



Letuka and Zulu

10.3389/fcvm.2025.1717609

@) ¢ Ongoing chronic
inflammation due
to longer lifespan
e Metabolic
dysregulation
PLWHIV on ART ‘\\‘ HYPERTENSION
A - e Loss of blood
ey B W pressure
A LY
/ control
[/ e Hypertension
u development
~ e Progression
to malignant
hypertension
Systemic
¢ Localised immune inflammation
: activation
PLWTE on ant ¢ Drug-drug interaction:
TB thera '
Py reduced
antihypertensive efficacy
FIGURE 2
Chronic immune activation, inflammation, endothelial dysfunction, and metabolic derangements are induced by HIV infection, TB, and their
respective treatments. ART is associated with metabolic complications which increase the risk of hypertension. Similarly, anti-tuberculosis
medications, such as rifampicin, can interfere with the pharmacokinetics of commonly used antihypertensive drugs leading to subtherapeutic
drug levels and poor blood pressure control. Created using Bio-render.

T-cell phenotypes that favour hypertension: HIV shifts innate and
adaptive cell populations
phenotypes (pro-inflammatory monocytes, senescent/activated
CD8+ T cells, dysfunctional Tregs) (103). These cells infiltrate
kidneys and vessels, producing cytokines and ROS that raise

toward activated, inflammatory

systemic vascular resistance and alter renal sodium handling
(103, 113).

There is limited evidence regarding whether HIV infection
contributes to an increased risk of resistant hypertension (RH)
(114). A case-control study in Malawi (114) has been designed
to evaluate these associations, though findings are not yet
available. Current research on HIV-associated hypertension
predominantly centres on cardiovascular disease mechanisms in
PLWHIV; therefore, the precise contributors to hypertension
remain  poorly studies are
required to assess whether the same biological pathways

characterized. Comprehensive

underlying HIV-related CVD are responsible for increased
blood pressure. In addition, large multinational longitudinal
cohorts are needed to define the mechanisms and predictors of
hypertension in PLWHIV relative to people living without HIV
(PWoH).
inflammation to hypertension and RH in the context of HIV

The mechanisms linking immune activation or
remain poorly understood and require further investigation.

Although the global burden of TB is declining, it remains
a significant public health challenge in many low- and

Frontiers in Cardiovascular Medicine

middle-income countries (LMICs) (34). In 2021, 10.6 million
individuals developed TB globally and an estimated 1.6 million
people died from the disease (115, 116). LMICs accounted for
80% of all TB cases and deaths, with the WHO African region
contributing 23% of new infections (115, 116). TB ranks as the
second deadliest infectious disease and the 13th leading cause of
death worldwide (115, 116). TB has been implicated in the
pathogenesis of hypertension through diverse immunological
and pathophysiological mechanisms (34). While there is no
specific data on immune mechanisms in TB and hypertension in
SSA, or globally, many believe that activation of immune
responses in TB may impair endothelial function (Figure 2),
thereby increasing the risk of cardiovascular disease and
potentially contributing to the development of hypertension
(34, 117, 118). TB may cause pulmonary hypertension by
damaging the pulmonary vessels (34, 119), and may cause
systemic hypertension via TB infection in the kidney, thereby
causing damage to the renal tissue, decreased renal function,
and impaired blood pressure regulation (34, 120, 121).

There are plausible, partly well-worked mechanisms by which
active or latent M.tb infection can dysregulate immunity in ways
that increase blood-pressure and cardiovascular risk. The
evidence is a mix of epidemiology, clinical case reports,
immunology, and animal/biomarker studies; causal chains are
biologically plausible but not yet proven in randomized trials.
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Letuka and Zulu

M.tb elicits strong cellular immunity (IFN-y, TNF-q, IL-1 family,
IL-6) (118). Persistent or recurrent antigen exposure (active
disease, poorly controlled latent infection, or post-treatment
immune remodelling) raises circulating pro-inflammatory
cytokines (122) that are known drivers of vascular inflammation,
endothelial dysfunction, arterial stiffness and BP elevation.

in TB further

complicate the management of hypertension. TB, as a chronic

Inflammation and immune activation
inflammatory condition, may trigger a complex sequence of
immune responses that contribute to the development of
atherosclerotic plaque formation (117). This process involves
infection-induced antibodies cross-reacting with self-antigens,
including heat-shock proteins (HSPs), which are a family of
stress-responsive proteins expressed by cells under various
physiological stress conditions (123). Human HSP60 exhibits
approximately 40%-50% identical resemblance with heat-shock
proteins found in Mpycobacterium species (118). A similar
mechanism may underlie the development of hypertension in
with TB (118). It has that
overexpression of HSPs can provoke autoimmune responses,

individuals been shown
resulting in the infiltration of macrophages and T-lymphocytes
effect linked

experimental models (118). Additionally, patients with essential

into renal tissue; an to hypertension in
hypertension have been found to exhibit elevated levels of anti-
HSP70 and anti-HSP65 antibodies (118).

Immune activation in TB may exacerbate the inflammatory

milieu that underlies hypertension by contributing to vascular

dysfunction and elevated blood pressure (Figure 2).
Epidemiological data further suggest a heightened risk of
hypertension among individuals with latent TB, linking

infectious disease status with chronic cardiovascular risk. At
present, there is no data to suggest TB contributes to the
development of RH, however it is not rare to come across cases
where itself as uncontrolled

TB presents malignant or

hypertension (124).

5.2 Impact of ART and anti-TB medication
on pathogenesis of hypertension

HIV treatment relies on combination ART to improve
therapeutic outcomes (77). The widespread success of ART has
been accompanied by a rising prevalence of NCDs among
PLWHIV (125). As individuals with HIV experience longer
lifespans due to effective ART, chronic comorbidities such as
hypertension, have become prominent contributors to morbidity
and mortality in this population (126-128). PLWHIV who are
receiving combination ART have a higher risk of developing
hypertension compared to those without HIV infection (129,
130). Prolonged use of highly active antiretroviral therapy
(HAART) (beyond two years) is associated with a significantly
increased risk of systolic hypertension, even after controlling for
age, body mass index, race, and smoking (131). Other
mediated by ART
hypertriglyceridemia, hypercholesterolemia, and atherosclerosis

cardiovascular risk  factors include

(132), well known risk factors for hypertension (133, 134).
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The WHO endorses the use of fixed-dose combination
regimens for anti-tuberculosis therapy, comprising isoniazid,
rifampicin, pyrazinamide, and ethambutol as the standard first-
line treatment (135). Rifampicin may reduce the efficacy of
various antihypertensive medications by inducing cytochrome
P450 enzymes, thereby accelerating their metabolism (136). The
effects of rifampicin on blood pressure control and
antihypertensive drug levels in 24 hypertensive patients with
end-stage chronic kidney disease undergoing maintenance
haemodialysis was studied. All participants had stable blood
(<140/90 mmHg) on
regimens before starting rifampicin-based treatment for TB
(137).

significant decrease in plasma concentrations of commonly used

pressure consistent antihypertensive

However, after rifampicin initiation, there was a
anti hypertensives. This decrease in levels correlated well with

worsening of hypertension (137).

6 Conclusion

The growing intersection between infectious diseases and non-
communicable conditions represents one of the most pressing
challenges for health systems in SSA. Among PLWHIV and TB,
the emergence and persistence of hypertension and resistant
hypertension have significant implications for long-term
morbidity and mortality. This complex clinical overlap is driven
by a convergence of factors, including chronic immune
activation, inflammation, endothelial dysfunction, and metabolic
and their

respective treatments. ART, while lifesaving, is associated with

derangements induced by HIV infection, TB,

metabolic complications which increase the risk of hypertension.

Similarly,  anti-tuberculosis  medications, most notably
rifampicin, can interfere with the pharmacokinetics of
commonly used antihypertensive drugs, leading to
subtherapeutic drug levels and poor blood pressure control.
Moreover, HIV and TB themselves exert profound
immunological effects that may contribute to vascular

inflammation and endothelial injury, further complicating the
pathophysiology of hypertension in co-infected individuals.

In SSA, these challenges are compounded by systemic issues
such as limited access to diagnostics, poor integration of care
for infectious and chronic diseases, and fragmented health
service delivery. The traditional disease-specific focus of public
health programs has left a critical gap in managing comorbid
non-communicable diseases in populations with high burdens of
HIV and TB. As a
undiagnosed or poorly controlled, increasing the risk of

result, hypertension often remains
cardiovascular events, renal disease, and premature death. To
mitigate this growing burden, there is an urgent need for
integrated models of care that combine infectious disease
management with routine screening and treatment of non-
communicable diseases, including hypertension. Future research
should prioritize understanding the immunopathogenic
mechanisms linking HIV, TB, and hypertension, and explore
context-appropriate  strategies  to

overcome  drug-drug

interactions and improve therapeutic outcomes. Strengthening
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health systems to provide holistic, continuous, and coordinated
care will be essential in addressing this emerging syndemic and
improving long-term outcomes for affected populations across
sub-Saharan Africa.
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