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Currently efforts are being undertaken to establish and bring into clinical practice
the field of virtual cardiac electrophysiology. The basic premise lies in acquiring
an accurate whole-heart model based both on anatomy and
electrophysiological properties of every myocardial voxel. Subsequently, one
option is to perform a virtual electrophysiology study, with no constraints
regarding site and number of extrasystoles in order to assess arrhythmogenic
potential of the ventricle (ventricular arrhythmia risk prediction). The alternative,
in cases with documented ventricular arrhythmia, would be to fine-tune the
model into being able to simulate the clinical arrhythmia and then assess its
mechanism, establishing vulnerable sites and thus ablation targets in order to
guide the subsequent interventional procedure (virtual arrhythmia ablation
targeting). Once clinical evidence supports VEP value in terms of accuracy and
safety, it could be expected that even induced, nonclinical, arrhythmias could be
targeted. Finally, advances in the field of computational power and artificial
intelligence, including radiomics, along with stereotactic arrhythmia
radioablation could render the future of arrhythmia management and treatment
virtually unrecognizable in the not-so-distant future. The present mini review will
attempt to familiarize clinicians with the tenets and current state of VvEP,
especially in the current phase where larger prospective clinical studies are
required for further advancement, as well as offer a glimpse at potential future
directions of this approach.
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Introduction

Following the advent of percutaneous revascularization as a
milestone in combatting ischemic heart disease, sudden cardiac
death prevention and primary treatment of malignant ventricular
arrhythmias are at the forefront of contemporary research in
cardiovascular medicine, not least due to the significant associated
mortality and morbidity burden (1). In the majority of cases,
sudden cardiac death is tachyarrhythmic in nature—thus effective
prevention is inherently linked to accurate assessment of
ventricular tachy-arrhythmogenic potential (2). On the other hand,
primary treatment of clinical ventricular tachyarrhythmias though
ablation is a major and often laborious undertaking, requiring
precise guidance as to the targets where energy (in whichever form)
should be applied in order to suppress arrhythmogenesis (3-5).
Obviously, one could further add the potential for ablation of
potential/induced (in silico or in vivo) arrhythmias, however
clinical data are sparser and less encouraging regarding this
approach (6, 7) -at least in the context of “conventional” (in vivo)
electrophysiology and arrhythmia mapping/ablation (itself an ever-
evolving field).

In contrast to the above, virtual—in silico—electrophysiology
(VEP), both diagnostic and therapeutic, could be considered to
include all methods aiming to yield accurate whole-heart
simulations, which can then be used to either study general
arrhythmogenesis mechanisms or specifically assess arrhythmogenic
potential in a given individual and thus determine sudden death
risk (ventricular arrhythmia risk prediction—VARP) (8-10).
Moreover, those same approaches can be employed in order to
model a clinical arrhythmia in a specific patient, determine its
mechanism, and guide ablative treatment to critical regions, leading
to arrhythmia suppression—virtual heart arrhythmia ablation
targeting (VAAT) (11, 12).

Consequently, the necessary components of VEP can be
broadly categorized as follows:

o Collection of data sufficient to yield an accurate whole heart
simulation. Such data include both anatomical (e.g., dense scar
and grey zone location, intermediate fibrosis presence) and
functional (e.g., conduction velocity and refractory period)
components. Furthermore, data can be either generic—i.e.,
allocating experimentally known electrophysiological properties
to each cardiac tissue category or personalized; that is,
importing anatomical data, as well as conduction velocity and
substrate, from invasive electroanatomical mapping (13-15).

« Assembling the model and performing virtual electroanatomical
study on it. This is the most taxing part of the process,
computation-wise, and explains why most simulations only
extend to 2-3s after arrhythmia triggering (16). Notably,

(ICDs) are

programmed to detect, much less treat, an arrhythmia after so

implantable  cardioverter-defibrillators never
short an interval from initiation. However, it stands to reason
that, should the model suggest formation of an enduring
arrhythmia mechanism, it should negate the need for

protracted simulation.
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In cases of VEP being used as a guide to malignant ventricular
tachyarrhythmia treatment, modifications of the above are necessary:

o The sinus rhythm-based model (with either generic or
personalized data) must be able to accurately simulate the
clinical arrhythmia(s) (11, 17). The aim is to successfully
determine the vulnerable parts of the circuit, or, more generally,
the critical myocardial areas where energy application and
ablation will lead to arrhythmia termination. A notable
advantage of accurate whole-heart simulations is guidance for
ablation of nonclinical induced arrhythmias, as well as assessing
the effect of lesion administration on arrhythmogenetic
potential—i.e., lesions themselves may lead to formation of new
circuits which require further ablation.

The approaches which have been developed to achieve these goals,
all following the aforementioned principles, are presented below.

General approaches

One fundamental decision regarding whole heart simulation

concerns use of the mono- or bidomain cardiac
electrophysiology model (18, 19). The bidomain-based approach
considers intracellular and extracellular spaces as distinct and
interacting ionic current pools, thus offering higher accuracy.
Moreover, the bidomain approach is able to include and assess
the differential effects of arrhythmogenesis or scar in these 2
pools, e.g., gradual intracellular calcium overload that may
ultimately lead to conduction block or a triggered activity based
depolarization that could lead to propagation wave break and
arrhythmia degeneration, or the presence of areas acting as
that

respectively. Even the effects of mechanosensitive ion channel

current sinks could destabilize potential isthmuses,
activation during heart failure exacerbation could, in theory, be
simulated. However, this uncompromising approach is extremely
computationally taxing and has not been pursued in all
clinically oriented studies, at least given the currently available
computational power. The monodomain approach has not been
shown to be significantly inferior to the bidomain one, and
entails considering a single pool of ions, currents, and voltage
Usually (8, 20, 21),

concentrations of ionic channels for Na*, K*, and Ca*" are

changes. experimentally measured
assigned to each voxel (i.e., fundamental volume element), with
modifications based on the voxel belonging to normal tissue,
gray zone, or dense scar. As a principle, scar is considered
electrically inert whereas, at the gray zone peak sodium current,
peak L-type calcium current, IKr, and IKs are set to 38%, 31%,
30% and 20% of the values usually assigned to normal
myocardium per the Ten Tusscher model, respectively. This
modifies the action potential morphology, rendering similar to
that experimentally observed. Furthermore (21), changes in
connexin-43 concentrations and localization (usually 90%
reduction in transverse connectivity) can also be introduced to
the model,

conduction velocities, wavefront propagation direction, and

affecting conduction anisotropy. Consequently,

refractory periods can be inferred.
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Voxels themselves, as well as their size, originate from the
imaging method employed in acquiring the anatomical component
of the simulation (20, 22-25). Both cardiac magnetic resonance
(CMR) and multidetector computed tomography (MDCT) have
been used, each with distinct advantages. More specifically, CMR is
superior in determining tissue properties (normal myocardium,
grey zone, and dense scar), based on presence and type of fibrosis.
Indeed, it has long been recognized that CMR may provide
valuable data for potential circuit localization (26, 27). VT
isthmuses are always located in conducting channels inside the scar
area, and most such channels contain isthmuses (28). However,
threshold dependence should be considered. i.e.: changing LGE
threshold will alter conduction channel metrics and model
prediction/simulation accuracy—underscoring the need for robust
quantification (29).

On the other hand, MDCT has higher spatial resolution, more
(30), better
boundaries and lipid infiltration (often crucial in late onset

consistency in findings delineates anatomical
arrhythmogenesis), and can (at least partially) assess fibrosis
presence based on tissue thickness. In fact, a study showed that all
ventricular tachycardia channels are located in MDCT-detected
isthmuses, whereas half of isthmuses contain such channels (25).
Following image acquisition, myocardial fiber orientation can be
introduced by means of a rule-based method, assuming rotation
from +60° in the endocardium to —60° in the epicardium (31).
Indeed,

electroanatomical mapping (3D-EAM) systems offers valuable

image  integration into  three-dimensional
information regarding scar characterization. Studies (32) have
reported improved outcomes (both acute—non-inducibility) and
at follow up. Notably, a recent multicenter study evaluating two
VT ablation workflows, an “imaging-aided” one—incorporating
preprocedural imaging to facilitate mapping by providing the
anatomical component of 3D-EAM—and an “imaging-guided”
one—whereby ablation targets were determined by preprocedural
imaging, and no additional invasive mapping was performed prior
to ablation—found no difference in VT-free survival between the
The

significantly faster. It is important to note that the study lacked a

two groups. “image-guided” approach was, however,
comparison group using a non-imaging-based ablation strategy (33).

Obviously, information regarding substrate properties (i.e.,
fibrosis presence) and conduction orientation and velocity can also
be obtained through invasive 3D-EAM (10). Recent introduction of
omnipolar potential-based mapping (34, 35) is expected to further
improve accuracy and spatial analysis of 3D-EAM. However, at
least when compared to classical bi- and unipolar mapping, models
based on assigned EP properties have been found on par with those
including input from 3D-EAM, obviating the need for invasive
assessment (36). Of note, the cardiac conduction system is usually
not modeled in current clinical VEP studies due to difficulties in
rendering accurate fiber course—although its electrophysiological
properties are known (10).

Once a complete model has been developed, virtual
programmed stimulation may be performed from as many sites
as desired; usually, however, 19 sites (corresponding to the 17
segments of the left ventricle per ASE, plus right ventricular
apex and base) are used (8, 9, 37). Extrastimuli are usually
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limited to 3 (i.e, up to an S4). Herein lies a distinct advantage
of VEP since arrhythmia induction is more likely if the
programmed stimulation is conducted from an adjacent site.
Furthermore, effects
overzealous manipulation are by definition absent. However, as

mechanical from catheter pressure/
stated previously, only a short post-stimulation time can be
simulated, not longer than a few seconds, and indeed, a study
found that should simulation be extended to 10seconds, there was
better match with clinical arrhythmias, with 41% of “sustained”
arrhythmias at 3 s terminating before the 10 s mark (16).

Regarding VEP as a means to guide ablative treatment of
malignant ventricular arrhythmias, it should be underscored once
more that its application is currently limited to clinical, not
inducible, arrhythmias. Ventricular tachycardia ablation is a taxing
procedure, associated with risks—overall complication rate
exceeding 13% and mortality rates ranging from 5% in older
cohorts to 1.8% in newer patient series (38-41). Both extensive
ablation and/or repeated arrhythmia induction termination can, in
the context of severely impaired contractility, lead to myocardial
stunning and cardiogenic shock—which is why pre-emptive
mechanical circulatory support is often required. Thus, removing
the need for extensive mapping and prolonged/extensive ablation is
desired, and may prove pivotal in rendering ablative treatment a
more appealing option.

A 12 lead ECG is required in order to fine-tune model properties
until the clinical arrhythmia is simulated (42). Consequently, the
mechanism can be visualized and target points highlighted on the
anatomical shell. These data can then be transferred to a mapping
system and guide energy application to the same sites, not
requiring tedious mapping and repeated arrhythmia induction/
termination. Crucially, this approach can not only guide ablation
of all patient-specific arrhythmias but can also be extended to
guide ablation of all additional potential arrhythmias in such a
patient. Moreover, lesions can be conceived as tissue rendered
inactive and introduction of actual, as opposed to proposed,
lesions into the model and reiteration of VARP can verify
that the patient is no longer inducible. Should this not be the case,
or a new arrhythmia occur in the modified substrate, further
lesion sets are proposed until VARP vyields no further
arrhythmogenesis (11).

Despite the

physiological principles, it should be highlighted that no

above approach being based on sound
universally accepted protocols or standards exist for vEP model
construction. Moreover, dynamic factors, such as autonomic
tone, electrolyte changes, active ischemia, and drug effects are
often not fully modelled, affecting the ability to predict
arrhythmogenesis, particularly ventricular arrhythmogenesis,
under stress or variable conditions which dynamically affect
tissue electrophysiological properties (conduction velocity and
refractoriness). In any case, such conditions are limitations for
invasive electrophysiological studies as well. In theory, the
bidomain model could account for electrolyte disorders (yet the
computing power necessary for its application is currently
unavailable) and data acquisition from myocardial tissue under
stress/ischemia/medication could assist in simulating such
conditions (but are currently unavailable as well).
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(Pre)clinical studies

Overall, clinical evidence for VvEP effectiveness is limited,
with head-to-head prospective comparisons with currently
established risk stratification and ventricular arrhythmia ablation
approaches absent. Rather, most studies focus on either a
retrospective, proof of concept, approach, or on small, case
series-like, prospective cohorts.

As early as 2009 (43) efforts had begun to acquire an
anatomically accurate whole heart model, initially focusing on ex
vivo cardiac preparations from small animals. A few years later
(44), vEP in the context of VARP started to be performed on in
vivo animal models of post-myocardial infarction tachycardia,
with encouraging results, compared to invasive programmed
stimulation—6/7 swine inducible on programmed stimulation
were also inducible on VEPR, while all suggested reentrant
circuits were similar to the actual ones, if only with reverse
propagation in some cases.

Important publications concerning potential for the translational
potential of the above came in 2016 with the group of Arevalo et al.
publishing on the use of VARP in post-infarction patients
throughout the ejection fraction (EF) spectrum (8, 9). In those
patients with an EF <35% (n=41) inducibility upon VARP was
significantly associated with the primary endpoint of appropriate
ICD activation or sudden cardiac death, with a fourfold hazard
ratio. Notably, performance of all other potential risk stratifiers,
including EF as well as newer parameters, such as scar volume, grey
zone volume, and left ventricular mass was disheartening overall
(hazard ratios close to 1 in all cases). Moreover, VARP significantly
outperformed invasive programmed stimulation in a subset of 32
patients who had had both conducted. Concerning those with an
EF > 35% (9), a much smaller cohort of 4 patients (mean EF 44%),
retrospectively assessed, yielded encouraging results for the VARP
approach, given that the 1 patient with known monomorphic
ventricular tachycardia was inducible on VARP and, additionally,
the proposed circuit coincided with the actual circuit delineated
during the ablation procedure. All other patients were not
inducible on VARP and had no clinical arrhythmic events—
obviously, larger studies in non-bearers of ICDs will significantly
benefit from the presence of an implantable loop recorder.

VAAT was initially tested in a 2018 study (11), which included
all steps, from preclinical, animal, application to retrospective, and
then prospective, human patient involvement. Interestingly,
proposed lesion volume was smaller than actual volume in the
prospective studies (both animal and human). Although in the
prospective cohort the ablated arrhythmia was induced, rather
than clinical, ablation was performed without any invasive
mapping, based on VAAT alone, and was associated with
postprocedural noninducibility in all cases. Another small study
found that, as stated previously, VAAT significantly decreases
ablation sites, up to fifteenfold, as well as ablated volume by a
factor of 2 (45). Novel techniques allow for VAAT utilization to
consider lipid infiltration of the myocardium, a known
proarrhythmic phenomenon (12). Notably, in this study a CT
(rather than CMR)-based model was constructed and, in a
cohort of 29 ischemic patients having already been submitted to
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ablation for monomorphic ventricular tachycardia, proposed
lesions not only were associated with significantly less ablated
myocardial volume (almost a quarter of what had been deemed
necessary in the ablation procedure) but also predicted
successful ablation sites, more so in cases of apical infarcts. Even
more encouragingly, in 6 cases that necessitated a redo
procedure, the proposed sets of ablation sites corresponded to
the successful ablation sites at the redo procedure.

Recently, integration of artificial intelligence (AI) approaches for
machine learning, extending from support vector machine to
convoluted neural networks, has been attempted (37). Indeed,
when compared to inducibility upon VARP, Al-augmented vEP
had and accuracy of almost 90% in predicting arrhythmogenesis
when provided with data from computational models—thus
significantly enhancing efficacy and reducing time needed for VARP.

Despite the encouraging results mentioned, currently no
universally accepted protocols or standards exist for vEP model
construction,

particularly clinical validation, or reporting,

strongly limiting reproducibility and broad clinical adoption.

Current and future perspectives

Most workflows described (except those dependent on invasively
procured anatomy and EP values) depend on image-derived tissue
characterization (core vs. border zone). Radiomics, extracting tissue
features invisible to the naked eye and supported by artificial
intelligence are currently poised for entering clinical practice for
cardiomyopathies (46-49). Radiomics can both quantify scar
heterogeneity/texture beyond simple visual cues and absolute
thresholds and subsequently inform model parameters (such as
regional conductivity) to refine risk and target predictions (50).
Thus, this approach will replace or augment fixed intensity cut-offs
with texture-based heterogeneity indices to set tissue classes and
conduction parameters more objectively. Leading to a more
accurate model and consequently simulation.

However, although radiomics can capture subtle patterns in
cardiac MRI, a major limitation lies in that these features are not
yet clearly linked to underlying tissue characteristics such as
fibrosis, scar, or inflammation—analogous to the reported black-
box phenomenon of artificial intelligence. As a result, their
biological meaning and mechanistic integration into simulations or
corridor mapping remain uncertain. Future work should focus on
validating radiomic signatures against histology and other imaging
modalities, so they can evolve from statistical predictors into
physiologically grounded tools for risk stratification and digital-
twin modelling. Nevertheless, a radiomics-informed digital twin for
VARP and VAAT remains a potential path forward.

Most studies have so far focused on ischemic cardiomyopathy,
likely due to the relative stability of substrate between acute
ischemic episodes, which renders ventricular arrhythmogenesis
more easily predictable. It thus stands to reason that in the
future attempts will be made to expand VARP and VAAT into
other cardiomyopathies as well (51).

A major limitation of both VEP components (VARP and VAAT)
currently lies in the available computational power, which often
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necessitates hours-long modelling. Quantum computing, despite a
lull after an exaggerated initial hype, continues to wield significant
advantages over classical computing due to the potential for
parallel calculations, excelling in modelling and optimization
problems, which are obviously indispensable for VARP and VAAT
(52). Moreover, the more accurate bidomain model, allowing for
simulation of additional phenomena, as well as longer simulated
time periods post arrhythmia induction will be feasible. In any
case, shortening the necessary time to produce a whole-heart
model capable of simulating arrhythmogenesis and arrhythmia
mechanism and critical sites will lead to a valid and viable
alternative to currently espoused risk stratification approaches.
Obviously, further incorporation of Al, along with advances in Al
itself, will further reduce necessary computing time and increase
accuracy of both VARP and VAAT. Obviously, as with human
training, if data inserted in the training cohort (acquired by CMR,
MDCT, invasive EP for modelling and actual successful ablation
sites for VAAT) are inaccurate or irrelevant, results will be poor, as
with recent developments in the PROFID project (53).

Another future perspective for VARP lies in determining whether
a cardiac resynchronization therapy (CRT)—defibrillator or CRT—
pacemaker device is indicated in a given patient, a dilemma which
often appears during clinical practice (54). It is known that CRT
per se exerts antiarrhythmic effects through multiple mechanisms
(55, 56) and, moreover, whole-heart simulation may allow for
assessing the effect of pacing through different/multiple sites (i.e.,
CRT) on global ventricular contractility (57). Subsequently, the
effect of a specific chosen pacing configuration on ventricular
arrhythmogenesis may be evaluated.

An initially fringe arrhythmic risk stratification approach that has
been steadily gaining traction and acceptance among the
electrophysiological community is the tiered two-step approach with
presence of noninvasive risk factors leading to invasive programmed
ventricular stimulation. This approach has been repeatedly validated
in post-infarction ischemic heart disease with EF >40% (58, 59) and
is currently being evaluated in dilated cardiomyopathy across the
whole EF spectrum (60). Obviously, substituting VARP for invasive
programmed stimulation would render this approach potentially
more accurate and certainly more patient-friendly. Certain non-
invasive risk factors, already shown to be associated with inducibility
upon invasive programmed ventricular stimulation (61), as well as
with patient outcomes (62), such as presence of late potentials on
signal-averaged electrocardiogram (denoting presence of slow
conduction areas in the myocardium) (63), could act as indicators
for the initiation of VARP and, if necessary, VAAT.

Should large clinical studies and trials establish VEP usefulness
as a tool for risk stratification and arrhythmia prediction, the next
logical step would be to actually act on its findings, in a strategy
similar to preventive ventricular tachycardia ablation (6) (i.e.,
targeting an induced rather than clinical arrhythmia), instead of
implanting a cardioverter-defibrillator. Pursuing this approach
will be favored by the ability to target all ventricular
tachycardias inducible for a given substrate, as well as by the
simplification and shortening of the ablation procedure itself,
leading to reduced complications and to (currently unproven)
higher short- and long-term success rates.
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Whole heart modeling, including components of conduction
system, could allow for VEP expansion to also include prediction
of bradyarrhythmia occurrence, invaluable in the assessment of
syncope (64). However, initially, simpler, more straightforward
cases may be analyzed, e.g., atrioventricular block and need for
permanent pacemaker implantation post-transcatheter aortic valve
replacement, or even supraventricular arrhythmia occurrence and
mechanism. Admittedly, no relevant data are currently available,
save a study having used the VEP approach to visualize and guide
ablation of the cavotricuspid isthmus for atrial flutter treatment.

Moreover, given the recently published ESC position
statement for stereotactic arrhythmia radioablation (STAR) (65)
is it reasonable to assume that it could be coupled with vEP,
augmented with quantum computing, leading to SCD risk
assessment and ventricular arrhythmia ablation (clinical and/or
in silico inducible) transforming into something akin to a
regularly repeatable outpatient procedure in the foreseeable future.

Finally, it is noteworthy that different editions of the software
necessary to run whole heart simulations based on imaging and
electrophysiological data (such as CARP, life*, and Chaste) are
currently available online as freeware (66-68); their respective sites
being: https://opencarp.org/, https://lifex.gitlab.io/, and https://
chaste.github.io/. Others are available in modular format, e.g..:
https://github.com/vildenst/3D-heart-models. Thus, research groups
focusing on the field of VEP could design studies and clinical trials
without the daunting task of developing ex nihilo models,
benefitting from the work of previous researchers.

However, one should not expect to witness the full
of VvEP in
electrophysiology labs in the near future. Promising results do exist,

implementation of the complete spectrum
but small cohorts, retrospective design, computational demands,
and incomplete physiology simulation are the main barriers before
routine clinical use of virtual electrophysiology in the treatment of

ventricular arrhythmias.

Conclusions

In the near future, virtual electrophysiology and its components
(VARP and VAAT) are poised to revolutionize our approach to
sudden cardiac death risk stratification and ventricular arrhythmia
primary prevention and treatment (Figure 1). Noninvasively
extracting data concerning arrhythmogenic potential of a ventricle,
as well as guiding ablation procedure into consuming a fraction of
the time and applying a fraction of the energy it would previously
have been necessary will make these approaches potentially more
accurate, and certainly patient-friendly and safer. There are
undeniable and evident current limitations of the VEP approach in
terms of simulation accuracy (model construction and dynamic
condition simulation), computational power and clinical validation.
these should not be
disadvantages but rather diseases of a field in its infancy, with the

However, considered irremediable
potential for significant improvement. Large, prospective clinical
studies are sine qua non to firmly establish the validity of the vEP
approach, however, should Al-based and quantum computing-

based augmentations become available, one might envision, in the
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Schematic representation of VEP. Possible augmentations (red font) and potential future directions (green arrows) are also included. Images
reproduced from: "Ai Generated Quantum Computer” by TheDigitalArtist, licensed under Content License; "Ai Generated Mathematics” by
SamOcean, licensed under Content License; "Heart Anatomy” by BlenderTimer, licensed under Content License.

ICD candidates selection

not-too-distant future, sudden cardiac death becoming a rare, if

tragic, occurrence.
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