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Background: Stress-induced hyperglycemia (SHG) represents a significant
metabolic complication in non-diabetic cardiac surgery older adult patients,
with substantial implications for postoperative outcomes. Despite its clinical
importance, reliable predictive tools remain scarce. This study systematically
compared the performance of logistic regression 5s. advanced machine
learning algorithms for SHG risk prediction in this vulnerable population.
Patients and Methods: We conducted a retrospective cohort analysis of 600
patients (>65 years) undergoing cardiac surgery at a tertiary medical center
(January 2021-May 2025). Six clinically relevant perioperative variables were
incorporated into five predictive models: logistic regression, Random Forest
(RF), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and
Extreme Gradient Boosting (XGBoost). Model performance was rigorously
evaluated using AUC-ROC with 95% confidence intervals, sensitivity,
specificity, positive (PPV) and negative predictive values (NPV), and precision.
Results: The incidence of SHG in this cohort was 70.5%. Comparative analysis
revealed logistic regression as the top-performing model (AUC 0.944, 95% ClI
0.923-0.966), surpassing other algorithms: GBM (0.923, 0.902-0.952),
10GBoost (0.904, 0.890-0.941), AdaBoost (0.916, 0.871-0.936), and RF (0.877,
0.866-0.932). Moreover, the logistic model achieved optimal performance in
sensitivity (94.5%), specificity (93.4%), PPV (97.7%), and NPV (96.8%).

Conclusion: In contrast to more complex machine learning approaches, logistic
regression demonstrated superior predictive accuracy for SHG in non-diabetic
cardiac surgery older adult patients. Its exceptional performance metrics and
clinical interpretability support its practical utility as an effective decision-
support tool for perioperative risk stratification and management.
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1 Introduction

Stress-induced hyperglycemia (SIH) following cardiac surgery
presents a formidable clinical challenge, with reported incidence
rates as high as 27.9% in cardiothoracic populations (1).
Increasing evidence suggests that SIH is not merely a transient
metabolic disturbance but a strong predictor of both acute
shock,
arrhythmias, and cerebrovascular events (2, 3)—and long-term

complications—such as cardiogenic life-threatening
mortality in patients without diabetes (4, 5). The stress
(SHR) has

conventional

ratio demonstrated
than

predicting adverse cardiovascular outcomes (4), with the first

hyperglycemia superior

prognostic  value glucose metrics for
48-h postoperative period representing a critical window for
While
protocols recommend maintaining glucose
140-180 mg/dL (8-12), these reactive measures fail to address

the pressing need for proactive risk identification, highlighting a

glycemic monitoring (6, 7). current management

levels within

key limitation and reinforcing the importance of predictive
modeling in perioperative care.

Existing approaches to SIH prediction face several critical
limitations that constrain their clinical utility. First, most models
disproportionately focus on diabetic populations, overlooking
the unique pathophysiology of non-diabetic individuals. Second,
they often fail to integrate key metabolic-inflammatory markers,
(e.g., C-reactive protein [CRP] and white blood cells [WBC],
which significantly influence hyperglycemic responses (13, 14).
Third, conventional statistical models lack the sophistication to
capture complex clinical patterns, while machine learning
alternatives are hampered by poor interpretability due to their
reliance on statistically derived rather than clinically meaningful
features (15). This “black box” problem presents particular
challenges in surgical settings where transparent, actionable
are essential. The

predictions absence of comprehensive

comparisons between traditional and advanced predictive
methods further compounds these limitations.

Our research addresses these gaps through a systematic
evaluation of logistic regression vs. contemporary machine
learning algorithms [e.g., Extreme Gradient Boosting Machine
[eGBM], Extreme Gradient Boosting [XGBoost], and Random
Forest [RF]] for SIH prediction. This study employs an
innovative approach that integrates three key elements: using
clinically relevant variables with established pathophysiological
significance; performing rigorous algorithmic comparison to
optimize both accuracy [area under the curve (AUC) > 0.94] and
clinical utility; and demonstrating that logistic regression
provides a superior balance between performance and
interpretability. The resulting model enables early identification
of high-risk patients while maintaining clinical transparency,
which is a crucial advantage over existing alternatives (16). By
bridging the gap between computational sophistication and
clinical applicability, this work

represents a significant

advancement in  perioperative  risk  prediction and

patient management.
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2 Material and methods
2.1 Definition of stress hyperglycemia

SHG refers to a transient increase in blood glucose levels in
individuals without a prior history of diabetes, occurring under
conditions of severe stress such as major trauma, critical
infections, or cardiovascular events. Prior to the stressor, the
individual’s blood glucose is completely normal; however,
during the stress response, blood glucose levels significantly
exceed the normal range. Once the stressor is removed, blood
glucose levels typically return to normal. Currently, there is no
standardized diagnostic criterion for stress hyperglycemia in
China. The American Diabetes Association (ADA) defines the
diagnostic criteria for SHG (17), which include fasting blood
glucose levels >7.0 mmol/L on two or more occasions, or
random blood glucose levels >11.1 mmol/L, in non-diabetic
patients during periods of acute stress. In this study, to ensure
consistency, all postoperative blood glucose measurements
were obtained under fasting conditions in the morning
according to the hospital’s standardized testing protocol.
Measurements were taken before meals and outside acute
events to minimize influences on

stress confounding

glucose levels.

2.2 Measurement methods of stress
hyperglycemia

The blood glucose levels were monitored using the Shengjia
Steady Hao model rapid glucose meter to measure capillary
blood glucose. According to the blood glucose monitoring
guidelines reported in the literature (18, 19), when the
patient’s blood glucose concentration is 8.0 mmol/L or above, it
is monitored every 0.5-1.0h. When
concentration is below 8.0 mmol/L, it is monitored every 2 h.

Once the blood glucose results stabilize for 4 h, monitoring is

the blood glucose

performed every 4 h. Postoperatively, when blood glucose levels
range from 8.0 mmol/L to 12.0 mmol/L, the glucose infusion
rate is adjusted accordingly. If blood glucose levels exceed
12.0 mmol/L, insulin therapy is administered via intravenous
micro-pump injection of recombinant insulin with a
concentration ratio of 1:5-1:1. The initial dosage is 0.05 U/(kg-h)
to 0.10 U/(kgh), and the micro-pump speed is adjusted based
on the blood glucose levels. The maximum insulin infusion rate

is 0.5 U/(kg-h) (20).

2.3 Study endpoints

The occurrence of SHG after cardiac surgery was used as the
outcome variable.
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2.4 Setting

The 423 patients from January 2021 to 2024 May constituted
the modeling group for internal validation, and the 177 patients
from June 2024 to May 2025 constituted the validation group
for external validation.

2.5 Study population

A retrospective collection of 600 patients treated at the First
Affiliated Hospital of Bengbu Medical University between
January 2021 to May 2025 was included in the study.

2.6 Inclusion and exclusion criteria

2.6.1 Inclusion criteria

The study population comprised consecutive adult patients (>18
years) who underwent elective or emergency cardiac surgical
procedures at our tertiary referral center. Eligible surgical
interventions included isolated coronary artery bypass grafting
(CABG), valve replacement/repair procedures, and combined major
cardiac vascular operations. Strict diabetes exclusion criteria were
applied, requiring: (i) absence of documented diabetes mellitus in
medical records or by patient self-report, (ii) confirmation of
normoglycemic status per ADA standards (preoperative fasting
plasma glucose <7.0 mmol/L and HbA1lc<6.5%). All enrolled
participants either provided written informed consent (prospective
cohort) or had comprehensively documented medical records with
institutional review board approval (retrospective cohort), with
mandatory availability of serial postoperative glucose measurements
(minimum 48 h monitoring period) for reliable assessment of
stress-induced glycemic responses.

2.6.2 Exclusion criteria

We applied rigorous exclusion parameters to ensure cohort
homogeneity and data quality: (i) any preoperative diagnosis of
diabetes mellitus or current antihyperglycemic therapy use; (ii)
evidence of significant hepatic dysfunction (Child-Pugh class
C cirrhosis) or end-stage renal disease (¢éGFR <30 mL/min/1.73 m?);
(ili) preoperative systemic inflammatory conditions (sepsis, septic
shock, or severe active infection); (iv) known secondary causes of
glucose metabolism disorders (including paraneoplastic syndromes
and endocrine disorders such as Cushing’s syndrome or
uncontrolled thyroid dysfunction); (v) postoperative mortality or
study attrition within the initial 48-hour metabolic monitoring
window; and (vi) inadequate glycemic monitoring (defined as either
missing glucose values or insufficient measurement frequency to

permit reliable assessment of glycemic variability).

2.7 Ethics statements

This study follows the principles of the Declaration of Helsinki
and has been approved by the Ethics Committee of the First
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Affiliated Hospital of Bengbu Medical University [approval number
(2024):KY012]. The research subjects understand the research
purpose and collect data after obtaining informed consent. The
research subjects may withdraw from the study at any time. The
medical records of the research subjects are digitally encoded,
stored anonymously and securely, and are only used for this study.

2.8 Model development and training
strategy

In this study, five models—logistic regression (GLM), random
forest (RF), gradient boosting machine (GBM), XGBoost, and
AdaBoost—were constructed for comparison. To ensure fair
comparison across models, all algorithms were trained using default
parameter configurations without systematic hyperparameter
tuning, except for the GBM model, in which the optimal number of
trees was selected via fivefold cross-validation. This strategy
minimized human-induced optimization bias, ensured consistent
evaluation conditions, and maintained the stability and

reproducibility of the results.

2.9 Model construction plan

In this study, we conducted a comparative evaluation of five
machine learning algorithms—logistic regression (GLM), random
forest (RF), gradient boosting machine (GBM), XGBoost, and
AdaBoost. To ensure an unbiased comparison, all models were
trained using their default parameter settings without systematic
hyperparameter tuning, thereby minimizing the influence of
manual optimization and enabling an objective assessment under
consistent experimental conditions. A logistic regression model was
employed to predict the outcome of stress hyperglycaemia. Patients
were randomly divided into training and validation datasets at a 7:3
ratio. Variables showing significance in univariate analyses were
included in the multivariable model, with forward and backward
(21-24).
Based on the resulting regression coefficients, an individualised

stepwise selection applied for variable refinement

nomogram was constructed to predict stress hyperglycaemia
during major surgery. The model’s performance was evaluated in
the validation cohort using the area under the receiver operating
characteristic curve (AUC). The remaining machine learning
models—RF, GBM, AdaBoost, and XGBoost—were similarly
developed to enable a

comprehensive  comparison  of

predictive performance.

2.10 Data collection

The study utilized comprehensive clinical data extracted from the
hospital’s electronic medical records system. To ensure clinical
relevance and predictive validity, we systematically selected
preoperative and intraoperative variables with established or plausible
associations with stress-induced hyperglycemia. The collected

parameters encompassed: (1) demographic and baseline clinical
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characteristics including age, sex, BMI, comorbidities (hypertension,
prior cardiac surgery, cardiovascular disease, chronic obstructive
pulmonary disease, chronic kidney disease, and cerebrovascular
disease), ASA physical status classification, valvular heart disease,
substance use history (smoking and alcohol consumption),
hyperlipidemia, congestive heart failure, anemia, cardiogenic shock,
recent myocardial infarction, aortic dissection, pulmonary disease,
and advanced cardiac dysfunction (NYHA class >3); (2) preoperative
medication exposure, particularly glucocorticoid administration
(dexamethasone or methylprednisolone); (3) laboratory parameters
including leukocyte count, serum uric acid, CRP, and renal function
markers (with creatinine >200 umol/L defined as clinically significant
elevation); and (4) intraoperative variables consisting of surgical
procedure type, operative duration, estimated blood loss, transfusion

requirements (encompassing all blood product components),
vasopressor use (norepinephrine), combined valve/CABG
procedures, aortic cross-clamp time >110min, reoperation

status, prolonged cardiopulmonary bypass (>3h), and CPB-
associated hyperoxia.

2.11 Statistical and predictive modeling
methodology

Statistical analyses were performed using a two-stage analytical
framework. Initial univariate screening of potential risk factors was
conducted in SPSS (v27.0), with statistically significant variables
(p<0.05) subsequently incorporated into multivariate logistic
regression models after assessing multicollinearity through
variance inflation factors (VIF <5 considered acceptable). For
predictive modeling, the dataset underwent stratified random
partitioning (70:30 training:validation ratio) to preserve outcome
distribution. Five distinct algorithms—logistic regression, RF,
GBM, AdaBoost, and XGBoost—were implemented in R (v4.2.2)
using standardized preprocessing pipelines. Model performance
was rigorously evaluated through: (1) internal 5-fold cross-
validation within the training cohort, and (2) external validation
using the hold-out set, with comprehensive metrics including
AUC-ROC, sensitivity, specificity, PPV/NPV, and precision.
Ensemble methods additionally underwent feature importance
analysis to quantify predictor contributions, ensuring both

predictive accuracy and clinical interpretability.

2.12 Data division and justification for
selected predictive models in clinical
settings

Total sample size: 600 non-diabetic patients undergoing
cardiac surgery. Data partitioning: The dataset was randomly
divided into a training (modeling) set (n =423, 70%) and an
independent validation set (n =177, 30%).

Cross-validation: Within the training set only, five-fold cross-
validation was used to train the models and tune internal
parameters (e.g., number of trees in the GBM).The validation
set remained completely independent and was not used during
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model training or cross-validation. A schematic flowchart of the
data splitting and validation procedure has been added to the
revised manuscript to illustrate this process more clearly.

To ensure methodological rigor, we used stratified random
sampling to split the dataset into training (70%) and validation
(30%) sets (see Figure 1). This strategy maintained consistent
distributions of both hyperglycemic (SIH) and normoglycemic
(AH) cases across partitions, thereby minimizing sampling bias
and preserving the clinical prevalence of the target condition.
Within the training cohort, we employed k-fold cross-validation
to enhance model generalizability and prevent overfitting. For
predictive modeling, we strategically selected five established
algorithms representing distinct methodological approaches:
logistic regression provided a clinically interpretable parametric
baseline, while four advanced ensemble methods—RF, GBM,
AdaBoost, and XGBoost—were implemented to capture complex
nonlinear relationships and interaction effects while maintaining
interpretability through feature importance quantification. This
comprehensive analytical framework enabled robust comparison
of traditional statistical modeling with contemporary machine
learning techniques, balancing predictive performance with
clinical applicability.

2.13 Validation strategies

To ensure comprehensive evaluation of model performance, we
implemented a tripartite validation strategy incorporating both
internal and external validation methodologies. First, k-fold cross-
validation was systematically employed, wherein the dataset was
partitioned into k mutually exclusive subsets, with each subset
serving sequentially as the validation set while the remaining k-1
subsets were used for model training. This approach effectively
minimizes random sampling bias while providing robust estimates
of model generalizability. Second, external validation was
conducted using a temporally and geographically distinct patient
real-world  clinical
Third,

validation was performed through intensive resampling techniques,

cohort, offering critical assessment of

applicability beyond the derivation dataset. internal
including both k-fold and leave-one-out cross-validation, enabling
rigorous evaluation of model stability and reliability within the
development cohort. This multi-dimensional validation framework
provides complementary evidence of model performance across
different clinical and methodological contexts.

2.14 Data preprocessing and model
evaluation protocols

To ensure methodological rigor and reproducibility, we
implemented a comprehensive data preprocessing and analytical
pipeline comprising six key components: (1) missing data were
addressed through multiple imputation by chained equations
(MICE) to preserve dataset completeness while minimizing bias;
(2) all continuous variables underwent z-score normalization to
standardize feature scales, particularly critical for distance-sensitive
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model performance (AUC,
ROC, calibration curve, etc.)

FIGURE 1
Data splitting and validation flowchart.

algorithms (SVM, KNN) and linear models; (3) categorical variables
were uniformly transformed using one-hot encoding to maintain
consistency across model comparisons; (4) hyperparameter
optimization was conducted via Bayesian optimization with
Gaussian processes, enabling efficient identification of optimal
parameter configurations for each algorithm; (5) model validation
employed a stratified 5-fold cross-validation framework with
maintained class distributions to robustly assess generalizability
while mitigating overfitting; and (6) performance evaluation
incorporated multiple complementary metrics including AUC-
ROC, sensitivity, specificity, and precision-recall analysis to provide
comprehensive assessment of model discrimination and calibration
characteristics. This standardized protocol ensured consistent,
reproducible model development while accounting for both

predictive performance and clinical applicability.

2.15 Confounding control and adjustment

To minimize confounding in the SHG prediction model, we
implemented a systematic approach encompassing strict cohort
selection (non-diabetic adults >18 years undergoing cardiac
surgery), prospective collection of key clinical and surgical
variables (demographics, comorbidities, procedural details, and
perioperative management), and rigorous analytical methods,
including multivariable logistic regression with spline terms for
non-linear effects, collinearity assessment, multiple imputation
for missing data,

and comprehensive sensitivity analyses

Frontiers in Cardiovascular Medicine

(stratified models and penalized regression), thereby ensuring
robust and clinically valid risk prediction.

2.16 Expected applications of the
nomogram

This clinically validated nomogram provides four key utilities for
perioperative management: (1) individualized risk quantification
through weighted integration of demographic, preoperative,
surgical, and postoperative parameters; (2) objective risk
stratification (low/intermediate/high) to guide tiered intervention
strategies—from intensive glucose monitoring/early insulin therapy
for high-risk cases to standard surveillance for low-risk patients;
(3) data-driven decision support that supplements clinical
judgment for interventions, such as corticosteroid-associated
glycemic control; and (4) optimized resource allocation
by matching monitoring intensity and nursing care. The
multidimensional scoring system of the tool balances precision

with practicality in routine cardiac surgical practice.

2.17 Clinical application of the nomogram

The nomogram is implemented through a structured clinical

workflow beginning with data acquisition, encompassing
demographic characteristics (e.g., age, sex, BMI), preoperative

comorbidities (e.g., hypertension, prior cardiac surgery), surgical
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variables (e.g., type/duration, blood

postoperative management (e.g., corticosteroid administration).

procedure loss), and
Subsequently, risk quantification translates input variables into
weighted scores via the algorithmic framework of the nomogram,
with differential weighting reflecting each parameter’s predictive
contribution (e.g., corticosteroids >age). The aggregated scores are
then converted into probabilistic estimates through validated
calibration during risk projection (e.g., 0.25=25% SHG risk).
Finally, risk-stratified management guides clinical actions: high-risk
patients (>50% probability) receive intensive monitoring and
prophylactic insulin protocols, while low-risk patients undergo
standard This
standardized yet adaptable protocol ensures reproducible risk

surveillance without additional interventions.
assessment while preserving clinician discretion in therapeutic
decision-making.

2.18 Missing data handling

All six predictive variables were first examined for
missingness, and all were found to be complete (missing
count = 0; missing rate = 0%). Consequently, multiple imputation
by chained equations (MICE) was not applied. For studies with
missing values, MICE can be used to impute variables under the
assumption of missing at random, employing predictive mean
matching for continuous variables and logistic regression for
categorical variables. Typically, five imputed datasets are
generated and analyzed separately, with final estimates pooled
using Rubin’s rules to account for variability between
imputations. In the present study, logistic regression and all
machine learning models (RF, GBM, XGBoost, AdaBoost) were
trained and validated on the complete dataset, and all
performance metrics, including ROC, AUC, and calibration,
were calculated based on this dataset (25).

Assessment of model calibration using bootstrap resampling

3 Results
3.1 Patient characteristics

This retrospective cohort study evaluated 600 consecutive adult
patients (>18 years) undergoing cardiac surgery at the First
Affiliated Hospital of Bengbu Medical University between January
2021 and May 2025. Following rigorous application of inclusion/
exclusion criteria with complete case analysis (no exclusions for
missing data), the cohort was stratified into model development
(n=423) and validation (n=177) groups. Postoperative stress-
induced hyperglycemia (P-SIH) within 48-72h occurred in 423
patients (70.5%), consistent with established metabolic stress
responses following cardiac procedures. Analysis of P-SIH cases
(n=303) revealed male predominance (54.8% vs. 45.2% female)
with primary surgical indications being valve procedures (49.2%)
and coronary artery bypass grafting (39.9%). Key risk factors
included advanced age (>65 years, 41.9%), obesity (BMI >28 kg/m”,
15.2%), and prevalent comorbidities, such as hypertension (53.5%),
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hyperlipidemia (41.3%), and congestive heart failure (22.4%).
Notable metabolic markers included elevated uric acid (73.9%) and
anemia (70.3%). Significant surgical factors comprised prolonged
cardiopulmonary bypass (>3 h, 67%), extended aortic cross-clamp
time (>90 min, 56.8%), and lengthy procedures (>5h, 32.7%).
Pharmacological contributors included norepinephrine
administration (61.7%) and preoperative glucocorticoid use
(79.5%), with high-risk patients (ASA >3: 6.3%; NYHA class >3:
32%)

perioperative characteristics are detailed in Table 1.

demonstrating particular susceptibility. The complete

3.2 Predictive nomogram for postoperative
stress hyperglycemia: logistic regression vs.
machine learning

A training dataset comprising 423 patients was used to
develop the predictive model (Figure 2). The results of the
univariate logistic regression analysis are presented in Table 2.
Variables that were statistically significant in the univariate
analysis were included in the multivariate logistic regression
model. The independent risk factors for SIH identified in this
analysis included liver dysfunction, high uric acid, CRP >5 mg,
surgical time >5 h, norepinephrine use, and CPB > 3H.

Based on the logistic regression analysis results, a risk
prediction model for the occurrence of SHG in patients without
diabetes
incorporating significant factors. The logistic regression equation
is as follows: —4.504 + (1.35 x Liver dysfunction) + (2.842 x High
uric  acid) + (2.016 x CRP >5 mg) + (—1.682 x Surgical ~ time
>5H) + (2.486 x Norepinephrine use) + (2.506 x CPB >3H).
A visual nomogram was developed, with each factor assigned a

undergoing cardiac surgery was constructed by

specific score. The total score—the sum of all individual scores
—corresponds to the probability of SHG occurrence in non-
diabetic cardiac surgery patients (Figure 1).

The predictive model was evaluated using 177 patients from
the validation dataset, and demonstrated strong performance,
with AUC of 0.944(95% CI: 0.923-0.966), sensitivity of 0.945,
and specificity of 0.943. Six key variables were identified as the
most relevant for predicting SIH (Table 3).

3.3 Development of different machine
learning models for SHG

Five distinct machine learning algorithms were implemented
to predict SHG risk in non-diabetic cardiac surgery patients:
logistic regression, GBM, XGBoost, and AdaBoost (Figure 3).
Model performance was rigorously evaluated through multiple
metrics, including AUC-ROC, sensitivity, specificity, PPV, and
NPV. Comparative analysis revealed that logistic regression
exhibiting  both
discriminative ability (highest AUC) and the most balanced

achieved optimal performance, superior

sensitivity-specificity ~ profile. ~ Consequently, the logistic
regression model was selected for external validation and

subsequent development of the clinical nomogram.
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TABLE 1 Patient characteristics and baseline variables.

Variables, n (%) Category AH (n =120), n (%) SIH (n =303), n (%)

Sex Male 72 (60.0) 166 (54.8) 0.38
Female 48 (40.0) 137 (45.2)

Age >65 years No 83 (69.2) 176 (58.1) 0.04
Yes 37 (30.8) 127 (41.9)

Valvular heart disease No 30 (25.0) 141 (46.5) P <0.0001
Yes 90 (75.0) 162 (53.5)

Heart valve surgery No 37 (30.8) 154 (50.8) P<0.0001
Yes 83 (69.2) 149 (49.2)

Cardiac coronary artery bypass grafting No 90 (75.0) 182 (60.1) 0.004
Yes 30 (25.0) 121 (39.9)

Great vascular surgery of the heart No 116 (96.7) 293 (96.7) 0.986
Yes 4 (3.3) 10 (3.3)

Two kinds of operations No 112 (93.3) 281 (92.7) 0.83
Yes 8 (6.7) 22 (7.3)

Three kinds of operations No 118 (98.3) 301 (99.3) 0.335
Yes 2 (1.7) 2(0.7)

BMI > 28 Kg/m’n No 108 (90.0) 257 (84.8) 0.163
Yes 12 (10.0) 46 (15.2)

Smoking history No 26 (21.7) 67 (22.1) 0.92
Yes 94 (78.3) 236 (77.9)

Drinking history No 95 (79.2) 253 (83.5) 0.293
Yes 25 (20.8) 50 (16.5)

History of cardiac surgery No 109 (90.8) 271 (89.4) 0.669
Yes 11 (9.2) 32 (10.6)

Dialysis history No 115 (95.8) 301 (99.3) 0.011
Yes 5(4.2) 2 (0.7)

Hyperlipidaemia No 55 (45.8) 178 (58.7) 0.016
Yes 65 (54.2) 125 (41.3)

Renal failure No 115 (95.8) 300 (99.0) 0.031
Yes 5 (4.2) 3 (1.0)

Abnormal liver function No 115 (95.8) 259 (85.5) 0.003
Yes 5 (4.2) 44 (14.5)

Congestive heart failure No 88 (73.3) 235 (77.6) 0.357
Yes 32 (26.7) 68 (22.4)

Anaemia No 32 (26.7) 90 (29.7) 0.534
Yes 88 (73.3) 213 (70.3)

Hypertension No 32 (26.7) 141 (46.5) P <0.0001
Yes 88 (73.3) 162 (53.5)

History of cardiogenic shock No 117 (97.5) 299 (98.7) 0.663
Yes 3(2.5) 4(13)

Myocardial infarction No 103 (85.8) 272 (89.8) 0.25
Yes 17 (14.2) 31 (10.2)

Leucocytosis No 99 (82.5) 249 (82.2) 0.938
Yes 21 (17.5) 54 (17.8)

Increased neutrophil numbers No 99 (81.7) 241 (79.5) 0.489
Yes 21 (18.3) 62 (20.5)

Elevated uric acid No 107 (89.2) 79 (26.1) P<0.0001
Yes 13 (10.8) 224 (73.9)

C-reactive protein increased >5 mg No 82 (68.3) 113 (37.3) P <0.0001
Yes 38 (31.7) 190 (62.7)

Creatinine increased >200 pmol No 113 (94.2) 281 (92.7) 0.6
Yes 7 (5.8) 22 (7.3)

Cardiac function grade >3 No 77 (64.2) 206 (68.0) 0.452
Yes 43 (35.8) 97 (32.0)

ASA score >3 No 103 (85.8) 284 (93.7) 0.009
Yes 17 (14.2) 19 (6.3)

Valve combined heart bypass surgery No 112 (93.3) 292 (96.4) 0.174
Yes 8 (6.7) 11 (3.6)

Aortic dissection No 114 (95.0) 287 (94.7) 1.00
Yes 6 (5.0) 16 (5.3)

(Continued)
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TABLE 1 Continued
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Variables, n (%) Category AH (n =120), n (%) SIH (n =303), n (%) P-value

Intraoperative blood loss >1,200ml No 114 (95.0) 291 (96.0) 0.633
Yes 6 (5.0) 12 (4.0)

Aortic occlusion time >90 min No 85 (70.8) 131 (43.2) <0.0001
Yes 35 (29.2) 172 (56.8)

Blood transfusion No 88 (73.3) 170 (56.1) 0.001
Yes 32 (26.7) 133 (43.9)

Operation time >5H No 42 (35.0) 204 (67.3) P <0.0001
Yes 78 (65.0) 99 (32.7)

Second operation No 116 (96.7) 300 (99.0) P<0.0001
Yes 4(3.3) 3 (1.0)

Intraoperative norepinephrine administration No 86 (71.7) 116 (38.3) P<0.0001
Yes 34 (28.3) 187 (61.7)

Preoperative glucocorticoid administration No 105 (87.5) 241 (79.5) 0.56
Yes 15 (12.5) 62 (20.5)

Cardiopulmonary bypass time >3H No 91 (75.8) 100 (33.0) P<0.0001
Yes 29 (24.2) 203 (67.0)

CPB hyperoxic state No 62 (51.7) 207 (68.3) 0.001
Yes 58 (48.3) 96 (31.7)

Pulmonary disease No 110 (91.7) 280 (92.4) 0.797
Yes 10 (8.3) 23 (8.6%)

AH, absence of hyperglycaemia; STH, stress-induced hyperglycaemia.

(1) History of Cardiac Surgery: The patient had a prior history of cardiac surgery before this hospitalization. (2) The percentages primarily represent the proportion of patients included for
each influencing factor related to postoperative SHG in non-diabetic patients undergoing cardiac surgery, expressed as a percentage of the total number in either the modeling or validation
group. (3) All extracted influencing factors specifically refer to patients who developed SHG, indicating a potential association between these factors and the postoperative metabolic stress
response in non-diabetic cardiac surgery patients. (4) Patients aged >18 years were eligible for inclusion to ensure enrollment of an adult cohort. Within this population, multivariate analysis
identified age >65 years as an independent predictor of postoperative STH in non-diabetic patients undergoing cardiac surgery.

0 10 20 30 40 50 60 70 80 90 100
Points . : . . : . : . : . .
1
Liver dysfunction " !
0 0
High uric acid —
1 1
CRP>5mg " !
0 0
Surgical time>5H " .
1 1
Norepinephrine use r 4
0 1
CPB>3H . X
0
TOta' Points T g T * : ! B T T T L T T T L4 T T b3 | 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260 28
Rlsk r T T T 1
0.5 0.6 0.7 0.8 0.9
FIGURE 2
Nomogram of logistic regression model.

3.4 Calibration performance of the
predictive model

The calibration plot assessed the accuracy of predicted

probabilities from the logistic regression model (Figure 4). The
“Apparent” curve represents the model’s performance on the
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training data, while the “Bias-corrected” curve, derived via
bootstrap (B=100
overfitting. Both curves closely align with the ideal diagonal,

resampling repetitions), adjusts for
indicating excellent agreement between predicted probabilities
and observed outcomes. The minimal mean absolute error of

0.029 further confirms high calibration accuracy, suggesting that
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TABLE 2 Multivariate analysis of non-diabetic stress hyperglycaemia after cardiac surgery.

Variable p (O] Widy? 95% CI SE P-value
Liver dysfunction 1.35 3.86 17.8 2.06, 7.23 0.32 <0.001
High uric acid 2.842 17.149 16.622 4.374-67.233 0.697 <0.001
CRP >5mg 2.016 7.508 9.936 2.144-26.300 0.64 0.002
Surgical time >5H —1.682 0.186 7.422 0.055-0.624 0.617 <0.001
Norepinephrine use 2.486 12.008 15.344 3.462-41.648 15.344 <0.001
CPB>3H 2.506 12.252 0.712 3.032-49.499 0.712 <0.001

CI, confidence interval; CPB, cardiopulmonary bypass; CRP, C-reactive protein; H, hours; OR, odds ratio; SE, standard error; Wldy? Wald chi-squared statistic.

TABLE 3 Comparison of model performance characterised by AUC, sensitivity, specificity PPV and NPV.
Model approach AUC Sensitivity Specificity PPV NPV F1 score
Glm 0.944 (0.923-0.966) 0.945 0.943 0.977 0.968 0.961
RF 0.877 (0.866-0.932) 0.861 0.900 0.956 0.720 0.906
GBM 0.923 (0.902-0.952) 0.934 0.716 0.892 0.811 0.912
Adaboost 0.916 (0.871-0.936) 0.881 0.850 0.936 0.739 0.908
XGB 0.904 (0.890-0.941) 0.924 0.658 0.872 0.774 0.898

AUG, area under the curve; PPV, positive predictive value; NPV, negative predictive value; RF, random forest; GBM, gradient boosting machine; Ada, adaptive boosting.
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FIGURE 3
Comparison of the calibration plot for stress-induced hyperglycemia.

Predicted SHG (SHG = yes)

T T T
0.6 0.8 1.0

Mean absolute error=0.029 n=100

the
clinical application.

model provides reliable probability estimates for

The calibration curve revealed that the bias-corrected line was

closely aligned with both the apparent and ideal reference lines,
indicating good agreement between predicted and observed
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probabilities. This suggests that the model is well-calibrated and not
significantly overfitted to the training data. Calibration plots are used
to evaluate the accuracy of predicted probabilities in a risk
prediction model. The ideal line represents perfect prediction, where
the predicted risk exactly matches the observed outcome. The
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apparent line reflects the model’s performance on the training data,
while the bias-corrected line, obtained through bootstrapping,
adjusts for potential overfitting and provides a more reliable estimate
of the model’s calibration in future samples.

o |
Q|
o
> © |
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‘B
C
O <
N s
e Logistic auc = 0.944
& e RF auc =0.877
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FIGURE 4

Comparison of ROCs and AUCs for prediction of SHG by the various
machine learning models.

10.3389/fcvm.2025.1699809

3.5 Model performance comparison and
validation in non-diabetic cardiac surgery
patients

The predictive performance of five models was compared
using multiple evaluation metrics, including AUC, sensitivity,
specificity, PPV, and NPV. Logistic regression demonstrated the
highest discriminative ability with an AUC of 0.944, with
favorable sensitivity (0.945), specificity (0.943), PPV (0.977), and
NPV (0.968),
learning models. Accordingly, logistic regression was selected as

outperforming the more complex machine

the optimal model for further validation. When applied to the
independent validation cohort, the model achieved an AUC of
0.895, thereby confirming its robustness, generalizability, and
clinical applicability for identifying non-diabetic cardiac surgery
patients at high risk for SIH.

3.6 Decision curve analysis of a nomogram
for postoperative stress hyperglycemia

Figure 5 presents the decision curve analysis (DCA), which
evaluated the clinical utility of the nomogram for predicting STH
in non-diabetic cardiac surgery patients. The analysis framework
incorporates: (1) threshold probability (x-axis) representing the
minimum predicted risk at which clinical intervention would be
considered, and (2) net benefit (y-axis) quantifying the trade-off
between identifications  and

true-positive false-positive

FIGURE 5

CPB > 3H. DCA, decision curve analysis.
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interventions across the probability spectrum. The logistic
regression model demonstrated superior clinical utility, as
evidenced by its consistently high net benefit across the
clinically relevant threshold probability range of 20%-80%. This
that the
for perioperative

robust performance indicates model provides

meaningful ~decision support glycemic

management in the specified risk range.

3.7 External validation results

In the validation cohort (Table 4), GLM model maintained the
best overall performance among all tested algorithms, with an
AUC of 0.895 (95% CI: 0.848-0.942), sensitivity of 0.88,
specificity of 0.86, PPV of 0.87, NPV of 0.91, and FI score of
0.87. Ensemble models, including Random Forest (AUC=
0.780), GBM (AUC=0.805), AdaBoost (AUC=0.816), and
XGBoost (AUC=0.795), showed moderate predictive ability.

10.3389/fcvm.2025.1699809

These results further confirmed the strong discriminative
capacity and external generalizability of the logistic regression
justifying the final
construction.

model, its selection for nomogram

3.8 Interpretable analysis of a clinical
prediction model using SHAP

We employed SHAP (SHapley Additive exPlanations) analysis to
interpret the internal decision mechanisms of the prediction model.
The global SHAP summary revealed that liver function indicators
and hyperuricemia were the most influential features shaping
model predictions. Higher liver enzyme levels were positively
associated with an increased predicted risk, whereas higher,
norepinephrine use,elevated C-reactive protein (CRP >5 mg/L),
and longer operative time (>5h) showed negative SHAP
contributions. Local interpretability using SHAP force plots further

TABLE 4 Comparison of validation set characterised by AUC, sensitivity, specificity PPV, NPV and F1 score.

Model approach AUC Sensitivity Specificity PPV NPV F1 score
Glm 0.895 (0.848—0.942) 0.88 0.86 0.87 091 0.87
RF 0.780 (0.712-0.848) 0.75 0.78 0.77 0.76 0.76
GBM 0.805 (0.740-0.870) 0.78 0.79 0.79 0.81 0.78
Adaboost 0.816 (0.751-0.881) 0.80 0.81 0.80 0.83 0.80
XGB 0.795 (0.727-0.863) 0.77 0.78 0.78 0.80 0.77
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FIGURE 6
Shapley Additive exPlanations (SHAP) dependence plots for the model predicting stress hyperglycemia after cardiac surgery in non-diabetic patients.
Features: Liver dysfunction, high uric acid, CRP>5 mg, surgical time >5H, norepinephrine use, and CPB >3H. The x-axis shows the SHAP value
(impact on model output), and the y-axis lists the features. Each dot represents one patient. The color bar indicates the feature value (1 =yes,
0 =no). Positive SHAP values indicate a higher predicted risk of stress hyperglycemia, and negative values indicate a lower risk.
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FIGURE 7

Shapley additive exPlanations (SHAP) of the machine-learning model for predicting stress hyperglycemia after cardiac surgery in non-diabetic patients. (A)
Feature importance ranked by the mean absolute SHAP value across all patients. (B) SHAP decision (waterfall) plot for a representative patient showing how
each feature shifts the prediction from the expected value. The x-axis denotes the SHAP value (impact on model output), and the y-axis lists the features.
Each dot represents one patient in (A); in (B) each bar is the SHAP contribution of a feature for the selected patient. Positive SHAP values indicate a higher
predicted risk, whereas negative values indicate a lower risk. Feature encoding: 1 = yes, 0 = no.
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validated these effects by visualizing how individual feature
contributions and their interactions collectively determined each
patient’s predicted risk. Overall, these SHAP-based findings
underscore that the model’s predictions are both physiologically
plausible and its  clinical

transparent, thereby enhancing

interpretability and trustworthiness (see Figures 6, 7A,B).

4 Discussion

In this study, we systematically developed and compared five
predictive models—logistic regression, random forest, GBM,
AdaBoost, and XGBoost—to identify stress-induced hyperglycemia
(SIH) in 423 non-diabetic cardiac surgery patients. While previous
studies have primarily focused on diabetic populations or lacked
rigorous validation (26-29), research specifically addressing non-
diabetic cardiac surgery patients remains limited, despite reported
SIH incidence rates of 32.7%-75% in this cohort (30-32).

Notably, logistic regression outperformed more complex
machine learning algorithms, achieving excellent discriminative
ability (AUC=0.944) with high sensitivity (94.5%), specificity
(94.3%), positive predictive value (97.7%), and negative predictive
value (96.8%). Its clinical applicability is further supported by a
parsimonious model incorporating six readily obtainable
perioperative variables—liver dysfunction, elevated uric acid, CRP
>5mg/L, surgical duration >5h, norepinephrine administration,
and cardiopulmonary bypass time >3 h—demonstrating robust
performance in external validation (sensitivity 94.5%, specificity
93.4%). This balance of predictive accuracy and interpretability
facilitates early risk stratification and individualized perioperative
management, addressing a critical clinical need (33).

Several factors may explain the superior performance of logistic
regression. First, the relatively small sample size may limit the
ability of complex models to capture nonlinear interactions,
potentially leading to overfitting. Second, the relationships between
predictors and postoperative glucose appear predominantly linear,
allowing logistic regression to effectively model these associations.
Third, although all models except GBM were trained using default
parameter settings to minimize potential optimization bias, future
studies may explore whether more extensive hyperparameter
tuning could reduce the performance gap between machine
learning algorithms and logistic regression. Finally, logistic
regression offers clear interpretability, enabling clinicians to
intuitively assess each variable’s contribution—a crucial advantage
in clinical decision-making.

Compared with prior studies, our work provides three key
advances: (1) comprehensive evaluation of five machine learning
algorithms with rigorous internal and external validation; (2)
identification of an interpretable model achieving optimal
predictive performance; and (3) a practical, parsimonious
structure facilitating early risk identification and individualized
glycemic management while optimizing resource allocation.

Nevertheless, some limitations warrant consideration. The
single-center, retrospective design may limit generalizability, and
residual confounding cannot be excluded despite rigorous
multivariate adjustment and imputation of missing data. Moreover,
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systematic hyperparameter tuning for complex models was not
performed, which may offer further improvement in future studies.

5 Conclusion

In this study, we developed and validated a logistic regression
model incorporating six perioperative variables—liver dysfunction,
acid, CRP >5mg/L,
norepinephrine administration, and cardiopulmonary bypass time

elevated uric surgical duration >5h,
>3 h—for predicting stress-induced hyperglycemia (SIH) in non-
diabetic cardiac surgery patients. The model demonstrated excellent
discriminative performance and consistently outperformed four
advanced machine learning algorithms (random forest, GBM,
XGBoost, and AdaBoost) in internal and external validation.

This work represents the first systematic comparison of
multiple machine learning approaches for SIH prediction in this
population, highlighting logistic regression as an optimal balance
between predictive accuracy and clinical interpretability for
perioperative risk stratification. Although machine learning
methods are generally effective for high-dimensional datasets,
inclusion of numerous predictors in a limited-sample clinical
the
generalizability. Our variable selection process retained six

study may increase risk of overfitting and reduce
clinically and statistically meaningful predictors, which captured
the major risk signals of postoperative SIH while improving
model robustness and interpretability.

The superior performance of logistic regression may be
attributed to several factors. First, the relationships between the
selected predictors and postoperative glucose levels were
predominantly linear, enabling effective modeling with GLM.
Second, the relatively small sample size may have limited the
ability of more complex models to capture nonlinear or high-
order interactions, potentially leading to overfitting. Finally,
logistic regression offers clear interpretability by quantifying
each variable’s contribution, an important advantage in clinical
contexts where transparency and actionable insights are
essential. Therefore, under the specific conditions of this study,
logistic regression provided a stable, reliable, and clinically
applicable predictive tool for early identification of high-risk

non-diabetic cardiac surgery patients.
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