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Background: Stress-induced hyperglycemia (SHG) represents a significant 

metabolic complication in non-diabetic cardiac surgery older adult patients, 

with substantial implications for postoperative outcomes. Despite its clinical 

importance, reliable predictive tools remain scarce. This study systematically 

compared the performance of logistic regression 5 s. advanced machine 

learning algorithms for SHG risk prediction in this vulnerable population.

Patients and Methods: We conducted a retrospective cohort analysis of 600 

patients (≥65 years) undergoing cardiac surgery at a tertiary medical center 

(January 2021–May 2025). Six clinically relevant perioperative variables were 

incorporated into five predictive models: logistic regression, Random Forest 

(RF), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and 

Extreme Gradient Boosting (XGBoost). Model performance was rigorously 

evaluated using AUC-ROC with 95% confidence intervals, sensitivity, 

specificity, positive (PPV) and negative predictive values (NPV), and precision.

Results: The incidence of SHG in this cohort was 70.5%. Comparative analysis 

revealed logistic regression as the top-performing model (AUC 0.944, 95% CI 

0.923–0.966), surpassing other algorithms: GBM (0.923, 0.902–0.952), 

10GBoost (0.904, 0.890–0.941), AdaBoost (0.916, 0.871–0.936), and RF (0.877, 

0.866–0.932). Moreover, the logistic model achieved optimal performance in 

sensitivity (94.5%), specificity (93.4%), PPV (97.7%), and NPV (96.8%).

Conclusion: In contrast to more complex machine learning approaches, logistic 

regression demonstrated superior predictive accuracy for SHG in non-diabetic 

cardiac surgery older adult patients. Its exceptional performance metrics and 

clinical interpretability support its practical utility as an effective decision- 

support tool for perioperative risk stratification and management.
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1 Introduction

Stress-induced hyperglycemia (SIH) following cardiac surgery 

presents a formidable clinical challenge, with reported incidence 

rates as high as 27.9% in cardiothoracic populations (1). 

Increasing evidence suggests that SIH is not merely a transient 

metabolic disturbance but a strong predictor of both acute 

complications—such as cardiogenic shock, life-threatening 

arrhythmias, and cerebrovascular events (2, 3)—and long-term 

mortality in patients without diabetes (4, 5). The stress 

hyperglycemia ratio (SHR) has demonstrated superior 

prognostic value than conventional glucose metrics for 

predicting adverse cardiovascular outcomes (4), with the first 

48-h postoperative period representing a critical window for 

glycemic monitoring (6, 7). While current management 

protocols recommend maintaining glucose levels within 

140–180 mg/dL (8–12), these reactive measures fail to address 

the pressing need for proactive risk identification, highlighting a 

key limitation and reinforcing the importance of predictive 

modeling in perioperative care.

Existing approaches to SIH prediction face several critical 

limitations that constrain their clinical utility. First, most models 

disproportionately focus on diabetic populations, overlooking 

the unique pathophysiology of non-diabetic individuals. Second, 

they often fail to integrate key metabolic-in7ammatory markers, 

(e.g., C-reactive protein [CRP] and white blood cells [WBC], 

which significantly in7uence hyperglycemic responses (13, 14). 

Third, conventional statistical models lack the sophistication to 

capture complex clinical patterns, while machine learning 

alternatives are hampered by poor interpretability due to their 

reliance on statistically derived rather than clinically meaningful 

features (15). This “black box” problem presents particular 

challenges in surgical settings where transparent, actionable 

predictions are essential. The absence of comprehensive 

comparisons between traditional and advanced predictive 

methods further compounds these limitations.

Our research addresses these gaps through a systematic 

evaluation of logistic regression vs. contemporary machine 

learning algorithms [e.g., Extreme Gradient Boosting Machine 

[eGBM], Extreme Gradient Boosting [XGBoost], and Random 

Forest [RF]] for SIH prediction. This study employs an 

innovative approach that integrates three key elements: using 

clinically relevant variables with established pathophysiological 

significance; performing rigorous algorithmic comparison to 

optimize both accuracy [area under the curve (AUC) > 0.94] and 

clinical utility; and demonstrating that logistic regression 

provides a superior balance between performance and 

interpretability. The resulting model enables early identification 

of high-risk patients while maintaining clinical transparency, 

which is a crucial advantage over existing alternatives (16). By 

bridging the gap between computational sophistication and 

clinical applicability, this work represents a significant 

advancement in perioperative risk prediction and 

patient management.

2 Material and methods

2.1 Definition of stress hyperglycemia

SHG refers to a transient increase in blood glucose levels in 

individuals without a prior history of diabetes, occurring under 

conditions of severe stress such as major trauma, critical 

infections, or cardiovascular events. Prior to the stressor, the 

individual’s blood glucose is completely normal; however, 

during the stress response, blood glucose levels significantly 

exceed the normal range. Once the stressor is removed, blood 

glucose levels typically return to normal. Currently, there is no 

standardized diagnostic criterion for stress hyperglycemia in 

China. The American Diabetes Association (ADA) defines the 

diagnostic criteria for SHG (17), which include fasting blood 

glucose levels ≥7.0 mmol/L on two or more occasions, or 

random blood glucose levels ≥11.1 mmol/L, in non-diabetic 

patients during periods of acute stress. In this study, to ensure 

consistency, all postoperative blood glucose measurements 

were obtained under fasting conditions in the morning 

according to the hospital’s standardized testing protocol. 

Measurements were taken before meals and outside acute 

stress events to minimize confounding in7uences on 

glucose levels.

2.2 Measurement methods of stress 
hyperglycemia

The blood glucose levels were monitored using the Shengjia 

Steady Hao model rapid glucose meter to measure capillary 

blood glucose. According to the blood glucose monitoring 

guidelines reported in the literature (18, 19), when the 

patient’s blood glucose concentration is 8.0 mmol/L or above, it 

is monitored every 0.5–1.0 h. When the blood glucose 

concentration is below 8.0 mmol/L, it is monitored every 2 h. 

Once the blood glucose results stabilize for 4 h, monitoring is 

performed every 4 h. Postoperatively, when blood glucose levels 

range from 8.0 mmol/L to 12.0 mmol/L, the glucose infusion 

rate is adjusted accordingly. If blood glucose levels exceed 

12.0 mmol/L, insulin therapy is administered via intravenous 

micro-pump injection of recombinant insulin with a 

concentration ratio of 1:5–1:1. The initial dosage is 0.05 U/(kg·h) 

to 0.10 U/(kg·h), and the micro-pump speed is adjusted based 

on the blood glucose levels. The maximum insulin infusion rate 

is 0.5 U/(kg·h) (20).

2.3 Study endpoints

The occurrence of SHG after cardiac surgery was used as the 

outcome variable.
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2.4 Setting

The 423 patients from January 2021 to 2024 May constituted 

the modeling group for internal validation, and the 177 patients 

from June 2024 to May 2025 constituted the validation group 

for external validation.

2.5 Study population

A retrospective collection of 600 patients treated at the First 

Affiliated Hospital of Bengbu Medical University between 

January 2021 to May 2025 was included in the study.

2.6 Inclusion and exclusion criteria

2.6.1 Inclusion criteria

The study population comprised consecutive adult patients (≥18 

years) who underwent elective or emergency cardiac surgical 

procedures at our tertiary referral center. Eligible surgical 

interventions included isolated coronary artery bypass grafting 

(CABG), valve replacement/repair procedures, and combined major 

cardiac vascular operations. Strict diabetes exclusion criteria were 

applied, requiring: (i) absence of documented diabetes mellitus in 

medical records or by patient self-report, (ii) confirmation of 

normoglycemic status per ADA standards (preoperative fasting 

plasma glucose <7.0 mmol/L and HbA1c<6.5%). All enrolled 

participants either provided written informed consent (prospective 

cohort) or had comprehensively documented medical records with 

institutional review board approval (retrospective cohort), with 

mandatory availability of serial postoperative glucose measurements 

(minimum 48 h monitoring period) for reliable assessment of 

stress-induced glycemic responses.

2.6.2 Exclusion criteria
We applied rigorous exclusion parameters to ensure cohort 

homogeneity and data quality: (i) any preoperative diagnosis of 

diabetes mellitus or current antihyperglycemic therapy use; (ii) 

evidence of significant hepatic dysfunction (Child-Pugh class 

C cirrhosis) or end-stage renal disease (eGFR <30 mL/min/1.73 m2); 

(iii) preoperative systemic in7ammatory conditions (sepsis, septic 

shock, or severe active infection); (iv) known secondary causes of 

glucose metabolism disorders (including paraneoplastic syndromes 

and endocrine disorders such as Cushing’s syndrome or 

uncontrolled thyroid dysfunction); (v) postoperative mortality or 

study attrition within the initial 48-hour metabolic monitoring 

window; and (vi) inadequate glycemic monitoring (defined as either 

missing glucose values or insufficient measurement frequency to 

permit reliable assessment of glycemic variability).

2.7 Ethics statements

This study follows the principles of the Declaration of Helsinki 

and has been approved by the Ethics Committee of the First 

Affiliated Hospital of Bengbu Medical University [approval number 

(2024):KY012]. The research subjects understand the research 

purpose and collect data after obtaining informed consent. The 

research subjects may withdraw from the study at any time. The 

medical records of the research subjects are digitally encoded, 

stored anonymously and securely, and are only used for this study.

2.8 Model development and training 
strategy

In this study, five models—logistic regression (GLM), random 

forest (RF), gradient boosting machine (GBM), XGBoost, and 

AdaBoost—were constructed for comparison. To ensure fair 

comparison across models, all algorithms were trained using default 

parameter configurations without systematic hyperparameter 

tuning, except for the GBM model, in which the optimal number of 

trees was selected via fivefold cross-validation. This strategy 

minimized human-induced optimization bias, ensured consistent 

evaluation conditions, and maintained the stability and 

reproducibility of the results.

2.9 Model construction plan

In this study, we conducted a comparative evaluation of five 

machine learning algorithms—logistic regression (GLM), random 

forest (RF), gradient boosting machine (GBM), XGBoost, and 

AdaBoost. To ensure an unbiased comparison, all models were 

trained using their default parameter settings without systematic 

hyperparameter tuning, thereby minimizing the in7uence of 

manual optimization and enabling an objective assessment under 

consistent experimental conditions. A logistic regression model was 

employed to predict the outcome of stress hyperglycaemia. Patients 

were randomly divided into training and validation datasets at a 7:3 

ratio. Variables showing significance in univariate analyses were 

included in the multivariable model, with forward and backward 

stepwise selection applied for variable refinement (21–24). 

Based on the resulting regression coefficients, an individualised 

nomogram was constructed to predict stress hyperglycaemia 

during major surgery. The model’s performance was evaluated in 

the validation cohort using the area under the receiver operating 

characteristic curve (AUC). The remaining machine learning 

models—RF, GBM, AdaBoost, and XGBoost—were similarly 

developed to enable a comprehensive comparison of 

predictive performance.

2.10 Data collection

The study utilized comprehensive clinical data extracted from the 

hospital’s electronic medical records system. To ensure clinical 

relevance and predictive validity, we systematically selected 

preoperative and intraoperative variables with established or plausible 

associations with stress-induced hyperglycemia. The collected 

parameters encompassed: (1) demographic and baseline clinical 
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characteristics including age, sex, BMI, comorbidities (hypertension, 

prior cardiac surgery, cardiovascular disease, chronic obstructive 

pulmonary disease, chronic kidney disease, and cerebrovascular 

disease), ASA physical status classification, valvular heart disease, 

substance use history (smoking and alcohol consumption), 

hyperlipidemia, congestive heart failure, anemia, cardiogenic shock, 

recent myocardial infarction, aortic dissection, pulmonary disease, 

and advanced cardiac dysfunction (NYHA class ≥3); (2) preoperative 

medication exposure, particularly glucocorticoid administration 

(dexamethasone or methylprednisolone); (3) laboratory parameters 

including leukocyte count, serum uric acid, CRP, and renal function 

markers (with creatinine >200 μmol/L defined as clinically significant 

elevation); and (4) intraoperative variables consisting of surgical 

procedure type, operative duration, estimated blood loss, transfusion 

requirements (encompassing all blood product components), 

vasopressor use (norepinephrine), combined valve/CABG 

procedures, aortic cross-clamp time ≥110 min, reoperation 

status, prolonged cardiopulmonary bypass (>3 h), and CPB- 

associated hyperoxia.

2.11 Statistical and predictive modeling 
methodology

Statistical analyses were performed using a two-stage analytical 

framework. Initial univariate screening of potential risk factors was 

conducted in SPSS (v27.0), with statistically significant variables 

(p < 0.05) subsequently incorporated into multivariate logistic 

regression models after assessing multicollinearity through 

variance in7ation factors (VIF <5 considered acceptable). For 

predictive modeling, the dataset underwent stratified random 

partitioning (70:30 training:validation ratio) to preserve outcome 

distribution. Five distinct algorithms—logistic regression, RF, 

GBM, AdaBoost, and XGBoost—were implemented in R (v4.2.2) 

using standardized preprocessing pipelines. Model performance 

was rigorously evaluated through: (1) internal 5-fold cross- 

validation within the training cohort, and (2) external validation 

using the hold-out set, with comprehensive metrics including 

AUC-ROC, sensitivity, specificity, PPV/NPV, and precision. 

Ensemble methods additionally underwent feature importance 

analysis to quantify predictor contributions, ensuring both 

predictive accuracy and clinical interpretability.

2.12 Data division and justification for 
selected predictive models in clinical 
settings

Total sample size: 600 non-diabetic patients undergoing 

cardiac surgery. Data partitioning: The dataset was randomly 

divided into a training (modeling) set (n = 423, 70%) and an 

independent validation set (n = 177, 30%).

Cross-validation: Within the training set only, five-fold cross- 

validation was used to train the models and tune internal 

parameters (e.g., number of trees in the GBM).The validation 

set remained completely independent and was not used during 

model training or cross-validation. A schematic 7owchart of the 

data splitting and validation procedure has been added to the 

revised manuscript to illustrate this process more clearly.

To ensure methodological rigor, we used stratified random 

sampling to split the dataset into training (70%) and validation 

(30%) sets (see Figure 1). This strategy maintained consistent 

distributions of both hyperglycemic (SIH) and normoglycemic 

(AH) cases across partitions, thereby minimizing sampling bias 

and preserving the clinical prevalence of the target condition. 

Within the training cohort, we employed k-fold cross-validation 

to enhance model generalizability and prevent overfitting. For 

predictive modeling, we strategically selected five established 

algorithms representing distinct methodological approaches: 

logistic regression provided a clinically interpretable parametric 

baseline, while four advanced ensemble methods—RF, GBM, 

AdaBoost, and XGBoost—were implemented to capture complex 

nonlinear relationships and interaction effects while maintaining 

interpretability through feature importance quantification. This 

comprehensive analytical framework enabled robust comparison 

of traditional statistical modeling with contemporary machine 

learning techniques, balancing predictive performance with 

clinical applicability.

2.13 Validation strategies

To ensure comprehensive evaluation of model performance, we 

implemented a tripartite validation strategy incorporating both 

internal and external validation methodologies. First, k-fold cross- 

validation was systematically employed, wherein the dataset was 

partitioned into k mutually exclusive subsets, with each subset 

serving sequentially as the validation set while the remaining k-1 

subsets were used for model training. This approach effectively 

minimizes random sampling bias while providing robust estimates 

of model generalizability. Second, external validation was 

conducted using a temporally and geographically distinct patient 

cohort, offering critical assessment of real-world clinical 

applicability beyond the derivation dataset. Third, internal 

validation was performed through intensive resampling techniques, 

including both k-fold and leave-one-out cross-validation, enabling 

rigorous evaluation of model stability and reliability within the 

development cohort. This multi-dimensional validation framework 

provides complementary evidence of model performance across 

different clinical and methodological contexts.

2.14 Data preprocessing and model 
evaluation protocols

To ensure methodological rigor and reproducibility, we 

implemented a comprehensive data preprocessing and analytical 

pipeline comprising six key components: (1) missing data were 

addressed through multiple imputation by chained equations 

(MICE) to preserve dataset completeness while minimizing bias; 

(2) all continuous variables underwent z-score normalization to 

standardize feature scales, particularly critical for distance-sensitive 

Wu et al.                                                                                                                                                                10.3389/fcvm.2025.1699809 

Frontiers in Cardiovascular Medicine 04 frontiersin.org



algorithms (SVM, KNN) and linear models; (3) categorical variables 

were uniformly transformed using one-hot encoding to maintain 

consistency across model comparisons; (4) hyperparameter 

optimization was conducted via Bayesian optimization with 

Gaussian processes, enabling efficient identification of optimal 

parameter configurations for each algorithm; (5) model validation 

employed a stratified 5-fold cross-validation framework with 

maintained class distributions to robustly assess generalizability 

while mitigating overfitting; and (6) performance evaluation 

incorporated multiple complementary metrics including AUC- 

ROC, sensitivity, specificity, and precision-recall analysis to provide 

comprehensive assessment of model discrimination and calibration 

characteristics. This standardized protocol ensured consistent, 

reproducible model development while accounting for both 

predictive performance and clinical applicability.

2.15 Confounding control and adjustment

To minimize confounding in the SHG prediction model, we 

implemented a systematic approach encompassing strict cohort 

selection (non-diabetic adults >18 years undergoing cardiac 

surgery), prospective collection of key clinical and surgical 

variables (demographics, comorbidities, procedural details, and 

perioperative management), and rigorous analytical methods, 

including multivariable logistic regression with spline terms for 

non-linear effects, collinearity assessment, multiple imputation 

for missing data, and comprehensive sensitivity analyses 

(stratified models and penalized regression), thereby ensuring 

robust and clinically valid risk prediction.

2.16 Expected applications of the 
nomogram

This clinically validated nomogram provides four key utilities for 

perioperative management: (1) individualized risk quantification 

through weighted integration of demographic, preoperative, 

surgical, and postoperative parameters; (2) objective risk 

stratification (low/intermediate/high) to guide tiered intervention 

strategies—from intensive glucose monitoring/early insulin therapy 

for high-risk cases to standard surveillance for low-risk patients; 

(3) data-driven decision support that supplements clinical 

judgment for interventions, such as corticosteroid-associated 

glycemic control; and (4) optimized resource allocation 

by matching monitoring intensity and nursing care. The 

multidimensional scoring system of the tool balances precision 

with practicality in routine cardiac surgical practice.

2.17 Clinical application of the nomogram

The nomogram is implemented through a structured clinical 

work7ow beginning with data acquisition, encompassing 

demographic characteristics (e.g., age, sex, BMI), preoperative 

comorbidities (e.g., hypertension, prior cardiac surgery), surgical 

FIGURE 1 

Data splitting and validation flowchart.
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variables (e.g., procedure type/duration, blood loss), and 

postoperative management (e.g., corticosteroid administration). 

Subsequently, risk quantification translates input variables into 

weighted scores via the algorithmic framework of the nomogram, 

with differential weighting re7ecting each parameter’s predictive 

contribution (e.g., corticosteroids >age). The aggregated scores are 

then converted into probabilistic estimates through validated 

calibration during risk projection (e.g., 0.25 = 25% SHG risk). 

Finally, risk-stratified management guides clinical actions: high-risk 

patients (≥50% probability) receive intensive monitoring and 

prophylactic insulin protocols, while low-risk patients undergo 

standard surveillance without additional interventions. This 

standardized yet adaptable protocol ensures reproducible risk 

assessment while preserving clinician discretion in therapeutic 

decision-making.

2.18 Missing data handling

All six predictive variables were first examined for 

missingness, and all were found to be complete (missing 

count = 0; missing rate = 0%). Consequently, multiple imputation 

by chained equations (MICE) was not applied. For studies with 

missing values, MICE can be used to impute variables under the 

assumption of missing at random, employing predictive mean 

matching for continuous variables and logistic regression for 

categorical variables. Typically, five imputed datasets are 

generated and analyzed separately, with final estimates pooled 

using Rubin’s rules to account for variability between 

imputations. In the present study, logistic regression and all 

machine learning models (RF, GBM, XGBoost, AdaBoost) were 

trained and validated on the complete dataset, and all 

performance metrics, including ROC, AUC, and calibration, 

were calculated based on this dataset (25).

Assessment of model calibration using bootstrap resampling

3 Results

3.1 Patient characteristics

This retrospective cohort study evaluated 600 consecutive adult 

patients (>18 years) undergoing cardiac surgery at the First 

Affiliated Hospital of Bengbu Medical University between January 

2021 and May 2025. Following rigorous application of inclusion/ 

exclusion criteria with complete case analysis (no exclusions for 

missing data), the cohort was stratified into model development 

(n = 423) and validation (n = 177) groups. Postoperative stress- 

induced hyperglycemia (P-SIH) within 48–72 h occurred in 423 

patients (70.5%), consistent with established metabolic stress 

responses following cardiac procedures. Analysis of P-SIH cases 

(n = 303) revealed male predominance (54.8% vs. 45.2% female) 

with primary surgical indications being valve procedures (49.2%) 

and coronary artery bypass grafting (39.9%). Key risk factors 

included advanced age (>65 years, 41.9%), obesity (BMI ≥28 kg/m2, 

15.2%), and prevalent comorbidities, such as hypertension (53.5%), 

hyperlipidemia (41.3%), and congestive heart failure (22.4%). 

Notable metabolic markers included elevated uric acid (73.9%) and 

anemia (70.3%). Significant surgical factors comprised prolonged 

cardiopulmonary bypass (>3 h, 67%), extended aortic cross-clamp 

time (>90 min, 56.8%), and lengthy procedures (>5 h, 32.7%). 

Pharmacological contributors included norepinephrine 

administration (61.7%) and preoperative glucocorticoid use 

(79.5%), with high-risk patients (ASA ≥3: 6.3%; NYHA class ≥3: 

32%) demonstrating particular susceptibility. The complete 

perioperative characteristics are detailed in Table 1.

3.2 Predictive nomogram for postoperative 
stress hyperglycemia: logistic regression vs. 
machine learning

A training dataset comprising 423 patients was used to 

develop the predictive model (Figure 2). The results of the 

univariate logistic regression analysis are presented in Table 2. 

Variables that were statistically significant in the univariate 

analysis were included in the multivariate logistic regression 

model. The independent risk factors for SIH identified in this 

analysis included liver dysfunction, high uric acid, CRP > 5 mg, 

surgical time >5 h, norepinephrine use, and CPB > 3H.

Based on the logistic regression analysis results, a risk 

prediction model for the occurrence of SHG in patients without 

diabetes undergoing cardiac surgery was constructed by 

incorporating significant factors. The logistic regression equation 

is as follows: −4.504 + (1.35 × Liver dysfunction) + (2.842 × High 

uric acid) + (2.016  × CRP > 5 mg) + (−1.682 × Surgical time 

>5H) + (2.486 × Norepinephrine use) + (2.506 × CPB >3H). 

A visual nomogram was developed, with each factor assigned a 

specific score. The total score—the sum of all individual scores 

—corresponds to the probability of SHG occurrence in non- 

diabetic cardiac surgery patients (Figure 1).

The predictive model was evaluated using 177 patients from 

the validation dataset, and demonstrated strong performance, 

with AUC of 0.944(95% CI: 0.923–0.966), sensitivity of 0.945, 

and specificity of 0.943. Six key variables were identified as the 

most relevant for predicting SIH (Table 3).

3.3 Development of different machine 
learning models for SHG

Five distinct machine learning algorithms were implemented 

to predict SHG risk in non-diabetic cardiac surgery patients: 

logistic regression, GBM, XGBoost, and AdaBoost (Figure 3). 

Model performance was rigorously evaluated through multiple 

metrics, including AUC-ROC, sensitivity, specificity, PPV, and 

NPV. Comparative analysis revealed that logistic regression 

achieved optimal performance, exhibiting both superior 

discriminative ability (highest AUC) and the most balanced 

sensitivity-specificity profile. Consequently, the logistic 

regression model was selected for external validation and 

subsequent development of the clinical nomogram.
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TABLE 1 Patient characteristics and baseline variables.

Variables, n (%) Category AH (n = 120), n (%) SIH (n = 303), n (%) P-value

Sex Male 72 (60.0) 166 (54.8) 0.38

Female 48 (40.0) 137 (45.2)

Age >65 years No 83 (69.2) 176 (58.1) 0.04

Yes 37 (30.8) 127 (41.9)

Valvular heart disease No 30 (25.0) 141 (46.5) P < 0.0001

Yes 90 (75.0) 162 (53.5)

Heart valve surgery No 37 (30.8) 154 (50.8) P < 0.0001

Yes 83 (69.2) 149 (49.2)

Cardiac coronary artery bypass grafting No 90 (75.0) 182 (60.1) 0.004

Yes 30 (25.0) 121 (39.9)

Great vascular surgery of the heart No 116 (96.7) 293 (96.7) 0.986

Yes 4 (3.3) 10 (3.3)

Two kinds of operations No 112 (93.3) 281 (92.7) 0.83

Yes 8 (6.7) 22 (7.3)

Three kinds of operations No 118 (98.3) 301 (99.3) 0.335

Yes 2 (1.7) 2 (0.7)

BMI ≥ 28 Kg/m2n No 108 (90.0) 257 (84.8) 0.163

Yes 12 (10.0) 46 (15.2)

Smoking history No 26 (21.7) 67 (22.1) 0.92

Yes 94 (78.3) 236 (77.9)

Drinking history No 95 (79.2) 253 (83.5) 0.293

Yes 25 (20.8) 50 (16.5)

History of cardiac surgery No 109 (90.8) 271 (89.4) 0.669

Yes 11 (9.2) 32 (10.6)

Dialysis history No 115 (95.8) 301 (99.3) 0.011

Yes 5 (4.2) 2 (0.7)

Hyperlipidaemia No 55 (45.8) 178 (58.7) 0.016

Yes 65 (54.2) 125 (41.3)

Renal failure No 115 (95.8) 300 (99.0) 0.031

Yes 5 (4.2) 3 (1.0)

Abnormal liver function No 115 (95.8) 259 (85.5） 0.003

Yes 5 (4.2) 44 (14.5)

Congestive heart failure No 88 (73.3) 235 (77.6) 0.357

Yes 32 (26.7) 68 (22.4)

Anaemia No 32 (26.7) 90 (29.7) 0.534

Yes 88 (73.3) 213 (70.3)

Hypertension No 32 (26.7) 141 (46.5) P < 0.0001

Yes 88 (73.3) 162 (53.5)

History of cardiogenic shock No 117 (97.5) 299 (98.7) 0.663

Yes 3 (2.5) 4 (1.3)

Myocardial infarction No 103 (85.8) 272 (89.8) 0.25

Yes 17 (14.2) 31 (10.2)

Leucocytosis No 99 (82.5) 249 (82.2) 0.938

Yes 21 (17.5) 54 (17.8)

Increased neutrophil numbers No 99 (81.7) 241 (79.5) 0.489

Yes 21 (18.3) 62 (20.5)

Elevated uric acid No 107 (89.2) 79 (26.1) P < 0.0001

Yes 13 (10.8) 224 (73.9)

C-reactive protein increased >5 mg No 82 (68.3) 113 (37.3) P < 0.0001

Yes 38 (31.7) 190 (62.7)

Creatinine increased >200 μmol No 113 (94.2) 281 (92.7) 0.6

Yes 7 (5.8) 22 (7.3)

Cardiac function grade ≥3 No 77 (64.2) 206 (68.0) 0.452

Yes 43 (35.8) 97 (32.0)

ASA score ≥3 No 103 (85.8) 284 (93.7) 0.009

Yes 17 (14.2) 19 (6.3)

Valve combined heart bypass surgery No 112 (93.3) 292 (96.4) 0.174

Yes 8 (6.7) 11 (3.6)

Aortic dissection No 114 (95.0) 287 (94.7) 1.00

Yes 6 (5.0) 16 (5.3)

(Continued) 
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3.4 Calibration performance of the 
predictive model

The calibration plot assessed the accuracy of predicted 

probabilities from the logistic regression model (Figure 4). The 

“Apparent” curve represents the model’s performance on the 

training data, while the “Bias-corrected” curve, derived via 

bootstrap resampling (B = 100 repetitions), adjusts for 

overfitting. Both curves closely align with the ideal diagonal, 

indicating excellent agreement between predicted probabilities 

and observed outcomes. The minimal mean absolute error of 

0.029 further confirms high calibration accuracy, suggesting that 

TABLE 1 Continued

Variables, n (%) Category AH (n = 120), n (%) SIH (n = 303), n (%) P-value

Intraoperative blood loss >1,200ml No 114 (95.0) 291 (96.0) 0.633

Yes 6 (5.0) 12 (4.0)

Aortic occlusion time >90 min No 85 (70.8) 131 (43.2) <0.0001

Yes 35 (29.2) 172 (56.8)

Blood transfusion No 88 (73.3) 170 (56.1) 0.001

Yes 32 (26.7) 133 (43.9)

Operation time >5H No 42 (35.0) 204 (67.3) P < 0.0001

Yes 78 (65.0) 99 (32.7)

Second operation No 116 (96.7) 300 (99.0) P < 0.0001

Yes 4 (3.3) 3 (1.0)

Intraoperative norepinephrine administration No 86 (71.7) 116 (38.3) P < 0.0001

Yes 34 (28.3) 187 (61.7)

Preoperative glucocorticoid administration No 105 (87.5) 241 (79.5) 0.56

Yes 15 (12.5) 62 (20.5)

Cardiopulmonary bypass time >3H No 91 (75.8) 100 (33.0) P < 0.0001

Yes 29 (24.2) 203 (67.0)

CPB hyperoxic state No 62 (51.7) 207 (68.3) 0.001

Yes 58 (48.3) 96 (31.7)

Pulmonary disease No 110 (91.7) 280 (92.4) 0.797

Yes 10 (8.3) 23 (8.6%)

AH, absence of hyperglycaemia; SIH, stress-induced hyperglycaemia.

(1) History of Cardiac Surgery: The patient had a prior history of cardiac surgery before this hospitalization. (2) The percentages primarily represent the proportion of patients included for 

each in7uencing factor related to postoperative SHG in non-diabetic patients undergoing cardiac surgery, expressed as a percentage of the total number in either the modeling or validation 

group. (3) All extracted in7uencing factors specifically refer to patients who developed SHG, indicating a potential association between these factors and the postoperative metabolic stress 

response in non-diabetic cardiac surgery patients. (4) Patients aged >18 years were eligible for inclusion to ensure enrollment of an adult cohort. Within this population, multivariate analysis 

identified age >65 years as an independent predictor of postoperative SIH in non-diabetic patients undergoing cardiac surgery.

FIGURE 2 

Nomogram of logistic regression model.
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the model provides reliable probability estimates for 

clinical application.

The calibration curve revealed that the bias-corrected line was 

closely aligned with both the apparent and ideal reference lines, 

indicating good agreement between predicted and observed 

probabilities. This suggests that the model is well-calibrated and not 

significantly overfitted to the training data. Calibration plots are used 

to evaluate the accuracy of predicted probabilities in a risk 

prediction model. The ideal line represents perfect prediction, where 

the predicted risk exactly matches the observed outcome. The 

TABLE 2 Multivariate analysis of non-diabetic stress hyperglycaemia after cardiac surgery.

Variable β OR Wldχ2 95% CI SE P-value

Liver dysfunction 1.35 3.86 17.8 2.06, 7.23 0.32 <0.001

High uric acid 2.842 17.149 16.622 4.374–67.233 0.697 <0.001

CRP > 5 mg 2.016 7.508 9.936 2.144–26.300 0.64 0.002

Surgical time >5H −1.682 0.186 7.422 0.055–0.624 0.617 <0.001

Norepinephrine use 2.486 12.008 15.344 3.462–41.648 15.344 <0.001

CPB > 3H 2.506 12.252 0.712 3.032–49.499 0.712 <0.001

CI, confidence interval; CPB, cardiopulmonary bypass; CRP, C-reactive protein; H, hours; OR, odds ratio; SE, standard error; Wldχ2, Wald chi-squared statistic.

TABLE 3 Comparison of model performance characterised by AUC, sensitivity, specificity PPV and NPV.

Model approach AUC Sensitivity Specificity PPV NPV F1 score

Glm 0.944 (0.923–0.966) 0.945 0.943 0.977 0.968 0.961

RF 0.877 (0.866–0.932) 0.861 0.900 0.956 0.720 0.906

GBM 0.923 (0.902–0.952) 0.934 0.716 0.892 0.811 0.912

Adaboost 0.916 (0.871–0.936) 0.881 0.850 0.936 0.739 0.908

XGB 0.904 (0.890–0.941) 0.924 0.658 0.872 0.774 0.898

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; RF, random forest; GBM, gradient boosting machine; Ada, adaptive boosting.

FIGURE 3 

Comparison of the calibration plot for stress-induced hyperglycemia.
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apparent line re7ects the model’s performance on the training data, 

while the bias-corrected line, obtained through bootstrapping, 

adjusts for potential overfitting and provides a more reliable estimate 

of the model’s calibration in future samples.

3.5 Model performance comparison and 
validation in non-diabetic cardiac surgery 
patients

The predictive performance of five models was compared 

using multiple evaluation metrics, including AUC, sensitivity, 

specificity, PPV, and NPV. Logistic regression demonstrated the 

highest discriminative ability with an AUC of 0.944, with 

favorable sensitivity (0.945), specificity (0.943), PPV (0.977), and 

NPV (0.968), outperforming the more complex machine 

learning models. Accordingly, logistic regression was selected as 

the optimal model for further validation. When applied to the 

independent validation cohort, the model achieved an AUC of 

0.895, thereby confirming its robustness, generalizability, and 

clinical applicability for identifying non-diabetic cardiac surgery 

patients at high risk for SIH.

3.6 Decision curve analysis of a nomogram 
for postoperative stress hyperglycemia

Figure 5 presents the decision curve analysis (DCA), which 

evaluated the clinical utility of the nomogram for predicting SIH 

in non-diabetic cardiac surgery patients. The analysis framework 

incorporates: (1) threshold probability (x-axis) representing the 

minimum predicted risk at which clinical intervention would be 

considered, and (2) net benefit (y-axis) quantifying the trade-off 

between true-positive identifications and false-positive 

FIGURE 4 

Comparison of ROCs and AUCs for prediction of SHG by the various 

machine learning models.

FIGURE 5 

DCA of logistic regression model for the training dataset. Liver dysfunction, High uric acid, CRP > 5 mg, Surgical time >5H, Norepinephrine use, 

CPB > 3H. DCA, decision curve analysis.
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interventions across the probability spectrum. The logistic 

regression model demonstrated superior clinical utility, as 

evidenced by its consistently high net benefit across the 

clinically relevant threshold probability range of 20%–80%. This 

robust performance indicates that the model provides 

meaningful decision support for perioperative glycemic 

management in the specified risk range.

3.7 External validation results

In the validation cohort (Table 4), GLM model maintained the 

best overall performance among all tested algorithms, with an 

AUC of 0.895 (95% CI: 0.848–0.942), sensitivity of 0.88, 

specificity of 0.86, PPV of 0.87, NPV of 0.91, and F1 score of 

0.87. Ensemble models, including Random Forest (AUC =  

0.780), GBM (AUC = 0.805), AdaBoost (AUC = 0.816), and 

XGBoost (AUC = 0.795), showed moderate predictive ability. 

These results further confirmed the strong discriminative 

capacity and external generalizability of the logistic regression 

model, justifying its selection for the final nomogram 

construction.

3.8 Interpretable analysis of a clinical 
prediction model using SHAP

We employed SHAP (SHapley Additive exPlanations) analysis to 

interpret the internal decision mechanisms of the prediction model. 

The global SHAP summary revealed that liver function indicators 

and hyperuricemia were the most in7uential features shaping 

model predictions. Higher liver enzyme levels were positively 

associated with an increased predicted risk, whereas higher, 

norepinephrine use,elevated C-reactive protein (CRP > 5 mg/L), 

and longer operative time (>5 h) showed negative SHAP 

contributions. Local interpretability using SHAP force plots further 

TABLE 4 Comparison of validation set characterised by AUC, sensitivity, specificity PPV, NPV and F1 score.

Model approach AUC Sensitivity Specificity PPV NPV F1 score

Glm 0.895 (0.848−0.942) 0.88 0.86 0.87 0.91 0.87

RF 0.780 (0.712–0.848) 0.75 0.78 0.77 0.76 0.76

GBM 0.805 (0.740–0.870) 0.78 0.79 0.79 0.81 0.78

Adaboost 0.816 (0.751–0.881) 0.80 0.81 0.80 0.83 0.80

XGB 0.795 (0.727–0.863) 0.77 0.78 0.78 0.80 0.77

FIGURE 6 

Shapley Additive exPlanations (SHAP) dependence plots for the model predicting stress hyperglycemia after cardiac surgery in non-diabetic patients. 

Features: Liver dysfunction, high uric acid, CRP > 5 mg, surgical time >5H, norepinephrine use, and CPB > 3H. The x-axis shows the SHAP value 

(impact on model output), and the y-axis lists the features. Each dot represents one patient. The color bar indicates the feature value (1 = yes, 

0 = no). Positive SHAP values indicate a higher predicted risk of stress hyperglycemia, and negative values indicate a lower risk.
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FIGURE 7 

Shapley additive exPlanations (SHAP) of the machine-learning model for predicting stress hyperglycemia after cardiac surgery in non-diabetic patients. (A) 

Feature importance ranked by the mean absolute SHAP value across all patients. (B) SHAP decision (waterfall) plot for a representative patient showing how 

each feature shifts the prediction from the expected value. The x-axis denotes the SHAP value (impact on model output), and the y-axis lists the features. 

Each dot represents one patient in (A); in (B) each bar is the SHAP contribution of a feature for the selected patient. Positive SHAP values indicate a higher 

predicted risk, whereas negative values indicate a lower risk. Feature encoding: 1 = yes, 0 = no.
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validated these effects by visualizing how individual feature 

contributions and their interactions collectively determined each 

patient’s predicted risk. Overall, these SHAP-based findings 

underscore that the model’s predictions are both physiologically 

plausible and transparent, thereby enhancing its clinical 

interpretability and trustworthiness (see Figures 6, 7A,B).

4 Discussion

In this study, we systematically developed and compared five 

predictive models—logistic regression, random forest, GBM, 

AdaBoost, and XGBoost—to identify stress-induced hyperglycemia 

(SIH) in 423 non-diabetic cardiac surgery patients. While previous 

studies have primarily focused on diabetic populations or lacked 

rigorous validation (26–29), research specifically addressing non- 

diabetic cardiac surgery patients remains limited, despite reported 

SIH incidence rates of 32.7%–75% in this cohort (30–32).

Notably, logistic regression outperformed more complex 

machine learning algorithms, achieving excellent discriminative 

ability (AUC = 0.944) with high sensitivity (94.5%), specificity 

(94.3%), positive predictive value (97.7%), and negative predictive 

value (96.8%). Its clinical applicability is further supported by a 

parsimonious model incorporating six readily obtainable 

perioperative variables—liver dysfunction, elevated uric acid, CRP 

>5 mg/L, surgical duration >5 h, norepinephrine administration, 

and cardiopulmonary bypass time >3 h—demonstrating robust 

performance in external validation (sensitivity 94.5%, specificity 

93.4%). This balance of predictive accuracy and interpretability 

facilitates early risk stratification and individualized perioperative 

management, addressing a critical clinical need (33).

Several factors may explain the superior performance of logistic 

regression. First, the relatively small sample size may limit the 

ability of complex models to capture nonlinear interactions, 

potentially leading to overfitting. Second, the relationships between 

predictors and postoperative glucose appear predominantly linear, 

allowing logistic regression to effectively model these associations. 

Third, although all models except GBM were trained using default 

parameter settings to minimize potential optimization bias, future 

studies may explore whether more extensive hyperparameter 

tuning could reduce the performance gap between machine 

learning algorithms and logistic regression. Finally, logistic 

regression offers clear interpretability, enabling clinicians to 

intuitively assess each variable’s contribution—a crucial advantage 

in clinical decision-making.

Compared with prior studies, our work provides three key 

advances: (1) comprehensive evaluation of five machine learning 

algorithms with rigorous internal and external validation; (2) 

identification of an interpretable model achieving optimal 

predictive performance; and (3) a practical, parsimonious 

structure facilitating early risk identification and individualized 

glycemic management while optimizing resource allocation.

Nevertheless, some limitations warrant consideration. The 

single-center, retrospective design may limit generalizability, and 

residual confounding cannot be excluded despite rigorous 

multivariate adjustment and imputation of missing data. Moreover, 

systematic hyperparameter tuning for complex models was not 

performed, which may offer further improvement in future studies.

5 Conclusion

In this study, we developed and validated a logistic regression 

model incorporating six perioperative variables—liver dysfunction, 

elevated uric acid, CRP >5 mg/L, surgical duration >5 h, 

norepinephrine administration, and cardiopulmonary bypass time 

>3 h—for predicting stress-induced hyperglycemia (SIH) in non- 

diabetic cardiac surgery patients. The model demonstrated excellent 

discriminative performance and consistently outperformed four 

advanced machine learning algorithms (random forest, GBM, 

XGBoost, and AdaBoost) in internal and external validation.

This work represents the first systematic comparison of 

multiple machine learning approaches for SIH prediction in this 

population, highlighting logistic regression as an optimal balance 

between predictive accuracy and clinical interpretability for 

perioperative risk stratification. Although machine learning 

methods are generally effective for high-dimensional datasets, 

inclusion of numerous predictors in a limited-sample clinical 

study may increase the risk of overfitting and reduce 

generalizability. Our variable selection process retained six 

clinically and statistically meaningful predictors, which captured 

the major risk signals of postoperative SIH while improving 

model robustness and interpretability.

The superior performance of logistic regression may be 

attributed to several factors. First, the relationships between the 

selected predictors and postoperative glucose levels were 

predominantly linear, enabling effective modeling with GLM. 

Second, the relatively small sample size may have limited the 

ability of more complex models to capture nonlinear or high- 

order interactions, potentially leading to overfitting. Finally, 

logistic regression offers clear interpretability by quantifying 

each variable’s contribution, an important advantage in clinical 

contexts where transparency and actionable insights are 

essential. Therefore, under the specific conditions of this study, 

logistic regression provided a stable, reliable, and clinically 

applicable predictive tool for early identification of high-risk 

non-diabetic cardiac surgery patients.
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