

OPEN ACCESS

EDITED BY

Otto Alexander Sanchez, Minneapolis Heart Institute Foundation (MHIF), United States

Armando Perez De Prado, Complejo Asistencial Universitario de León (CHLeon), Spain

*CORRESPONDENCE

Ramazan Astan

RECEIVED 08 August 2025 ACCEPTED 07 October 2025 PUBLISHED 16 October 2025

Astan R (2025) Commentary: Plasma thrombin-antithrombin complex as a candidate biomarker for coronary slow flow. Front. Cardiovasc. Med. 12:1682454. doi: 10.3389/fcvm.2025.1682454

© 2025 Astan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Commentary: Plasma thrombinantithrombin complex as a candidate biomarker for coronary slow flow

Ramazan Astan*

Department of Cardiology, Batman Training and Research Hospital, Batman, Türkiye

KEYWORDS

coronary slow flow, TIMI frame count, coronary microvascular dysfunction, coronary angiography, biomarkers

A Commentary on

Plasma thrombin-antithrombin complex as a candidate biomarker for coronary slow flow

By Mo J-h, Liang B, Cen J-t, Li W-y, Mo Y-a, Tang M-c, Ye D, Long Q-x, Hu X and Zhai Y-s (2025). Front. Cardiovasc. Med. 12:1621655. doi: 10.3389/fcvm.2025.1621655

1 Introduction

I read with great interest the article by Mo JH et al. titled "Plasma thrombinantithrombin complex as a candidate biomarker for coronary slow flow" recently published in Frontiers in Cardiovascular Medicine (1). The authors present compelling evidence that plasma thrombin-antithrombin (TAT) complex levels are significantly elevated in patients with coronary slow flow (CSF), proposing it as a potential noninvasive biomarker. While the findings are noteworthy, we would like to raise several methodological concerns that we believe warrant further clarification.

2 Inconsistency and ambiguity in CSF definition and grouping

A central concern lies in the apparent inconsistency and ambiguity surrounding the definition and operationalization of CSF within the study. In the methodology section, the authors describe calculating an average TIMI Frame Count (TFC) by summing the corrected TFCs (CTFC) of the LAD, LCX, and RCA and dividing by three a method aligned with literature characterizing CSF as a diffuse microvascular disorder. However, in the same section, the authors also define CSF as "TFC >27 in at least one coronary artery," which reflects a segmental approach.

Further compounding this issue, Table 1 presents both average TFC values and artery-specific TFCs (LAD, LCX, RCA). However, it remains unclear whether patients were classified based on average TFC, single-vessel TFC, or a combination of both. For Astan 10.3389/fcvm.2025.1682454

example, a patient with an average TFC below the pathological threshold but a single artery (e.g., RCA) slightly above 27 may have been included in the CSF group. The concurrent mention and presentation of both methods without a clear statement of which criterion was applied creates confusion, introduces potential heterogeneity in patient classification, and limits reproducibility.

3 Fixed threshold of TFC >27 for all arteries

The application of a uniform threshold of TFC >27 to define CSF across all three major coronary arteries may not be appropriate given their differing anatomic lengths and flow characteristics. According to Gibson et al. (2), the normal unadjusted TFC for LAD is approximately 36, and to account for its longer length, it is conventionally divided by 1.7, resulting in a corrected TFC (CTFC) of ~21.2. Some studies propose a pathological cut-off of >27.6 for LAD CTFC, corresponding to approximately two standard deviations above the mean.

This distinction is critical because the same degree of statistical adjustment is not typically applied to the LCX or RCA. These arteries have shorter and more consistent lengths, with average unadjusted TFC values of approximately 22 and 20, respectively. Therefore, no correction factor like the LAD's 1.7 is necessary. Instead, abnormal thresholds for LCX and RCA (e.g., >22.6 and >20.4, respectively) are derived from either upper limit statistics (mean + 2SD) or receiver operating characteristic (ROC) curve analysis. Applying a single uniform cut-off value (i.e., >27) across all vessels disregards these anatomical and statistical nuances and risks misclassification, particularly overestimating CSF prevalence in LAD or underestimating it in RCA.

4 Lack of information on contrast injection parameters

TFC measurements are known to be sensitive to technical factors such as contrast injection speed, volume, and method. The study does not specify whether contrast was administered manually or via power injector, nor does it provide details regarding injection rate or total volume. These factors can directly affect the number of frames required for contrast to reach distal landmarks, influencing TFC results and the diagnosis of CSF. Future studies should control for or at least report these parameters to enhance methodological transparency.

In conclusion, while the association between elevated TAT complex levels and CSF is promising, the aforementioned ambiguities in diagnostic criteria and methodology warrant clarification. Clear and consistent definitions are essential to ensure reproducibility, accurate classification, and the clinical applicability of novel biomarkers. We commend the authors for their valuable contribution and hope that these considerations will further strengthen research in this area.

Author contributions

RA: Software, Visualization, Formal analysis, Resources, Writing – original draft, Conceptualization, Validation, Investigation, Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issue please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Mo JH, Liang B, Cen JT, Li WY, Mo YA, Tang MC, et al. Plasma thrombinantithrombin complex as a candidate biomarker for coronary slow flow. *Front Cardiovasc Med.* (2025) 12:1621655. doi: 10.3389/fcvm.2025.1621655 2. Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. *Circulation*. (1996) 93(5):879–88. doi: 10.1161/01.cir.93.5.879