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Introduction: Surgery remains a cornerstone in lung cancer treatment, yet a
subset of patients face high risks of recurrence or mortality postoperatively.
Poor prognosis significantly shortens survival time, underscoring an urgent
clinical need to accurately identify high-risk individuals. To address this,
numerous studies have focused on constructing risk prediction models that
integrate  multi-dimensional data (clinical, pathological, and emerging
biomarkers) to quantify postoperative adverse event probabilities, guiding
personalized adjuvant therapy and enhancing follow-up management. To
investigate risk factors for postoperative atrial fibrillation (POAF) in lung cancer
patients and develop/validate a predictive model based on multi-dimensional
feature fusion and ensemble learning.

Methods: This retrospective cohort study analyzed 369 lung cancer patients
undergoing surgical resection at Xinjiang Medical University Affiliated Tumor
Hospital (2019-2024). Univariate analysis screened potential risk factors,
followed by multivariable logistic regression to confirm independent predictors.
Nine machine learning algorithms were employed to build predictive models,
among which the top three performers were selected for ensemble modeling
via weighted averaging, resulting in the final risk prediction model.

Results: Multivariate analysis revealed three independent predictors of POAF:
cardiac insufficiency (OR=64.55 95% Cl: 2.41-1727.70), ventricular rate
(OR=1.17, 95% CI: 1.1-1.25), and elevated N-terminal pro-B-type natriuretic
peptide (NT-proBNP, OR=1.005, 95% Cl: 1-1.009). The Support Vector
Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM)
demonstrated the highest accuracy (ACC =0.9041, 0.9178, and 0.9178,
respectively). The ensemble model srg-LCPOAF further improved ACC to
0.9452, significantly outperforming individual algorithms.

Discussion: This study is the first to integrate cardiopulmonary function,
biomarkers, and surgical parameters into an ensemble model (srg-LCPOAF),
providing evidence-based support for early intervention in high-risk POAF
patients.
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1 Introduction

Data from (Global Cancer Statistics 2022) (1) indicates that
approximately 2.5 million new lung cancer cases were diagnosed
worldwide in 2022. According to the latest statistics released by
the National Cancer Center, lung cancer is the most prevalent
malignant tumor in China and one of the leading causes of
cancer-related mortality. In 2022, China reported approximately
1.061 million new lung cancer cases and 733,000 deaths (2-4).
Statistically, lung cancer ranks first in both incidence and
mortality among malignant tumors in Chinese men and second
in women, establishing it as a predominant respiratory
malignancy (5).

The majority of lung cancer patients in China are diagnosed at
advanced stages, with a 5-year survival rate of only 16%-18%,
reflecting a poor prognosis (6-9). Thus, close monitoring of
patient outcomes is critical. Current post-diagnosis treatments
for lung cancer vary by disease stage, including surgical
resection, chemotherapy, radiotherapy, targeted therapy, and
adjuvant traditional Chinese medicine. Among these, surgical
resection remains the recommended optimal choice for curative
treatment (10). Resecting the lesion can achieve curative effects
and improve patient survival and quality of life. However,
surgery is invasive, carries high risks, involves prolonged
operation times, induces significant cardiac stimulation, and
impacts respiratory and circulatory functions, often leading to
postoperative complications.

Atrial fibrillation (AF), the predominant cardiac arrhythmia,
manifests as disorganized atrial depolarization with rapid,
irregular contractions, thereby compromising systolic efficiency.
Patients typically present with palpitations, fatigue, and dyspnea.
AF increases the risk of stroke by 4-5-fold compared to non-AF
individuals, with an annual incidence of 1.92%, a mortality rate
of 20%, and a disability rate of 60% (11, 12). Compared to
healthy individuals, AF patients face substantial disease burden
due to frequent emergency visits and significantly reduced
health-related quality of life (13). Although AF complicating
thoracic lung cancer surgery is often transient and self-limiting,
it prolongs hospital stays and intensive care unit (ICU)
admission, increases healthcare costs, and is associated with an
elevated risk of cardiovascular events (14).

Literature reports show that AF is one of the most common
postoperative complications in lung cancer patients, with an
incidence of 6.4%-31.3%, typically occurring within 48-72h
after surgery (15). While postoperative AF (POAF) is often
transient, it significantly prolongs hospitalization, increases
treatment costs, and is strongly associated with ischemic stroke
and myocardial infarction due to hemodynamic instability (16,
17). Therefore, early screening for POAF, identification of risk
factors, assessment of high-risk patients, and implementation of
targeted interventions to reduce POAF incidence have become
priorities in thoracic surgery.

With the widespread application of machine learning in
medicine, its robust classification, regression, and high-precision
predictive capabilities have provided accurate solutions to
medical challenges (13). Studies have demonstrated machine
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learning  algorithms contribute significantly to cancer
classification, survival prediction, medical imaging analysis, and
pathological diagnosis (18). Despite progress in constructing
POAF risk prediction models for lung cancer patients, existing
studies have notable limitations. For example, most rely on
limited predictor variables (e.g., clinical characteristics, surgical
parameters, preoperative cardiopulmonary indices), leading to
suboptimal prediction accuracy (19). Additionally, some studies
use simple statistical methods instead of machine learning,
(20).

Furthermore, many studies interpret only the single best-

potentially ~ compromising  model  performance
performing model, limiting the comprehensiveness of results
and clinical applicability.

This study aims to develop an ensemble prediction model for
POAF in lung cancer patients with enhanced interpretability. By
integrating 46 predictor variables across clinical characteristics,
surgical parameters, preoperative laboratory markers, and
cardiopulmonary function, we achieved multi-dimensional
feature fusion to improve accuracy. We selected the top three
performing machine learning models for ensemble integration,
yielding a model (srg-LCPOAF) with superior predictive
performance to individual algorithms. Comprehensive
interpretation of the ensemble model was conducted to validate
its clinical utility in POAF prediction.

Finally, the integrated prediction model srg-LCPOAF for
postoperative AF in lung cancer patients constructed in this

paper highlights the following:

1. This paper first uses the method of ensemble learning to
construct the integrated prediction model srg-LCPOAF for
whether
performance of the

AF occurs after lung cancer surgery. The

integrated prediction model is
significantly improved compared with the single model,
achieving prediction accuracy;

2. This paper includes 46 characteristic variables such as general
clinical characteristics of patients, surgery-related indicators,
preoperative test indicators, and preoperative

cardiopulmonary function indicators, achieving a multi-

dimensional exploration of risk factors for postoperative AF

in lung cancer patients.

2 Methods
2.1 Study cohort

Clinical data of lung cancer patients who underwent surgery at
the Affiliated Tumor Hospital of Xinjiang Medical University
between 2019 and 2024 were retrospectively collected. The
authors had access to information identifying individual
participants during or after data collection. Inclusion criteria: (1)
Preoperative evaluations (including laboratory blood tests,
12-lead electrocardiogram, Holter monitoring, echocardiography,
arterial blood gas analysis, optional PET/CT, neck/abdominal
ultrasound, whole-body bone scan, brain MRI plain + enhanced;
CT for MRI-contraindicated patients) showed no obvious

metastatic lesions, with stage I-III lung cancer without distant
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metastasis and tolerable to surgery; (2) All patients underwent
scheduled surgery; (3) No history of mental disorders and good
compliance; (4) Complete clinical records. Exclusion criteria: (1)
Perioperative  mortality; (2) Severe cardiovascular and
cerebrovascular diseases; (3) History of other malignant tumors;
(4) Preoperative diagnosis of atrial fibrillation. Finally, 369
patients were included, with 70 developing postoperative AF and

299 without.

2.2 Selection of clinical features and
outcome variables

Data were extracted from electronic medical records.
Features included: (1) Demographic/clinical characteristics:
gender, age, BMI, smoking/drinking history, comorbidities
diabetes, defects,
insufficiency, coronary heart disease, cerebral infarction,

(hypertension, respiratory cardiac

carotid plaque, deep vein thrombosis,

electrolyte disorders); (2) Surgical parameters: operation site,

hyperlipidemia,

surgical approach; (3) Preoperative laboratory markers:
cardiac troponin (cTNT), N-terminal pro-B-type natriuretic
peptide (NT-proBNP), free (FT3), free
thyroxine (FT4), thyroid-stimulating hormone (TSH), white
blood cells (WBC), platelets (PLT), hemoglobin (HGB), total
cholesterol (TC), high-density lipoprotein (HDL), low-density
lipoprotein (LDL), creatinine (Cr), glucose (GL), D-dimer,
(Ca); (4

function: left

triiodothyronine

potassium  (K),  calcium Preoperative
total

heartbeats, average heart rate, longest RR interval, atrial

cardiopulmonary atrial diameter,
premature beats, atrial tachycardia, ventricular rate, QTC,
FEV1, FEV1/FVC. The outcome was

(binary: yes/no).

postoperative AF

2.3 Diagnostic criteria for postoperative AF

Patients underwent continuous vital sign monitoring for at
least 72 h postoperatively, with routine/bedside/Holter ECG
as indicated.

AF was diagnosed by ECG showing: @ Absent P waves,
replaced by irregular fibrillation waves (F waves, 350-600/min);
@ Absolute irregularity of R-R intervals. Concurrent signs
(myocardial ischemia, hypertrophy, pre-excitation, electrolyte
disorders, pulmonary embolism) and indices (heart rate, QRS
duration, QT interval) were evaluated (21).

2.4 Data preprocessing
Preprocessing included data cleaning, missing value
handling, and outlier detection. Duplicate cases were removed
via SPSS “Identify Duplicate Cases” (22); irrelevant data (ID
repeated tests)
consistency was verified. Missing values: variables with >10%

numbers, were excluded, and logical

missingness or samples with >5% missingness were deleted
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(no imputation) (23). Outliers in continuous variables (age,
BMI, NT-proBNP) were identified by box plots (Tukey
method) or Z-score (|Z]|>3), defined as values
>Q3 + 1.5 xIQR or <Q1-1.5x IQR. Categorical variables were
screened via frequency distributions (24).

2.5 Feature selection

Recursive feature elimination (RFE) was used to select optimal
features. RFE iteratively trains models, removes least important
features, and retains the best subset using feature importance/
coefficients (25). Ten rounds of 10-fold cross-validation were
applied to ensure robustness (26).

2.6 Model development and validation

Nine machine learning (ML) models were used: Support
Vector Machine (SVM), Random Forest (RF), Neural Network
(NNET), K-Nearest Neighbors (KNN), Conditional Inference
Tree (CTREE), Naive Bayes (NB), Decision Tree (RPART),
Logistic Regression (GLM), Gradient Boosting Machine (GBM)
[citation]. The dataset was randomly split (8:2) into training and
test sets. The training set optimized model parameters and
feature subsets, while the test set evaluated performance.

2.7 Model performance comparison

Seven metrics were used: Accuracy (ACC), area under the
(AUC),
specificity, positive predictive value (PPV), negative predictive
value (NPV), and F1 score (27).

receiver operating characteristic curve sensitivity,

2.8 Model interpretation

ROC curves were plotted with true positive rate (TPR) vs. false
positive rate (FPR), and AUC measured discriminative ability.
Larger AUC indicates better performance. Definitions: TP (true
positive), TN (true negative), FP (false positive), FN (false negative)
(28). The specific calculation formula refers to Equations 1-7.

1. Accuracy: The proportion of correctly predicted samples, with
higher values indicating better performance.

R TP+ TN
ccuracy =
Y T IP L IN+EN+ TN

1)

2. Sensitivity: To prevent missed diagnoses, sensitivity measures
the ratio of correctly predicted positives to all actual positive
samples.

TP

_— 2
TP + FN @

Sensitivity =
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3. Specificity: The ability to correctly identify negative cases
(avoiding misdiagnoses), representing the proportion of
actual negative samples that are correctly predicted.

TN
Specificity = TN+ FP (3)

4. Fl-score: As the harmonic mean of precision and recall,
balances a model’s positive prediction accuracy with its
capacity to capture all relevant instances.

2xPrecision*Recall
F1 — Score = ———— 4)
Precision + Recall
A them Precision = L (5)
mong them Precision = TP+ FP

5. Positive Predictive Value (PPV): The proportion of samples
predicted as positive that are actually positive, reflecting the
reliability of positive predictions.

TP

PPV = —
TP + FP

(6)

6. Negative Predictive Value (NPV): The proportion of samples
predicted as negative that are actually negative, indicating the
reliability of negative predictions.

TN

NPV = ———
TN + FEN

)

2.9 Statistical methods

The ML prediction models were developed with the use of the
R language, version 4.3.0, and the caret package (version 6.0.94).
Caret is a powerful machine learning integration toolkit in
R that provides a unified interface for various ML algorithms,
supporting multiple algorithms and integrating functions such
as data preprocessing, feature selection, and model comparison.
Model construction leveraged the train function and associated
response parameters. Discriminative performance was evaluated
via receiver operating characteristic (ROC) curve analysis, and
the area under the curve (AUC) with bias-corrected 95%
(CI) was 1,000-time
bootstrap. The Brier score (ranging from 0 to 1), where values

confidence intervals reported using
closer to 0 indicate better calibration, was used to assess model
calibration by calculating the difference between estimated and
observed risks.

Basic statistical analyses of feature variables were performed
using IBM SPSS Statistics 25. Normally distributed continuous
variables were presented as mean + SD and analyzed with ¢-tests.
Skewed continuous variables were reported as median (IQR)

and analyzed by Mann-Whitney U or Kruskal-Wallis H-tests.
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Categorical variables were expressed as percentages and
compared using chi-square tests. Independent risk factors for
the entire cohort (training and test sets) were identified via
univariate and multivariate logistic regression analyses. The
predictive ability of independent risk factors for postoperative
AF in lung cancer patients was evaluated using ROC curve
(two-sided P<0.05 was

significant).

analysis considered statistically

3 Result

3.1 Risk factor analysis for postoperative AF
in lung cancer patients

3.1.1 Baseline characteristics

A total of 396 patients were included, among which 70
(19%) developed POAF and 299 did not. The two
groups showed significant differences in demographic
characteristics, comorbidities, cardiopulmonary function, and
surgical types (Table 1).

Table 1 results showed significant differences (P < 0.05)
between postoperative AF (POAF, n=70) and non-POAF
(n=299) groups in multiple indices. Demographically, POAF
patients were significantly older (65.70 + 8.01 vs. 59.76 + 10.78
years, P<0.001) and had enlarged left atrial diameter
(34.51£1.60 mm vs. 33.26+2.21 mm, P<0.001), suggesting
atrial ~structural remodeling and aging as important
pathological bases for POAF. Cardiac function indices showed
significantly higher NT-proBNP (283.66 pg/ml vs. 97.84 pg/
ml, P<0.001) and creatinine (Cr, 80.95umol/L vs.
62.90 pmol/L, P<0.001) in POAF patients, reflecting close
associations between myocardial overload, renal impairment,
and AF occurrence. Comorbidity and surgical type analyses
indicated higher POAF risks in patients with hypertension
(P<0.001), cardiac insufficiency (P<0.001), lung resection
(P <0.001), and thoracoscopic surgery (P <0.001), suggesting
that underlying cardiovascular diseases and surgical trauma
synergistically induce atrial electrical and structural
remodeling. These findings demonstrate that advanced age,
atrial enlargement, cardiorenal dysfunction, specific surgical
approaches, and comorbidities collectively constitute POAF
risk factors, providing evidence for clinical early identification

of high-risk populations and targeted intervention strategies.

3.1.2 ldentification of independent risk factors

Cohort-wide analysis determined independent risk factors
for postoperative AF in lung cancer patients. Univariable
screening identified 22 potential predictors linked to AF
occurrence (P <0.05). The risk factors obtained by univariate
analysis were included in multivariate Logistic regression
analysis to determine the independent risk factors related
to postoperative atrial fibrillation in patients with lung
cancer (Table 2).

Multivariate logistic  regression analysis identified
ventricular rate (OR=1.17, 95% CI: 1.10-1.25, P<0.001) and
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TABLE 1 Baseline characteristic data.

10.3389/fcvm.2025.1679973

TABLE 1 Continued

Characteristics Non-POAF POAF Characteristics Non-POAF
(n=299) (n=70) (n=299)

Age 59.76 £ 10.78 65.70 £ 8.01 0.00 Carotid plaque

BMI 1.71 £ 1.68 1.75+£0.17 0.05 No 299 (81.03%) 70 (18.97%)

CTNT 0.007 (0.003, 0.055) | 0.008 (0.003, 0.032) |  0.02 Hyperlipidemia 0.59

NT-proBNP 97.84 (10.00, 283.66 (17.72, 0.00 Yes 9 (2.4%) 3 (0.81%)

901.20) 2,344) No 290 (78.6%) 67 (18.2%)
FT3 4.65+0.75 4.56+0.75 0.36 Deep vein thrombosis 0.04
FT4 16.72 +2.85 16.97 +£2.25 0.49 Yes 299 (81.03%) 1 (0.3%)
TSH 3.09 (0.02, 37.22) | 2.71 (0.24, 8.72) 0.41 No 0 69 (18.7%)
WBC 6.21 (0.05, 16.00) | 5.89 (2.97, 11.02) 0.63 Electrolyte disturbances
PLT 224.59 + 58.88 219.11 + 64.98 0.49 Yes 0 0
HGb 135.66 £ 19.00 139.67 £18.71 0.11 No 299 (81.03%) 70 (18.97%)
TC 4.44+1.05 4.14+1.07 0.03 Site of surgery 0.30
HDL 1.22 (0.08, 3.95) 1.21 (0.53, 3.58) 0.09 Left 105 (28.5%) 20 (5.4%)
LDL 2.67 £0.85 2.38+0091 0.01 Right 194 (52.6%) 50 (13.6%)
Cr 62.90 (34, 163) 80.95 (32, 868) 0.00 Pulmonary resection
GL 526 (1.65, 13.43) | 5.41 (2.92, 15.22) 0.22 Yes 0 0
D-dimer 0.61 (0.05,32.21) | 0.53 (0.15, 4.76) 0.27 No 299 (81.03%) 70 (18.97%)
K 3.85+0.37 3.86+0.39 0.88 Lobectomy 0.00
Ca 2.24+0.18 2.21+0.16 0.34 Yes 297 (80.5%) 55 (14.9%)
Left atrial diameter 33.26+2.21 34,51+ 1.60 0.00 No 2 (0.5%) 15 (4.07%)
Total stroke volume 107451.38 (11,990, | 114796.30 (61,380, 0.18 Segmentectomy 0.00
939,233) 10,53,586) Yes 2 (05%) 5 (1.4%)

Mean heart rate 73.71 +37.87 72.93+9.07 0.86 No 297 (80.5%) 65 (17.6%)

The longest RR interval 1.71 (1, 128) 1.60 (1, 9) 0.01 Thoracoscopic surgery 0.00

The number of atrial 89.48 (0, 6,061) 438.13 (0, 11,272) 0.02 Yes 299 (81.03%) 60 (16.3%)

premature beats No 0 10 (2.7%)

Atrial tachycardia 1.870, 92 2.51 +5.08 0.03

Heart rate 72.95 + 14.03 124.04 % 27.66 0.00

QIC 429.09 + 37.50 460.11 + 36.60 0.00

FEV1 80.90 (27.55, 596) | 78.11 (36.93, 99.34) | 099 NT-proBNP (OR=1.01, 95% CI: 1.00-1.01, P=0.04) as

FEVI/EVC 43942871 239 + 0.65 056 independent risk factors for POAF in lung cancer patients.

Sex 0.00 Each 1 bpm increase in ventricular rate was associated with a
Male 188 (50.9%) 25 (6.8%) 17% higher POAF risk, suggesting that perioperative
Female 111 (30.1%) 45 (12.2%) sympathetic activation and myocardial electrophysiological

Smoking 001 remodeling may be key mechanisms. Elevated NT-proBNP
Yes 71 (192%) 27 (7.3%) (1%  increased risk per 1pg/ml) reflected the
No 228 (61.8%) 43 (11.7%) ] ] ) )

Alcohol o0l pathophysiological basis of atrial pressure overload and
Yes 36 (9.6%) 17 (4.6%) myocardial stretch, consistent with prior studies identifying
No 263 (71.3%) 53 (14.4%) NT-proBNP as a marker of atrial dilation. Although a history

Hypertension 0.00 of cardiac insufficiency showed statistical significance
Yes 92 (24.9%) 39 (10.6%) (OR=64.55, P=0.01), its extremely high OR value and wide
No 207 (56.1%) 31 (84%) confidence interval (0.19-7.45) indicated potential collinearity

Diabetes mellitus 028 or insufficient sample size, possibly related to its strong
Yes 48 (13%) 15 (4.1%) correlation with NT-proBNP (r=0.62).

No 251 (68%) 55 (14.9%)

Respiratory defects 0.89
Yes 5 (1.4%) 1 (0.3%)

No 294 (79.7%) 69 (18.7%) 3.1.3 ROC curve analysis

Cardiac insufficiency 0.0 Based on the results of the multivariate logistic regression
Yes 2 (0.5%) 17 (4.6%) ; e
No 297 (805%) 53 (14.4%) analysis above, we further explored the predictive efficacy of

Coronary heart disease 0.63 independent risk factors—ventricular rate and NT-proBNP—for
Yes 22 (6%) 4 (1.1%) postoperative AF in lung cancer patients (ROC curve analysis is
No 277 (75.1%) 66 (17.9%) shown in Figure 1).

Cerebral infarction 0.02 The ROC curve analysis showed that the AUC values were
Yes 6 (1.6%) 5 (14%) 0.699 for NT-proBNP and 0.956 for ventricular rate,
No 293 (79.4%) 65 (17.6%) indicating that ventricular rate had significantly better

(Continued)
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TABLE 2 Multivariate logistic regression analysis.

10.3389/fcvm.2025.1679973

Influencing factors B SE Wald P Exp (B) 95% ClI
Age —1.03 1.11 0.85 0.36 0.36 0.04-3.17
Sex 0.75 10060.31 0 0.99 2.11 0.12-36.89
Smoking 0.60 111 0.29 0.59 1.82 0.21-16.12
Alcohol 1.40 1.04 1.83 0.18 4.05 0.53-30.81
Hypertension 1.04 0.98 1.12 0.29 2.83 2.41-1727.70
Cardiac insufficiency 4.17 1.53 0.42 0.01 64.55 0.19-7.45
Cerebral infarction 0.99 1.53 0.42 0.52 0.37 0.02-7.45
Deep vein thrombosis 8.68 40192.97 0 1.00 5884.87

Lobectomy -5.73 6.34 0.82 0.37 0.003 0-799.38
Pulmonary resection -2.15 6.92 0.10 0.76 0.12 0-91290.37
Thoracoscopic surgery —15.87 10059.60 0 0.99 0

¢INT 103.32 92.08 1.26 0.26 0 0-3.183E + 33
NT-proBNP 0.01 0.002 4.18 0.04 1.01 1-1.009
TC 0.27 0.61 0.20 0.65 1.32 0.40-4.35
LDL —1.26 0.73 2,94 0.09 0.28 0.07-1.20
Cr 0.06 0.04 2.99 0.08 1.06 1-1.14
Ca 1.04 421 0.06 0.80 2.84 0-10924.58
Left atrial diameter 4.90 5.55 0.78 0.38 134.43 0-7098815.56
The longest RR interval —0.28 0.55 0.25 0.61 0.76 0.26-2.23
The number of atrial premature beats 0.001 0.001 0.42 0.52 1.00 1-1.004
Heart rate 0.16 0.03 23.56 0.00 1.17 1.10-1.25
QTC 0.02 0.01 1.52 0.22 1.02 1-1.04
Atrial tachycardia —0.11 0.10 1.28 0.26 0.89 0.74-1.09

ROC Curves for Independent risk factors

Sensitivity

FIGURE 1
ROC curves for independent risk factors.
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could serve as a core risk assessment indicator for POAF in lung
cancer patients.

3.2 Development of risk prediction model
for postoperative AF in lung cancer patients

3.2.1 Basic experimental workflow
The basic experimental workflow of this study is shown in
Figure 2.

3.2.2 Selection of predictive variables

We employed the Recursive Feature Elimination (RFE) strategy
for feature selection, determining the optimal feature subset for each
machine learning prediction model. The RFE variable selection
process for each model is visualized in Figures 3, 4.

The figure displays the results of recursive feature elimination
for nine different machine learning models. Each plot shows the
relationship between the number of variables and cross-validated
accuracy/Kappa values, where the x-axis represents the number
of variables and the y-axis denotes the accuracy and Kappa
values obtained via cross-validation.

3.2.3 Model development and performance
comparison

The machine learning models constructed after feature
screening showed significant differences in performance between
the training and test sets (Table 3).

In the training set, the GBM model showed optimal
discrimination and calibration with an AUC of 1.0000.
Concurrently, the RF model achieved the highest accuracy
(1.0000), sensitivity (1.0000), specificity ~(1.0000),
predictive value (PPV, 1.0000), negative predictive value (NPV,
1.0000), and F1 score (1.0000). The Random Forest (RF) model
emerged as the top performer in the training set with 100%

positive

accuracy, sensitivity, specificity, and F1 score (1.0000), though
its perfect performance suggests a potential risk of overfitting as
shown in Figure 5.

In the test set, the SVM model exhibited the best performance,
with an AUC of 0.9734. Correspondingly, the SVM model also
showed relatively high accuracy (0.9041), sensitivity (0.9322),
specificity (0.7857), PPV (0.9483), NPV (0.7333), and F1 score
(0.9402). Additionally, the RF and GBM models ranked among
the top in predictive performance: the RF model had an AUC of
0.9697, accuracy of 0.9178, sensitivity of 0.9661, specificity of
0.7143, PPV of 0.9344, NPV of 0.8333, and F1 score of 0.9500;
the GBM model had an AUC of 0.9431, accuracy of 0.9178,
sensitivity of 0.9492, specificity of 0.7857, PPV of 0.9492, NPV
of 0.7857, and F1 score of 0.9492 as shown in Figure 6.

In summary, the SVM, RF, and GBM models were identified
as the top three performing models for predicting the risk of
postoperative AF in lung cancer patients.

3.2.4 Development of the srg-LCPOAF model
Based on the comparison of performance parameters
(primarily ACC values) of the nine machine learning prediction
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models, the top three models with the best predictive
performance were identified as the SVM, RF, and GBM models.
An ensemble of these three models was then performed by
assigning weights proportional to their ACC values on the test
set (the workflow is shown in Figure 7), ultimately forming the
integrated model srg-LCPOAF.

3.2.5 Performance interpretation of the srg-
LCPOAF model

Table 4 compares the performance of single models (SVM, RF,
GBM) and the ensemble model srg-LCPOAF across seven
evaluation metrics.

Results showed that the ensemble model srg-LCPOAF
with
significant improvements in ACC, specificity (Spe), NPV, and F1
score. RF and GBM exhibited similar performance, though RF
had higher sensitivity (Sen=0.97) and GBM showed better
specificity (Spe =0.79). While SVM demonstrated excellent AUC
(0.97), its lower ACC and NPV indicated weaker discriminative
ability for negative samples.

outperformed all single models across all metrics,

Based on the ROC curve analysis of the ensemble model
srg-LCPOAF (Figure 8), the curve rapidly ascends from the
lower-left corner (0,0) to the upper-left corner (0,1) and then
extends rightward to (1,1), indicating that the model achieves
high sensitivity (Sen) at low false positive rates (1-Spe) and
exhibits excellent classification performance. With an AUC
value of 0.97, the model demonstrates stable discrimination
different
thresholds and strong robustness to noise or variations in

between positive and negative samples across
data distribution.

In summary, the predictive performance of the ensemble
model srg-LCPOAF significantly outperforms any single model,

highlighting its strong clinical predictive value.

4 Discussion

Postoperative atrial fibrillation (POAF) is a common and
severe complication after lung cancer surgery, which is closely
associated with surgical trauma,

inflammatory response,

autonomic nervous dysfunction, and patients’ baseline
cardiovascular status (7). POAF not only prolongs hospital stay
and increases medical costs but also significantly correlates with
adverse events such as stroke and heart failure (29). Therefore,
constructing a high-precision risk prediction model is of great
clinical value for early identification of high-risk patients and
optimization of perioperative management strategies.

This study constructed nine machine learning models based
on multi-dimensional clinical data to analyze and predict the
risk of postoperative AF in lung cancer patients. During this
process, we identified independent risk factors associated with
POAF, fully interpreted and compared the performance of the
nine predictive models, screened out the top three models with
the best predictive performance, and finally developed an
ensemble model for predicting POAF risk using ensemble

learning. Results demonstrated that the ensemble model’s
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FIGURE 2
Flow chart of the experiment. (a) Data collection and preprocessing; (b) the development and verification of the prediction model; (c) construction
and interpretation of the integrated model.
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enhanced predictive performance facilitated high-risk patient

screening,  enabling  timely interventions to  reduce
hospitalization duration and improve quality of life.

This study found that the SVM, RF, and GBM models showed
the best performance in predicting POAF risk (ACC values of
0.90, 0.92, and 0.92, respectively), significantly outperforming
other models such as KNN (ACC=0.89) and GLM
(ACC=0.86). This result may be related to the adaptability
between the kernel function of SVM and the nonlinear
pathological characteristics of POAF (30). SVM uses kernel
function to implicitly map the non-linearly separable problem in
the original low-dimensional space to a high-dimensional
feature space, so that the data becomes linearly separable in the
space. However, the occurrence of POAF also involves multi-
system interactions: surgical trauma activates systemic
inflammatory responses (such as increased IL-6 and CRP),
inflammatory factors damage atrial myocytes through oxidative
stress (11); intraoperative thoracic operations may directly
stretch the pericardium, inducing autonomic nervous imbalance
(31); electrolyte
hypomagnesemia)  further

instability [reference]. The interactions among these factors

postoperative disorders  (hypokalemia,

aggravate  electrophysiological

(such as the synergistic effect of CRP and serum potassium
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concentration) are highly nonlinear, and the radial basis
function (RBF) kernel of SVM can effectively capture such
complex associations through its local sensitivity. Studies have
also shown that this result may be related to the strong
compatibility between the ensemble decision-making of RF and
the multi-factor heterogeneity of POAF. The random feature
selection of RF reduces the interference of redundant variables
(such as collinearity between systolic blood pressure and mean
arterial pressure) and identifies key driving factors through Gini
importance scores (32).

It is noteworthy that the occurrence of atrial fibrillation is not
only associated with perioperative factors such as preoperative test
results, cardiopulmonary function indicators, and surgical
procedures, but also frequently arises secondary to various
underlying diseases and long-term lifestyle factors. In addition
to clinical conditions such as hypertension, structural heart
disease, and  hyperthyroidism, long-term high-intensity
endurance exercise has also been identified as an independent
risk factor for atrial fibrillation and atrial flutter. Among various
cardiovascular risk factors, hypertension is one of the most
common comorbidities associated with atrial fibrillation, present
in approximately 40% of patients with atrial fibrillation.

Furthermore, attribution risk studies indicate that a history of

frontiersin.org



Gong et al. 10.3389/fcvm.2025.1679973
[— Kappa doles = Kappa [— Kappal
(6, 0.8421) L
0.88 4 (22, 0.8776) 0.814 (5, 0.8689)
0.854
0.83 4
5 827} 0.50
£ 0.80 1
0.824 0.79 4 0.704
0.78 4
0.80 4 RPART 0.65 RF
GBM 1 ,
¥ ¥ ¥ S ) 10 20 30 10 50
v . . v ) 0 10 20 30 50 SEEC
o 0 10 20 30 10 50 Variables Vacabiss
Variables
nappa) — Kappa
= Keppa s (23, 0.8120) i 0 0146
0.814 (16, 0.8057)
0.804
0.6 0.54
0.794
0.78 4 §° 1 %0. 14
S0.77
0.76 1 0.24 0.34
0.754
. 0.0 2] NNET
0.744 CTREE , i ' i i ' SWM . . ] ) X
0.73 - . . . - ) 0 10 20 30 40 50 . ,2‘7‘ % L 50
0 10 20 30 40 50 Variables Variables
Variables
— Kappa| —— Kappa
[ Kappa, o
v =97, (2, 0.824)
(14, 0.8204) 084 (2, 0.7978) .
0.824
0.804 0.74 .
0.64
0.784 0.64 .
E § %o. 1
:2 0.76 20.54 =
0.74+ 0.4 0.2
0.724 P
GLM Ley "
NB 09 KNN
0.70 T T T T T 1
0 10 20 30 10 50 0.2 T T T T T 1 T T T T ]
Variables 0 10 20 30 40 50 10 20 30 10 50
Variables Variables
FIGURE 4
Schematic representation of recursive feature elimination (RFE) for nine machine learning models (Kappa).
TABLE 3 Comparison of the performance parameters of nine machine learning models.
Models ACC AUC Sen Spe PPV NPV F1
Training set
SVM 0.98 0.99 0.99 0.95 0.99 0.96 0.99
RF 0.99 0.99 1.00 0.98 0.99 1.00 0.999
KNN 0.96 0.98 0.99 0.82 0.96 0.96 0.98
CTREE 0.96 0.96 0.97 0.91 0.98 0.86 0.97
NB 0.95 0.96 0.97 0.82 0.96 0.88 0.97
RPART 0.96 0.95 0.96 0.93 0.98 0.85 0.97
GLM 0.97 0.99 0.99 0.88 0.97 0.94 0.98
NNET 0.96 0.94 0.97 0.89 0.97 0.88 0.97
GBM 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Test set
SVM 0.90 0.97 0.93 0.79 0.95 0.73 0.94
RF 0.92 0.97 0.97 0.71 0.93 0.83 0.95
KNN 0.89 0.91 0.97 0.57 0.90 0.80 0.93
CTREE 0.89 0.87 0.97 0.57 0.90 0.80 0.93
NB 0.89 0.94 0.97 0.57 0.90 0.80 0.93
RPART 0.89 0.80 0.97 0.57 0.90 0.75 0.93
GLM 0.86 0.90 0.92 0.64 0.92 0.64 0.92
NNET 0.86 0.80 0.93 0.57 0.90 0.67 0.92
GBM 0.92 0.94 0.95 0.79 0.95 0.79 0.95
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hypertension may account for approximately 24% of atrial
(33).
fibrillation and concomitant hypertension, emphasis should be
placed standardized blood pressure management.
Appropriate antihypertensive medications should be selected

fibrillation cases Therefore, for patients with atrial

on

based on the patient’s specific circumstances to improve long-
term prognosis. Hyperthyroidism not only increases the risk of
worsening underlying heart disease but also directly induces
structural and functional changes in the heart. Atrial fibrillation
is a common cardiac manifestation in hyperthyroidism. Reports
that  the of fibrillation
hyperthyroidism patients ranges from 1% to 60%, depending on

indicate prevalence atrial in
gender, age, and the presence of prior or concomitant
cardiovascular disease (34). Although the protective effects of
regular, appropriate exercise on the cardiovascular system are
widely recognized, the long-term impact of prolonged, high-
intensity endurance activities—such as marathons and long-
distance cycling—on the heart remains to be thoroughly
investigated. Research indicates that such exercises may be
associated with the development of atrial fibrillation and atrial
flutter

enlargement and increasing the risk of myocardial fibrosis (35).

through mechanisms such as promoting atrial
Although most lung cancer patients are not professional
athletes, their preoperative physical fitness and cardiopulmonary
reserve capacity may have a potential association with exercise
endurance, warranting attention in risk assessment. Additionally,
unhealthy lifestyle habits such as heavy alcohol consumption
and smoking increase susceptibility to atrial fibrillation by
promoting atrial electrical and structural remodeling, thereby
contributing to its onset (36). If patients exhibit autonomic
dysregulation or have underlying cardiomyopathy, these should
not be overlooked as potential triggers for arrhythmia. In
structural heart disease, hypertrophic cardiomyopathy (HCM) is
a major cause of atrial fibrillation (AF). Patients with HCM
exhibit a significantly higher prevalence of AF compared to the
general population, and this condition is closely associated with

pathological changes such as left atrial remodeling, fibrosis, and
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TABLE 4 Comparison of performance parameters between Top3’s model
and the ensemble model.

Models _ ACC__AUC_ Sen_ Spe PPV NPV _FL
SVM

0.90 0.97 0.93 0.79 0.95 0.73 0.94
RF 0.92 0.97 0.97 0.71 0.93 0.83 0.95
GBM 0.92 0.94 0.95 0.79 0.95 0.79 0.95
srg-LCPOAF 0.95 0.97 0.97 0.86 0.97 0.86 0.97

left ventricular outflow tract obstruction. Even with low
CHA,DS,-VASc scores, these patients exhibit markedly elevated
thromboembolic risk, underscoring the independent impact of
underlying cardiac structural abnormalities on AF occurrence
and stroke risk. Therefore, when assessing AF risk—particularly
in patients with structural heart disease—it is essential to
the

considering

incorporate disease-specific factors into overall risk

evaluation framework. This includes atrial
myocardial disease associated with cardiomyopathies such as
HCM (37). Research indicates that autonomic dysregulation,
such as excessive vagal activation, may increase susceptibility to
atrial fibrillation by altering atrial electrophysiological properties.
This mechanism has been further corroborated in studies
investigating reflex syncope in patients with Brugada syndrome
(38). Among lung cancer patients, due to the prevalence of
long-term smoking histories and the frequent coexistence of
underlying cardiopulmonary conditions, the atrial myocardium
is more susceptible to electrical activity disturbances following
acute stressors such as surgical trauma, thereby increasing the
risk of postoperatively acquired atrial fibrillation (POAF).
Therefore, in the future optimization of predictive models,
integrating such underlying diseases, lifestyle indicators, and
functional assessment parameters will facilitate the development
of a more comprehensive and precise multidimensional risk
assessment system.

So far, multiple studies have been conducted on risk factor
analysis and prediction model construction for POAF in lung

cancer patients. Early domestic studies mostly used traditional
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ROC curve of the ensemble model srg-LCPOAF

methods such as logistic regression and Cox proportional
hazards model. For example, in recent years, some tertiary
hospitals have begun to attempt machine learning models.
For instance, a 2022 study from Shanghai Chest Hospital used
(RF)
ultrasound (left ventricular ejection fraction, LAD)

random forest to integrate preoperative cardiac
and
postoperative inflammatory markers (CRP, IL-6), increasing
the AUC to 0.82 (39), but the sample size was small (n = 300)
and lacked external validation. Related studies in Europe and
America introduced machine learning earlier. For example, a
2021 study from Mayo Clinic used a gradient boosting
(GBM) NT-proBNP,

intraoperative early postoperative

machine to integrate preoperative

fluid balance, and
electrocardiogram monitoring data, achieving an AUC of
0.87, which was validated in the European Society of Thoracic
Surgery (ESTS) database (40). A 2023 study on the NCDB
database of the National Cancer Institute (NCI) of the United
States combined electronic health records (EHR), Holter
data (such miRNA-21

expression) to construct an XGBoost model, with an AUC

monitoring, and genomic as
exceeding 0.90, but the computational complexity was high,
(41).

existing studies have significant limitations. First, most studies

making clinical implementation difficult However,
rely on single-center retrospective data (sample size <1,000),
leading to selection bias and information missing in the

research; second, the external validation rate in the studies is
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low, which significantly reduces the accuracy and practical
guiding significance of the research results; furthermore, most
existing studies stop at the interpretation of the best
predictive model, but do not continue to study the further
application of the model.

However, in this study, after comparing the nine predictive
models, we screened out the top three models with the best
predictive performance, namely SVM, RF, and GBM. The
predictive performance of these three models was integrated
using an ensemble strategy to form the ensemble model srg-
LCPOAF. The ACC of this ensemble model reached 0.95, with
sensitivity and specificity of 0.97 and 0.86, respectively,
representing a 4% and 7% improvement over the best single
model. This finding indicates that the establishment of the
ensemble model has improved various performance metrics of
the model to a certain extent, enabling clinicians to more
accurately predict whether lung cancer patients will develop
postoperative AF, precisely identify high-risk patients, and take
preventive measures in advance.

Similarly, this study also has many shortcomings. First, the
data source is single: single-center retrospective data may lead to
selection bias in the data; second, emerging biomarkers are not
included: such as microRNA (miR-21, miR-208a) and gene
(PITX2  1s2200733). the
characteristic variables may improve the prediction accuracy;

polymorphisms Including above

finally, the dynamic prediction ability is insufficient: the existing
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characteristic variables mainly include preoperative or static
data,
intraoperative indicators (such as SVV, BIS monitoring) and

postoperative lacking the integration of real-time
continuous postoperative time-series data. In the future, based
on the current study, we can add multi-center prospective
studies, which can avoid errors caused by information bias and
selection bias to a certain extent. At the same time, we can also
combine instrumental variables (such as Mendelian
randomization) to distinguish confounding factors (such as
smoking history) from causal drivers, enhancing the causal
inference theory of postoperative AF.

In conclusion, this study developed nine machine learning-
based risk prediction models for postoperative atrial fibrillation
(POAF) in lung cancer patients. A stacking ensemble integrating
SVM, random forest (RF), and GBM algorithms demonstrated
superior predictive performance, enhancing both accuracy and
clinical utility for POAF risk assessment after pulmonary
resection. This model not only provides a reliable tool for
individualized risk stratification but also sets a methodological
paradigm for multi-model fusion strategies in complex medical
scenarios. In the future, it is necessary to further promote the
transformation from the prediction model to a clinical decision
support system, ultimately achieving patient-centered precision

perioperative management.
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