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Introduction: Surgery remains a cornerstone in lung cancer treatment, yet a 

subset of patients face high risks of recurrence or mortality postoperatively. 

Poor prognosis significantly shortens survival time, underscoring an urgent 

clinical need to accurately identify high-risk individuals. To address this, 

numerous studies have focused on constructing risk prediction models that 

integrate multi-dimensional data (clinical, pathological, and emerging 

biomarkers) to quantify postoperative adverse event probabilities, guiding 

personalized adjuvant therapy and enhancing follow-up management. To 

investigate risk factors for postoperative atrial fibrillation (POAF) in lung cancer 

patients and develop/validate a predictive model based on multi-dimensional 

feature fusion and ensemble learning.

Methods: This retrospective cohort study analyzed 369 lung cancer patients 

undergoing surgical resection at Xinjiang Medical University Affiliated Tumor 

Hospital (2019–2024). Univariate analysis screened potential risk factors, 

followed by multivariable logistic regression to confirm independent predictors. 

Nine machine learning algorithms were employed to build predictive models, 

among which the top three performers were selected for ensemble modeling 

via weighted averaging, resulting in the final risk prediction model.

Results: Multivariate analysis revealed three independent predictors of POAF: 

cardiac insufficiency (OR = 64.55, 95% CI: 2.41–1727.70), ventricular rate 

(OR = 1.17, 95% CI: 1.1–1.25), and elevated N-terminal pro-B-type natriuretic 

peptide (NT-proBNP, OR = 1.005, 95% CI: 1–1.009). The Support Vector 

Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM) 

demonstrated the highest accuracy (ACC = 0.9041, 0.9178, and 0.9178, 

respectively). The ensemble model srg-LCPOAF further improved ACC to 

0.9452, significantly outperforming individual algorithms.

Discussion: This study is the first to integrate cardiopulmonary function, 

biomarkers, and surgical parameters into an ensemble model (srg-LCPOAF), 

providing evidence-based support for early intervention in high-risk POAF 

patients.
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1 Introduction

Data from 《Global Cancer Statistics 2022》 (1) indicates that 

approximately 2.5 million new lung cancer cases were diagnosed 

worldwide in 2022. According to the latest statistics released by 

the National Cancer Center, lung cancer is the most prevalent 

malignant tumor in China and one of the leading causes of 

cancer-related mortality. In 2022, China reported approximately 

1.061 million new lung cancer cases and 733,000 deaths (2–4). 

Statistically, lung cancer ranks first in both incidence and 

mortality among malignant tumors in Chinese men and second 

in women, establishing it as a predominant respiratory 

malignancy (5).

The majority of lung cancer patients in China are diagnosed at 

advanced stages, with a 5-year survival rate of only 16%–18%, 

re3ecting a poor prognosis (6–9). Thus, close monitoring of 

patient outcomes is critical. Current post-diagnosis treatments 

for lung cancer vary by disease stage, including surgical 

resection, chemotherapy, radiotherapy, targeted therapy, and 

adjuvant traditional Chinese medicine. Among these, surgical 

resection remains the recommended optimal choice for curative 

treatment (10). Resecting the lesion can achieve curative effects 

and improve patient survival and quality of life. However, 

surgery is invasive, carries high risks, involves prolonged 

operation times, induces significant cardiac stimulation, and 

impacts respiratory and circulatory functions, often leading to 

postoperative complications.

Atrial fibrillation (AF), the predominant cardiac arrhythmia, 

manifests as disorganized atrial depolarization with rapid, 

irregular contractions, thereby compromising systolic efficiency. 

Patients typically present with palpitations, fatigue, and dyspnea. 

AF increases the risk of stroke by 4–5-fold compared to non-AF 

individuals, with an annual incidence of 1.92%, a mortality rate 

of 20%, and a disability rate of 60% (11, 12). Compared to 

healthy individuals, AF patients face substantial disease burden 

due to frequent emergency visits and significantly reduced 

health-related quality of life (13). Although AF complicating 

thoracic lung cancer surgery is often transient and self-limiting, 

it prolongs hospital stays and intensive care unit (ICU) 

admission, increases healthcare costs, and is associated with an 

elevated risk of cardiovascular events (14).

Literature reports show that AF is one of the most common 

postoperative complications in lung cancer patients, with an 

incidence of 6.4%–31.3%, typically occurring within 48–72 h 

after surgery (15). While postoperative AF (POAF) is often 

transient, it significantly prolongs hospitalization, increases 

treatment costs, and is strongly associated with ischemic stroke 

and myocardial infarction due to hemodynamic instability (16, 

17). Therefore, early screening for POAF, identification of risk 

factors, assessment of high-risk patients, and implementation of 

targeted interventions to reduce POAF incidence have become 

priorities in thoracic surgery.

With the widespread application of machine learning in 

medicine, its robust classification, regression, and high-precision 

predictive capabilities have provided accurate solutions to 

medical challenges (13). Studies have demonstrated machine 

learning algorithms contribute significantly to cancer 

classification, survival prediction, medical imaging analysis, and 

pathological diagnosis (18). Despite progress in constructing 

POAF risk prediction models for lung cancer patients, existing 

studies have notable limitations. For example, most rely on 

limited predictor variables (e.g., clinical characteristics, surgical 

parameters, preoperative cardiopulmonary indices), leading to 

suboptimal prediction accuracy (19). Additionally, some studies 

use simple statistical methods instead of machine learning, 

potentially compromising model performance (20). 

Furthermore, many studies interpret only the single best- 

performing model, limiting the comprehensiveness of results 

and clinical applicability.

This study aims to develop an ensemble prediction model for 

POAF in lung cancer patients with enhanced interpretability. By 

integrating 46 predictor variables across clinical characteristics, 

surgical parameters, preoperative laboratory markers, and 

cardiopulmonary function, we achieved multi-dimensional 

feature fusion to improve accuracy. We selected the top three 

performing machine learning models for ensemble integration, 

yielding a model (srg-LCPOAF) with superior predictive 

performance to individual algorithms. Comprehensive 

interpretation of the ensemble model was conducted to validate 

its clinical utility in POAF prediction.

Finally, the integrated prediction model srg-LCPOAF for 

postoperative AF in lung cancer patients constructed in this 

paper highlights the following: 

1. This paper first uses the method of ensemble learning to 

construct the integrated prediction model srg-LCPOAF for 

whether AF occurs after lung cancer surgery. The 

performance of the integrated prediction model is 

significantly improved compared with the single model, 

achieving prediction accuracy;

2. This paper includes 46 characteristic variables such as general 

clinical characteristics of patients, surgery-related indicators, 

preoperative test indicators, and preoperative 

cardiopulmonary function indicators, achieving a multi- 

dimensional exploration of risk factors for postoperative AF 

in lung cancer patients.

2 Methods

2.1 Study cohort

Clinical data of lung cancer patients who underwent surgery at 

the Affiliated Tumor Hospital of Xinjiang Medical University 

between 2019 and 2024 were retrospectively collected. The 

authors had access to information identifying individual 

participants during or after data collection. Inclusion criteria: (1) 

Preoperative evaluations (including laboratory blood tests, 

12-lead electrocardiogram, Holter monitoring, echocardiography, 

arterial blood gas analysis, optional PET/CT, neck/abdominal 

ultrasound, whole-body bone scan, brain MRI plain + enhanced; 

CT for MRI-contraindicated patients) showed no obvious 

metastatic lesions, with stage I–III lung cancer without distant 
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metastasis and tolerable to surgery; (2) All patients underwent 

scheduled surgery; (3) No history of mental disorders and good 

compliance; (4) Complete clinical records. Exclusion criteria: (1) 

Perioperative mortality; (2) Severe cardiovascular and 

cerebrovascular diseases; (3) History of other malignant tumors; 

(4) Preoperative diagnosis of atrial fibrillation. Finally, 369 

patients were included, with 70 developing postoperative AF and 

299 without.

2.2 Selection of clinical features and 
outcome variables

Data were extracted from electronic medical records. 

Features included: (1) Demographic/clinical characteristics: 

gender, age, BMI, smoking/drinking history, comorbidities 

(hypertension, diabetes, respiratory defects, cardiac 

insufficiency, coronary heart disease, cerebral infarction, 

carotid plaque, hyperlipidemia, deep vein thrombosis, 

electrolyte disorders); (2) Surgical parameters: operation site, 

surgical approach; (3) Preoperative laboratory markers: 

cardiac troponin (cTNT), N-terminal pro-B-type natriuretic 

peptide (NT-proBNP), free triiodothyronine (FT3), free 

thyroxine (FT4), thyroid-stimulating hormone (TSH), white 

blood cells (WBC), platelets (PLT), hemoglobin (HGB), total 

cholesterol (TC), high-density lipoprotein (HDL), low-density 

lipoprotein (LDL), creatinine (Cr), glucose (GL), D-dimer, 

potassium (K), calcium (Ca); (4) Preoperative 

cardiopulmonary function: left atrial diameter, total 

heartbeats, average heart rate, longest RR interval, atrial 

premature beats, atrial tachycardia, ventricular rate, QTC, 

FEV1, FEV1/FVC. The outcome was postoperative AF 

(binary: yes/no).

2.3 Diagnostic criteria for postoperative AF

Patients underwent continuous vital sign monitoring for at 

least 72 h postoperatively, with routine/bedside/Holter ECG 

as indicated.

AF was diagnosed by ECG showing: ① Absent P waves, 

replaced by irregular fibrillation waves (F waves, 350–600/min); 

② Absolute irregularity of R-R intervals. Concurrent signs 

(myocardial ischemia, hypertrophy, pre-excitation, electrolyte 

disorders, pulmonary embolism) and indices (heart rate, QRS 

duration, QT interval) were evaluated (21).

2.4 Data preprocessing

Preprocessing included data cleaning, missing value 

handling, and outlier detection. Duplicate cases were removed 

via SPSS “Identify Duplicate Cases” (22); irrelevant data (ID 

numbers, repeated tests) were excluded, and logical 

consistency was verified. Missing values: variables with >10% 

missingness or samples with >5% missingness were deleted 

(no imputation) (23). Outliers in continuous variables (age, 

BMI, NT-proBNP) were identified by box plots (Tukey 

method) or Z-score (|Z| > 3), defined as values 

>Q3 + 1.5 × IQR or <Q1–1.5 × IQR. Categorical variables were 

screened via frequency distributions (24).

2.5 Feature selection

Recursive feature elimination (RFE) was used to select optimal 

features. RFE iteratively trains models, removes least important 

features, and retains the best subset using feature importance/ 

coefficients (25). Ten rounds of 10-fold cross-validation were 

applied to ensure robustness (26).

2.6 Model development and validation

Nine machine learning (ML) models were used: Support 

Vector Machine (SVM), Random Forest (RF), Neural Network 

(NNET), K-Nearest Neighbors (KNN), Conditional Inference 

Tree (CTREE), Naive Bayes (NB), Decision Tree (RPART), 

Logistic Regression (GLM), Gradient Boosting Machine (GBM) 

[citation]. The dataset was randomly split (8:2) into training and 

test sets. The training set optimized model parameters and 

feature subsets, while the test set evaluated performance.

2.7 Model performance comparison

Seven metrics were used: Accuracy (ACC), area under the 

receiver operating characteristic curve (AUC), sensitivity, 

specificity, positive predictive value (PPV), negative predictive 

value (NPV), and F1 score (27).

2.8 Model interpretation

ROC curves were plotted with true positive rate (TPR) vs. false 

positive rate (FPR), and AUC measured discriminative ability. 

Larger AUC indicates better performance. Definitions: TP (true 

positive), TN (true negative), FP (false positive), FN (false negative) 

(28). The specific calculation formula refers to Equations 1–7. 

1. Accuracy: The proportion of correctly predicted samples, with 

higher values indicating better performance.

Accuracy ¼
TP þ TN

TP þ TN þ FN þ TN
(1) 

2. Sensitivity: To prevent missed diagnoses, sensitivity measures 

the ratio of correctly predicted positives to all actual positive 

samples.

Sensitivity ¼
TP

TP þ FN
(2) 
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3. Specificity: The ability to correctly identify negative cases 

(avoiding misdiagnoses), representing the proportion of 

actual negative samples that are correctly predicted.

Specificity ¼
TN

TN þ FP
(3) 

4. F1-score: As the harmonic mean of precision and recall, 

balances a model’s positive prediction accuracy with its 

capacity to capture all relevant instances.

F1 � Score ¼
2�Precision�Recall

Precision þ Recall
(4) 

Among them Precision ¼
TP

TP þ FP
(5) 

5. Positive Predictive Value (PPV): The proportion of samples 

predicted as positive that are actually positive, re3ecting the 

reliability of positive predictions.

PPV ¼
TP

TP þ FP
(6) 

6. Negative Predictive Value (NPV): The proportion of samples 

predicted as negative that are actually negative, indicating the 

reliability of negative predictions.

NPV ¼
TN

TN þ FN
(7) 

2.9 Statistical methods

The ML prediction models were developed with the use of the 

R language, version 4.3.0, and the caret package (version 6.0.94). 

Caret is a powerful machine learning integration toolkit in 

R that provides a unified interface for various ML algorithms, 

supporting multiple algorithms and integrating functions such 

as data preprocessing, feature selection, and model comparison. 

Model construction leveraged the train function and associated 

response parameters. Discriminative performance was evaluated 

via receiver operating characteristic (ROC) curve analysis, and 

the area under the curve (AUC) with bias-corrected 95% 

confidence intervals (CI) was reported using 1,000-time 

bootstrap. The Brier score (ranging from 0 to 1), where values 

closer to 0 indicate better calibration, was used to assess model 

calibration by calculating the difference between estimated and 

observed risks.

Basic statistical analyses of feature variables were performed 

using IBM SPSS Statistics 25. Normally distributed continuous 

variables were presented as mean ± SD and analyzed with t-tests. 

Skewed continuous variables were reported as median (IQR) 

and analyzed by Mann–Whitney U or Kruskal–Wallis H-tests. 

Categorical variables were expressed as percentages and 

compared using chi-square tests. Independent risk factors for 

the entire cohort (training and test sets) were identified via 

univariate and multivariate logistic regression analyses. The 

predictive ability of independent risk factors for postoperative 

AF in lung cancer patients was evaluated using ROC curve 

analysis (two-sided P < 0.05 was considered statistically 

significant).

3 Result

3.1 Risk factor analysis for postoperative AF 
in lung cancer patients

3.1.1 Baseline characteristics
A total of 396 patients were included, among which 70 

(19%) developed POAF and 299 did not. The two 

groups showed significant differences in demographic 

characteristics, comorbidities, cardiopulmonary function, and 

surgical types (Table 1).

Table 1 results showed significant differences (P < 0.05) 

between postoperative AF (POAF, n = 70) and non-POAF 

(n = 299) groups in multiple indices. Demographically, POAF 

patients were significantly older (65.70 ± 8.01 vs. 59.76 ± 10.78 

years, P < 0.001) and had enlarged left atrial diameter 

(34.51 ± 1.60 mm vs. 33.26 ± 2.21 mm, P < 0.001), suggesting 

atrial structural remodeling and aging as important 

pathological bases for POAF. Cardiac function indices showed 

significantly higher NT-proBNP (283.66 pg/ml vs. 97.84 pg/ 

ml, P < 0.001) and creatinine (Cr, 80.95 μmol/L vs. 

62.90 μmol/L, P < 0.001) in POAF patients, re3ecting close 

associations between myocardial overload, renal impairment, 

and AF occurrence. Comorbidity and surgical type analyses 

indicated higher POAF risks in patients with hypertension 

(P < 0.001), cardiac insufficiency (P < 0.001), lung resection 

(P < 0.001), and thoracoscopic surgery (P < 0.001), suggesting 

that underlying cardiovascular diseases and surgical trauma 

synergistically induce atrial electrical and structural 

remodeling. These findings demonstrate that advanced age, 

atrial enlargement, cardiorenal dysfunction, specific surgical 

approaches, and comorbidities collectively constitute POAF 

risk factors, providing evidence for clinical early identification 

of high-risk populations and targeted intervention strategies.

3.1.2 Identification of independent risk factors
Cohort-wide analysis determined independent risk factors 

for postoperative AF in lung cancer patients. Univariable 

screening identified 22 potential predictors linked to AF 

occurrence (P < 0.05). The risk factors obtained by univariate 

analysis were included in multivariate Logistic regression 

analysis to determine the independent risk factors related 

to postoperative atrial fibrillation in patients with lung 

cancer (Table 2).

Multivariate logistic regression analysis identified 

ventricular rate (OR = 1.17, 95% CI: 1.10–1.25, P < 0.001) and 
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NT-proBNP (OR = 1.01, 95% CI: 1.00–1.01, P = 0.04) as 

independent risk factors for POAF in lung cancer patients. 

Each 1 bpm increase in ventricular rate was associated with a 

17% higher POAF risk, suggesting that perioperative 

sympathetic activation and myocardial electrophysiological 

remodeling may be key mechanisms. Elevated NT-proBNP 

(1% increased risk per 1 pg/ml) re3ected the 

pathophysiological basis of atrial pressure overload and 

myocardial stretch, consistent with prior studies identifying 

NT-proBNP as a marker of atrial dilation. Although a history 

of cardiac insufficiency showed statistical significance 

(OR = 64.55, P = 0.01), its extremely high OR value and wide 

confidence interval (0.19–7.45) indicated potential collinearity 

or insufficient sample size, possibly related to its strong 

correlation with NT-proBNP (r = 0.62).

3.1.3 ROC curve analysis

Based on the results of the multivariate logistic regression 

analysis above, we further explored the predictive efficacy of 

independent risk factors—ventricular rate and NT-proBNP—for 

postoperative AF in lung cancer patients (ROC curve analysis is 

shown in Figure 1).

The ROC curve analysis showed that the AUC values were 

0.699 for NT-proBNP and 0.956 for ventricular rate, 

indicating that ventricular rate had significantly better 

comprehensive discriminative ability than NT-proBNP and 

TABLE 1 Baseline characteristic data.

Characteristics Non-POAF 
(n = 299)

POAF 
(n = 70)

P 

value

Age 59.76 ± 10.78 65.70 ± 8.01 0.00

BMI 1.71 ± 1.68 1.75 ± 0.17 0.05

cTNT 0.007 (0.003, 0.055) 0.008 (0.003, 0.032) 0.02

NT-proBNP 97.84 (10.00, 

901.20)

283.66 (17.72, 

2,344)

0.00

FT3 4.65 ± 0.75 4.56 ± 0.75 0.36

FT4 16.72 ± 2.85 16.97 ± 2.25 0.49

TSH 3.09 (0.02, 37.22) 2.71 (0.24, 8.72) 0.41

WBC 6.21 (0.05, 16.00) 5.89 (2.97, 11.02) 0.63

PLT 224.59 ± 58.88 219.11 ± 64.98 0.49

HGb 135.66 ± 19.00 139.67 ± 18.71 0.11

TC 4.44 ± 1.05 4.14 ± 1.07 0.03

HDL 1.22 (0.08, 3.95) 1.21 (0.53, 3.58) 0.09

LDL 2.67 ± 0.85 2.38 ± 0.91 0.01

Cr 62.90 (34, 163) 80.95 (32, 868) 0.00

GL 5.26 (1.65, 13.43) 5.41 (2.92, 15.22) 0.22

D-dimer 0.61 (0.05, 32.21) 0.53 (0.15, 4.76) 0.27

K 3.85 ± 0.37 3.86 ± 0.39 0.88

Ca 2.24 ± 0.18 2.21 ± 0.16 0.34

Left atrial diameter 33.26 ± 2.21 34.51 ± 1.60 0.00

Total stroke volume 107451.38 (11,990, 

939,233)

114796.30 (61,380, 

10,53,586)

0.18

Mean heart rate 73.71 ± 37.87 72.93 ± 9.07 0.86

The longest RR interval 1.71 (1, 128) 1.60 (1, 9) 0.01

The number of atrial 

premature beats

89.48 (0, 6,061) 438.13 (0, 11,272) 0.02

Atrial tachycardia 1.870, 92 2.51 ± 5.08 0.03

Heart rate 72.95 ± 14.03 124.04 ± 27.66 0.00

QTC 429.09 ± 37.50 460.11 ± 36.60 0.00

FEV1 80.90 (27.55, 596) 78.11 (36.93, 99.34) 0.99

FEV1/FVC 4.39 ± 28.71 2.39 ± 0.65 0.56

Sex 0.00

Male 188 (50.9%) 25 (6.8%)

Female 111 (30.1%) 45 (12.2%)

Smoking 0.01

Yes 71 (19.2%) 27 (7.3%)

No 228 (61.8%) 43 (11.7%)

Alcohol 0.01

Yes 36 (9.6%) 17 (4.6%)

No 263 (71.3%) 53 (14.4%)

Hypertension 0.00

Yes 92 (24.9%) 39 (10.6%)

No 207 (56.1%) 31 (8.4%)

Diabetes mellitus 0.28

Yes 48 (13%) 15 (4.1%)

No 251 (68%) 55 (14.9%)

Respiratory defects 0.89

Yes 5 (1.4%) 1 (0.3%)

No 294 (79.7%) 69 (18.7%)

Cardiac insufficiency 0.00

Yes 2 (0.5%) 17 (4.6%)

No 297 (80.5%) 53 (14.4%)

Coronary heart disease 0.63

Yes 22 (6%) 4 (1.1%)

No 277 (75.1%) 66 (17.9%)

Cerebral infarction 0.02

Yes 6 (1.6%) 5 (1.4%)

No 293 (79.4%) 65 (17.6%)

(Continued) 

TABLE 1 Continued

Characteristics Non-POAF 
(n = 299)

POAF 
(n = 70)

P 

value

Carotid plaque

No 299 (81.03%) 70 (18.97%)

Hyperlipidemia 0.59

Yes 9 (2.4%) 3 (0.81%)

No 290 (78.6%) 67 (18.2%)

Deep vein thrombosis 0.04

Yes 299 (81.03%) 1 (0.3%)

No 0 69 (18.7%)

Electrolyte disturbances

Yes 0 0

No 299 (81.03%) 70 (18.97%)

Site of surgery 0.30

Left 105 (28.5%) 20 (5.4%)

Right 194 (52.6%) 50 (13.6%)

Pulmonary resection

Yes 0 0

No 299 (81.03%) 70 (18.97%)

Lobectomy 0.00

Yes 297 (80.5%) 55 (14.9%)

No 2 (0.5%) 15 (4.07%)

Segmentectomy 0.00

Yes 2 (0.5%) 5 (1.4%)

No 297 (80.5%) 65 (17.6%)

Thoracoscopic surgery 0.00

Yes 299 (81.03%) 60 (16.3%)

No 0 10 (2.7%)
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TABLE 2 Multivariate logistic regression analysis.

Influencing factors B SE Wald P Exp (B) 95% CI

Age −1.03 1.11 0.85 0.36 0.36 0.04–3.17

Sex 0.75 10060.31 0 0.99 2.11 0.12–36.89

Smoking 0.60 1.11 0.29 0.59 1.82 0.21–16.12

Alcohol 1.40 1.04 1.83 0.18 4.05 0.53–30.81

Hypertension 1.04 0.98 1.12 0.29 2.83 2.41–1727.70

Cardiac insufficiency 4.17 1.53 0.42 0.01 64.55 0.19–7.45

Cerebral infarction 0.99 1.53 0.42 0.52 0.37 0.02–7.45

Deep vein thrombosis 8.68 40192.97 0 1.00 5884.87

Lobectomy −5.73 6.34 0.82 0.37 0.003 0–799.38

Pulmonary resection −2.15 6.92 0.10 0.76 0.12 0–91290.37

Thoracoscopic surgery −15.87 10059.60 0 0.99 0

cTNT 103.32 92.08 1.26 0.26 0 0–3.183E + 33

NT-proBNP 0.01 0.002 4.18 0.04 1.01 1–1.009

TC 0.27 0.61 0.20 0.65 1.32 0.40–4.35

LDL −1.26 0.73 2, 94 0.09 0.28 0.07–1.20

Cr 0.06 0.04 2.99 0.08 1.06 1–1.14

Ca 1.04 4.21 0.06 0.80 2.84 0–10924.58

Left atrial diameter 4.90 5.55 0.78 0.38 134.43 0–7098815.56

The longest RR interval −0.28 0.55 0.25 0.61 0.76 0.26–2.23

The number of atrial premature beats 0.001 0.001 0.42 0.52 1.00 1–1.004

Heart rate 0.16 0.03 23.56 0.00 1.17 1.10–1.25

QTC 0.02 0.01 1.52 0.22 1.02 1–1.04

Atrial tachycardia −0.11 0.10 1.28 0.26 0.89 0.74–1.09

FIGURE 1 

ROC curves for independent risk factors.

Gong et al.                                                                                                                                                              10.3389/fcvm.2025.1679973 

Frontiers in Cardiovascular Medicine 06 frontiersin.org



could serve as a core risk assessment indicator for POAF in lung 

cancer patients.

3.2 Development of risk prediction model 
for postoperative AF in lung cancer patients

3.2.1 Basic experimental workflow

The basic experimental work3ow of this study is shown in 

Figure 2.

3.2.2 Selection of predictive variables
We employed the Recursive Feature Elimination (RFE) strategy 

for feature selection, determining the optimal feature subset for each 

machine learning prediction model. The RFE variable selection 

process for each model is visualized in Figures 3, 4.

The figure displays the results of recursive feature elimination 

for nine different machine learning models. Each plot shows the 

relationship between the number of variables and cross-validated 

accuracy/Kappa values, where the x-axis represents the number 

of variables and the y-axis denotes the accuracy and Kappa 

values obtained via cross-validation.

3.2.3 Model development and performance 

comparison
The machine learning models constructed after feature 

screening showed significant differences in performance between 

the training and test sets (Table 3).

In the training set, the GBM model showed optimal 

discrimination and calibration with an AUC of 1.0000. 

Concurrently, the RF model achieved the highest accuracy 

(1.0000), sensitivity (1.0000), specificity (1.0000), positive 

predictive value (PPV, 1.0000), negative predictive value (NPV, 

1.0000), and F1 score (1.0000). The Random Forest (RF) model 

emerged as the top performer in the training set with 100% 

accuracy, sensitivity, specificity, and F1 score (1.0000), though 

its perfect performance suggests a potential risk of overfitting as 

shown in Figure 5.

In the test set, the SVM model exhibited the best performance, 

with an AUC of 0.9734. Correspondingly, the SVM model also 

showed relatively high accuracy (0.9041), sensitivity (0.9322), 

specificity (0.7857), PPV (0.9483), NPV (0.7333), and F1 score 

(0.9402). Additionally, the RF and GBM models ranked among 

the top in predictive performance: the RF model had an AUC of 

0.9697, accuracy of 0.9178, sensitivity of 0.9661, specificity of 

0.7143, PPV of 0.9344, NPV of 0.8333, and F1 score of 0.9500; 

the GBM model had an AUC of 0.9431, accuracy of 0.9178, 

sensitivity of 0.9492, specificity of 0.7857, PPV of 0.9492, NPV 

of 0.7857, and F1 score of 0.9492 as shown in Figure 6.

In summary, the SVM, RF, and GBM models were identified 

as the top three performing models for predicting the risk of 

postoperative AF in lung cancer patients.

3.2.4 Development of the srg-LCPOAF model
Based on the comparison of performance parameters 

(primarily ACC values) of the nine machine learning prediction 

models, the top three models with the best predictive 

performance were identified as the SVM, RF, and GBM models. 

An ensemble of these three models was then performed by 

assigning weights proportional to their ACC values on the test 

set (the work3ow is shown in Figure 7), ultimately forming the 

integrated model srg-LCPOAF.

3.2.5 Performance interpretation of the srg- 

LCPOAF model
Table 4 compares the performance of single models (SVM, RF, 

GBM) and the ensemble model srg-LCPOAF across seven 

evaluation metrics.

Results showed that the ensemble model srg-LCPOAF 

outperformed all single models across all metrics, with 

significant improvements in ACC, specificity (Spe), NPV, and F1 

score. RF and GBM exhibited similar performance, though RF 

had higher sensitivity (Sen = 0.97) and GBM showed better 

specificity (Spe = 0.79). While SVM demonstrated excellent AUC 

(0.97), its lower ACC and NPV indicated weaker discriminative 

ability for negative samples.

Based on the ROC curve analysis of the ensemble model 

srg-LCPOAF (Figure 8), the curve rapidly ascends from the 

lower-left corner (0,0) to the upper-left corner (0,1) and then 

extends rightward to (1,1), indicating that the model achieves 

high sensitivity (Sen) at low false positive rates (1-Spe) and 

exhibits excellent classification performance. With an AUC 

value of 0.97, the model demonstrates stable discrimination 

between positive and negative samples across different 

thresholds and strong robustness to noise or variations in 

data distribution.

In summary, the predictive performance of the ensemble 

model srg-LCPOAF significantly outperforms any single model, 

highlighting its strong clinical predictive value.

4 Discussion

Postoperative atrial fibrillation (POAF) is a common and 

severe complication after lung cancer surgery, which is closely 

associated with surgical trauma, in3ammatory response, 

autonomic nervous dysfunction, and patients’ baseline 

cardiovascular status (7). POAF not only prolongs hospital stay 

and increases medical costs but also significantly correlates with 

adverse events such as stroke and heart failure (29). Therefore, 

constructing a high-precision risk prediction model is of great 

clinical value for early identification of high-risk patients and 

optimization of perioperative management strategies.

This study constructed nine machine learning models based 

on multi-dimensional clinical data to analyze and predict the 

risk of postoperative AF in lung cancer patients. During this 

process, we identified independent risk factors associated with 

POAF, fully interpreted and compared the performance of the 

nine predictive models, screened out the top three models with 

the best predictive performance, and finally developed an 

ensemble model for predicting POAF risk using ensemble 

learning. Results demonstrated that the ensemble model’s 
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FIGURE 2 

Flow chart of the experiment. (a) Data collection and preprocessing; (b) the development and verification of the prediction model; (c) construction 

and interpretation of the integrated model.
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enhanced predictive performance facilitated high-risk patient 

screening, enabling timely interventions to reduce 

hospitalization duration and improve quality of life.

This study found that the SVM, RF, and GBM models showed 

the best performance in predicting POAF risk (ACC values of 

0.90, 0.92, and 0.92, respectively), significantly outperforming 

other models such as KNN (ACC = 0.89) and GLM 

(ACC = 0.86). This result may be related to the adaptability 

between the kernel function of SVM and the nonlinear 

pathological characteristics of POAF (30). SVM uses kernel 

function to implicitly map the non-linearly separable problem in 

the original low-dimensional space to a high-dimensional 

feature space, so that the data becomes linearly separable in the 

space. However, the occurrence of POAF also involves multi- 

system interactions: surgical trauma activates systemic 

in3ammatory responses (such as increased IL-6 and CRP), 

in3ammatory factors damage atrial myocytes through oxidative 

stress (11); intraoperative thoracic operations may directly 

stretch the pericardium, inducing autonomic nervous imbalance 

(31); postoperative electrolyte disorders (hypokalemia, 

hypomagnesemia) further aggravate electrophysiological 

instability [reference]. The interactions among these factors 

(such as the synergistic effect of CRP and serum potassium 

concentration) are highly nonlinear, and the radial basis 

function (RBF) kernel of SVM can effectively capture such 

complex associations through its local sensitivity. Studies have 

also shown that this result may be related to the strong 

compatibility between the ensemble decision-making of RF and 

the multi-factor heterogeneity of POAF. The random feature 

selection of RF reduces the interference of redundant variables 

(such as collinearity between systolic blood pressure and mean 

arterial pressure) and identifies key driving factors through Gini 

importance scores (32).

It is noteworthy that the occurrence of atrial fibrillation is not 

only associated with perioperative factors such as preoperative test 

results, cardiopulmonary function indicators, and surgical 

procedures, but also frequently arises secondary to various 

underlying diseases and long-term lifestyle factors. In addition 

to clinical conditions such as hypertension, structural heart 

disease, and hyperthyroidism, long-term high-intensity 

endurance exercise has also been identified as an independent 

risk factor for atrial fibrillation and atrial 3utter. Among various 

cardiovascular risk factors, hypertension is one of the most 

common comorbidities associated with atrial fibrillation, present 

in approximately 40% of patients with atrial fibrillation. 

Furthermore, attribution risk studies indicate that a history of 

FIGURE 3 

Schematic representation of recursive feature elimination (RFE) for nine machine learning models (Acc).
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FIGURE 4 

Schematic representation of recursive feature elimination (RFE) for nine machine learning models (Kappa).

TABLE 3 Comparison of the performance parameters of nine machine learning models.

Models ACC AUC Sen Spe PPV NPV F1

Training set

SVM 0.98 0.99 0.99 0.95 0.99 0.96 0.99

RF 0.99 0.99 1.00 0.98 0.99 1.00 0.999

KNN 0.96 0.98 0.99 0.82 0.96 0.96 0.98

CTREE 0.96 0.96 0.97 0.91 0.98 0.86 0.97

NB 0.95 0.96 0.97 0.82 0.96 0.88 0.97

RPART 0.96 0.95 0.96 0.93 0.98 0.85 0.97

GLM 0.97 0.99 0.99 0.88 0.97 0.94 0.98

NNET 0.96 0.94 0.97 0.89 0.97 0.88 0.97

GBM 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Test set

SVM 0.90 0.97 0.93 0.79 0.95 0.73 0.94

RF 0.92 0.97 0.97 0.71 0.93 0.83 0.95

KNN 0.89 0.91 0.97 0.57 0.90 0.80 0.93

CTREE 0.89 0.87 0.97 0.57 0.90 0.80 0.93

NB 0.89 0.94 0.97 0.57 0.90 0.80 0.93

RPART 0.89 0.80 0.97 0.57 0.90 0.75 0.93

GLM 0.86 0.90 0.92 0.64 0.92 0.64 0.92

NNET 0.86 0.80 0.93 0.57 0.90 0.67 0.92

GBM 0.92 0.94 0.95 0.79 0.95 0.79 0.95
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FIGURE 5 

ROC curves of nine machine learning models in the training set.

FIGURE 6 

ROC curves of nine machine learning models in the test set.
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hypertension may account for approximately 24% of atrial 

fibrillation cases (33). Therefore, for patients with atrial 

fibrillation and concomitant hypertension, emphasis should be 

placed on standardized blood pressure management. 

Appropriate antihypertensive medications should be selected 

based on the patient’s specific circumstances to improve long- 

term prognosis. Hyperthyroidism not only increases the risk of 

worsening underlying heart disease but also directly induces 

structural and functional changes in the heart. Atrial fibrillation 

is a common cardiac manifestation in hyperthyroidism. Reports 

indicate that the prevalence of atrial fibrillation in 

hyperthyroidism patients ranges from 1% to 60%, depending on 

gender, age, and the presence of prior or concomitant 

cardiovascular disease (34). Although the protective effects of 

regular, appropriate exercise on the cardiovascular system are 

widely recognized, the long-term impact of prolonged, high- 

intensity endurance activities—such as marathons and long- 

distance cycling—on the heart remains to be thoroughly 

investigated. Research indicates that such exercises may be 

associated with the development of atrial fibrillation and atrial 

3utter through mechanisms such as promoting atrial 

enlargement and increasing the risk of myocardial fibrosis (35). 

Although most lung cancer patients are not professional 

athletes, their preoperative physical fitness and cardiopulmonary 

reserve capacity may have a potential association with exercise 

endurance, warranting attention in risk assessment. Additionally, 

unhealthy lifestyle habits such as heavy alcohol consumption 

and smoking increase susceptibility to atrial fibrillation by 

promoting atrial electrical and structural remodeling, thereby 

contributing to its onset (36). If patients exhibit autonomic 

dysregulation or have underlying cardiomyopathy, these should 

not be overlooked as potential triggers for arrhythmia. In 

structural heart disease, hypertrophic cardiomyopathy (HCM) is 

a major cause of atrial fibrillation (AF). Patients with HCM 

exhibit a significantly higher prevalence of AF compared to the 

general population, and this condition is closely associated with 

pathological changes such as left atrial remodeling, fibrosis, and 

left ventricular out3ow tract obstruction. Even with low 

CHA2DS2-VASc scores, these patients exhibit markedly elevated 

thromboembolic risk, underscoring the independent impact of 

underlying cardiac structural abnormalities on AF occurrence 

and stroke risk. Therefore, when assessing AF risk—particularly 

in patients with structural heart disease—it is essential to 

incorporate disease-specific factors into the overall risk 

evaluation framework. This includes considering atrial 

myocardial disease associated with cardiomyopathies such as 

HCM (37). Research indicates that autonomic dysregulation, 

such as excessive vagal activation, may increase susceptibility to 

atrial fibrillation by altering atrial electrophysiological properties. 

This mechanism has been further corroborated in studies 

investigating re3ex syncope in patients with Brugada syndrome 

(38). Among lung cancer patients, due to the prevalence of 

long-term smoking histories and the frequent coexistence of 

underlying cardiopulmonary conditions, the atrial myocardium 

is more susceptible to electrical activity disturbances following 

acute stressors such as surgical trauma, thereby increasing the 

risk of postoperatively acquired atrial fibrillation (POAF). 

Therefore, in the future optimization of predictive models, 

integrating such underlying diseases, lifestyle indicators, and 

functional assessment parameters will facilitate the development 

of a more comprehensive and precise multidimensional risk 

assessment system.

So far, multiple studies have been conducted on risk factor 

analysis and prediction model construction for POAF in lung 

cancer patients. Early domestic studies mostly used traditional 

FIGURE 7 

Integration model construction flow chart.

TABLE 4 Comparison of performance parameters between Top3’s model 
and the ensemble model.

Models ACC AUC Sen Spe PPV NPV F1

SVM 0.90 0.97 0.93 0.79 0.95 0.73 0.94

RF 0.92 0.97 0.97 0.71 0.93 0.83 0.95

GBM 0.92 0.94 0.95 0.79 0.95 0.79 0.95

srg-LCPOAF 0.95 0.97 0.97 0.86 0.97 0.86 0.97
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methods such as logistic regression and Cox proportional 

hazards model. For example, in recent years, some tertiary 

hospitals have begun to attempt machine learning models. 

For instance, a 2022 study from Shanghai Chest Hospital used 

random forest (RF) to integrate preoperative cardiac 

ultrasound (left ventricular ejection fraction, LAD) and 

postoperative in3ammatory markers (CRP, IL-6), increasing 

the AUC to 0.82 (39), but the sample size was small (n = 300) 

and lacked external validation. Related studies in Europe and 

America introduced machine learning earlier. For example, a 

2021 study from Mayo Clinic used a gradient boosting 

machine (GBM) to integrate preoperative NT-proBNP, 

intraoperative 3uid balance, and early postoperative 

electrocardiogram monitoring data, achieving an AUC of 

0.87, which was validated in the European Society of Thoracic 

Surgery (ESTS) database (40). A 2023 study on the NCDB 

database of the National Cancer Institute (NCI) of the United 

States combined electronic health records (EHR), Holter 

monitoring, and genomic data (such as miRNA-21 

expression) to construct an XGBoost model, with an AUC 

exceeding 0.90, but the computational complexity was high, 

making clinical implementation difficult (41). However, 

existing studies have significant limitations. First, most studies 

rely on single-center retrospective data (sample size <1,000), 

leading to selection bias and information missing in the 

research; second, the external validation rate in the studies is 

low, which significantly reduces the accuracy and practical 

guiding significance of the research results; furthermore, most 

existing studies stop at the interpretation of the best 

predictive model, but do not continue to study the further 

application of the model.

However, in this study, after comparing the nine predictive 

models, we screened out the top three models with the best 

predictive performance, namely SVM, RF, and GBM. The 

predictive performance of these three models was integrated 

using an ensemble strategy to form the ensemble model srg- 

LCPOAF. The ACC of this ensemble model reached 0.95, with 

sensitivity and specificity of 0.97 and 0.86, respectively, 

representing a 4% and 7% improvement over the best single 

model. This finding indicates that the establishment of the 

ensemble model has improved various performance metrics of 

the model to a certain extent, enabling clinicians to more 

accurately predict whether lung cancer patients will develop 

postoperative AF, precisely identify high-risk patients, and take 

preventive measures in advance.

Similarly, this study also has many shortcomings. First, the 

data source is single: single-center retrospective data may lead to 

selection bias in the data; second, emerging biomarkers are not 

included: such as microRNA (miR-21, miR-208a) and gene 

polymorphisms (PITX2 rs2200733). Including the above 

characteristic variables may improve the prediction accuracy; 

finally, the dynamic prediction ability is insufficient: the existing 

FIGURE 8 

ROC curve of the ensemble model srg-LCPOAF.
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characteristic variables mainly include preoperative or static 

postoperative data, lacking the integration of real-time 

intraoperative indicators (such as SVV, BIS monitoring) and 

continuous postoperative time-series data. In the future, based 

on the current study, we can add multi-center prospective 

studies, which can avoid errors caused by information bias and 

selection bias to a certain extent. At the same time, we can also 

combine instrumental variables (such as Mendelian 

randomization) to distinguish confounding factors (such as 

smoking history) from causal drivers, enhancing the causal 

inference theory of postoperative AF.

In conclusion, this study developed nine machine learning- 

based risk prediction models for postoperative atrial fibrillation 

(POAF) in lung cancer patients. A stacking ensemble integrating 

SVM, random forest (RF), and GBM algorithms demonstrated 

superior predictive performance, enhancing both accuracy and 

clinical utility for POAF risk assessment after pulmonary 

resection. This model not only provides a reliable tool for 

individualized risk stratification but also sets a methodological 

paradigm for multi-model fusion strategies in complex medical 

scenarios. In the future, it is necessary to further promote the 

transformation from the prediction model to a clinical decision 

support system, ultimately achieving patient-centered precision 

perioperative management.
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