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Background: Obesity and hypertension are among the most prevalent 

comorbidities in heart failure with preserved ejection fraction (HFpEF). In 

addition to its relationship with hypertension in HFpEF, obesity is also strongly 

associated with insulin resistance (IR) and type 2 diabetes (T2D). However, the 

exact cardiac effects underlying this relationship are unknown. We sought to 

differentiate the cardiac phenotype associated with increased adiposity in the 

presence or absence of IR in obese HFpEF. We utilized adipose tissue-specific 

MitoNEET transgenic mice, which develop chronic, metabolically healthy 

adipose tissue expansion (obese non–insulin resistant, OB-NIR), and 

compared them with their wild-type, insulin-resistant littermates (OB-IR).

Methods: OB-NIR MitoNEET and OB-IR wildtype mice were fed a high-fat diet 

for 16 weeks, at which time HFpEF was induced via uninephrectomy, 

d-aldosterone infusion, and 1.0% sodium chloride drinking water for 4 

additional weeks while maintained on the same diet.

Results: OB-NIR HFpEF mice exhibited reduced cardiac fibrosis without 

changes in hypertrophy. This reduction was accompanied by increased 

cardiac expression of SIRT3. Upregulation of several downstream 

mitochondrial targets of SIRT3 was also observed. These included 

mitochondrial fission protein 1 (Fis1), a critical regulator of mitochondrial 

dynamics, and the antioxidant enzyme heme oxygenase-1 (Hmox1). In 

contrast, levels of hydroxy-3-methylglutaryl coenzyme A (CoA) synthase 2 

(HMGCS2) were decreased, while both 3-hydroxybutyrate dehydrogenase 1 

(Bdh1) and succinyl-CoA:3-ketoacid CoA transferase (Oxct1) were elevated. 

Furthermore, genes involved in the electron transport chain, such as 

ubiquinol-cytochrome C reductase hinge protein (Uqcrh, Complex III) and 

mitochondrially encoded cytochrome c oxidase I (Mt-Co1, Complex IV), 

were upregulated.

Discussion: Distinct alterations in cardiac mitochondrial function were 

observed depending on the presence or absence of IR in obese HFpEF mice. 

These findings suggest that SIRT3 may play a central role in mediating 

mitochondrial adaptations in the heart and could represent a promising 

therapeutic target in HFpEF.
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1 Introduction

Obesity has reached epidemic proportions worldwide and is 

increasingly an extremely common finding in patients with heart 

failure (HF) with preserved ejection fraction (HFpEF) (1). 

Currently, HFpEF accounts for over 50% of all HF cases. With 

an aging population and the rising prevalence of metabolic 

disorders—such as obesity, type 2 diabetes (T2D), and 

hypertension—the number of HFpEF cases is expected to 

increase further. Although obesity-related HFpEF is recognized 

as a distinct clinical phenotype (2), the exact mechanisms by 

which obesity directly contributes to its development remain 

unclear. It had been purported that symptoms in patients with 

obesity HFpEF were simply due to excess adiposity and body 

weight rather than other mechanisms, such as underlying 

cardiac abnormalities (3). A retrospective, case-control bariatric 

surgery study demonstrated that removal of excess adiposity 

significantly reduced hospitalizations in “diastolic heart failure” 

(i.e., HFpEF) (4). However, other mechanisms are also propose 

to play a role, including systemic in4ammation, insulin 

resistance (IR), neurohormonal dysregulation, or skeletal muscle 

(SkM) dysfunction, in addition to impaired hemodynamic 

loading (5). Notably, in lean (non-obese) patients with HFpEF, 

intramyocardial fat deposition is greater than in lean patients 

with HFrEF (HF with reduced ejection fraction) and in non-HF 

control subjects. Moreover, the volume of intramyocardial fat is 

independently associated with echocardiographic indicators of 

left ventricular (LV) diastolic dysfunction (6), suggesting that fat 

content may contribute to myocardial stiffness, altered 

energetics, and the pathophysiology of HFpEF independently of 

overall obesity. Furthermore, increased adiposity associated with 

obesity contributes to adverse cardiovascular remodeling, 

diastolic dysfunction, and to the progression to HF, particularly 

in HFpEF (7). Finally, secreted hormones (e.g., leptin and gut- 

derived peptides), the anatomical distribution of adipose depots, 

and the presence of visceral adiposity likely also play pathogenic 

roles in obesity-related HFpEF.

IR and T2D are implicated as causal contributors to adverse 

cardiovascular outcomes seen in obesity-associated HFpEF. T2D 

is particularly relevant in the context of HFpEF, as it is linked 

to impaired hemodynamics, increased symptom burden, and 

reduced functional capacity compared to patients without T2D 

(8, 9). Individuals with T2D exhibit more pronounced 

mitochondrial dysfunction and SkM metabolic impairments 

than those without T2D and these deficits are further 

exacerbated in diabetic HFpEF (5, 10). Moreover, systemic IR 

and hyperglycemia contribute to secondary cardiac IR, leading 

to oxidative stress and imbalances in neurohumoral, 

sympathetic, and cytokine signaling (11). These disturbances 

promote cardiomyocyte hypertrophy, interstitial fibrosis, and 

altered collagen turnover—hallmarks commonly observed in 

HFpEF (12). Notably, a recent clinical trial in obesity HFpEF 

patients, demonstrated that tirzepatide, a long-acting agonist of 

glucose-dependent insulinotropic polypeptide and glucagon-like 

peptide-1 receptors, significantly reduced body mass index 

(BMI), LV mass, and pericardial adipose tissue while also 

improving HbA1c levels and reduced the composite of death 

from cardiovascular causes or worsening HF with improved 

functional status (13).

To determine the precise contribution of increased adiposity- 

independent of IR or T2D on the cardiac phenotype in obesity- 

associated HFpEF, the present study sought to delineate the 

individual contributions of increased adiposity vs. T2D using a 

preclinical model of obese HFpEF. In rodents, obesity can result 

from naturally occurring mutations, genetic manipulation or 

dietary interventions. Among these, diet-induced obesity (DIO) 

models are particularly relevant, as they recapitulate key features 

of human obesity, including the frequent co-development of IR 

and T2D (14). In the present study, a transgenic mouse model 

overexpressing the adipose tissue (AT)-specific mitochondrial 

membrane protein MitoNEET was utilized. When challenged 

with a high-fat diet (HFD), these MitoNEET mice undergo 

chronic, yet “healthy,” expansion of adipose depots without 

developing IR or T2D, thereby representing a model of the 

“metabolically healthy” obese phenotype (15, 16). Given that 

excessive adiposity contributes to ∼65%–75% of primary 

hypertension in humans (17), this murine model of obesity— 

independent of IR and T2D—was subjected to hypertension- 

associated HFpEF using the SAUNA (SAlty drinking water, 

UNilateral Nephrectomy, and Aldosterone) model. The SAUNA 

model induces a HFpEF phenotype characterized by lung 

congestion, preserved LV ejection fraction, LV hypertrophy, and 

impaired diastolic function in the setting of moderate 

hypertension within four weeks (18–23).

Post-translational acetylation of mitochondrial proteins is 

increasingly recognized as a key contributor to impaired cardiac 

energetics and adverse cardiac remodeling (24, 25). Within the 

mitochondria, the acetylation status of proteins involved in 

mitochondrial dynamics, metabolic 4exibility, and antioxidant 

defense is tightly regulated by the NAD⁺-dependent deacetylase 

Sirtuin-3 (SIRT3) (26). Reduced SIRT3 activity has been linked 

to obesity, insulin resistance, and cardiac dysfunction (27–29), 

suggesting it may serve as a mechanistic link between metabolic 

dysregulation and HFpEF pathophysiology. In this study, we 

investigated SIRT3 regulation in a murine model of obese 

HFpEF, with a particular focus as to how IR may in4uence its 

expression and downstream functional consequences.

2 Material and methods

A detailed Material and Methods is available in the 

Supplementary Material.

2.1 Ethics

This investigation conforms to the Guide for the Care and Use 

of Laboratory Animals published by the US National Institutes of 

Health and was approved by the Institutional Animal Care and 

Use Committee at Boston University School of Medicine 

(IACUC: PROTO201800310).
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2.2 AT-specific MitoNEET transgenic mice

AT-specific MitoNEET transgenic mice were donated by Drs. 

Kusminski and Scherer and used as a murine model of obesity 

without IR (OB-NIR). MitoNEET is a transmembrane protein 

located in the outer mitochondrial membrane and named after a 

conserved amino acid sequence, part of which includes Asn-Glu- 

Glu-Thr (NEET). These mice were initially generated by subcloning 

the MitoNEET gene into a plasmid containing the 5.4 kb 

aP2-promoter and a conventional 3′ untranslated region. Following 

linearization, the construct was injected into FVB-derived blastocysts 

(15, 16). FVB wild-type littermates were obese with IR (OB-IR).

2.3 Statistical analysis

All statistical analyses were performed using GraphPad Prism 

(GraphPad Software, Inc). The normality of distributions was 

verified by D’Agostino & Pearson omnibus normality test 

verified the normality of distributions. Differences between the 

two groups were analyzed by unpaired Student t-test or Mann– 

Whitney test as parametric and nonparametric tests, 

respectively. Statistical outliers were calculated using the ROUT 

testing. P < 0.05 was considered statistically significant.

3 Results

3.1 Cardiac structure and function in obese 
MitoNEET mice without insulin resistance 
(OB-NIR) and wild-type mice with insulin 
resistance (OB-IR) after HFD feeding for 16 
weeks

We initially investigated cardiac changes associated to obesity 

in OB-IR and OB-NIR mice fed a HFD for 16 weeks prior to 

HFpEF induction. Systolic blood pressure, LV structure and LV 

systolic and diastolic functions were comparable between groups 

(Supplementary Table S1). Both OB-IR and OB-NIR mice had 

comparable degrees of cardiac hypertrophy, with a significant 

increase in LV mass, when compared to lean wild-type mice of 

similar age (108.2 ± 2.9 mg, P < 0.0001 for both). Hematoxylin- 

eosin staining of the LV of both OB-IR and OB-NIR mice 

showed similar cardiomyocyte size (Supplementary Figure S2A). 

Additionally, collagen deposition in the LV as measured by 

Picrosirius red staining, was no different between OB-IR and 

OB-NIR (Supplementary Figure S2B).

3.2 Metabolic characteristics in obese 
HFpEF mice with and without insulin 
resistance

This obesogenic diet followed by HFpEF induction resulted in 

a murine model of obesity plus hypertension-associated HFpEF 

with IR in wild-type mice (OB-IR HFpEF) and without IR in 

the littermate mice overexpressing MitoNEET in AT (OB-NIR 

HFpEF) (Supplementary Figure S1). Both obese HFpEF groups 

of mice had similar body weight at the end of the 20 

experimental weeks (40.8 ± 1.8 g in OB-IR vs. 41.9 ± 2.5 g in 

OB-NIR, P = 0.8884; Table 1) but, as expected, OB-IR HFpEF 

mice had impaired insulin sensitivity as demonstrated by 

increased fasting basal glucose levels (140.5 ± 7.1 mg/dl vs. 

100.3 ± 5.2 mg/dl in OB-NIR; P = 0.0003), as well as an elevated 

area under the curve (AUC) for the glucose tolerance test 

(30,064 ± 1,722 vs. 24,378 ± 2,083 in OB-NIR; P = 0.0279), and a 

significantly increased HOMA-insulin resistance index 

(13.48 ± 4.9 vs. 2.86 ± 1.4 in OB-NIR; P = 0.0315; Table 1). 

Adipokine measurements showed that circulating leptin levels 

were no different between OB-IR and OB-NIR HFpEF mice. 

Nonetheless circulating adiponectin levels were increased in OB- 

NIR (60.50 ± 13.76 µg/ml) compared to OB-IR HFpEF mice 

(16.01 ± 1.95 µg/ml, P = 0.0329). There were no significant 

differences in triglycerides and total cholesterol circulating levels 

between the two groups (Table 1).

3.3 Physiological and cardiac 
characteristics in obese HFpEF mice with 
and without insulin resistance

The presence or absence of chronic IR made no difference in 

systolic blood pressure elevation or lung congestion in either 

group of obese HFpEF mice (OB-IR and OB-NIR) (Table 2). 

Similarly, LV structure and systolic function were comparable 

between the two groups, but there were slight changes in 

diastolic function between OB-IR and OB-NIR HFpEF mice, 

with the latter showing a significantly increased mitral E velocity 

(796.2 ± 24.9 mm/s) vs. OB-IR HFpEF mice (664.5 ± 38.4 mm/s; 

P = 0.0116; Table 2). Mitral E-wave velocity re4ects the left atrial 

(LA)-LV pressure gradient during early diastole and in humans 

is affected by changes in the rate of LV relaxation and LA pressure.

TABLE 1 Body weight and metabolic profile in obese HFpEF mice with 
(OB-IR) and without (OB-NIR) insulin resistance.

Body weight and 
metabolic profile

OB-IR 
HFpEF 
N = 8

OB-NIR 
HFpEF 
N = 9

P-value

Body weight (grams) 40.8 ± 1.8 41.9 ± 2.5 0.8884

Basal glucose (mg/dl) 140.5 ± 7.1 100.3 ± 5.2 0.0003

GTT (AUC) 30,064 ± 1,722 24,378 ± 2,083 0.0279

Insulin (ug/L) 2.17 ± 0.93 0.59 ± 0.31 0.0634

HOMA-IR index 13.48 ± 4.94 2.86 ± 1.41 0.0315

Leptin (pg/ml) 17.81 ± 6.42 11.92 ± 3.05 0.3839

Adiponectin (µg/ml) 16.01 ± 1.95 60.50 ± 13.76 0.0329

Triglycerides (mg/dl) 77.29 ± 27.35 40.88 ± 14.34 0.2582

Total Cho (mg/dl) 81.41 ± 17.68 95.43 ± 7.62 0.4553

Data are expressed as mean ± SEM. Statistical analysis by Unpaired t-test for normally 

distributed data or Mann–Whitney test for non-normally distributed. Cho, cholesterol; 

GTT, glucose tolerance test; HOMA-IR, homeostatic model assessment for insulin 

resistance [calculated as fasting glucose (mmol/L)] × fasting insulin [mIU/L]/22.5).

Bold values indicate statistically significant differences between groups.
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Although cardiac hypertrophy was evident, there were no 

differences in LV mass (Table 2) nor LV weight relative to tibial 

length between OB-IR and OB NIR HFpEF mice (58.9 ± 3.4 mg/ 

cm vs. 57.9 ± 2.5 mg/cm). Cardiomyocyte size was increased but 

similarly comparable between OB-IR and OB NIR HFpEF mice 

(410 ± 19 μm2 vs. 437 ± 21 μm2; Figures 1A,B). However, 

collagen deposition by Picrosirius red staining showed that 

OB-IR HFpEF mice had increased fibrosis (0.99% ± 0.03%) 

compared to OB-NIR HFpEF mice (0.49% ± 0.07%, 

P = 0.0002; Figures 1C,D). At the molecular level, mRNA 

expression of cardiac remodeling transcripts atrial natriuretic 

peptide (anp, namely Nppa), and brain natriuretic peptide 

(bnp, namely Nppb), collagen 1a (Col1a) and 3a (Col3a), and 

titin isoforms N2b and N2ba were no different between OB- 

IR and OB NIR HFpEF mice (Figure 2).

3.4 SIRT3 protein expression in the LV of 
obese HFpEF mice with and without insulin 
resistance

SIRT3 is a mitochondrial deacetylase that mediates the activity 

of many metabolic enzymes involved in mitochondrial glycolysis, 

fatty acid metabolism, tricarboxylic acid (TCA) cycle, electron 

transport chain (ETC), and ATP synthesis. We previously 

showed evidence of decreased SIRT3 protein expression in the 

LV of HFpEF mice (21). SIRT3 protein expression was therefore 

determined in the LV of obese HFpEF mice with and without 

IR. In the present study, LV SIRT3 protein expression levels in 

OB-IR HFpEF mice were comparable to those of Lean-IR 

HFpEF mice (0.79 ± 0.09 vs. 0.71 ± 0.07 relative expression to 

Lean Sham-CT, Supplementary Figure S2). However, SIRT3 

LV protein expression in OB-NIR HFpEF was increased 

1.5-fold vs. OB-IR HFpEF (P = 0.0279; Figure 3A). This 

1.5-fold increase restored SIRT3 expression in the LV back to 

levels comparable to lean Sham controls (Supplementary 

Figure S3).

Since SIRT3 modulates the enzymatic activity of key 

proteins involved in energy homeostasis in the heart by 

regulating their acetylation status, total cardiac lysine 

acetylation (acK) was also determined, but showed an non- 

significant decreasing trend in OB-NIR HFpEF mice 

compared to OB-IR HFpEF (Figure 3B).

3.5 Mitochondrial biogenesis and dynamics 
in the LV of obese HFpEF mice with and 
without insulin resistance

SIRT3 plays a central role in regulating the acetylation and 

deacetylation of mitochondrial proteins in the heart (30) and is 

involved in several critical mitochondrial processes, including (i) 

mitochondrial biogenesis and dynamics, (ii) redox homeostasis, 

and (iii) energy metabolism (Figure 4). Accordingly, selected 

mitochondrial targets of SIRT3 were further determined in the 

present study.

The number, morphology, and distribution of mitochondria 

are regulated via a process called mitochondrial dynamics, 

which ensures that the energy demands of the cell are met. 

This involves proteins such as the mitochondrial master 

regulator peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha (Ppargc1a); mitofusins (Mfn1 and Mfn2), 

which are essential for the fusion of the outer mitochondrial 

membrane; optic atrophy 1 (Opa1) which facilitates the fusion 

of the inner mitochondrial membrane, and fission protein 1 

(Fis1), that conversely plays a role in regulating mitochondrial 

division (Figure 4) (27). In the present study, LV mRNA 

expression of Ppargc1a, Mfn1 and 2, and Opa1 remained 

unchanged, but there was a significant increase of Fis1 

transcripts by 1.4-fold in OB-NIR HFpEF mice vs. OB-IR 

HFpEF mice (P = 0.0165; Figure 5), suggesting increased 

mitochondrial division in the LV of obese HFpEF mice 

lacking IR (OB-NIR).

3.6 Mitochondrial redox balance in the LV 
of obese HFpEF mice with and without 
insulin resistance

The elevated metabolic rate in the heart, sustained mainly by 

mitochondrial respiration, leads to the production of reactive 

oxygen species (ROS), from which cells are protected by 

antioxidant enzymes, such as catalases, peroxidases, superoxide 

dismutases (SODs), etc. The mRNA expression of antioxidant 

enzymes regulated by SIRT3 (Figure 4), including catalase (Cat), 

glutathione peroxidase 1 (Gpx1), heme oxygenase-1 (Hmox1), 

TABLE 2 Physiological and echocardiographic parameters in obese 
HFpEF mice with (OB-IR) and without (OB-NIR) insulin resistance.

Physiological and 
echocardiographic 
parameters

OB-IR 
HFpEF 
N = 8

OB-NIR 
HFpEF 
N = 9

P-value

Systolic blood pressure (mm Hg) 142.2 ± 10.1 135.6 ± 4.3 0.9422

Heart rate (bpm) 677.2 ± 12.4 670.0 ± 11.1 0.7430

Lungs wet-to-dry ratio 4.13 ± 0.13 3.97 ± 0.13 0.3803

LV structure and systolic function

LV mass (mg) 169.0 ± 7.2 149.4 ± 8.1 0.0939

LV ejection fraction (%) 72.7 ± 5.8 78.2 ± 3.0 0.3966

Total wall thickness (mm) 1.24 ± 0.06 1.16 ± 0.04 0.3025

Relative wall thickness 0.64 ± 0.06 0.61 ± 0.04 0.6082

LV end-diastolic diameter (mm) 3.92 ± 0.15 3.84 ± 0.12 0.6925

LV end-systolic diameter (mm) 2.25 ± 0.29 2.05 ± 0.17 0.5545

Diastolic function

Mitral E velocity (E), mm/s 664.5 ± 38.4 796.2 ± 24.9 0.0116

Mitral A velocity (A), mm/s 462.4 ± 66.5 610.0 ± 54.5 0.1172

E/A 1.58 ± 0.28 1.37 ± 0.11 0.4340

Early filling deceleration time (ms) 25.51 ± 2.41 21.02 ± 1.34 0.1113

Isovolumetric relaxation time (ms) 18.29 ± 2.68 16.13 ± 1.17 0.4374

Data are expressed as mean ± SEM. Statistical analysis by unpaired t-test for normally 

distributed data or Mann–Whitney test for non-normally distributed. A-velocity, late 

diastolic transmitral 4ow velocity; E-velocity, early diastolic 4ow velocity; LV, 

left ventricular.

Bold values indicate statistically significant differences between groups.
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and nuclear factor erythroid 2-related factor 2 (Nrf2) were also 

measured. There were no changes in Cat, Gpx1, or Nrf2 

transcript levels between OB-NIR HFpEF mice and OB-IR 

HFpEF, but there was a significant increase in Hmox1 mRNA 

expression by 1.6-fold in OB-NIR HFpEF mice compared to 

OB-IR HFpEF mice (P = 0.0265; Figure 6A). Moreover, protein 

expression analysis demonstrated a trend towards reduction of 

manganese superoxide dismutase 2 (MnSOD2) acetylation at 

lysine 68 in OB-NIR HFpEF mice compared to OB-IR HFpEF 

mice (Figure 6B).

3.7 Mitochondrial metabolism in the LV of 
obese HFpEF mice with and without 
insulin resistance

Given that mitochondrial metabolism is tightly regulated by 

protein acetylation, it is notable that over 60% of mitochondrial 

proteins involved in energy metabolism display acetylation sites. 

These include proteins associated with (i) ketone body 

metabolism, (ii) the tricarboxylic acid (TCA) cycle, and (iii) the 

electron transport chain (ETC) (30). In the present study, the 

FIGURE 1 

Left ventricular cardiomyocyte size and cardiac fibrosis in obese HFpEF mice with and without insulin resistance (A) cardiomyocyte size and (B) 

representative hematoxylin-eosin staining images and magnification (right panel, 20x). (C) Quantification of cardiac fibrosis using Picrosirius Red 

staining and (D) representative microscopic images and magnification (right panel, 20x; R.O.I. indicates region of interest). Data are represented 

as mean ± SEM. Statistical analysis by unpaired t-test for normally distributed data or Mann–Whitney test for non-normally distributed. OB-IR, 

obese insulin-resistant HFpEF mice; OB-NIR, obese non-insulin-resistant HFpEF mice. N = 5-8 mice/group.
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expression of key SIRT3 targets involved in these processes were 

investigated (Figure 4). 

(i) Ketone body metabolism: Hydroxy-3-methylglutary coenzyme 

A (CoA) synthase 2 (HMGCS2) protein expression was 

decreased in OB-NIR HFpEF mice vs. OB-IR HFpEF mice 

(0.60 ± 0.16 vs. 1.00 ± 0.21, P = 0.0392; Figure 7A). This was 

accompanied by an increase in the mRNA expression of 

3-hydroxybutyrate dehydrogenase 1 (Bdh1) and succinyl- 

CoA:3-ketoacid CoA transferase (Oxct1) by 1.5- and 1.3-fold 

in OB-NIR HFpEF, respectively (P = 0.0499 and P = 0.0450), 

while transcript levels of the ketone bodies transporter 

solute carrier family 16 member 1 (Slc16a1) remained 

unchanged (Figure 7B). Altogether, this suggests increased 

ketone body utilization in OB-NIR HFpEF mice.

(ii) TCA cycle: there were no changes in mRNA expression of 

aconitase 1 (Aco1) between OB-NIR HFpEF mice and OB- 

IR HFpEF mice (Figure 7B).

(iii) ETC: there was an increasing but insignificant trend in the 

mRNA expression of NADH:ubiquinone oxidoreductase 

subunits A9 (Ndufa9) and A11 (Ndufa11) (Complex 

I components), as well as succinate dehydrogenase 

complex 4avoprotein subunit A (Sdha, a key component of 

Complex II), in OB-NIR HFpEF mice compared to OB-IR 

HFpEF mice. This was accompanied by increased 

FIGURE 2 

Cardiac remodeling phenotype in obese HFpEF mice with and 

without insulin resistance. Gene expression of Nppa, Nppb, Col1a, 

Col3a, N2b and N2ba relative to OB-IR. Data are represented as 

mean ± SEM. Statistical analysis by unpaired t-test for normally 

distributed data or Mann–Whitney test for non-normally 

distributed. Col1a, collagen 1a; Col3a, collagen 3a; Nppa, 

natriuretic peptide type A, aka atrial natriuretic peptide; Nppb, 

natriuretic peptide type b, i.e., brain natriuretic peptide; N2b, titin 

transcript variant N2b; N2ba, titin transcript variant N2ba. OB-IR. 

OB-IR, obese insulin-resistant HFpEF mice; OB-NIR, obese non- 

insulin-resistant HFpEF mice. N = 7-9/group.

FIGURE 3 

Left ventricular SIRT3 protein expression and total lysine acetylation in obese HFpEF mice with and without insulin resistance. (A) SIRT3 protein 

expression and (B) Total lysine acetylation in the left ventricle of obese insulin-resistant HFpEF mice (OB-IR) and obese non-insulin-resistant 

HFpEF mice (OB-NIR). Data are represented as mean ± SEM. Statistical analysis by unpaired t-test for normally distributed data or Mann–Whitney 

test for non-normally distributed. SIRT3, sirtuin 3; Total ACK, total lysine acetylation relative to 25KDa Ponceau Red band. N = 8-9 mice/group.
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transcript levels of ubiquinol-cytochrome C reductase hinge 

protein (Uqcrh, a Complex III subunit) and mitochondrially 

encoded cytochrome c oxidase I (Mt-Co1, mitochondrial- 

encoded subunit of Complex IV) by 1.7- and 1.3-fold in 

OB-NIR HFpEF mice compared to OB-IR HFpEF mice 

(P = 0.0031 and P = 0.0404, respectively; Figure 7B), 

suggesting enhanced mitochondrial respiratory 

chain function.

4 Discussion

The present study demonstrates that the LV phenotype of 

obese HFpEF mice varies according to their IR status. 

Compared to their obese insulin-resistant (OB-IR) HFpEF 

littermates, obese non–insulin-resistant (OB-NIR) HFpEF mice 

exhibited: (i) reduced cardiac fibrosis, (ii) increased cardiac 

expression of SIRT3 protein, and (iii) altered gene expression of 

mitochondrial SIRT3 targets, primarily those involved in ketone 

body metabolism and the ETC.

HFpEF patients often present with significant visceral 

adiposity, frequently accompanied by IR with or without T2D 

(31). Although obesity is a major risk factor for HFpEF, the 

mechanisms by which obesity alone contributes to HFpEF 

development remain unclear. Is the observed association 

primarily attributable to coexisting IR and/or T2D? In the 

present study, we aimed to disentangle the individual 

contributions of increased adiposity and IR/T2D to the obese 

HFpEF phenotype in mice. Our findings demonstrate that IR in 

obese HFpEF mice is associated with increased cardiac 

hypertrophy and fibrosis compared to lean, wild-type controls 

(Supplementary Figure S4). Interestingly, obese HFpEF mice 

without IR also exhibited comparable levels of cardiac 

hypertrophy; however, their cardiac fibrotic burden was 

significantly less relative to their OB-IR HFpEF counterparts. 

Given that cardiac hypertrophy was similar across obese HFpEF 

mice irrespective of IR status—and is therefore unlikely to be 

driven solely by fibrosis—these results suggest that extrinsic 

factors, such as increased adiposity, may contribute to elevated 

FIGURE 4 

Schematic of SIRT3 mitochondrial targets. Aco1, aconitase 1; Bdh1, 3-hydroxybutyrate dehydrogenase 1; Cat, catalase; ETC, electron transport chain; 

Fis1, fission protein 1; Gpx1, glutathione peroxidase 1; HMGCS2, hydroxy-3-methylglutary coenzyme A (CoA) synthase 2; Hmox1, heme oxygenase-1; 

Mfn, mitofusin; Mnsod2, manganese superoxide dismutase 2; Mt-Co1, mitochondrially encoded cytochrome c oxidase I; Ndufa: NADH:ubiquinone 

oxidoreductase subunit A; Nrf2, nuclear factor erythroid 2-related factor 2; Opa1, optic atrophy 1; Oxct1, succinyl-CoA:3-ketoacid CoA transferase; 

OXPHOS, oxidative phosphorylation; Ppargc1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; Sdha, succinate 

dehydrogenase complex flavoprotein subunit A; Slc16a1, solute carrier family 16 member 1; TCA, tricarboxylic acid; Uqcrh, ubiquinol-cytochrome 

c reductase hinge protein. Created using Servier Medical Art, licensed under CC BY 4.0.
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total and central blood volume. This hemodynamic burden may, 

in turn, promote adverse LV remodeling in obesity-associated 

HFpEF (32). In contrast, the greater degree of cardiac fibrosis 

observed in IR-positive obese HFpEF mice may re4ect direct 

pathophysiological effects of IR on the myocardium, including 

enhanced neurohumoral activation and elevated systemic 

in4ammation, leading to increased extracellular matrix 

remodeling (33).

Protein acetylation is a reversible post-translational 

modification process widely prevalent in the heart. Its 

dysregulation is implicated in many pathological conditions in 

animal models, including IR (34), obesity (35), hypertension 

(36), and HFpEF (37, 38). A major regulator of protein 

acetylation here is SIRT3, a mitochondrial NAD-dependent 

protein deacetylase that controls the acetylation status of 

proteins involved in mitochondrial dynamics, oxidative stress 

response, and metabolism (26, 39). We previously demonstrated 

that SIRT3 expression was decreased in the LV of non-obese, 

lean HFpEF mice (21). Similarly, SIRT3 expression is reduced in 

cardiac biopsies from failing human hearts in obese patients 

compared to non-obese patients (40), and this reduction is 

associated with a hyperacetylated mitochondrial profile in obese 

sucrose-fed rats. In the current study, obese HFpEF without IR 

(OB-NIR), exhibited increased SIRT3 expression accompanied 

by a non-significant reduction in LV hyperacetylation compared 

FIGURE 5 

Cardiac gene expression of mitochondrial biogenesis and dynamics 

regulators in obese HFpEF mice with and without insulin resistance. 

Data are represented as mean ± SEM. Statistical analysis by unpaired 

t-test for normally distributed data or Mann–Whitney test for non- 

normally distributed. Fis1, fission protein; Mfn, mitofusin; OB-IR, 

obese insulin-resistant HFpEF mice; OB-NIR, obese non-insulin- 

resistant HFpEF mice; Opa1, optic atrophy 1; Ppargc1a, 

peroxisome proliferator-activated receptor gamma coactivator 

1-alpha. N = 7-9 mice/group.

FIGURE 6 

Cardiac gene expression of mitochondrial redox balance regulators and MnSOD2 acetylation levels at lysine68 in obese HFpEF mice with and without 

insulin resistance. (A) mRNA expression of Cat, Gpx1, Hmox1 and NFr2 in the left ventricle of obese insulin-resistant HFpEF mice (OB-IR) and obese 

non-insulin-resistant HFpEF mice (OB-NIR). (B) Cardiac MnSOD2 acetylation at lysine 68 (AcK68) relative to total MnSOD2 protein expression in OB- 

IR and OB-NIR HFpEF mice. Data are represented as mean ± SEM. Statistical analysis by unpaired t-test for normally distributed data or Mann– 

Whitney test for non-normally distributed. Cat, catalase; Gpx1, glutathione peroxidase 1; Hmox1, heme oxygenase-1; Nrf2, nuclear factor 

erythroid 2-related factor 2; MNSOD2, manganese superoxide dismutase 2. N = 7-9 mice/group.
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to their IR obese HFpEF (OB-IR) counterparts. Previous studies 

have shown that SIRT3 helps preserve cardiac function and 

capillary density in the context of obesity (41). Additionally, 

SIRT3 has been reported to mitigate obesity-related cardiac 

remodeling by attenuating in4ammation and fibrosis by 

modulating the ROS-NF-κB-MCP-1 signaling pathway (42). In 

addition, the current findings demonstrate differential SIRT3 

expression between OB-IR HFpEF and OB-NIR HFpEF, 

suggesting a partial restoration of mitochondrial protein 

deacetylation driven by increased SIRT3 levels in the OB-NIR 

HFpEF group. These molecular changes may contribute to 

modulation of adverse cardiac remodeling, particularly by 

in4uencing myocardial fibrosis in obesity-associated HFpEF.

There are currently no approved medications that directly 

target or modulate only SIRT3. However, several drugs have 

been reported to in4uence SIRT3 activity or expression 

indirectly. For example, proprotein convertase subtilisin/kexin 

type-9 (PCSK9) inhibitors may exert some of their pleiotropic 

effects through SIRT3, as demonstrated in vitro and in 

observational studies involving patients with atherosclerosis 

treated with PCSK9 inhibitors (43, 44). Although PCSK9 

inhibitors are not approved for the treatment of HFpEF, 

emerging evidence suggests a potential link between PCSK9 and 

HFpEF pathophysiology. Notably, studies in PCSK9-deficient 

mice have shown that loss of PCSK9 expression induces 

metabolic reprogramming in cardiomyocytes, accompanied by 

structural remodeling, preserved ejection fraction, and reduced 

exercise capacity compared to wild-type controls (45). Thus, 

these findings suggest a possible intersection between PCSK9 

signaling and SIRT3-mediated mitochondrial regulation, 

highlighting the need for further investigation into their 

interplay as a contributor to adverse cardiac remodeling and 

HFpEF progression.

Mitochondria undergo continuous fusion and fission, 

maintaining a balance in structure and function across various 

physiological and pathological states (27). In this study, 

transcript levels of proteins regulating mitochondrial dynamics 

were measured, and revealed a significant increase in Fis1 

expression in OB-NIR HFpEF mice, indicative of enhanced 

mitochondrial division. This aligns with other studies where 

Fis1 upregulation via the SIRT3-FoxO3 pathway occurred in 

response to stress and oxidative damage (46). This also 

coincides with the observed increase in the antioxidant enzyme 

Hmox1, known to mediate mitochondrial quality control and 

dynamics in the heart (47). Overall, these findings suggest that 

the increase in fission preserves mitochondrial reserve capacity 

in response to oxidative damage, indicating enhanced 

mitochondrial quality control associated with improved insulin 

sensitivity in obesity-related HFpEF, potentially linked to 

SIRT3 expression.

Mitochondria metabolism is highly regulated by protein 

acetylation. Analysis of the mitochondrial acetylome have 

revealed that most of the mitochondrial proteins containing 

acetylation sites are involved in processes related to fatty acid 

FIGURE 7 

HMGCS2 protein and mitochondrial metabolism mRNA expression from the LV of obese HFpEF mice with and without insulin resistance. (A) Cardiac 

protein expression of HMGCS2 and (B) mRNA relative expression of ketone body metabolism, tricarboxylic acid (TCA) cycle, and electron transport 

chain related genes in obese insulin-resistant HFpEF mice (OB-IR) and obese non-insulin-resistant HFpEF mice (OB-NIR). Data are represented as 

mean ± SEM. Statistical analysis by unpaired t-test for normally distributed data or Mann–Whitney test for non-normally distributed. *P < 0.05, 

**P < 0.01 vs. OB-IR. Aco1, aconitase 1; Bdh1, 3-hydroxybutyrate dehydrogenase 1; HMGCS2, hydroxy-3-methylglutary coenzyme A (CoA) 

synthase 2; Mt-Co1, mitochondrially encoded cytochrome c oxidase I; Ndufa, NADH:ubiquinone oxidoreductase subunit A; Oxct1, succinyl- 

CoA:3-ketoacid CoA transferase; Sdha, succinate dehydrogenase complex flavoprotein subunit A; Slc16a1, solute carrier family 16 member 1; 

Uqcrh, ubiquinol-cytochrome c reductase hinge protein. N = 7-9 mice/group.
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metabolism, TCA cycle, and ETC (48). A “3-Hit” HFpEF mouse 

model exhibited increased cardiac hyperacetylation when 

compared to HFrEF and older control mice, with enrichment in 

the TCA cycle, oxidative phosphorylation (OXPHOS), and fatty 

acid oxidation (49). It is known that during obesity, the heart is 

very dependent on fatty acid oxidation as its primary source of 

ATP, while the contribution from glucose oxidation significantly 

decreases. In the current study, there was enhanced ketone body 

metabolism in OB-NIR HFpEF mice. This was characterized by 

reduced expression of HMGCS2, responsible for ketogenesis, 

alongside increased levels of Bdh1 and Oxct1, involved in the 

oxidation of ketone bodies, altogether suggesting a shift toward 

greater utilization of ketone bodies as an energy source. 

Evidence suggests that increased reliance on ketone body 

oxidation is an adaptive response in HF pathophysiology (50). 

Ketone bodies generate more energy in the form of heat 

compared with glucose and are more efficient than fatty acids 

for ATP production per molecule of oxygen consumed, 

providing an efficient alternative energy source for the heart 

especially when glucose and fatty acid oxidation pathways are 

impaired (51). In preclinical studies, augmentation of cardiac 

ketone body utilization, via exogenous supplementation, exerts 

cardioprotective effects such as attenuation of diastolic dysfunction, 

fibrosis, and pathological remodeling in HFpEF (37, 52). Similarly, 

SGLT2 inhibitors increased ketone levels in animal models of HF 

(53, 54) as well as in diabetic and nondiabetic subjects (55), and it 

has been postulated that the cardiovascular benefits driven by 

SGLT2 inhibitors may be partially mediated by their ability to 

increase circulating ketone bodies, thereby supporting myocardial 

energy metabolism (56). Thus, the increased ketone body 

metabolism in OB-NIR mice may similarly provide such a cardiac 

benefit in HFpEF. Lopashuk et al. (35) showed that decreased 

cardiac SIRT3 expression in murine models of obesity induced by 

high-fat feeding or genetic deletion leads to hyperacetylation and 

activation of beta-hydroxy acid dehydrogenase (β-HAD) and 

long-chain acyl-CoA dehydrogenase (LCAD), promoting 

increased fatty acid β-oxidation and IR. Conversely, in enhanced 

insulin sensitivity status, such as OB-NIR HFpEF, cardiac SIRT3 

expression is abundant and leads to deacetylation of fatty acid 

oxidation enzymes and preventing IR in the heart. In the present 

study, there were no detectable changes in the TCA cycle but 

rather increased activity in the ETC between OB-IR HFpEF and 

OB-NIR HFpEF, suggesting that the metabolic environment in 

OB-NIR HFpEF mice may recapitulate the normal condition as 

proposed by Lopaschuk et al. (35) OB-NIR HFpEF mice 

demonstrated enhanced transcript levels of the ETC Complex 

subunits III and IV (Uqcrh and Mt-Co1, respectively) that may 

correlate with improved mitochondrial function and cardiac 

performance, contrasting with mitochondrial impairments 

typically seen in IR HFpEF models. As respiratory capacity and 

ATP synthesis have been shown to be decreased in cardiac 

mitochondria of SIRT3 KO mice (57), these results may also 

re4ect a compensatory increase to optimize OXPHOS efficiency, 

reducing ROS generation, and maintaining energy production.

In conclusion, obese HFpEF mice without insulin resistance 

(OB-NIR) exhibit a distinct cardiac phenotype compared to 

insulin-resistant (OB-IR) counterparts, highlighting the potential 

independent contributions of adiposity and mitochondrial 

adaptations in modulating disease severity in obesity-associated 

HFpEF. The observed reduction in cardiac fibrosis, increased 

SIRT3 expression, and improved mitochondrial dynamics and 

function in OB-NIR HFpEF mice suggest the presence of 

adaptive metabolic responses aimed at preserving energy 

homeostasis and attenuating oxidative stress. Moreover, the 

increased reliance on ketone body metabolism in OB-NIR mice 

may re4ect a compensatory mechanism that supports 

mitochondrial efficiency and cardiac function—an adaptive 

capacity that appears to be compromised in the setting of 

obesity with insulin resistance.

These findings underscore the critical role of metabolic 

4exibility and mitochondrial quality control in the 

pathophysiology HFpEF, providing valuable insights into the 

complex interplay between adiposity, insulin sensitivity, and 

cardiac function. Further studies are warranted to explore the 

potential of targeting these pathways in HFpEF patients and to 

determine if preservation of mitochondrial and metabolic 

adaptations could mitigate the adverse cardiac outcomes 

typically observed in obesity with IR and T2D. Modulation of 

protein acetylation represents a promising therapeutic avenue; 

but studies with rigorous experimental approaches and validated 

acetylation-modulating agents in clinically relevant disease 

models -such as obesity-HFpEF- are essential to establish 

efficacy and translational potential.

4.1 Clinical relevance

Recent studies underscore the heterogeneity of obesity in 

HFpEF and highlight the critical role of metabolic health in 

shaping disease progression. Our findings demonstrate that 

obesity without IR is associated with preserved mitochondrial 

adaptations, including elevated SIRT3 expression and reduced 

protein hyperacetylation, which may protect against adverse 

cardiac remodeling. These findings suggest that the metabolic 

status of obese HFpEF patients is an active modifier of 

mitochondrial quality control and myocardial remodeling. The 

observed upregulation of SIRT3 in insulin-sensitive obesity may 

confer partial cardiac protection, supporting the concept for 

phenotype-specific therapeutic approaches in obese HFpEF. 

While both SIRT3 and ketone metabolism emerge as promising 

therapeutic targets, translational challenges remain. Future 

studies should focus on defining how metabolic health 

modulates HFpEF progression across diverse patient 

populations, and whether interventions aimed at enhancing 

SIRT3 activity can mitigate fibrosis and remodeling in obesity- 

associated HFpEF.

4.2 Limitations

This study is based on gene and protein expression 

associations, and as such, the findings are limited by the 
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transient nature of gene regulation. While these associations 

provide valuable insights into potential mechanisms, they do not 

offer definitive evidence of long-term effects or functional 

consequences. Further studies are needed to validate these gene 

expression patterns and explore their functional relevance to 

better understand the physiological implications of the observed 

gene expression changes. In particular, studies investigating 

mitochondrial function—including measurements of 

mitochondrial respiration, bioenergetics, and dynamics—are 

essential to determine the physiological implications of the 

reported transcriptional and proteomic changes. Finally, the 

current study included only male mice, and thus the sex 

specificity of these findings cannot be excluded. Future studies 

incorporating female mice are necessary to confirm and extend 

these findings across sexes.
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