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Heart failure (HF) continues to pose a significant global health burden,
necessitating accurate prognostic tools to guide patient management. This
mini-review presents grading systems, frailty scales, and scoring models,
followed by challenges and future directions. We traces the evolution of
stratification and prognostic assessments in HF, beginning with the
foundational NYHA functional classification and progressing to the advanced
prognostic scores currently in use. We examine the historical significance and
clinical relevance of NYHA grades, which have long been pivotal in evaluating
HF severity. The review then shifts focus to contemporary prognostic scores,
including the Seattle Heart Failure Model (SHFM), the Heart Failure Survival
Score (HFSS), and emerging tools leveraging machine learning (ML) and big
data. We explore specific challenges encountered in current clinical practice
and outline future directions. By highlighting the strengths and limitations of
these tools, this mini-review aims to provides a critical appraisal of
stratification and scoring models for HF to inform their optimal application in
clinical practice, ultimately enhancing patient care and outcomes in HF.
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1 Introduction

Heart failure (HF) represents a critical global health challenge, affecting millions of
individuals and placing substantial burdens on healthcare systems worldwide (1).
Based on left ventricular ejection fraction (LVEF), HF was divided into heart failure
with reduced ejection fraction (HFrEF, LVEF < 40%) and heart failure with preserved
ejection fraction (HFpEF, LVEF>50%) (2). Despite significant advancements in
therapeutic interventions, the prognosis for patients with HF remains variable (3),
underscoring the necessity for precise prognostic tools to guide clinical decision-
making and enhance patient management.

Stratification and Prognostication in HF has evolved from rudimentary symptom-based
classifications to sophisticated multivariate models. The New York Heart Association
(NYHA) functional classification, introduced in 1928 (4), revolutionized clinical practice
by categorizing patients into four grades of symptom severity. However, its subjectivity
and poor correlation with objective biomarkers or mortality risk have driven demand
for multidimensional risk stratification (5). Contemporary tools—such as the Seattle
Heart Failure Model (SHFM) and Heart Failure Survival Score (HFSS)—integrate
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demographic, hemodynamic, and biomarker data to quantify
individual mortality risk. More recently, machine learning (ML)
big data with
unprecedented granularity. This review seeks to highlight the

algorithms  harness to predict outcomes
strengths and weaknesses of these tools, providing insights into
their optimal application in clinical practice to improve patient

care and outcomes in HF.

2 Grading approaches for stratification
and prognosis of HF

For Historically, risk stratification in HF has relied on grading
systems
presentation, hemodynamic status, or functional capacity. These

that categorize disease severity based on clinical
systems, while foundational, exhibit distinct conceptual frameworks
and limitations. The ACC/AHA HF staging system classifies HF
into four progressive stages (A-D), focusing on disease evolution
from risk factors (stage A) to refractory symptoms (stage D) (6).
This approach emphasizes prevention and early intervention but
lacks granularity for dynamic symptom assessment, rendering it
less responsive to short-term clinical changes. In contrast, the
New York Heart Association (NYHA) classification evaluates
symptom severity during daily activities (classes I-IV) and remains
a cornerstone for routine clinical decision-making due to its
simplicity (7). subjective
interobserver variability, and it poorly discriminates HF patients

However, its nature introduces
across the spectrum of functional impairment (5, 8).

For acute hemodynamic evaluation, the Killip/Forrester
classification stratifies patients with acute myocardial infarction
(MI)-induced HF into four classes based on signs of pulmonary
congestion and peripheral hypoperfusion. While valuable in acute
MI settings, its utility diminishes in chronic HF or non-ischemic
etiologies (9). The Weber classification employs cardiopulmonary
exercise testing (CPET)-derived peak oxygen consumption (VO,)
to categorize HF into classes A-D, offering a quantitative
This
prognostication for advanced HF, particularly in identifying

assessment of exercise tolerance. system excels in
candidates for ventricular assist devices or transplantation (10).
However, its reliance on CPET limits widespread applicability,
especially in resource-constrained settings (11).

A comparative analysis reveals key trade-offs (Table 1). ACC/
AHA staging and NYHA classification serve complementary roles
—the former guiding long-term management and the latter

monitoring daily symptom fluctuations. Yet both overlook
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comorbidities and non-cardiac contributors to prognosis. Killip/
Forrester excels in acute MI but lacks relevance in chronic HF,
Weber’s
challenges. Importantly, these systems are largely unidimensional,

while objectivity is counterbalanced by logistical
neglecting multidimensional risk factors such as renal function,

biomarkers, or frailty, which significantly influence outcomes.

3 Frailty scales for stratification and
prognosis of heart failure

Frailty scales have emerged as a critical advancement in HF
stratification, addressing the limitations of traditional grading
systems by integrating multidimensional assessments of
physiological vulnerability. Unlike conventional approaches that
focus narrowly on cardiac-specific metrics, frailty scales evaluate
systemic functional decline, incorporating both subjective and
objective measures of physical performance, cognitive status,
and comorbidities (12). This holistic framework enhances risk
stratification by capturing the interplay between HF severity and
age-related multisystem impairments, which are strong
predictors of mortality, hospitalization, and quality of life.

The Fried frailty phenotype (13) and Short Physical
Performance Battery (SPPB) (14) are among the most widely
validated tools. The Fried criteria define frailty as the presence
of >3 components (unintentional weight loss, exhaustion, low
physical activity, slow gait, and weak grip strength), while the
SPPB quantifies lower extremity function through balance, gait
speed, and chair-stand tests. Both scales demonstrate prognostic
value in HF populations, with frail individuals exhibiting 2-3
times higher risks of adverse outcomes compared to non-frail
(15-17).

consuming physical measurements, limiting their practicality in

counterparts However, these tools require time-
routine clinical workflows (18). To address this, simplified
questionnaires like the SARC-F (assessing strength, assistance
walking, rising from a chair, climbing stairs, and falls) (19) and
Clinical Frailty Scale (CFS) (20, 21) have gained traction. The
SARC-F, for instance, correlates strongly with death or
hospitalization in HF patients (OR 1.55, 95% CI 1.03-2.35) (22)
and can be administered rapidly at bedside.

The Heart Failure Association of the European Society of
Cardiology (HFA-ESC) designed a new HF frailty assessment
that (23):
(comorbidities, weight), functional (impairment in activities of

score encompasses four domains clinical

daily living, mobility and/or balance), psycho-cognitive

TABLE 1 Comparison of different grading approaches for stratification and prognosis of heart failure.

Parameters
assessed

Systems

Key applications

Prognostic value

Strengths Limitations

ACC/AHA stages | Risk factors, structural Chronic HF risk

changes prevention
NYHA class Symptom severity Routine clinical
assessment
Killip/Forrester Hemodynamic stability AMI with acute HF
WEBER Exercise capacity (VO,) Chronic HF
classification
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Identifies pre-symptomatic
disease

Quick bedside tool

Predicts in-hospital mortality

Strong mortality correlation

Guides preventive Static, insensitive to acute

strategies changes
Simple, widely adopted | Subjective, variable
interpretation

Rapid risk stratification | Limited to ischemic HF
Objective, prognostic

power

Requires specialized testing
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(cognitive impairment, dementia and/or depression), and social
(social support, institutionalization and/or the lack of support.)
domains. A study (24) has shown that frailty assessment based
HFA-ESC frailty domains a high
prevalence of frailty among HF patients and successfully
identified individuals at elevated risk for adverse events
(AUC =0.64, 95% CI 0.60-0.68).

Recent studies highlight the superiority of frailty scales over
identifying high-risk
subgroups. For example, in the FRAIL-HF cohort, among
hospitalized with HF,
phenotype criteria) showed higher 1-year all-cause mortality
[HR: 2.13, 95% CI: 1.07-4.23] even after adjusting for NYHA
class and ejection fraction (25). Similarly, the GUIDE-IT trial
demonstrated that a higher frailty (frailty index criteria) burden
was associated with a significantly higher risk of HF
hospitalization or death [HR: 1.76, 95% CI: 1.20-2.58], adjusted
for LVEF, NYHA class, NT-proBNP and etc. (26). These
findings underscore frailty’s role as a modifier of HF trajectory,

on the demonstrated

traditional HF grading systems in

patients frail patients (biological

particularly in aging populations with multimorbidity.

Despite their utility, frailty scales face challenges in
standardization and implementation (12). Heterogeneity in
assessment tools complicates cross-study comparisons, while
dynamic changes in frailty status necessitate repeated
evaluations. Furthermore, few scales account for HF-specific
variables such as fluid retention or arrhythmia burden, which
may transiently impair physical performance. Villani ER et al.
(27) reported that the prevalence of frailty in AF patients ranged
from 4.4%-75.4% while AF prevalence in the frail population
ranged from 48.2%-75.4%. Indicators reflecting fluid retention
and arrhythmia, such as edema, shortness of breath, and chest
tightness, can be incorporated into the Fried frailty to provide a
more comprehensive assessment of frailty in HF patients. These
indicators help detect temporary functional decline caused by
fluid retention or arrhythmia in HF patients, thereby enabling a
more accurate evaluation of their condition. Future efforts
should focus on harmonizing definitions, validating HF-tailored
frailty indices, and integrating these tools into electronic health

records (EHR) for automated risk alerts.

4 Scoring models for stratification and
prognosis of HF

Risk prediction models in HF have evolved from simplistic
clinical grading systems to sophisticated multivariate tools that
integrate demographic, biochemical, imaging, and therapeutic
data. These models aim to quantify mortality risk, guide
treatment decisions, and optimize resource allocation across
both chronic and acute HF populations.

4.1 Acute HF risk models

In the context of emergency and critical care, acute HF models are
primarily designed for short-term prognostic risk stratification and
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optimal allocation of medical resources. These models rely on
rapidly obtainable pathophysiological parameters at admission (such
as blood pressure, serum creatinine, and NT-proBNP) to accurately
predict in-hospital or 30-day mortality. This provides an evidence-
based foundation for prioritizing triage of critically ill patients,
determining eligibility for higher levels of monitoring, and guiding
intensive intervention strategies during the acute phase.

For acute HF, the Emergency Heart Failure Mortality Risk
Grade (EHMRG) (28, 29) and Multiple Estimation of risk based
on the Emergency department Spanish Score In patients with
Acute Heart Failure (MEESSI-AHF)
EHMRG, validated
department patients, uses seven variables (e.g., systolic blood

(30, 31) emerged as
frontline tools. in >12,000 emergency
pressure, troponin) to predict 7-day mortality (AUC 0.79).
MEESSI-AHF, incorporating NT-proBNP and potassium levels,
outperforms EHMRG in 30-day risk stratification (AUC 0.85 vs.
0.80). Both models prioritize rapid risk assessment but overlook
longitudinal outcomes beyond 30 days.

The GWTG-HF risk score (32) predicts in-hospital mortality
using commonly available clinical variables such as age, systolic
blood pressure, blood urea nitrogen, heart rate, sodium levels,
chronic obstructive pulmonary disease, and non-Black race. It
applies to a wide range of HF patients, including case with
preserved left ventricular systolic function. Yasuyuki et al. (33)
found that GWTG-HEF risk score can show good discrimination
and calibration in Japanese AHF patients (c-statistic, 0.763; 95%
CI, 0.700-0.826), and the discriminative ability of the model was
significantly improved with the addition of BNP levels
(c statistic, 0.818; 95% CI, 0.771-0.865).Although the GWTG-
HF score was originally developed for in-hospital patients, it
also demonstrates good discrimination for 1-year mortality in a
heterogeneous cohort of CICU patients (34).

4.2 Chronic HF risk models

The purpose of chronic HF models is to facilitate long-term
risk assessment and the development of personalized advanced
treatment strategies. These models integrate multidimensional
variables reflecting long-term homeostasis of cardiac structure
and function—such as left ventricular ejection fraction, peak
oxygen consumption, and QRS duration—and are designed to
predict all-cause mortality on an annualized basis. Their core
clinical utility lies in providing objective, quantified criteria for
patient selection and prioritization for scarce and high-risk end-
stage therapies, including cardiac transplantation and left
ventricular assist device (LVAD) implantation.

The HESS (35), introduced in 1997, was among the first
models to incorporate non-invasive variables—ischemic etiology,
resting heart rate, left ventricular ejection fraction (LVEF), mean
arterial pressure, QRS duration, serum sodium, and peak oxygen
consumption (VO,)—to stratify heart transplant candidates.
Validated in cohorts with advanced HF, HFSS demonstrated
0.56-0.79) but faced
limitations in the B-blocker era, as it excluded pharmacotherapy

moderate discrimination (c-statistic

effects. Subsequent studies confirmed its retained prognostic

frontiersin.org



Sidie et al.

value in fB-blocker-treated patients, albeit with reduced sensitivity
for low-risk identification (36). However, the Zugck et al. reported
that HFSS was inferior to a two-variable model containing only
LVEF and either peak oxygen uptake (peak VO2) or 6-min walk
test (6" WT) (37).

A paradigm shift occurred in 2006 with the SHFM (38), which
integrated 24 variables, including medications (8-blockers, ACE
inhibitors) and devices (ICDs), enabling dynamic survival estimation.
Derived from the PRAISE I clinical trial database and validated in 14
cohorts (n=16,057), SHFM predicts 1-3-year survival with c-
statistics of 0.63-0.81 (39). Its unique feature is simulating survival
gains from guideline-directed therapies, such as adding sacubitril/
valsartan or CRT-D. However, SHFEM underestimates risk in HF
with preserved ejection fraction (HFpEF) and relies on trial-derived
cohorts (40, 41), limiting generalizability to real-world populations
with multimorbidity. Incorporating diastolic function parameters
(e.g., E/E’ ratio, IVRT) or diastolic stress biomarkers (BNP, IL-6, etc.)
could enhance risk prediction accuracy, improving clinical decision-
making and patient management.

The Meta-Analysis Global Group in Chronic Heart Failure
(MAGGIC) score (42, 43), developed in 2013, addressed
heterogeneity by pooling individual patient data from 39,372
subjects across 30 studies. This 13-variable model (e.g., age,
creatinine, LVEF) predicts 1- and 3-year mortality (c-statistic
0.73) and excels in applicability across HF subtypes, including
HFpEF. However, it lacks granularity in capturing acute
decompensation markers or device therapy impacts.

The Metabolic Exercise test data combined with Cardiac and
Kidney Indexes (MECKI) score (44), developed for chronic HF,
uniquely integrates CPET parameters (e.g., VO,, VE/VCO,
slope) with renal function and LVEF. Validated in 2,715
patients, it predicts 3-year survival with superior accuracy (AUC
0.83) compared to SHFM (AUC 0.76). However, its reliance on
CPET limits routine clinical application.

Figure 1 summarizes the selection of these models based on
clinical context for both acute and chronic HF, while Table 2

outlines their key trade-offs. Frailty scales reflect a patient’s

10.3389/fcvm.2025.1676441

physiological reserve and vulnerability, whereas scoring models
primarily quantify cardiac-specific risk. An integrated approach that
combines frailty scales with scoring models can provide a more
comprehensive risk profile, thereby better guiding personalized
treatment decisions. Few tools address the distinct pathophysiology
of HFpEF, SHFM and MAGGIC underperform;
Discrepancies in biomarker assays (e.g., NT-proBNP vs. BNP) and
EHR practices  hinder
applicability; Operational inertia: Complex models like SHFM

where

documentation cross-institutional
struggle with EHR integration, whereas oversimplified tools (e.g.,
ADHERE’s 3-variable model) (45) sacrifice granularity.

5 Challenges and future prospects

Despite significant advancements in risk prediction models for
HEF, several challenges persist that limit their clinical utility
and generalizability.

5.1 Limitations of prognostic models in
HFpEF

Current models fail to adequately differentiate between HF
subtypes, particularly HFpEF and HFrEF. Most models were
derived from cohorts dominated by HFrEF patients, leading
to poor calibration in HFpEF populations where distinct

pathophysiological drivers such as systemic inflammation,
metabolic dysregulation, and myocardial fibrosis disproportionately
influence outcomes (46, 47).

Notably, most existing HFpEF-specific tools like the H2FPEF
Score (48, 49) (originally designed for diagnostic probability
stratification) and drug trial data (e.g., I-PRESERVE, TOPCAT)
(50-53) primarily focus on diagnostic confirmation or therapeutic
response rather than prognostic modeling. The HFA-PEFF score
(54, 55), despite integrating echocardiographic parameters and

NT-proBNP levels, still relies on static variables and fails to

Heart Failure

Acute or Chronic

Acute HF

non-HFpEF

Chronic HF

HFpEF

non-HFpEF
or HFpEF

EHMRG
7-day mortality
(AUC 0.79)

SHFM
1-3-year survival
(c-statistics 0.63-0.81)

(

MAGGIC
1- and 3-year mortality
(c-statistic 0.73)

H2FPEF
diagnostic probability
stratification

HFSS MECKI
stratify heart transplant candidates 3-year survival
(c-statistic 0.56-0.79) (AUC 0.83)

MESSI-AHF
30-day risk stratification
(AUC 0.85)
FIGURE 1

Tool selection for acute and chronic heart failure.
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capture dynamic biomarker trajectories or  phenotypic
heterogeneity (e.g., cardiometabolic vs. elderly frail subtypes).

The modified EFFECT score (56) can be used to assess the
28-day and I-year mortality risk in hospitalized patients with
HFpEF and ADHF (AUC: 0.76 for 28-day, and 0.72 for one-year
mortality). By incorporating mortality-related indicators such as
age, systolic blood pressure (SBP), blood urea nitrogen (BUN),
[defined as
ischemic attack (TIA) in ARIC], chronic obstructive pulmonary
disease (COPD), and hemoglobin, it enables better identification

of high-risk patients

sodium, cerebrovascular disease stroke/transient

and guides clinical decision-making,
including early triage, in-hospital monitoring, treatment, and
early post-discharge follow-up. However, there is still a lack of
external validation cohorts to confirm its generalizability.
Additionally, traditional models depend on baseline variables
(e.g., LVEF, serum sodium) and neglect temporal risk modifiers
such as fluctuating NT-proBNP levels with limited prognostic
value in HFpEF (30% of cases show levels <125 pg/mL) (57, 58),
treatment adherence patterns, or evolving comorbidities. The
reliance on drug trial data further introduces selection bias, as
participants often exclude HFpEF-dominant populations—such
as elderly patients with multimorbidity (>3 comorbidities in
67.4% of Asian cohorts) or underrepresented racial groups—

thereby limiting real-world applicability.

5.2 Challenges in the Al era

Practical implementation barriers also hinder widespread
adoption. Many scoring systems require manual data entry,
which is time-consuming and prone to errors. The evolution of
HF prediction into the AI era (Figure 2) with higher accuracy
has witnessed three technological waves: 1) ML, have the
potential to improve classification performance over traditional

10.3389/fcvm.2025.1676441

statistical tools by taking into account nonlinear impacts of
variables to arrive at an accurate prediction (59); 2) deep
learning (DL) - a branch of ML, leveraging convolutional neural
networks (CNN) and recurrent neural network (RNN) for risk
prediction (60, 61), outperformed traditional ML models; 3) and
large language models (LLMs) capable of parsing multimodal
data from EHRs and wearable devices (62).

Zhao H et al. (63) employed ML techniques such as RF and
LASSO regression to construct alternative risk models. The
models, which improved the accuracy of risk prediction and
between risk factors and

uncovered novel relationships

outcomes, demonstrated good performance in predicting
mortality and readmission among HFmrEF patients. Li et al.
(64) developed ML algorithms to predict mortality of HF
patients within ICU settings, with XGBoost demonstrating
superior performance. While DL model like CNN showed a
high discriminatory ability in categorizing HFpEF and control
patients, achieving an AUC of 0.92 on the blinded test set, with
a sensitivity of 0.98 and specificity of 0.6327 (61). HFmeRisk
model, a DL model developed by Zhao X et al. (60), used both
5 clinical features and 25 DNA methylation loci to provides
innovative insights into early risk assessment for HFpEF. The
model underwent internal validation through tenfold cross-
validation to ensure its generalization capability, and external
validation with 38 samples demonstrated its reliable predictive
performance (AUC =0.82). However, due to the limited sample
size, these samples may not fully represent real-world patient
populations. Additionally, as the FHS cohort used in the study
primarily consisted of Caucasian and a small number of East
Asian individuals, the model’s applicability to other ethnic
groups remains unclear.

While predictive accuracy improves with model complexity—
DL shows 15% or higher compared to traditional ML (65-67)—
interpretability progressively declines. DL’s attention mechanisms

FIGURE 2
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and LLM’s transformer architectures create nested decision layers that
obscure clinical reasoning pathways (68). For instance, transformer-
based heart language models analyzing electrocardiogram reports
achieved F1 score of 93.33% to detect atrial fibrillation (69), yet
their self-attention weights remain clinically uninterpretable.
Clinicians face a precision-transparency tradeoff: gradient boosting
models reveal feature importance through SHapley Additive
exPlanations (SHAP) values but fail to explain temporal models
(70), while LIME (Local Interpretable Model-agnostic Explanations)
provides local approximations at the cost of global coherence (71).
This “black box” dilemma persists despite hybrid approaches like
model distillation that compress neural networks into rule-based
surrogates with 20% accuracy loss, ultimately restricting trust and
routine integration. A more comprehensive understanding may be
achieved by combining multiple interpretation techniques (such as
integrating SHAP’s global perspective with LIME’s local insights).
Concurrently, developing intrinsically interpretable models or
designing time-series architectures optimized for explainability can
embed transparency directly into the model design phase. These
efforts aim to progressively bridge the “black box” dilemma and
enhance clinical trust.

Some models are trained solely on data from a single institution,
and their extrapolation efficacy requires further validation through
multi-center studies. It is advisable to test these models using more
diverse datasets from different regions and research institutions to
their
prediction biases arising from sociodemographic factors. The lack of

assess generalization capability and mitigate potential
open-source and data availability for many AI models poses a
their

independently verified nor replicated, ultimately hindering scientific

significant obstacle, as performance can be neither

progress and the widespread adoption of technology. Integration
with electronic health systems or wearable devices, along with the
could facilitate
incorporation of artificial intelligence models into clinical practice.

development of mobile applications, tighter

5.3 Future prospects

Future research would prioritize four key directions to address
these gaps. First, HF subtype-specific models are urgently needed.
HFpEF, now representing over 50% of HF cases, demands distinct
predictors (e.g., atrial fibrillation burden, diastolic stress biomarkers)
compared to HFrEF. Second, EHR-integrated automated scoring
systems could enhance practicality by leveraging structured data
(e.g., lab results, medication lists) and natural language processing
to extract unstructured clinical notes. For instance, integrating
SHFM variables into EHRs could enable real-time risk alerts,
though this requires standardization of data formats across
further data
socioeconomic factors linked to survival rates—such as healthcare

institutions. To enhance comprehensiveness,
access or education level—can also be incorporated into the EHR.
Third, multimodal data fusion—combining genomics, proteomics,
and imaging-derived radiomics—may uncover novel prognostic
signatures. Wearable devices enabling continuous monitoring of
physiological parameters (e.g., daily step count, nocturnal heart rate
variability) could further refine dynamic risk prediction. Finally,
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causal inference frameworks are needed to distinguish causation
from correlation in longitudinal datasets, particularly when
evaluating the impact of interventions like sacubitril/valsartan or
cardiac resynchronization therapy.
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