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Heart failure (HF) continues to pose a significant global health burden, 

necessitating accurate prognostic tools to guide patient management. This 

mini-review presents grading systems, frailty scales, and scoring models, 

followed by challenges and future directions. We traces the evolution of 

stratification and prognostic assessments in HF, beginning with the 

foundational NYHA functional classification and progressing to the advanced 

prognostic scores currently in use. We examine the historical significance and 

clinical relevance of NYHA grades, which have long been pivotal in evaluating 

HF severity. The review then shifts focus to contemporary prognostic scores, 

including the Seattle Heart Failure Model (SHFM), the Heart Failure Survival 

Score (HFSS), and emerging tools leveraging machine learning (ML) and big 

data. We explore specific challenges encountered in current clinical practice 

and outline future directions. By highlighting the strengths and limitations of 

these tools, this mini-review aims to provides a critical appraisal of 

stratification and scoring models for HF to inform their optimal application in 

clinical practice, ultimately enhancing patient care and outcomes in HF.
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1 Introduction

Heart failure (HF) represents a critical global health challenge, affecting millions of 

individuals and placing substantial burdens on healthcare systems worldwide (1). 

Based on left ventricular ejection fraction (LVEF), HF was divided into heart failure 

with reduced ejection fraction (HFrEF, LVEF ≤ 40%) and heart failure with preserved 

ejection fraction (HFpEF, LVEF ≥ 50%) (2). Despite significant advancements in 

therapeutic interventions, the prognosis for patients with HF remains variable (3), 

underscoring the necessity for precise prognostic tools to guide clinical decision- 

making and enhance patient management.

Stratification and Prognostication in HF has evolved from rudimentary symptom-based 

classifications to sophisticated multivariate models. The New York Heart Association 

(NYHA) functional classification, introduced in 1928 (4), revolutionized clinical practice 

by categorizing patients into four grades of symptom severity. However, its subjectivity 

and poor correlation with objective biomarkers or mortality risk have driven demand 

for multidimensional risk stratification (5). Contemporary tools—such as the Seattle 

Heart Failure Model (SHFM) and Heart Failure Survival Score (HFSS)—integrate 
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demographic, hemodynamic, and biomarker data to quantify 

individual mortality risk. More recently, machine learning (ML) 

algorithms harness big data to predict outcomes with 

unprecedented granularity. This review seeks to highlight the 

strengths and weaknesses of these tools, providing insights into 

their optimal application in clinical practice to improve patient 

care and outcomes in HF.

2 Grading approaches for stratification 
and prognosis of HF

For Historically, risk stratification in HF has relied on grading 

systems that categorize disease severity based on clinical 

presentation, hemodynamic status, or functional capacity. These 

systems, while foundational, exhibit distinct conceptual frameworks 

and limitations. The ACC/AHA HF staging system classifies HF 

into four progressive stages (A–D), focusing on disease evolution 

from risk factors (stage A) to refractory symptoms (stage D) (6). 

This approach emphasizes prevention and early intervention but 

lacks granularity for dynamic symptom assessment, rendering it 

less responsive to short-term clinical changes. In contrast, the 

New York Heart Association (NYHA) classification evaluates 

symptom severity during daily activities (classes I–IV) and remains 

a cornerstone for routine clinical decision-making due to its 

simplicity (7). However, its subjective nature introduces 

interobserver variability, and it poorly discriminates HF patients 

across the spectrum of functional impairment (5, 8).

For acute hemodynamic evaluation, the Killip/Forrester 

classification stratifies patients with acute myocardial infarction 

(MI)-induced HF into four classes based on signs of pulmonary 

congestion and peripheral hypoperfusion. While valuable in acute 

MI settings, its utility diminishes in chronic HF or non-ischemic 

etiologies (9). The Weber classification employs cardiopulmonary 

exercise testing (CPET)-derived peak oxygen consumption (VO2) 

to categorize HF into classes A–D, offering a quantitative 

assessment of exercise tolerance. This system excels in 

prognostication for advanced HF, particularly in identifying 

candidates for ventricular assist devices or transplantation (10). 

However, its reliance on CPET limits widespread applicability, 

especially in resource-constrained settings (11).

A comparative analysis reveals key trade-offs (Table 1). ACC/ 

AHA staging and NYHA classification serve complementary roles 

—the former guiding long-term management and the latter 

monitoring daily symptom Cuctuations. Yet both overlook 

comorbidities and non-cardiac contributors to prognosis. Killip/ 

Forrester excels in acute MI but lacks relevance in chronic HF, 

while Weber’s objectivity is counterbalanced by logistical 

challenges. Importantly, these systems are largely unidimensional, 

neglecting multidimensional risk factors such as renal function, 

biomarkers, or frailty, which significantly inCuence outcomes.

3 Frailty scales for stratification and 
prognosis of heart failure

Frailty scales have emerged as a critical advancement in HF 

stratification, addressing the limitations of traditional grading 

systems by integrating multidimensional assessments of 

physiological vulnerability. Unlike conventional approaches that 

focus narrowly on cardiac-specific metrics, frailty scales evaluate 

systemic functional decline, incorporating both subjective and 

objective measures of physical performance, cognitive status, 

and comorbidities (12). This holistic framework enhances risk 

stratification by capturing the interplay between HF severity and 

age-related multisystem impairments, which are strong 

predictors of mortality, hospitalization, and quality of life.

The Fried frailty phenotype (13) and Short Physical 

Performance Battery (SPPB) (14) are among the most widely 

validated tools. The Fried criteria define frailty as the presence 

of ≥3 components (unintentional weight loss, exhaustion, low 

physical activity, slow gait, and weak grip strength), while the 

SPPB quantifies lower extremity function through balance, gait 

speed, and chair-stand tests. Both scales demonstrate prognostic 

value in HF populations, with frail individuals exhibiting 2–3 

times higher risks of adverse outcomes compared to non-frail 

counterparts (15–17). However, these tools require time- 

consuming physical measurements, limiting their practicality in 

routine clinical workCows (18). To address this, simplified 

questionnaires like the SARC-F (assessing strength, assistance 

walking, rising from a chair, climbing stairs, and falls) (19) and 

Clinical Frailty Scale (CFS) (20, 21) have gained traction. The 

SARC-F, for instance, correlates strongly with death or 

hospitalization in HF patients (OR 1.55, 95% CI 1.03–2.35) (22) 

and can be administered rapidly at bedside.

The Heart Failure Association of the European Society of 

Cardiology (HFA-ESC) designed a new HF frailty assessment 

score that encompasses four domains (23): clinical 

(comorbidities, weight), functional (impairment in activities of 

daily living, mobility and/or balance), psycho-cognitive 

TABLE 1 Comparison of different grading approaches for stratification and prognosis of heart failure.

Systems Parameters 
assessed

Key applications Prognostic value Strengths Limitations

ACC/AHA stages Risk factors, structural 

changes

Chronic HF risk 

prevention

Identifies pre-symptomatic 

disease

Guides preventive 

strategies

Static, insensitive to acute 

changes

NYHA class Symptom severity Routine clinical 

assessment

Quick bedside tool Simple, widely adopted Subjective, variable 

interpretation

Killip/Forrester Hemodynamic stability AMI with acute HF Predicts in-hospital mortality Rapid risk stratification Limited to ischemic HF

WEBER 

classification

Exercise capacity (VO2) Chronic HF Strong mortality correlation Objective, prognostic 

power

Requires specialized testing
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(cognitive impairment, dementia and/or depression), and social 

(social support, institutionalization and/or the lack of support.) 

domains. A study (24) has shown that frailty assessment based 

on the HFA-ESC frailty domains demonstrated a high 

prevalence of frailty among HF patients and successfully 

identified individuals at elevated risk for adverse events 

(AUC = 0.64, 95% CI 0.60–0.68).

Recent studies highlight the superiority of frailty scales over 

traditional HF grading systems in identifying high-risk 

subgroups. For example, in the FRAIL-HF cohort, among 

patients hospitalized with HF, frail patients (biological 

phenotype criteria) showed higher 1-year all-cause mortality 

[HR: 2.13, 95% CI: 1.07–4.23] even after adjusting for NYHA 

class and ejection fraction (25). Similarly, the GUIDE-IT trial 

demonstrated that a higher frailty (frailty index criteria) burden 

was associated with a significantly higher risk of HF 

hospitalization or death [HR: 1.76, 95% CI: 1.20–2.58], adjusted 

for LVEF, NYHA class, NT-proBNP and etc. (26). These 

findings underscore frailty’s role as a modifier of HF trajectory, 

particularly in aging populations with multimorbidity.

Despite their utility, frailty scales face challenges in 

standardization and implementation (12). Heterogeneity in 

assessment tools complicates cross-study comparisons, while 

dynamic changes in frailty status necessitate repeated 

evaluations. Furthermore, few scales account for HF-specific 

variables such as Cuid retention or arrhythmia burden, which 

may transiently impair physical performance. Villani ER et al. 

(27) reported that the prevalence of frailty in AF patients ranged 

from 4.4%–75.4% while AF prevalence in the frail population 

ranged from 48.2%–75.4%. Indicators reCecting Cuid retention 

and arrhythmia, such as edema, shortness of breath, and chest 

tightness, can be incorporated into the Fried frailty to provide a 

more comprehensive assessment of frailty in HF patients. These 

indicators help detect temporary functional decline caused by 

Cuid retention or arrhythmia in HF patients, thereby enabling a 

more accurate evaluation of their condition. Future efforts 

should focus on harmonizing definitions, validating HF-tailored 

frailty indices, and integrating these tools into electronic health 

records (EHR) for automated risk alerts.

4 Scoring models for stratification and 
prognosis of HF

Risk prediction models in HF have evolved from simplistic 

clinical grading systems to sophisticated multivariate tools that 

integrate demographic, biochemical, imaging, and therapeutic 

data. These models aim to quantify mortality risk, guide 

treatment decisions, and optimize resource allocation across 

both chronic and acute HF populations.

4.1 Acute HF risk models

In the context of emergency and critical care, acute HF models are 

primarily designed for short-term prognostic risk stratification and 

optimal allocation of medical resources. These models rely on 

rapidly obtainable pathophysiological parameters at admission (such 

as blood pressure, serum creatinine, and NT-proBNP) to accurately 

predict in-hospital or 30-day mortality. This provides an evidence- 

based foundation for prioritizing triage of critically ill patients, 

determining eligibility for higher levels of monitoring, and guiding 

intensive intervention strategies during the acute phase.

For acute HF, the Emergency Heart Failure Mortality Risk 

Grade (EHMRG) (28, 29) and Multiple Estimation of risk based 

on the Emergency department Spanish Score In patients with 

Acute Heart Failure (MEESSI-AHF) (30, 31) emerged as 

frontline tools. EHMRG, validated in >12,000 emergency 

department patients, uses seven variables (e.g., systolic blood 

pressure, troponin) to predict 7-day mortality (AUC 0.79). 

MEESSI-AHF, incorporating NT-proBNP and potassium levels, 

outperforms EHMRG in 30-day risk stratification (AUC 0.85 vs. 

0.80). Both models prioritize rapid risk assessment but overlook 

longitudinal outcomes beyond 30 days.

The GWTG-HF risk score (32) predicts in-hospital mortality 

using commonly available clinical variables such as age, systolic 

blood pressure, blood urea nitrogen, heart rate, sodium levels, 

chronic obstructive pulmonary disease, and non-Black race. It 

applies to a wide range of HF patients, including case with 

preserved left ventricular systolic function. Yasuyuki et al. (33) 

found that GWTG-HF risk score can show good discrimination 

and calibration in Japanese AHF patients (c-statistic, 0.763; 95% 

CI, 0.700–0.826), and the discriminative ability of the model was 

significantly improved with the addition of BNP levels 

(c statistic, 0.818; 95% CI, 0.771–0.865).Although the GWTG- 

HF score was originally developed for in-hospital patients, it 

also demonstrates good discrimination for 1-year mortality in a 

heterogeneous cohort of CICU patients (34).

4.2 Chronic HF risk models

The purpose of chronic HF models is to facilitate long-term 

risk assessment and the development of personalized advanced 

treatment strategies. These models integrate multidimensional 

variables reCecting long-term homeostasis of cardiac structure 

and function—such as left ventricular ejection fraction, peak 

oxygen consumption, and QRS duration—and are designed to 

predict all-cause mortality on an annualized basis. Their core 

clinical utility lies in providing objective, quantified criteria for 

patient selection and prioritization for scarce and high-risk end- 

stage therapies, including cardiac transplantation and left 

ventricular assist device (LVAD) implantation.

The HFSS (35), introduced in 1997, was among the first 

models to incorporate non-invasive variables—ischemic etiology, 

resting heart rate, left ventricular ejection fraction (LVEF), mean 

arterial pressure, QRS duration, serum sodium, and peak oxygen 

consumption (VO2)—to stratify heart transplant candidates. 

Validated in cohorts with advanced HF, HFSS demonstrated 

moderate discrimination (c-statistic 0.56–0.79) but faced 

limitations in the β-blocker era, as it excluded pharmacotherapy 

effects. Subsequent studies confirmed its retained prognostic 
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value in β-blocker-treated patients, albeit with reduced sensitivity 

for low-risk identification (36). However, the Zugck et al. reported 

that HFSS was inferior to a two-variable model containing only 

LVEF and either peak oxygen uptake (peak VO2) or 6-min walk 

test (6′WT) (37).

A paradigm shift occurred in 2006 with the SHFM (38), which 

integrated 24 variables, including medications (β-blockers, ACE 

inhibitors) and devices (ICDs), enabling dynamic survival estimation. 

Derived from the PRAISE I clinical trial database and validated in 14 

cohorts (n = 16,057), SHFM predicts 1–3-year survival with c- 

statistics of 0.63–0.81 (39). Its unique feature is simulating survival 

gains from guideline-directed therapies, such as adding sacubitril/ 

valsartan or CRT-D. However, SHFM underestimates risk in HF 

with preserved ejection fraction (HFpEF) and relies on trial-derived 

cohorts (40, 41), limiting generalizability to real-world populations 

with multimorbidity. Incorporating diastolic function parameters 

(e.g., E/E’ ratio, IVRT) or diastolic stress biomarkers (BNP, IL-6, etc.) 

could enhance risk prediction accuracy, improving clinical decision- 

making and patient management.

The Meta-Analysis Global Group in Chronic Heart Failure 

(MAGGIC) score (42, 43), developed in 2013, addressed 

heterogeneity by pooling individual patient data from 39,372 

subjects across 30 studies. This 13-variable model (e.g., age, 

creatinine, LVEF) predicts 1- and 3-year mortality (c-statistic 

0.73) and excels in applicability across HF subtypes, including 

HFpEF. However, it lacks granularity in capturing acute 

decompensation markers or device therapy impacts.

The Metabolic Exercise test data combined with Cardiac and 

Kidney Indexes (MECKI) score (44), developed for chronic HF, 

uniquely integrates CPET parameters (e.g., VO2, VE/VCO2 

slope) with renal function and LVEF. Validated in 2,715 

patients, it predicts 3-year survival with superior accuracy (AUC 

0.83) compared to SHFM (AUC 0.76). However, its reliance on 

CPET limits routine clinical application.

Figure 1 summarizes the selection of these models based on 

clinical context for both acute and chronic HF, while Table 2

outlines their key trade-offs. Frailty scales reCect a patient’s 

physiological reserve and vulnerability, whereas scoring models 

primarily quantify cardiac-specific risk. An integrated approach that 

combines frailty scales with scoring models can provide a more 

comprehensive risk profile, thereby better guiding personalized 

treatment decisions. Few tools address the distinct pathophysiology 

of HFpEF, where SHFM and MAGGIC underperform; 

Discrepancies in biomarker assays (e.g., NT-proBNP vs. BNP) and 

EHR documentation practices hinder cross-institutional 

applicability; Operational inertia: Complex models like SHFM 

struggle with EHR integration, whereas oversimplified tools (e.g., 

ADHERE’s 3-variable model) (45) sacrifice granularity.

5 Challenges and future prospects

Despite significant advancements in risk prediction models for 

HF, several challenges persist that limit their clinical utility 

and generalizability.

5.1 Limitations of prognostic models in 
HFpEF

Current models fail to adequately differentiate between HF 

subtypes, particularly HFpEF and HFrEF. Most models were 

derived from cohorts dominated by HFrEF patients, leading 

to poor calibration in HFpEF populations where distinct 

pathophysiological drivers such as systemic inCammation, 

metabolic dysregulation, and myocardial fibrosis disproportionately 

inCuence outcomes (46, 47).

Notably, most existing HFpEF-specific tools like the H2FPEF 

Score (48, 49) (originally designed for diagnostic probability 

stratification) and drug trial data (e.g., I-PRESERVE, TOPCAT) 

(50–53) primarily focus on diagnostic confirmation or therapeutic 

response rather than prognostic modeling. The HFA-PEFF score 

(54, 55), despite integrating echocardiographic parameters and 

NT-proBNP levels, still relies on static variables and fails to 

FIGURE 1 

Tool selection for acute and chronic heart failure.
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capture dynamic biomarker trajectories or phenotypic 

heterogeneity (e.g., cardiometabolic vs. elderly frail subtypes).

The modified EFFECT score (56) can be used to assess the 

28-day and 1-year mortality risk in hospitalized patients with 

HFpEF and ADHF (AUC: 0.76 for 28-day, and 0.72 for one-year 

mortality). By incorporating mortality-related indicators such as 

age, systolic blood pressure (SBP), blood urea nitrogen (BUN), 

sodium, cerebrovascular disease [defined as stroke/transient 

ischemic attack (TIA) in ARIC], chronic obstructive pulmonary 

disease (COPD), and hemoglobin, it enables better identification 

of high-risk patients and guides clinical decision-making, 

including early triage, in-hospital monitoring, treatment, and 

early post-discharge follow-up. However, there is still a lack of 

external validation cohorts to confirm its generalizability.

Additionally, traditional models depend on baseline variables 

(e.g., LVEF, serum sodium) and neglect temporal risk modifiers 

such as Cuctuating NT-proBNP levels with limited prognostic 

value in HFpEF (30% of cases show levels <125 pg/mL) (57, 58), 

treatment adherence patterns, or evolving comorbidities. The 

reliance on drug trial data further introduces selection bias, as 

participants often exclude HFpEF-dominant populations—such 

as elderly patients with multimorbidity (≥3 comorbidities in 

67.4% of Asian cohorts) or underrepresented racial groups— 

thereby limiting real-world applicability.

5.2 Challenges in the AI era

Practical implementation barriers also hinder widespread 

adoption. Many scoring systems require manual data entry, 

which is time-consuming and prone to errors. The evolution of 

HF prediction into the AI era (Figure 2) with higher accuracy 

has witnessed three technological waves: 1) ML, have the 

potential to improve classification performance over traditional 

statistical tools by taking into account nonlinear impacts of 

variables to arrive at an accurate prediction (59); 2) deep 

learning (DL) – a branch of ML, leveraging convolutional neural 

networks (CNN) and recurrent neural network (RNN) for risk 

prediction (60, 61), outperformed traditional ML models; 3) and 

large language models (LLMs) capable of parsing multimodal 

data from EHRs and wearable devices (62).

Zhao H et al. (63) employed ML techniques such as RF and 

LASSO regression to construct alternative risk models. The 

models, which improved the accuracy of risk prediction and 

uncovered novel relationships between risk factors and 

outcomes, demonstrated good performance in predicting 

mortality and readmission among HFmrEF patients. Li et al. 

(64) developed ML algorithms to predict mortality of HF 

patients within ICU settings, with XGBoost demonstrating 

superior performance. While DL model like CNN showed a 

high discriminatory ability in categorizing HFpEF and control 

patients, achieving an AUC of 0.92 on the blinded test set, with 

a sensitivity of 0.98 and specificity of 0.6327 (61). HFmeRisk 

model, a DL model developed by Zhao X et al. (60), used both 

5 clinical features and 25 DNA methylation loci to provides 

innovative insights into early risk assessment for HFpEF. The 

model underwent internal validation through tenfold cross- 

validation to ensure its generalization capability, and external 

validation with 38 samples demonstrated its reliable predictive 

performance (AUC = 0.82). However, due to the limited sample 

size, these samples may not fully represent real-world patient 

populations. Additionally, as the FHS cohort used in the study 

primarily consisted of Caucasian and a small number of East 

Asian individuals, the model’s applicability to other ethnic 

groups remains unclear.

While predictive accuracy improves with model complexity— 

DL shows 15% or higher compared to traditional ML (65–67)— 

interpretability progressively declines. DL’s attention mechanisms 

FIGURE 2 

The evolution of risk stratification and survival prediction tools for heart failure.
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and LLM’s transformer architectures create nested decision layers that 

obscure clinical reasoning pathways (68). For instance, transformer- 

based heart language models analyzing electrocardiogram reports 

achieved F1 score of 93.33% to detect atrial fibrillation (69), yet 

their self-attention weights remain clinically uninterpretable. 

Clinicians face a precision-transparency tradeoff: gradient boosting 

models reveal feature importance through SHapley Additive 

exPlanations (SHAP) values but fail to explain temporal models 

(70), while LIME (Local Interpretable Model-agnostic Explanations) 

provides local approximations at the cost of global coherence (71). 

This “black box” dilemma persists despite hybrid approaches like 

model distillation that compress neural networks into rule-based 

surrogates with 20% accuracy loss, ultimately restricting trust and 

routine integration. A more comprehensive understanding may be 

achieved by combining multiple interpretation techniques (such as 

integrating SHAP’s global perspective with LIME’s local insights). 

Concurrently, developing intrinsically interpretable models or 

designing time-series architectures optimized for explainability can 

embed transparency directly into the model design phase. These 

efforts aim to progressively bridge the “black box” dilemma and 

enhance clinical trust.

Some models are trained solely on data from a single institution, 

and their extrapolation efficacy requires further validation through 

multi-center studies. It is advisable to test these models using more 

diverse datasets from different regions and research institutions to 

assess their generalization capability and mitigate potential 

prediction biases arising from sociodemographic factors. The lack of 

open-source and data availability for many AI models poses a 

significant obstacle, as their performance can be neither 

independently verified nor replicated, ultimately hindering scientific 

progress and the widespread adoption of technology. Integration 

with electronic health systems or wearable devices, along with the 

development of mobile applications, could facilitate tighter 

incorporation of artificial intelligence models into clinical practice.

5.3 Future prospects

Future research would prioritize four key directions to address 

these gaps. First, HF subtype-specific models are urgently needed. 

HFpEF, now representing over 50% of HF cases, demands distinct 

predictors (e.g., atrial fibrillation burden, diastolic stress biomarkers) 

compared to HFrEF. Second, EHR-integrated automated scoring 

systems could enhance practicality by leveraging structured data 

(e.g., lab results, medication lists) and natural language processing 

to extract unstructured clinical notes. For instance, integrating 

SHFM variables into EHRs could enable real-time risk alerts, 

though this requires standardization of data formats across 

institutions. To further enhance data comprehensiveness, 

socioeconomic factors linked to survival rates—such as healthcare 

access or education level—can also be incorporated into the EHR. 

Third, multimodal data fusion—combining genomics, proteomics, 

and imaging-derived radiomics—may uncover novel prognostic 

signatures. Wearable devices enabling continuous monitoring of 

physiological parameters (e.g., daily step count, nocturnal heart rate 

variability) could further refine dynamic risk prediction. Finally, 

causal inference frameworks are needed to distinguish causation 

from correlation in longitudinal datasets, particularly when 

evaluating the impact of interventions like sacubitril/valsartan or 

cardiac resynchronization therapy.
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