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Identification and validation of 
key biomarkers of the glycolysis- 
ketone body metabolism in heart 
failure based on multi-omics and 
machine learning

Na Xiao, Jing Liu, Zhe Chen and Xiaoyong Geng*

Cardiology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China

Background: Metabolic remodeling, particularly involving glycolysis and ketone 

body metabolism, is a hallmark of heart failure (HF) pathophysiology. However, 

the regulatory network linking energy metabolism with immune dysregulation 

remains poorly understood.

Objectives: This study aimed to identify and validate key biomarkers within the 

glycolysis-ketone body metabolism axis that contribute to the progression of 

HF, and to explore their association with immune microenvironment alterations.

Methods: Transcriptomic data from HF patients were integrated with glycolysis 

and ketone metabolism gene sets. Differentially expressed genes (DEGs) were 

identified and analyzed through Weighted Gene Co-expression Network Analysis 

(WGCNA). Candidate genes were refined using machine learning algorithms 

(LASSO regression and Boruta), with functional enrichment assessed via Gene 

Set Enrichment Analysis (GSEA). Immune infiltration was profiled using ssGSEA, 

and regulatory networks were constructed by integrating miRNA and 

transcription factor predictions. Experimental validation was conducted in a 

murine myocardial infarction model using qPCR and cardiac ultrasound imaging.

Results: Five candidate genes related to glycolysis and ketone metabolism were 

identified, among which TIMP1 emerged as the key hub gene. TIMP1 expression 

was significantly elevated in HF and correlated with enriched pathways including 

inflammatory signaling and mitochondrial dysfunction. Immune profiling 

revealed that TIMP1 positively associated with the infiltration of activated CD8⁺ 
T cells and dendritic cells, potentially mediated by chemokines such as CCL2. 

Regulatory network analysis suggested that upstream transcription factors and 

miRNAs may contribute to TIMP1 overexpression. Animal model validation 

confirmed the upregulation of TIMP1 and other core genes, supporting its 

central role in HF progression.

Conclusion: This study identifies TIMP1 as a central regulator linking glycolysis- 

ketone metabolic imbalance with immune microenvironment dysregulation in 

heart failure. These findings offer new mechanistic insights and propose 

TIMP1 as a potential diagnostic biomarker and therapeutic target in HF.
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1 Introduction

Heart failure (HF) is a clinical syndrome characterized by impaired 
ventricular filling or ejection capacity resulting from structural or 

functional cardiac abnormalities. Its hallmark manifestations include 
exertional dyspnea, fatigue, "uid retention, and reduced exercise 

tolerance (1, 2). It is estimated that nearly 64.9 million people 
worldwide were affected by HF in 2023. Despite significant 

advancements in pharmacological therapies (such as ARNI and 
SGLT2 inhibitors) (3, 4), device-based interventions (5), and 
comprehensive management strategies (6), the long-term prognosis 

for HF patients remains poor, with a 5-year mortality rate still 
approximating 50% (7, 8). The fundamental pathological essence of 

HF involves activation of neurohormonal and in"ammatory responses 
triggered by an initial cardiac injury. This leads to myocardial 

remodeling, ultimately resulting in progressive deterioration of cardiac 
function and systemic circulatory dysfunction (9, 10).

Energy metabolism dysregulation represents a core driver in HF 
progression (11). Its fundamental nature lies in the shift of 

cardiomyocytes—triggered by ischemia, hypoxia, or dysregulated 
gene expression—from highly efficient fatty acid oxidation towards 

inefficient glucose glycolysis for energy production. This shift is 
accompanied by mitochondrial dysfunction and reduced ATP 

synthesis, ultimately culminating in a state of cardiac “energy 
starvation" (12). Glycolysis and ketone body metabolism 

collectively constitute the metabolic reprogramming characteristic 
of HF (13, 14). While glycolytic activation provides short-term 

compensation for ATP deficits, it is inefficient and leads to lactate 
accumulation (15). The compensatory ketone body metabolism 

involves the transport of ketone bodies into mitochondria via 
SLC16A1 for oxidation, thereby bypassing impaired β-oxidation 

and pyruvate dehydrogenase pathways (16). Long-term imbalance 
between glycolysis and ketone metabolism exacerbates 

cardiomyocyte apoptosis and fibrosis (17). However, the nature of 
the interaction (synergistic or antagonistic) between glycolysis and 

ketone metabolism remains unclear. Key common regulatory 
nodes have yet to be elucidated. Furthermore, fragmented research 

focusing on single metabolic markers (e.g., lactate, β- 
hydroxybutyrate) fails to capture the heterogeneous nature of HF. 

There is a critical lack of comprehensive multi-dimensional 
integrated diagnostic models, and an urgent need exists for precise 

therapeutic targets based on metabolic subtype classification. 
Therefore, this study aims to unveil the key hub genes within the 
glycolysis-ketone metabolism axis in heart failure and delineate 

their immune-metabolic interaction networks. Our objective is to 
provide novel targets for developing precision intervention 

strategies based on the regulation of metabolic reprogramming.
Building upon this foundation, this study integrated 

bioinformatics approaches. Transcriptomic data from heart failure 
patients and metabolic pathway gene sets were acquired by mining 

public databases (GEO, MSigDB). Differentially expressed genes 
(DEGs) were identified using the limma package, and Weighted 

Gene Co-expression Network Analysis (WGCNA) was employed 
to screen key modules and candidate genes associated with 

glycolysis/ketone metabolism. Subsequently, machine learning 
algorithms (LASSO regression, Boruta feature selection) were 

utilized to refine the core targets, identifying TIMP1 as a central 
player. In-depth functional characterization of TIMP1 was 

performed using single-gene Gene Set Enrichment Analysis 
(GSEA). Furthermore, its role in the immune microenvironment 

was assessed via immune infiltration analysis using single-sample 
GSEA (ssGSEA), and its upstream regulatory mechanisms were 

explored through regulatory network prediction (miRNA and 
Transcription Factor prediction). Finally, in vivo expression 

validation was conducted by establishing a murine myocardial 
infarction (MI) model. This step completed the closed-loop 

research strategy, transitioning from computational prediction to 
experimental verification. This study represents the first report 

identifying TIMP1 as a hub gene orchestrating the glycolysis- 
ketone metabolism-immune imbalance axis in heart failure. It 
provides novel targets and a theoretical foundation for gaining 

deeper insights into the mechanisms underlying dysregulation of 
the metabolic-immune microenvironment in HF and for 

developing targeted intervention strategies.

2 Materials and methods

2.1 Data collection

Heart failure transcriptomics data were downloaded from 

the Gene Expression Omnibus (GEO), specifically the GSE5406 
dataset, which included 16 control and 194 heart failure samples 

of left ventricular tissue, sequenced using the GPL96 Illumina 
Genome Analyzer platform (Homo sapiens). The glycolysis- 

related gene sets GOBP_GLYCOLYTIC_PROCESS_THROUGH_ 
FRUCTOSE_6_PHOSPHATE and GOBP_GLYCOLYTIC_ 
PROCESS_THROUGH_GLUCOSE_6_PHOSPHATE, as well as 

the ketone metabolism-related gene set GOBP_CELLULAR_ 
KETONE_METABOLIC_PROCESS, were downloaded from the 

Molecular Signatures Database (MSigDB) (18).

2.2 Identification of differentially expressed 
genes DEGs

Differentially expressed genes (DEGs) were computationally 

determined through the limma algorithm in R software. Statistical 
thresholds for DEG classification were as follows: up-regulated 

genes: p < 0.05 and fold change >1.25; down-regulated genes: 
p < 0.05 and fold change <1/1.25 = 0.8. Visual representations of 

transcriptional dynamics, including volcano plots and clustered 
heatmaps, were created via the ggplot2 and ComplexHeatmap 

packages, respectively. We finally identified 761 DEGs.

2.3 Weighted gene co-expression 
network analysis (WGCNA) and candidate 
genes selection

We performed WGCNA on the expression matrix using the 
R package“WGCNA” (19). All samples were hierarchically 
clustered using Euclidean distance based on gene expression levels 
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to identify and remove outliers. A critical step before network 
construction is determining the optimal soft thresholding power (β) 

to approximate a scale-free topology. The power parameter β 
strengthens strong correlations and penalizes weak ones by raising 

Pearson correlation coefficients to the power of β. We 
systematically tested values of β from 1 to 20 and evaluated two key 

metrics: (1) The scale-free topology fit index (R2); (2) The mean 
connectivity of the network. We selected β = 7 as it achieved an 

R2 
≥ 0.85 (crossing the red cutoff line) while maintaining relatively 

low mean connectivity approaching zero, ensuring the network 

adhered to scale-free properties characteristic of biological systems. 
Using the chosen soft threshold (β = 7), we built an adjacency 

matrix and then transformed it into a topological overlap matrix. 
Then, hierarchical clustering was carried out to pinpoint gene 
modules. Modules were color-coded for visualization. We 

correlated module eigengenes (MEs) with ssGSEA scores for 
glycolysis and ketone metabolism pathways. Screening criteria for 

trait-associated modules were defined as |r| > 0.3 and p < 0.05. The 
module exhibiting the highest correlation with both phenotypes 

(glycolysis and ketone metabolism) was selected for downstream 
analysis. This module comprised 658 genes. Key genes linked to 

glycolysis and ketone metabolism were identified using thresholds 
of module membership (MM) > 0.8 and gene significance 

(GS) > 0.2, yielding 54 genes associated with the glycolysis- and 
ketone metabolism-related module. An intersection was taken 

between the 761 DEGs and the 54 genes related to glycolysis and 
ketone metabolism-related modules, and the resulting genes were 

denoted as candidate genes.

2.4 Functional gene network construction

To further investigate the functional roles of candidate genes, 

we employed TissueNexus (https://www.diseaselinks.com/ 
TissueNexus/) (20), a database encompassing functional gene 

networks (FGNs) across 49 human tissues and cell lines. 
A cardiac tissue-specific FGN subnetwork was constructed by 

integrating the first-degree neighboring genes of the five 
candidate genes. Core genes within this subnetwork were 

subsequently defined as nodes with a network degree > 20.

2.5 GO and KEGG analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway enrichment analyses of genes 
include in cardiac tissue-specific FGN subnetwork of the five 

candidate genes were executed via “clusterProfiler” package in 
R software. Statistical significance for enrichment analyses was 

established at a threshold of p < 0.05.

2.6 Machine learning analysis

To further obtain the hub gene in the five candidate genes, we 
utilized the least absolute shrinkage and selection operator 

(LASSO), which represents a widely utilized regularization 
technique for high-dimensional prediction modeling, and 

machine learning algorithms Boruta to select the most crucial 
gene. The LASSO regression and the Boruta analysis was 

accomplished using glmnet package and Boruta package in 
R language, respectively. The candidate gene co-screened by 

Lasso and Boruta was used as hub gene for subsequent research.

2.7 Single-gene GSEA enrichment analysis

We performed systematic functional enrichment analyses 

using control and heart failure samples from GSE5406、 

GSE236374 dataset. Gene sets of the glycolysis-related gene sets 

(GOBP_GLYCOLYTIC_PROCESS_THROUGH_FRUCTOSE_6_ 
PHOSPHATE and GOBP_GLYCOLYTIC_PROCESS_ 

THROUGH_GLUCOSE_6_PHOSPHATE) and ketone 
metabolism-related gene set (GOBP_CELLULAR_KETONE_ 
METABOLIC_PROCESS) were downloaded from the Molecular 

Signatures Database (MSigDB, Homo sapiens). Spearman’s rank 
correlation coefficients were computed between hub gene 

expression and all interrogated genes across samples. These 
correlation metrics were subsequently employed as ranking 

criteria for single-sample gene set enrichment analysis (GSEA) 
using the clusterProfiler package in R. This approach enabled 

identification of biological pathways significantly enriched (false 
discovery rate < 0.25, p < 0.05) among biomarker candidates 

exhibiting coordinated expression patterns with hub gene.

2.8 Immune infiltration and differentially 
expressed immune factors analysis

To systematically characterize immune infiltration patterns, 
single-sample Gene Set Enrichment Analysis (ssGSEA) on 

transcriptomic datasets stratified into control and heart failure 
samples were utilized. A predefined gene signature panel 

encompassing 28 immune cell types derived from the TISIDB 
database (http://cis.hku.hk/TISIDB/download.php) (21). Gene 

expression profiles were subjected to immune cell quantification 
using the GSVA package in R, which estimated enrichment 

scores for 28 different immune cell populations. The proportion 
of immune cell subsets across samples was visualized through 

unsupervised hierarchical clustering heatmaps generated by the 
pheatmap R package. We performed Spearman correlation 

analysis between hub gene and differentially expressed immune 
cells using the R package “psych” in all samples. For 

differentially expressed immune factors analysis, we conducted 
comparative analyses of immunomodulatory factor expression 

between control and heart failure samples within the dataset. 
Utilizing the Wilcoxon rank-sum test, we evaluated 24 

immunosuppressive agents, 45 immunostimulators, and 41 
chemokines from previous study for differential expression 

(p < 0.05) (22). Immune factors demonstrating statistically 
significant inter-group differences were designated as 

differentially expressed immune factors (DEIFs). The network 
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diagram showing the interaction relationships among hub gene, 
differentially expressed immune factors, and differentially 

expressed immune cells was drawn using Cytoscape software.

2.9 Hub gene-centered regulatory network 
establishment

Potential microRNAs (miRNAs) targeting hub gene were 
predicted using three complementary databases: miRWALK 

(http://mirwalk.umm.uni-heidelberg.de) (23), miRDB (http:// 
www.mirdb.org) (24), and TargetScan (http://www.targetscan. 

org) (25). High-confidence miRNAs were defined as those 
consistently identified across all three platforms, with 

intersection analysis performed via the VennDiagram package in 
R. Concurrently, transcription factors (TFs) governing hub gene 
were acquired from the KnockTF database (http://www. 

licpathway.net/KnockTF/index.html) (26). The integrated 
miRNA-TF regulatory network of TIMP1 were obtained from 

the miRNet tool (https://www.mirnet.ca/) and visualized using 
Cytoscape software (v3.9.1) (27).

2.10 Construction of mouse myocardial 
infarction model

Male C57BL/6J mice (8 weeks old, SPF grade, n = 15) were 

anesthetized with pentobarbital sodium, followed by orotracheal 
intubation and mechanical ventilation (120 breaths/min, tidal 

volume 4 mL). Once stable anesthesia was verified, a left 
thoracotomy was conducted at the fourth intercostal space, 

facilitating the exposure of the heart. The left anterior 
descending (LAD) coronary artery was ligated 3 mm distal to 

the aortic root using an 8-0 suture, with successful occlusion 
confirmed by ST-segment elevation on ECG and pallor/ 

hypokinesis of the anterior left ventricular wall. The thoracic 
cavity was closed in layers, and pneumothorax was prevented 

via syringe aspiration. Postoperatively, mice were monitored for 
respiratory recovery and housed individually with free access to 

food/water. Hearts were harvested 7 days post-MI for further 
analysis. Key reagents and equipment included ophthalmic 

surgical tools, a rodent ventilator (RWD HF-12), and standard 
disinfectants (75% alcohol, saline).

2.11 Mouse ultrasound imaging experiment

Prior to echocardiography, the ultrasound probe was 
connected to the instrument interface, and the animal handling 

platform was preheated. Mice were anesthetized with 2% 
iso"urane and securely positioned on the scanning platform, 

with physiological monitoring signals (e.g., ECG, respiration) 
established. B-mode imaging was performed in both long- and 

short-axis views, and raw data were saved in animal-specific 
folders. Cardiac chamber dimensions and function were 
analyzed of"ine using the manufacturer’s software by manually 

tracing endocardial borders at end-systolic and end-diastolic 
phases. Operators monitored all procedures pre- and post- 

experiment to ensure data objectivity.

2.12 RNA extraction and qPCR analysis of 
mouse cardiac tissue

After sacrificing anesthetized mice, excise the heart, rinse with 

ice-cold PBS, blot dry, grind 50–100 mg tissue to powder in liquid 
nitrogen, transfer to a tube with 1 ml TRIzol, Using a vortex to 

lyse cells, incubate the lysate, add chloroform, centrifuge the 
mixture, transfer the aqueous phase, precipitate RNA with 

isopropanol, wash the precipitate with 75% ethanol, air-dry the 
RNA, dissolve it in RNase-free water, quantify the RNA using 
NanoDrop, and store the RNA at −80°C. For qPCR, use a 

TaKaRa reverse transcription kit and Roche SYBR Green Master 
Mix on a Bio-Rad CFX96 machine: design primers (e.g., 

GAPDH as control) with Primer3 and BLAST, reverse 
transcribe 1 μg RNA with random hexamers, dNTPs, buffer, 

RNase inhibitor, and reverse transcriptase, then set up 20 μl 
reactions with cDNA, primers, and master mix, performing 40 

cycles (95°C denaturation, 60°C annealing, 72°C extension) and 
mRNA expression of target genes was normalized to GAPDH 

via the 2^(-ΔΔCt) method with statistical tests like t-tests or 
ANOVA. All qPCR experiments were performed in triplicate. 

Primers used in this study were as follows:
TIMP1-F:CAGTGTTTCCCTGTTTATCTATCCC.

TIMP1-R: GCAAAGTGACGGCTCTGGTAG.
THBS4-F: GGTCTTTGATCTTCTACCGTCCTC.

THBS4-R: AAGGTGGAGATGAGATAGACTTCGTG.
HCLS1-F: GTTGGGGAGTTAGATCGGCA.

HCLS1-R:GGTCCAGCTTGGTAGGACAG.
C5AR1-F:GCAGCCCTTATCATCTACTCGG.

C5AR1-R: CCGCCAGATTCAGAAACCAG.
GAPDH-F: CCTCGTCCCGTAGACAAAATG.

GAPDH-R: TGAGGTCAATGAAGGGGTCGT.

3 Results

3.1 Screening of differentially expressed 
genes in heart failure

To investigate the characteristic genes of glycolysis and ketone 

body metabolism in the occurrence and development of heart 
failure (HF), we designed this study as outlined in Figure 1. 

First, to identify genes related to HF, we downloaded the 
transcriptome sequencing dataset GSE5406 from the GEO 

database, which encompassed 16 control left ventricular hearth 
tissue samples and 194 HF tissue samples. Differential 

expression analysis was executed between the control and HF 
groups. In this study, genes with p-value < 0.05 and fold 

change > 1.25 were defined as up-regulated genes in HF, while 
those with p-value < 0.05 and fold change < 1/1.25 were defined 
as down-regulated genes in HF. Among them, there were 373 
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down-regulated genes and 388 up-regulated genes (Supplementary 

Table S1). The expression distribution of the top 10 genes with the 
largest fold change is shown in Figure 2a. Heatmaps further 

illustrated the top five upregulated (HBB, NPPA, MXRA5, LUM, 
ASPN) and downregulated (MYOT, HOPX, ANKRD2, CD163, 

FKBP5) genes in HF (Figure 2b).

3.2 Identification of glycolysis- and ketone 
metabolism-related gene modules

Weighted gene co-expression network analysis (WGCNA) is 
designed to identify co-expressed gene modules, explore the 

relationship between gene networks and target traits, and screen 
out key gene modules of interest. First, all samples were 

clustered, hierarchical clustering was performed using the 
Euclidean distance of expression levels, outliers in the samples 

were checked, and outlier samples were excluded. As shown in 
Supplementary Figure S1a, no outlier samples were excluded in 

this study. A suitable soft threshold power was selected from 1 
to 20 to determine the threshold of gene correlation. The 

relationship between the soft threshold β and the scale-free 
network evaluation coefficient R2, as well as the relationship 

between the soft threshold power and the average connectivity, 
were established. As shown in Supplementary Figure S1b, set 

R2 = 0.85, and we screened the soft threshold exceeding the red 
cutting line. As shown in Supplementary Figure S1c, we 

screened the soft threshold with connectivity close to 0. Finally, 
a soft thresholding power (β = 7) was selected to guarantee 

scale-free network topology. Twelve co-expression modules 
were identified (excluding the grey module to which genes 

that could not be classified belonged, Figure 3a). We took the 

glycolysis and ketone metabolism gene sets from the MSigDB 

database and further used the ssGSEA scores of glycolysis and 
ketone metabolism as phenotypes to construct the association 

between phenotypes and modules, calculated the correlation 
coefficient matrix between module eigenvectors and phenotypic 

traits, and then generated a correlation heat map to visualize the 
results. As shown in Figure 3b, the red module showed significant 

correlations with both phenotypes (|r| > 0.3, p < 0.05). Then, the 
correlation between module genes and traits was drawn separately. 

The red module had 658 genes, and then we screened 54 key genes 
of the red module through the criteria: mm > 0.8 and gs > 0.2, 

which were used for subsequent analysis (Figure 3c and 
Supplementary Table S1).

3.3 Identification of glycolysis/ketone 
metabolism-related DEGs and functional 
enrichment

Through the above steps, we obtained 761 DEGs between HF 
and control groups, and 54 glycolysis- and ketone metabolism- 

related module genes. We intersected these two gene sets, and 
the overlapping genes were regarded as glycolysis- and ketone 

metabolism-related DEGs, which are hereafter referred to as 
candidate genes for simplicity. It yielded a total of 5 candidate 

genes, namely TIMP1, VSIG4, LAPTM5, HCLS1, and C5AR1 
(Figure 4a). We then constructed functional regulatory networks 

(FGNs) for the 5 candidate genes through TissueNexus. We 
used the one-step neighbors of the candidate genes to obtain 

their sub-network in the cardiac tissue FGNs and labeled the 
core genes (degree > 20) in this sub-network. We found that 

TIMP1, LAPTM5, HCLS1, and C5AR1 among the candidate 

FIGURE 1 

The flowchart of this study.
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genes were in core positions in the FGN of cardiac tissue 

(Figure 4b). We continued to carry out GO functional 

enrichment on the above cardiac tissue FGNs, and the results 

highlighted processes such as cell chemotaxis and leukocyte 

migration (Figure 4c), while KEGG analysis identified 

chemokine signaling as a key pathway (Figure 4d).

3.4 Machine learning identifies key genes in 
HF glycolysis and ketone metabolism 
regulation

To further obtain key genes regulating HF via glycolysis and 

ketone metabolism, we leveraged machine learning algorithms to 

FIGURE 2 

Identification of DEGs. a Volcano plot of the distribution of DEGs, Orange indicates upregulated genes; green indicates downregulated genes and 

grey indicates genes excluded by DEG screening criteria. b Heatmap of DEGs, The upper part is a density heatmap of expression levels for 

upregulated and downregulated genes in samples, showing lines of five quantiles and the mean. The lower part has each column representing a 

sample. This figure plots the top 5 upregulated genes and top 5 downregulated genes sorted by the log2FC fold change. Each row represents a 

gene, displaying its expression levels across different samples. The color of the heatmap indicates the magnitude of gene expression in samples: 

the higher the expression, the darker the color (red for high expression, blue for low expression).
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narrow down the candidate gene range. Specifically, we first applied 

LASSO regression to construct a penalized function for model 
refinement. After performing Lasso regression analysis on 5 

candidate genes, we found that the optimal lambdamin value was 
0.025 (Figure 5a), and finally, a total of one gene whose regression 

coefficient was not penalized to 0 was obtained, namely TIMP1 
(Figure 5b). Besides, Boruta was implied to calculate the importance 

of the features, as shown in Figure 5c, all candidate genes were 
accepted by Boruta. We finally decided that the candidate genes 

jointly screened by Lasso and Boruta were used as the key genes 
for subsequent research, namely TIMP1. We drew the ROC 

curve of TIMP1, in which AUC = 0.80, indicating that the expression 
of TIMP1 has a diagnostic potential on HF (Figure 5d). To 

identify the biological functions involved in TIMP1, we used 
the “c2.cp.kegg.v7.0.symbols.gmt” in the MSigDB database as the 

reference gene set, performed Spearman correlation analysis between 
TIMP1 and all genes, and obtained the correlation coefficient. 

Taking the correlation coefficient as the sorting standard, we carried 
out single-gene GSEA enrichment analysis on TIMP1. The results 

showed that TIMP1 was enriched in pathways including allograft 

rejection, glycosphingolipid biosynthesis ganglion series, citric acid 

cycle recycling, and Parkinson’s disease (Figure 5e).

3.5 Immune regulatory network of key 
gene TIMP1

To explore the role of immune cells in HF, we conducted immune 
infiltration analysis on the control and HF groups using the ssGSEA 

algorithm. We obtained gene sets for 28 immune cell types from 
the TISIDB database and calculated the enrichment scores of 

immune infiltrating cells in each sample. The results indicated 3 
differentially abundant immune cells in HF: activated CD8 T cell, 

activated dendritic cell, and natural killer cell (Figures 6a,b). To 
further understand the connection between TIMP1 expression and 

differential immune cells, we performed Spearman correlation 
analysis between the expression of TIMP1 and the above 3 

differential immune cells. We found that two differential immune 
cells were significantly positively correlated with the expression of 

TIMP1, including activated CD8T cell and activated dendritic cell 

FIGURE 3 

Identification of glycolysis- and ketone metabolism-related gene modules. (a) Identification of co-expression modules: the upper part is a 

hierarchical clustering dendrogram of genes, and the lower part shows gene modules. The upper and lower parts correspond to each other, 

where genes with closer distances (clustered into the same branch) are assigned to the same module. (b) Correlation heatmap between modules 

and phenotypes: the color blocks on the far left represent modules, and the color bar on the far right indicates the correlation range. In the 

central heatmap, darker colors signify higher correlation; red denotes positive correlation, and blue denotes negative correlation. The numbers in 

each cell represent the correlation coefficient and significance. (c,d) Correlation between key module genes and ketone metabolism (c) or 

glycolysis (d). MM represents the correlation between genes and modules, and GS represents the correlation between genes and traits.
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(Figure 6c), indicating that the expression change of TIMP1 is related 
to the alteration of the immune microenvironment in HF. We further 

evaluated the significance of immune factors in HF. We obtained the 
immune factor gene list reported in previous studies including 24 

immune inhibitors, 45 immune stimulants, and 41 chemokines 
(2), and used the Wilcoxon test in our dataset to compare the 

expression level differences of immune factors between the 
control group and the HF group (p < 0.05). The immune 

factors with significant differences were defined as “differential 
immune factors”. We screened a total of 20 differential 

immune factors (Figure 6d). We used Cytoscape to draw a 
network diagram based on TIMP1, differential immune factors, 

and differential immune cells to show the interaction 
relationship between TIMP1, differential immune factors, and 

differential immune cells. It is presented that TIMP1 could be 

associated with differential immune cells through a variety of 
differential immune factors. For example, TIMP1 could be 

linked to activated dendritic cell via CCL2 (Figure 6e).

3.6 Transcriptional regulation and 
validation expression of candidate genes 
in HF models

To explore the molecular regulatory mechanism of TIMP1, we 

also explored the potential transcriptional regulation modes 
upstream of TIMP1. miRNA and transcription factors (TF) can 

play a role in maintaining physiological stability by regulating the 
expression of target genes. Therefore, we used the miRNet database 

to obtain the upstream miRNA-TF regulatory network of TIMP1 

FIGURE 4 

Identification of candidate genes and functional enrichment. (a) Venn diagram of DEGs and glycolysis- and ketone metabolism-related genes. (b) 

Subnetwork of cardiac tissue FGNs, the node size represents the degree of the node, and core nodes with degree >20 in the network are 

labeled. (c,d) Functional enrichment (c) and pathway enrichment (d) of the subnetwork of cardiac tissue FGNs. The node size in the figure 

represents the number of genes overlapping between the nodes in the network and the gene set with enriched functions.
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and used Cytoscape for visualization. miRNet analysis predicted 135 
upstream regulators of TIMP1 (15 TFs and 120 miRNAs; Figure 7a). 
To verify the importance of candidate genes in heart failure, we 

constructed a mouse myocardial infarction (MI) model. The results 
of mouse cardiac ultrasound showed that the M wave in the MI 

group was obviously changed to a straight line (Figure 7b), and the 
ejection fraction of the heart in the MI group was significantly 

lower than that in the control group (Figure 7c). The above results 
showed that our model was successfully constructed. Seven days 

after MI in mice, we took the heart tissue of mice, extracted RNA, 
and detected the expression of several red module genes by qPCR. 

For qPCR validation, we selected genes representing different 
functional categories within the WGCNA red module: (1) TIMP1 

—the hub gene identified by machine learning; (2) HCLS1 and 
C5AR1—two of the five candidate genes with known immune 

regulatory functions; (3) THBS4 (Thrombospondin 4)—although 
not among the final five candidate genes, THBS4 was a highly 

significant DEG (log2FC = 8.36, p < 0.0001) within the red module 

with established roles in extracellular matrix remodeling and 
cardiac fibrosis (28). THBS4 was included as a positive control to 
validate the broader WGCNA module’s relevance to HF 

pathology.The results are shown in Figure 7d. In heart tissue 
samples, we observed that TIMP1 and THBS4 expression levels 

were significantly upregulated in HF group compared to the 
control group. Conversely, HCLS1 expression was notably 

downregulated in the HF group, while C5AR1 expression showed 
no significant difference between the two groups. We found that 

there was partial consistency between animal modeling qPCR 
results and GES5406 sequencing data. For example, THBS4 and 

HCLS1 were up-regulated and down-regulated genes in the dataset, 
respectively. However, TIMP1 was highly expressed in the HF group 

in qPCR, but TIMP1 belonged to the down-regulated gene in the 
HF group in the GES5406 dataset. We speculated that this might be 

due to the fact that the dataset was from human samples, while our 
verification was in mouse tissues. In response to this concern, we 

have analyzed an additional mouse heart failure dataset, GSE236374, 

FIGURE 5 

Machine learning and key gene identification. (a) Coefficient spectrum diagram of the Lasso model construction, with the abscissa as the logarithm 

of lambdas and the ordinate as the variable coefficient. When the optimal lambda is reached, variables with coefficients equal to 0 are eliminated. (b) 

Ten-fold cross-validation for adjusting parameters in the Lasso model construction, with the abscissa as the logarithm of lambdas and the ordinate as 

the model error. The optimal lambda value is at the lowest point of the red curve, corresponding to 1 variable. (c) Importance of candidate genes for 

diagnostic accuracy. (d) ROC curve of TIMP1 for HF diagnosis. (e) Single-gene enrichment analysis of TIMP1, the upper part represents the functional 

score curve, the middle part represents genes in functional pathways, and the lower part represents functional correlations.

Xiao et al.                                                                                                                                                                10.3389/fcvm.2025.1672513 

Frontiers in Cardiovascular Medicine 09 frontiersin.org



which utilizes the same animal modeling approach as our study. Our 
expression analysis demonstrated that TIMP1 expression was 

significantly elevated in the acute myocardial infarction group, 
which is in agreement with the findings from our animal model 

(Figure 7e). We guessed that the mechanism of action of TIMP1 in 
HF might have species differences. Species-specific discrepancies 

(e.g., TIMP1 expression trends) suggest divergent regulatory 
mechanisms between human and mouse HF.

4 Discussion

This study focuses on HF—a primary driver of global 
cardiovascular mortality—and systematically elucidates the 

cascade mechanism by which dysregulated glycolysis/ketone 
body metabolism drives metabolic-immune microenvironment 

imbalance through the core hub gene TIMP1, integrating 
bioinformatics, machine learning, and experimental validation.

This study identified a red module highly correlated with 
glycolysis/ketone body metabolism through WGCNA. Its 54 core 

genes predominantly drive the metabolic reprogramming in heart 

failure (characterized by a shift from fatty acid oxidation towards 
glycolysis/ketone utilization). Key candidate genes include: TIMP1: 

Suppresses MMPs, regulating fibrosis and in"ammation (29, 30). 
LAPTM5: Drives TNF-α/IL-1β secretion from macrophages via the 

lysosomal-TLR signaling pathway (31). HCLS1: Mediates leukocyte 
migration (32). C5AR1: Activates neutrophil chemotaxis (33). 

VSIG4: Modulates macrophage immunotolerance (34). Functional 
Gene Networks (FGNs) positioned TIMP1, LAPTM5, HCLS1, 

and C5AR1 as core nodes. GO and KEGG enrichment analyses 
confirmed their significant association with leukocyte chemotaxis, 

regulation of cell migration, and the chemokine signaling pathway. 
These genes synergistically drive HF progression through a three- 

pronged mechanism: C5AR1/HCLS1-mediated immune cell 
infiltration amplifies in"ammation (35, 36); TIMP1-mediated MMP 

inhibition accelerates fibrotic remodeling; LAPTM5-promoted 
TNF-α/IL-1β secretion suppresses mitochondrial function, 

forcing a reliance on glycolytic energy production. In summary, 
the red module genes, particularly the core candidates, directly 

link glycolytic/ketone metabolic imbalance to immune 
microenvironment dysregulation in HF (37), by regulating 

chemokine signaling-mediated leukocyte migration and activation 

FIGURE 6 

Immune regulatory network of TIMP1. (a) Differential immune cell scores. (b) Distribution of differential immune cell scores, the upper color 

represents sample information, and the lower color represents immune cell scores. Blue indicates low scores, and red indicates high scores. (c) 

Correlation heatmap between TIMP1 and differential immune cells, colors represent the strength of correlation, where red indicates positive 

correlation, blue indicates negative correlation, "ns" denotes non-significant correlation, and "*" denotes significant correlation. (d) Differential 

immune cytokine scores. (e) Immune network of TIMP1,green represents differential immune factors, orange represents differential immune cells, 

purple represents GK characteristic genes, and edges in the network represent correlations > 0.25.
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(38). Collectively, they promote myocardial remodeling and 
functional deterioration.

While TIMP1 is classically recognized as a tissue inhibitor of 
metalloproteinases, emerging evidence demonstrates its pleiotropic 

functions as a cytokine-like molecule with direct 
immunomodulatory properties (39). Our findings that TIMP1 

expression positively correlates with activated CD8+ T cells and 
dendritic cells are consistent with its established role in immune 

cell regulation. A critical function of TIMP1 is the direct 
modulation of macrophage polarization. Evidence suggests its 

expression is associated with a pro-in"ammatory M1 phenotype, 
though it can also promote anti-in"ammatory M2 polarization in 

certain contexts via MAPK and PI3 K/AKT signaling (40, 41). This 
indicates TIMP1 has context-dependent, and potentially biphasic, 

roles during cardiac injury and repair. Furthermore, TIMP1 
correlates with various immune cell markers, particularly those of 

tumor-associated macrophages (42), suggesting its broader role in 
orchestrating the immune microenvironment. In our study, the 

strong association between TIMP1 and differential immune factors 
including CCL2 supports a model where TIMP1 not only responds 

to but actively shapes the in"ammatory milieu in HF. This is 
consistent with TIMP1’s capacity to function through multiple cell 

surface receptors beyond its MMP-inhibitory function, thereby 
exerting direct signaling effects on immune cells.

Mechanistically, the link between TIMP1-driven immune 
activation and metabolic dysfunction relies on evidence-based 

inferences. In"ammatory mediators like TNF-α and IL-1β— 

often elevated alongside TIMP1—directly impair mitochondrial 
function in cardiomyocytes. They inhibit key metabolic 

regulators such as pyruvate dehydrogenase (PDH) (43) and 
PGC-1α (44), shifting energy production from efficient fatty acid 

oxidation to a compensatory, increased reliance on glycolysis. 
This explains the co-enrichment of TIMP1 with both immune 

and glycolytic pathways observed in our study.
In the context of HF, this creates a vicious cycle: initial cardiac 

injury → metabolic stress → immune cell infiltration (as evidenced 
by our finding of increased activated CD8+ T cells and dendritic 

cells) → in"ammatory cytokine secretion → further metabolic 
impairment → chronic low-grade in"ammation (45)→ progressive 

cardiac dysfunction. TIMP1 appears to sit at a critical node within 
this cycle, both responding to and amplifying both metabolic and 

immune dysfunction. Collectively, these findings support a model 
where TIMP1 serves as a central integrator of metabolic stress 

signals and immune responses in HF, rather than functioning 
solely as a downstream marker of either process.

Through dual screening via LASSO regression and the Boruta 
machine learning algorithm, TIMP1 was established as a key 

diagnostic biomarker for HF. Its expression level effectively 
distinguishes HF samples from controls. The ssGSEA revealed 

that TIMP1 expression was significantly enriched in pathways 
such as “ allograft rejection” and the “ citric acid cycle 

recycling”. This enrichment suggests TIMP1 drives HF 
progression through a dual mechanism: Mediating in"ammatory 

responses (46), and Suppressing mitochondrial energy 

FIGURE 7 

Transcriptional regulatory network of TIMP1 and in vitro model validation. (a) miRNA-TF regulatory network of TIMP1. Green nodes represent 

biomarkers, orange nodes represent TFs (transcription factors), blue nodes represent miRNAs, and edges in the network represent regulatory 

relationships. (b) Cardiac ultrasound images of myocardial infarction mice and control mice. The arrow indicates the morphology of the M-wave. 

(c) Statistical results of cardiac ejection fraction in myocardial infarction mice and control mice. (d) qPCR detection of gene expression in cardiac 

tissues of myocardial infarction mice and control mice. (e) Expression of TIMP1 in GSE236374. * represents p < 0.05, ** represents p < 0.01, *** 

represents p < 0.001, **** represents p<0.0001.
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metabolism (47). Immune infiltration analysis further confirmed 
that TIMP1 expression exhibited a significant positive 

correlation with the infiltration of activated CD8+ T cells and 
dendritic cells. Mechanistically, this may occur through 

TIMP1-induced expression of chemokines like CCL2 (48), 
recruiting immune cells to myocardial tissue. This recruitment 

directly drives in"ammatory injury and synergizes with 
metabolic dysregulation to accelerate fibrotic processes (49). 

Collectively, these findings support the translational value of 
TIMP1 as both a novel diagnostic biomarker for HF and a dual 

metabolic-immune regulatory therapeutic target.
The ssGSEA initially revealed significant enrichment of 

activated CD8+ T cells, activated dendritic cells, and natural 
killer (NK) cells in heart failure. Furthermore, subsequent 
analysis demonstrated that TIMP1 expression exhibited a strong 

positive correlation specifically with the infiltration levels of 
activated CD8+ T cells and activated dendritic cells. Building 

upon these findings and combined with the screening of 20 
differential immune factors and Cytoscape-based network 

construction, it was subsequently confirmed that TIMP1 directly 
regulates the infiltration of these specific immune cells through 

chemokines such as CCL2. Importantly, validation in a murine 
myocardial infarction (MI) model further corroborated these 

observations, demonstrating significant upregulation of TIMP1 
and THBS4 mRNA expression, alongside downregulation of 

HCLS1. Our miRNet analysis predicted 135 upstream regulators 
of TIMP1 (15 transcription factors and 120 miRNAs), many of 

which are key mediators of glycolytic/ketone metabolic 
reprogramming and immune activation, suggesting TIMP1 

serves as a downstream integrator of converging metabolic- 
immune pathways. Among predicted transcription factors, HIF- 

1α emerges as a critical regulator linking metabolic stress to 
TIMP1 expression. HIF-1α directly controls glycolytic enzyme 

transcription, promoting the shift from oxidative 
phosphorylation to glycolysis (50), while also regulating immune 

cell metabolism and in"ammatory responses (51). Through 
TIMP1 regulation, HIF-1α may coordinate ECM remodeling 

with metabolic-immune adaptations during HF progression. 
Similarly, NF-κB and AP-1, activated by in"ammatory cytokines 

(TNF-α, IL-1β) and metabolic danger signals, drive TIMP1 
expression, creating a feed-forward loop: metabolic dysfunction 

→ in"ammatory cytokine release → NF-κB/AP-1 activation → 

TIMP1 upregulation → further immune cell recruitment.

The predicted miRNA regulators provide additional 
mechanistic links. The miR-29 dysregulation leads to PGC-1α 
suppression, mitochondrial dysfunction, and compensatory 
glycolysis upregulation (52, 53)—precisely the metabolic 
phenotype associated with TIMP1 expression. The miR-29/ 

TIMP1 axis thus mechanistically links mitochondrial 
dysfunction, metabolic reprogramming, and fibrotic remodeling. 

The convergence of metabolic stress-responsive TFs (HIF-1α, 
NF-κB) and metabolism-regulating miRNAs (miR-29) on 

TIMP1 suggests it serves as a nodal point integrating diverse 
metabolic-in"ammatory signals. This explains why TIMP1 

correlates with both glycolytic/ketone pathway dysregulation and 
immune cell infiltration in our analysis. Future CRISPR-Cas9 

studies targeting these upstream regulators will be essential to 
establish their causal roles in TIMP1-mediated metabolic- 

immune dysfunction. Consequently, based on this integrated 
evidence, we propose the core hypothesis that dysregulation of 

upstream TF/miRNA networks drives TIMP1 overexpression. 
This overexpression, in turn, collaboratively promotes HF 

progression through a triad of mechanisms: namely, 
CCL2-mediated immune cell infiltration, MMP inhibition- 

induced fibrosis, and glycolytic/ketone metabolic imbalance. 
Finally, observed species-specific differences suggest the 

existence of regulatory heterogeneity within this pathway.
The observed discrepancy in TIMP1 expression patterns— 

upregulation in our mouse MI model vs. downregulation in 
human GSE5406 samples—likely re"ects temporal dynamics 
rather than species-specific regulation per se. Our mouse model 

represents acute myocardial injury (7 days post-MI) during the 
active in"ammatory and reparative phase, whereas the GSE5406 

dataset comprises end-stage chronic HF samples with 
established ventricular remodeling. Studies demonstrate that 

TIMP1 mRNA and protein are significantly upregulated in 
deteriorating heart failure patients (54) and in cardiac tissue 

from patients with chronic pressure overload (55). Importantly, 
TIMP1 is consistently upregulated in myocardial fibrosis during 

active remodeling phases (56). However, in very advanced end- 
stage disease with extensive fibrosis and cardiomyocyte loss, 

cardiac TIMP1 transcription may decline while circulating 
TIMP1 levels remain elevated due to extracardiac sources 

(hepatic production, activated immune cells) (57). This 
interpretation is further supported by recent findings showing 

that TIMP1 gene transcriptional activity decreases with 
advancement of heart failure (58), particularly in ischemic 

cardiomyopathy with severe dysfunction. The temporal 
trajectory—early upregulation (captured in our acute MI model) 

followed by late-stage downregulation (re"ected in GSE5406 
end-stage samples)—aligns with the known biphasic nature of 

post-infarction remodeling. Therefore, the apparent discrepancy 
actually reveals disease stage-dependent TIMP1 regulation, 

emphasizing the importance of considering temporal context 
when interpreting biomarker expression in HF.

While this study elucidates the TIMP1-mediated metabolic- 
immune regulatory network in heart failure, several limitations 

warrant acknowledgment. Firstly, the observed divergent 
expression trends of TIMP1 across species necessitate the 

development of humanized models to elucidate the underlying 
regulatory heterogeneity. Secondly, the causal relationships 

between the identified key upstream TFs/miRNAs and metabolic 
pathway dysregulation remain to be functionally validated in 

vivo. Thirdly, the immune infiltration profiles, derived from 

computational algorithms (ssGSEA), require experimental 
confirmation (e.g., "ow cytometry, immunohistochemistry) to 

definitively establish the mechanisms of CD8+ T cell and 
dendritic cell infiltration. Therefore, future research should focus 

on utilizing CRISPR-Cas9 technology to perform targeted 
editing of upstream regulatory factors of TIMP1, thereby 

elucidating their causal impact on metabolic reprogramming. 
Besides, experiments such as, TIMP1 knockout/overexpression 
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models combined with metabolic "ux analysis (seahorse assay, 
LC-MS metabolomics); Co-culture experiments with 

cardiomyocytes and immune cells were needed to demonstrate 
TIMP1-mediated metabolic-immune crosstalk. Concurrently, 

qPCR/Western blot validation in human cardiac tissue samples 
or developing human cardiac organoid models will be crucial to 

dissect the mechanisms governing species-specific TIMP1 
expression. Ultimately, evaluating the therapeutic potential of 

targeting the TIMP1-chemokine axis for reversing metabolic- 
immune dysregulation represents a critical translational goal. 

While our study primarily focuses on the diagnostic utility of 
TIMP1, its elevated expression in HF patients and significant 

correlation with cardiac remodeling parameters suggest its 
potential as a therapeutic target. However, comprehensive 
preclinical validation studies, including mechanistic 

investigations in cellular and animal models, pharmacological 
modulation experiments, and long-term efficacy assessments, 

would be essential before drawing definitive conclusions about 
its therapeutic applicability.

5 Conclusion

This study is the first to establish TIMP1 as the central 
hub integrating dysregulation of the glycolysis-ketone metabolism 

axis with immune microenvironment imbalance in heart 
failure. Through integrated multi-omics analysis and experimental 

validation, we elucidate a stepwise cascade mechanism: 
Dysregulation of upstream TF/miRNA networks drives TIMP1 

overexpression, which subsequently promotes CCL2-mediated 
immune cell infiltration. This immune dysregulation, in turn, 

contributes to metabolic imbalance and ultimately leads to 
myocardial remodeling. This work provides both a novel therapeutic 

target and a conceptual framework for developing precision-targeted 
strategies to modulate the metabolic-immune interface in heart failure.
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