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|dentification and validation of
key biomarkers of the glycolysis-
ketone body metabolism in heart
failure based on multi-omics and
machine learning

Na Xiao, Jing Liu, Zhe Chen and Xiaoyong Geng”*

Cardiology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China

Background: Metabolic remodeling, particularly involving glycolysis and ketone
body metabolism, is a hallmark of heart failure (HF) pathophysiology. However,
the regulatory network linking energy metabolism with immune dysregulation
remains poorly understood.

Objectives: This study aimed to identify and validate key biomarkers within the
glycolysis-ketone body metabolism axis that contribute to the progression of
HF, and to explore their association with immune microenvironment alterations.
Methods: Transcriptomic data from HF patients were integrated with glycolysis
and ketone metabolism gene sets. Differentially expressed genes (DEGs) were
identified and analyzed through Weighted Gene Co-expression Network Analysis
(WGCNA). Candidate genes were refined using machine learning algorithms
(LASSO regression and Boruta), with functional enrichment assessed via Gene
Set Enrichment Analysis (GSEA). Immune infiltration was profiled using ssGSEA,
and regulatory networks were constructed by integrating miRNA and
transcription factor predictions. Experimental validation was conducted in a
murine myocardial infarction model using gPCR and cardiac ultrasound imaging.
Results: Five candidate genes related to glycolysis and ketone metabolism were
identified, among which TIMP1 emerged as the key hub gene. TIMP1 expression
was significantly elevated in HF and correlated with enriched pathways including
inflammatory signaling and mitochondrial dysfunction. Immune profiling
revealed that TIMP1 positively associated with the infiltration of activated CD8"
T cells and dendritic cells, potentially mediated by chemokines such as CCL2.
Regulatory network analysis suggested that upstream transcription factors and
miRNAs may contribute to TIMP1 overexpression. Animal model validation
confirmed the upregulation of TIMP1 and other core genes, supporting its
central role in HF progression.

Conclusion: This study identifies TIMP1 as a central regulator linking glycolysis-
ketone metabolic imbalance with immune microenvironment dysregulation in
heart failure. These findings offer new mechanistic insights and propose
TIMP1 as a potential diagnostic biomarker and therapeutic target in HF.
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1 Introduction

Heart failure (HF) is a clinical syndrome characterized by impaired
ventricular filling or ejection capacity resulting from structural or
functional cardiac abnormalities. Its hallmark manifestations include
exertional dyspnea, fatigue, fluid retention, and reduced exercise
tolerance (1, 2). It is estimated that nearly 64.9 million people
worldwide were affected by HF in 2023. Despite significant
advancements in pharmacological therapies (such as ARNI and
SGLT2 inhibitors) (5), and
comprehensive management strategies (6), the long-term prognosis

(3, 4), device-based interventions

for HF patients remains poor, with a 5-year mortality rate still
approximating 50% (7, 8). The fundamental pathological essence of
HEF involves activation of neurohormonal and inflammatory responses
triggered by an initial cardiac injury. This leads to myocardial
remodeling, ultimately resulting in progressive deterioration of cardiac
function and systemic circulatory dysfunction (9, 10).

Energy metabolism dysregulation represents a core driver in HF
progression (11). Its fundamental nature lies in the shift of
cardiomyocytes—triggered by ischemia, hypoxia, or dysregulated
gene expression—from highly efficient fatty acid oxidation towards
inefficient glucose glycolysis for energy production. This shift is
accompanied by mitochondrial dysfunction and reduced ATP
synthesis, ultimately culminating in a state of cardiac “energy
(12).
collectively constitute the metabolic reprogramming characteristic

starvation" Glycolysis and ketone body metabolism
of HF (13, 14). While glycolytic activation provides short-term
compensation for ATP deficits, it is inefficient and leads to lactate
accumulation (15). The compensatory ketone body metabolism
involves the transport of ketone bodies into mitochondria via
SLC16A1 for oxidation, thereby bypassing impaired p-oxidation
and pyruvate dehydrogenase pathways (16). Long-term imbalance
between

cardiomyocyte apoptosis and fibrosis (17). However, the nature of

glycolysis and ketone metabolism exacerbates
the interaction (synergistic or antagonistic) between glycolysis and
ketone metabolism remains unclear. Key common regulatory
nodes have yet to be elucidated. Furthermore, fragmented research
(e.g, lactate, p-

hydroxybutyrate) fails to capture the heterogeneous nature of HE.

focusing on single metabolic markers
There is a critical lack of comprehensive multi-dimensional
integrated diagnostic models, and an urgent need exists for precise
therapeutic targets based on metabolic subtype classification.
Therefore, this study aims to unveil the key hub genes within the
glycolysis-ketone metabolism axis in heart failure and delineate
their immune-metabolic interaction networks. Our objective is to
provide novel targets for developing precision intervention
strategies based on the regulation of metabolic reprogramming.
Building wupon this foundation, this study integrated
bioinformatics approaches. Transcriptomic data from heart failure
patients and metabolic pathway gene sets were acquired by mining
public databases (GEO, MSigDB). Differentially expressed genes
(DEGS) were identified using the limma package, and Weighted
Gene Co-expression Network Analysis (WGCNA) was employed
to screen key modules and candidate genes associated with
glycolysis/ketone metabolism. Subsequently, machine learning

algorithms (LASSO regression, Boruta feature selection) were
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utilized to refine the core targets, identifying TIMP1 as a central
player. In-depth functional characterization of TIMP1 was
performed using single-gene Gene Set Enrichment Analysis
(GSEA). Furthermore, its role in the immune microenvironment
was assessed via immune infiltration analysis using single-sample
GSEA (ssGSEA), and its upstream regulatory mechanisms were
explored through regulatory network prediction (miRNA and
Transcription Factor prediction). Finally, in vivo expression
validation was conducted by establishing a murine myocardial
infarction (MI) model. This step completed the closed-loop
research strategy, transitioning from computational prediction to
experimental verification. This study represents the first report
identifying TIMP1 as a hub gene orchestrating the glycolysis-
ketone metabolism-immune imbalance axis in heart failure. It
provides novel targets and a theoretical foundation for gaining
deeper insights into the mechanisms underlying dysregulation of
in HF and for

the metabolic-immune microenvironment

developing targeted intervention strategies.

2 Materials and methods
2.1 Data collection

Heart failure transcriptomics data were downloaded from
the Gene Expression Omnibus (GEO), specifically the GSE5406
dataset, which included 16 control and 194 heart failure samples
of left ventricular tissue, sequenced using the GPL96 Illumina
Genome Analyzer platform (Homo sapiens). The glycolysis-
related gene sets GOBP_GLYCOLYTIC_PROCESS_THROUGH_
FRUCTOSE_6_PHOSPHATE and GOBP_GLYCOLYTIC_
PROCESS_THROUGH_GLUCOSE_6_PHOSPHATE, as well as
the ketone metabolism-related gene set GOBP_CELLULAR_
KETONE_METABOLIC_PROCESS, were downloaded from the
Molecular Signatures Database (MSigDB) (18).

2.2 ldentification of differentially expressed
genes DEGs

Differentially expressed genes (DEGs) were computationally
determined through the limma algorithm in R software. Statistical
thresholds for DEG classification were as follows: up-regulated
genes: p<0.05 and fold change >1.25; down-regulated genes:
p<0.05 and fold change <1/1.25=0.8. Visual representations of
transcriptional dynamics, including volcano plots and clustered
heatmaps, were created via the ggplot2 and ComplexHeatmap
packages, respectively. We finally identified 761 DEGs.

2.3 Weighted gene co-expression
network analysis (WGCNA) and candidate
genes selection

We performed WGCNA on the expression matrix using the

R package“WGCNA” (19). All samples were hierarchically
clustered using Euclidean distance based on gene expression levels
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to identify and remove outliers. A critical step before network
construction is determining the optimal soft thresholding power (f)
to approximate a scale-free topology. The power parameter f
strengthens strong correlations and penalizes weak ones by raising
of . We
systematically tested values of # from 1 to 20 and evaluated two key

Pearson correlation coefficients to the power
metrics: (1) The scale-free topology fit index (R?; (2) The mean
connectivity of the network. We selected f=7 as it achieved an
R*>0.85 (crossing the red cutoff line) while maintaining relatively
low mean connectivity approaching zero, ensuring the network
adhered to scale-free properties characteristic of biological systems.
Using the chosen soft threshold (f=7), we built an adjacency
matrix and then transformed it into a topological overlap matrix.
Then, hierarchical clustering was carried out to pinpoint gene
modules. Modules
correlated module eigengenes (MEs) with ssGSEA scores for

were color-coded for visualization. We

glycolysis and ketone metabolism pathways. Screening criteria for
trait-associated modules were defined as |r| > 0.3 and p < 0.05. The
module exhibiting the highest correlation with both phenotypes
(glycolysis and ketone metabolism) was selected for downstream
analysis. This module comprised 658 genes. Key genes linked to
glycolysis and ketone metabolism were identified using thresholds
of module membership (MM)>0.8 and gene significance
(GS) > 0.2, yielding 54 genes associated with the glycolysis- and
ketone metabolism-related module. An intersection was taken
between the 761 DEGs and the 54 genes related to glycolysis and
ketone metabolism-related modules, and the resulting genes were
denoted as candidate genes.

2.4 Functional gene network construction

To further investigate the functional roles of candidate genes,
we employed TissueNexus (https://www.diseaselinks.com/
TissueNexus/) (20), a database encompassing functional gene
networks (FGNs) across 49 human tissues and cell lines.
A cardiac tissue-specific FGN subnetwork was constructed by
integrating the first-degree neighboring genes of the five
candidate genes. Core genes within this subnetwork were

subsequently defined as nodes with a network degree > 20.

2.5 GO and KEGG analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of genes
include in cardiac tissue-specific FGN subnetwork of the five
candidate genes were executed via “clusterProfiler” package in
R software. Statistical significance for enrichment analyses was

established at a threshold of p < 0.05.

2.6 Machine learning analysis

To further obtain the hub gene in the five candidate genes, we
utilized the least absolute shrinkage and selection operator
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(LASSO), which represents a widely utilized regularization

technique for high-dimensional prediction modeling, and
machine learning algorithms Boruta to select the most crucial
gene. The LASSO regression and the Boruta analysis was
accomplished using glmnet package and Boruta package in
R language, respectively. The candidate gene co-screened by

Lasso and Boruta was used as hub gene for subsequent research.

2.7 Single-gene GSEA enrichment analysis

We performed systematic functional enrichment analyses
using control and heart failure samples from GSE5406,
GSE236374 dataset. Gene sets of the glycolysis-related gene sets
(GOBP_GLYCOLYTIC_PROCESS_THROUGH_FRUCTOSE_6_
PHOSPHATE and GOBP_GLYCOLYTIC_PROCESS_
THROUGH_GLUCOSE_6_PHOSPHATE) and ketone
metabolism-related gene set (GOBP_CELLULAR_KETONE_
METABOLIC_PROCESS) were downloaded from the Molecular
Signatures Database (MSigDB, Homo sapiens). Spearman’s rank
correlation coefficients were computed between hub gene
expression and all interrogated genes across samples. These
correlation metrics were subsequently employed as ranking
criteria for single-sample gene set enrichment analysis (GSEA)
using the clusterProfiler package in R. This approach enabled
identification of biological pathways significantly enriched (false
discovery rate<0.25, p<0.05) among biomarker candidates
exhibiting coordinated expression patterns with hub gene.

2.8 Immune infiltration and differentially
expressed immune factors analysis

To systematically characterize immune infiltration patterns,
single-sample Gene Set Enrichment Analysis (ssGSEA) on
transcriptomic datasets stratified into control and heart failure
samples were utilized. A predefined gene signature panel
encompassing 28 immune cell types derived from the TISIDB
database (http://cis.hku.hk/TISIDB/download.php) (21). Gene
expression profiles were subjected to immune cell quantification
using the GSVA package in R, which estimated enrichment
scores for 28 different immune cell populations. The proportion
of immune cell subsets across samples was visualized through
unsupervised hierarchical clustering heatmaps generated by the
pheatmap R package. We performed Spearman correlation
analysis between hub gene and differentially expressed immune
cells using the R package “psych” in all samples. For
differentially expressed immune factors analysis, we conducted
comparative analyses of immunomodulatory factor expression
between control and heart failure samples within the dataset.
Utilizing the
immunosuppressive agents, 45

we evaluated 24
and 41
chemokines from previous study for differential expression
(p<0.05) (22).
significant

Wilcoxon rank-sum test,
immunostimulators,

Immune factors demonstrating statistically

inter-group  differences were designated as

differentially expressed immune factors (DEIFs). The network
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diagram showing the interaction relationships among hub gene,

differentially expressed immune factors, and differentially

expressed immune cells was drawn using Cytoscape software.

2.9 Hub gene-centered regulatory network
establishment

Potential microRNAs (miRNAs) targeting hub gene were
predicted using three complementary databases: miRWALK
(http://mirwalk.umm.uni-heidelberg.de) (23), miRDB (http://
www.mirdb.org) (24), and TargetScan (http://www.targetscan.
org) (25). High-confidence miRNAs were defined as those
identified three with
intersection analysis performed via the VennDiagram package in

consistently across  all platforms,
R. Concurrently, transcription factors (TFs) governing hub gene
KnockTF database (http://www.
(26). The integrated

miRNA-TF regulatory network of TIMP1 were obtained from

were acquired from the
licpathway.net/KnockTF/index.html)

the miRNet tool (https://www.mirnet.ca/) and visualized using
Cytoscape software (v3.9.1) (27).

2.10 Construction of mouse myocardial
infarction model

Male C57BL/6] mice (8 weeks old, SPF grade, n=15) were
anesthetized with pentobarbital sodium, followed by orotracheal
intubation and mechanical ventilation (120 breaths/min, tidal
volume 4 mL). Once stable anesthesia was verified, a left
thoracotomy was conducted at the fourth intercostal space,
facilitating the exposure of the heart. The left anterior
descending (LAD) coronary artery was ligated 3 mm distal to
the aortic root using an 8-0 suture, with successful occlusion
confirmed by ST-segment elevation on ECG and pallor/
hypokinesis of the anterior left ventricular wall. The thoracic
cavity was closed in layers, and pneumothorax was prevented
via syringe aspiration. Postoperatively, mice were monitored for
respiratory recovery and housed individually with free access to
food/water. Hearts were harvested 7 days post-MI for further
analysis. Key reagents and equipment included ophthalmic
surgical tools, a rodent ventilator (RWD HF-12), and standard

disinfectants (75% alcohol, saline).

2.11 Mouse ultrasound imaging experiment

Prior to echocardiography, the ultrasound probe was
connected to the instrument interface, and the animal handling
platform was preheated. Mice were anesthetized with 2%
isoflurane and securely positioned on the scanning platform,
with physiological monitoring signals (e.g., ECG, respiration)
established. B-mode imaging was performed in both long- and
short-axis views, and raw data were saved in animal-specific
folders.
analyzed offline using the manufacturer’s software by manually

Cardiac chamber dimensions and function were
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tracing endocardial borders at end-systolic and end-diastolic
phases. Operators monitored all procedures pre- and post-
experiment to ensure data objectivity.

2.12 RNA extraction and qPCR analysis of
mouse cardiac tissue

After sacrificing anesthetized mice, excise the heart, rinse with
ice-cold PBS, blot dry, grind 50-100 mg tissue to powder in liquid
nitrogen, transfer to a tube with 1 ml TRIzol, Using a vortex to
lyse cells, incubate the lysate, add chloroform, centrifuge the
mixture, transfer the aqueous phase, precipitate RNA with
isopropanol, wash the precipitate with 75% ethanol, air-dry the
RNA, dissolve it in RNase-free water, quantify the RNA using
NanoDrop, and store the RNA at —80°C. For qPCR, use a
TaKaRa reverse transcription kit and Roche SYBR Green Master
Mix on a Bio-Rad CFX96 machine: design primers (e.g.,
GAPDH as control) with Primer3 and BLAST,
transcribe 1 pg RNA with random hexamers, dNTPs, buffer,

reverse

RNase inhibitor, and reverse transcriptase, then set up 20 ul
reactions with cDNA, primers, and master mix, performing 40
cycles (95°C denaturation, 60°C annealing, 72°C extension) and
mRNA expression of target genes was normalized to GAPDH
via the 2A(-AACt) method with statistical tests like t-tests or
ANOVA. All qPCR experiments were performed in triplicate.
Primers used in this study were as follows:

TIMP1-F:CAGTGTTTCCCTGTTTATCTATCCC.

TIMP1-R: GCAAAGTGACGGCTCTGGTAG.

THBS4-F: GGTCTTTGATCTTCTACCGTCCTC.

THBS4-R: AAGGTGGAGATGAGATAGACTTCGTG.

HCLS1-F: GTTGGGGAGTTAGATCGGCA.

HCLS1-R:GGTCCAGCTTGGTAGGACAG.

C5ARI-F:GCAGCCCTTATCATCTACTCGG.

C5ARI-R: CCGCCAGATTCAGAAACCAG.

GAPDH-F: CCTCGTCCCGTAGACAAAATG.

GAPDH-R: TGAGGTCAATGAAGGGGTCGT.

3 Results

3.1 Screening of differentially expressed
genes in heart failure

To investigate the characteristic genes of glycolysis and ketone
body metabolism in the occurrence and development of heart
failure (HF), we designed this study as outlined in Figure 1.
First, to identify genes related to HF, we downloaded the
transcriptome sequencing dataset GSE5406 from the GEO
database, which encompassed 16 control left ventricular hearth
194 HF Differential
expression analysis was executed between the control and HF

tissue samples and tissue samples.
groups. In this study, genes with p-value<0.05 and fold
change > 1.25 were defined as up-regulated genes in HF, while
those with p-value < 0.05 and fold change < 1/1.25 were defined

as down-regulated genes in HF. Among them, there were 373
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FIGURE 1
The flowchart of this study

down-regulated genes and 388 up-regulated genes (Supplementary
Table S1). The expression distribution of the top 10 genes with the
largest fold change is shown in Figure 2a. Heatmaps further
illustrated the top five upregulated (HBB, NPPA, MXRA5, LUM,
ASPN) and downregulated (MYOT, HOPX, ANKRD2, CD163,
FKBP5) genes in HF (Figure 2b).

3.2 Identification of glycolysis- and ketone
metabolism-related gene modules

Weighted gene co-expression network analysis (WGCNA) is
designed to identify co-expressed gene modules, explore the
relationship between gene networks and target traits, and screen
out key gene modules of interest. First, all samples were
clustered, hierarchical clustering was performed using the
Euclidean distance of expression levels, outliers in the samples
were checked, and outlier samples were excluded. As shown in
Supplementary Figure Sla, no outlier samples were excluded in
this study. A suitable soft threshold power was selected from 1
to 20 to determine the threshold of gene correlation. The
relationship between the soft threshold f and the scale-free
network evaluation coefficient R%, as well as the relationship
between the soft threshold power and the average connectivity,
were established. As shown in Supplementary Figure S1b, set
R?>=0.85, and we screened the soft threshold exceeding the red
cutting line. As shown in Supplementary Figure Slc, we
screened the soft threshold with connectivity close to 0. Finally,
a soft thresholding power (f=7) was selected to guarantee
scale-free network topology. Twelve co-expression modules
were identified (excluding the grey module to which genes
that could not be classified belonged, Figure 3a). We took the
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glycolysis and ketone metabolism gene sets from the MSigDB
database and further used the ssGSEA scores of glycolysis and
ketone metabolism as phenotypes to construct the association
between phenotypes and modules, calculated the correlation
coefficient matrix between module eigenvectors and phenotypic
traits, and then generated a correlation heat map to visualize the
results. As shown in Figure 3b, the red module showed significant
correlations with both phenotypes (|r| > 0.3, p<0.05). Then, the
correlation between module genes and traits was drawn separately.
The red module had 658 genes, and then we screened 54 key genes
of the red module through the criteria: mm>0.8 and gs>0.2,
which were used for subsequent analysis (Figure 3c and
Supplementary Table S1).

3.3 ldentification of glycolysis/ketone
metabolism-related DEGs and functional
enrichment

Through the above steps, we obtained 761 DEGs between HF
and control groups, and 54 glycolysis- and ketone metabolism-
related module genes. We intersected these two gene sets, and
the overlapping genes were regarded as glycolysis- and ketone
metabolism-related DEGs, which are hereafter referred to as
candidate genes for simplicity. It yielded a total of 5 candidate
genes, namely TIMP1, VSIG4, LAPTMS5, HCLS1, and C5AR1
(Figure 4a). We then constructed functional regulatory networks
(FGNs) for the 5 candidate genes through TissueNexus. We
used the one-step neighbors of the candidate genes to obtain
their sub-network in the cardiac tissue FGNs and labeled the
core genes (degree>20) in this sub-network. We found that
TIMP1, LAPTM5, HCLS1, and C5AR1 among the candidate
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FIGURE 2
Identification of DEGs. a Volcano plot of the distribution of DEGs, Orange indicates upregulated genes; green indicates downregulated genes and
grey indicates genes excluded by DEG screening criteria. b Heatmap of DEGs, The upper part is a density heatmap of expression levels for
upregulated and downregulated genes in samples, showing lines of five quantiles and the mean. The lower part has each column representing a
sample. This figure plots the top 5 upregulated genes and top 5 downregulated genes sorted by the log2FC fold change. Each row represents a
gene, displaying its expression levels across different samples. The color of the heatmap indicates the magnitude of gene expression in samples:
the higher the expression, the darker the color (red for high expression, blue for low expression).

genes were in core positions in the FGN of cardiac tissue
(Figure 4b). We continued to carry out GO functional
enrichment on the above cardiac tissue FGNs, and the results
highlighted processes such as cell chemotaxis and leukocyte
4c), KEGG identified
chemokine signaling as a key pathway (Figure 4d).

migration  (Figure while analysis
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3.4 Machine learning identifies key genes in
HF glycolysis and ketone metabolism
regulation

To further obtain key genes regulating HF via glycolysis and
ketone metabolism, we leveraged machine learning algorithms to
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glycolysis (d). MM represents the correlation between genes and modules, and GS represents the correlation between genes and traits.

narrow down the candidate gene range. Specifically, we first applied
LASSO regression to construct a penalized function for model
refinement. After performing Lasso regression analysis on 5
candidate genes, we found that the optimal lambdamin value was
0.025 (Figure 5a), and finally, a total of one gene whose regression
coefficient was not penalized to 0 was obtained, namely TIMP1
(Figure 5b). Besides, Boruta was implied to calculate the importance
of the features, as shown in Figure 5¢, all candidate genes were
accepted by Boruta. We finally decided that the candidate genes
jointly screened by Lasso and Boruta were used as the key genes
for subsequent research, namely TIMPl. We drew the ROC
curve of TIMP1, in which AUC = 0.80, indicating that the expression
of TIMP1 has a diagnostic potential on HF (Figure 5d). To
identify the biological functions involved in TIMP1, we used
the “c2.cp.kegg.v7.0.symbols.gmt” in the MSigDB database as the
reference gene set, performed Spearman correlation analysis between
TIMP1 and all genes, and obtained the correlation coefficient.
Taking the correlation coefficient as the sorting standard, we carried
out single-gene GSEA enrichment analysis on TIMP1. The results
showed that TIMP1 was enriched in pathways including allograft
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rejection, glycosphingolipid biosynthesis ganglion series, citric acid

cycle recycling, and Parkinson’s disease (Figure 5e).

3.5 Immune regulatory network of key

gene TIMP1

To explore the role of immune cells in HF, we conducted immune
infiltration analysis on the control and HF groups using the ssGSEA
algorithm. We obtained gene sets for 28 immune cell types from
the TISIDB database and calculated the enrichment scores of
immune infiltrating cells in each sample. The results indicated 3
differentially abundant immune cells in HF: activated CD8 T cell,
activated dendritic cell, and natural killer cell (Figures 6a,b). To
further understand the connection between TIMP1 expression and
differential immune cells, we performed Spearman correlation
analysis between the expression of TIMP1 and the above 3
differential immune cells. We found that two differential immune
cells were significantly positively correlated with the expression of
TIMP1, including activated CD8T cell and activated dendritic cell
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(Figure 6¢), indicating that the expression change of TIMP1 is related
to the alteration of the immune microenvironment in HF. We further
evaluated the significance of immune factors in HF. We obtained the
immune factor gene list reported in previous studies including 24
immune inhibitors, 45 immune stimulants, and 41 chemokines
(2), and used the Wilcoxon test in our dataset to compare the
expression level differences of immune factors between the
control group and the HF group (p<0.05). The immune
factors with significant differences were defined as “differential
We screened a total of 20 differential
immune factors (Figure 6d). We used Cytoscape to draw a

immune factors”.

network diagram based on TIMP1, differential immune factors,
and differential show the
relationship between TIMP1, differential immune factors, and

immune cells to interaction

differential immune cells. It is presented that TIMP1 could be
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associated with differential immune cells through a variety of
differential immune factors. For example, TIMP1 could be
linked to activated dendritic cell via CCL2 (Figure 6e).

3.6 Transcriptional regulation and
validation expression of candidate genes
in HF models

To explore the molecular regulatory mechanism of TIMP1, we
also explored the potential transcriptional regulation modes
upstream of TIMP1. miRNA and transcription factors (TF) can
play a role in maintaining physiological stability by regulating the
expression of target genes. Therefore, we used the miRNet database
to obtain the upstream miRNA-TF regulatory network of TIMP1
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and used Cytoscape for visualization. miRNet analysis predicted 135
upstream regulators of TIMP1 (15 TFs and 120 miRNAs; Figure 7a).
To verify the importance of candidate genes in heart failure, we
constructed a mouse myocardial infarction (MI) model. The results
of mouse cardiac ultrasound showed that the M wave in the MI
group was obviously changed to a straight line (Figure 7b), and the
ejection fraction of the heart in the MI group was significantly
lower than that in the control group (Figure 7c). The above results
showed that our model was successfully constructed. Seven days
after MI in mice, we took the heart tissue of mice, extracted RNA,
and detected the expression of several red module genes by qPCR.
For gPCR validation, we selected genes representing different
functional categories within the WGCNA red module: (1) TIMP1
—the hub gene identified by machine learning; (2) HCLSI1 and
C5AR1—two of the five candidate genes with known immune
regulatory functions; (3) THBS4 (Thrombospondin 4)—although
not among the final five candidate genes, THBS4 was a highly
significant DEG (log2FC = 8.36, p <0.0001) within the red module
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with established roles in extracellular matrix remodeling and
cardiac fibrosis (28). THBS4 was included as a positive control to
validate the broader WGCNA module’s
pathology.The results are shown in Figure 7d. In heart tissue
samples, we observed that TIMP1 and THBS4 expression levels

relevance to HF

were significantly upregulated in HF group compared to the
control group. Conversely, HCLS1 expression was notably
downregulated in the HF group, while C5AR1 expression showed
no significant difference between the two groups. We found that
there was partial consistency between animal modeling qPCR
results and GES5406 sequencing data. For example, THBS4 and
HCLS1 were up-regulated and down-regulated genes in the dataset,
respectively. However, TIMP1 was highly expressed in the HF group
in qPCR, but TIMP1 belonged to the down-regulated gene in the
HF group in the GES5406 dataset. We speculated that this might be
due to the fact that the dataset was from human samples, while our
verification was in mouse tissues. In response to this concern, we
have analyzed an additional mouse heart failure dataset, GSE236374,
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which utilizes the same animal modeling approach as our study. Our
expression analysis demonstrated that TIMPI expression was
significantly elevated in the acute myocardial infarction group,
which is in agreement with the findings from our animal model
(Figure 7e). We guessed that the mechanism of action of TIMP1 in
HF might have species differences. Species-specific discrepancies
(e.g, TIMP1 expression trends) suggest divergent regulatory
mechanisms between human and mouse HF.

4 Discussion

This study focuses on HF—a primary driver of global
the
cascade mechanism by which dysregulated glycolysis/ketone

cardiovascular mortality—and systematically elucidates

body metabolism drives metabolic-immune microenvironment
imbalance through the core hub gene TIMPI,
bioinformatics, machine learning, and experimental validation.

integrating

This study identified a red module highly correlated with
glycolysis/ketone body metabolism through WGCNA. Its 54 core
genes predominantly drive the metabolic reprogramming in heart
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failure (characterized by a shift from fatty acid oxidation towards
glycolysis/ketone utilization). Key candidate genes include: TIMP1:
Suppresses MMPs, regulating fibrosis and inflammation (29, 30).
LAPTMS5: Drives TNF-o/IL-1B secretion from macrophages via the
lysosomal-TLR signaling pathway (31). HCLS1: Mediates leukocyte
migration (32). C5ARI1: Activates neutrophil chemotaxis (33).
VSIG4: Modulates macrophage immunotolerance (34). Functional
Gene Networks (FGNs) positioned TIMP1, LAPTM5, HCLSI,
and C5ARI as core nodes. GO and KEGG enrichment analyses
confirmed their significant association with leukocyte chemotaxis,
regulation of cell migration, and the chemokine signaling pathway.
These genes synergistically drive HF progression through a three-
pronged mechanism: C5AR1/HCLS1-mediated immune cell
infiltration amplifies inflammation (35, 36); TIMP1-mediated MMP
inhibition accelerates fibrotic remodeling; LAPTMS5-promoted
TNF-o/IL-1B
forcing a reliance on glycolytic energy production. In summary,

secretion suppresses mitochondrial function,
the red module genes, particularly the core candidates, directly
to  immune
by regulating
chemokine signaling-mediated leukocyte migration and activation

link  glycolytic/ketone  metabolic ~ imbalance

microenvironment dysregulation in HF (37),
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(38). Collectively, they promote myocardial remodeling and
functional deterioration.

While TIMP1 is classically recognized as a tissue inhibitor of
metalloproteinases, emerging evidence demonstrates its pleiotropic
cytokine-like with
immunomodulatory properties (39). Our findings that TIMP1

functions as a molecule direct
expression positively correlates with activated CD8" T cells and
dendritic cells are consistent with its established role in immune
cell regulation. A critical function of TIMP1 is the direct
modulation of macrophage polarization. Evidence suggests its
expression is associated with a pro-inflammatory M1 phenotype,
though it can also promote anti-inflammatory M2 polarization in
certain contexts via MAPK and PI3 K/AKT signaling (40, 41). This
indicates TIMP1 has context-dependent, and potentially biphasic,
roles during cardiac injury and repair. Furthermore, TIMP1
correlates with various immune cell markers, particularly those of
tumor-associated macrophages (42), suggesting its broader role in
orchestrating the immune microenvironment. In our study, the
strong association between TIMP1 and differential immune factors
including CCL2 supports a model where TIMP1 not only responds
to but actively shapes the inflammatory milieu in HF. This is
consistent with TIMP1’s capacity to function through multiple cell
surface receptors beyond its MMP-inhibitory function, thereby
exerting direct signaling effects on immune cells.

Mechanistically, the link between TIMPI1-driven immune
activation and metabolic dysfunction relies on evidence-based

inferences. Inflammatory mediators like TNF-a and IL-1f—
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often elevated alongside TIMP1—directly impair mitochondrial
They inhibit
regulators such as pyruvate dehydrogenase (PDH) (43) and

function in cardiomyocytes. key metabolic
PGC-1a (44), shifting energy production from efficient fatty acid
oxidation to a compensatory, increased reliance on glycolysis.
This explains the co-enrichment of TIMP1 with both immune
and glycolytic pathways observed in our study.

In the context of HF, this creates a vicious cycle: initial cardiac
injury — metabolic stress - immune cell infiltration (as evidenced
by our finding of increased activated CD8" T cells and dendritic
cells) — inflammatory cytokine secretion — further metabolic
impairment — chronic low-grade inflammation (45)— progressive
cardiac dysfunction. TIMP1 appears to sit at a critical node within
this cycle, both responding to and amplifying both metabolic and
immune dysfunction. Collectively, these findings support a model
where TIMP1 serves as a central integrator of metabolic stress
signals and immune responses in HF, rather than functioning
solely as a downstream marker of either process.

Through dual screening via LASSO regression and the Boruta
machine learning algorithm, TIMP1 was established as a key
diagnostic biomarker for HF. Its expression level effectively
distinguishes HF samples from controls. The ssGSEA revealed
that TIMP1 expression was significantly enriched in pathways

such as allograft rejection” and the citric acid cycle
recycling”. This enrichment suggests TIMP1 drives HF
progression through a dual mechanism: Mediating inflammatory
responses (46), and Suppressing mitochondrial energy
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metabolism (47). Immune infiltration analysis further confirmed

that TIMP1 expression exhibited a significant positive
correlation with the infiltration of activated CD8+ T cells and
dendritic cells. Mechanistically, this may occur through

TIMP1-induced expression of chemokines like CCL2 (48),
recruiting immune cells to myocardial tissue. This recruitment
injury and with
metabolic dysregulation to accelerate fibrotic processes (49).

directly drives inflammatory synergizes
Collectively, these findings support the translational value of
TIMP1 as both a novel diagnostic biomarker for HF and a dual
metabolic-immune regulatory therapeutic target.

The ssGSEA initially revealed significant enrichment of
activated CD8+ T cells, activated dendritic cells, and natural
killer (NK) cells in heart failure. Furthermore, subsequent
analysis demonstrated that TIMP1 expression exhibited a strong
positive correlation specifically with the infiltration levels of
activated CD8+ T cells and activated dendritic cells. Building
upon these findings and combined with the screening of 20
differential
construction, it was subsequently confirmed that TIMP1 directly

immune factors and Cytoscape-based network
regulates the infiltration of these specific immune cells through
chemokines such as CCL2. Importantly, validation in a murine
myocardial infarction (MI) model further corroborated these
observations, demonstrating significant upregulation of TIMP1
and THBS4 mRNA expression, alongside downregulation of
HCLS1. Our miRNet analysis predicted 135 upstream regulators
of TIMPI1 (15 transcription factors and 120 miRNAs), many of
which
reprogramming and immune activation, suggesting TIMP1

are key mediators of glycolytic/ketone metabolic
serves as a downstream integrator of converging metabolic-
immune pathways. Among predicted transcription factors, HIF-
la emerges as a critical regulator linking metabolic stress to
TIMP1 expression. HIF-1a directly controls glycolytic enzyme
the  shift

phosphorylation to glycolysis (50), while also regulating immune

transcription,  promoting from  oxidative
cell metabolism and inflammatory responses (51). Through
TIMP1 regulation, HIF-la may coordinate ECM remodeling
with metabolic-immune adaptations during HF progression.
Similarly, NF-xB and AP-1, activated by inflammatory cytokines
(TNF-0, IL-1P) and metabolic danger signals, drive TIMP1
expression, creating a feed-forward loop: metabolic dysfunction
— inflammatory cytokine release — NF-xB/AP-1 activation —
TIMP1 upregulation — further immune cell recruitment.

The predicted miRNA additional

mechanistic links. The miR-29 dysregulation leads to PGC-1la

regulators  provide

suppression, mitochondrial dysfunction, and compensatory
glycolysis upregulation (52, 53)—precisely the
phenotype associated with TIMP1 expression. The miR-29/
TIMP1 thus links

dysfunction, metabolic reprogramming, and fibrotic remodeling.

metabolic

axis mechanistically mitochondrial
The convergence of metabolic stress-responsive TFs (HIF-1a,
NF-«B) (miR-29)

TIMP1 suggests it serves as a nodal point integrating diverse

and metabolism-regulating miRNAs on

metabolic-inflammatory signals. This explains why TIMP1

correlates with both glycolytic/ketone pathway dysregulation and
immune cell infiltration in our analysis. Future CRISPR-Cas9
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studies targeting these upstream regulators will be essential to
in TIMP1-mediated metabolic-
immune dysfunction. Consequently, based on this integrated

establish their causal roles

evidence, we propose the core hypothesis that dysregulation of
upstream TF/miRNA networks drives TIMP1 overexpression.
This overexpression, in turn, collaboratively promotes HF
triad
infiltration,

progression through a of mechanisms:
CCL2-mediated MMP
induced fibrosis, and glycolytic/ketone metabolic imbalance.

the

namely,
immune cell inhibition-

Finally, observed species-specific differences suggest
existence of regulatory heterogeneity within this pathway.
The observed discrepancy in TIMP1 expression patterns—
upregulation in our mouse MI model vs. downregulation in
human GSE5406 samples—likely reflects temporal dynamics
rather than species-specific regulation per se. Our mouse model
represents acute myocardial injury (7 days post-MI) during the
active inflammatory and reparative phase, whereas the GSE5406
end-stage HF with

established ventricular remodeling. Studies demonstrate that

dataset comprises chronic samples
TIMP1 mRNA and protein are significantly upregulated in
deteriorating heart failure patients (54) and in cardiac tissue
from patients with chronic pressure overload (55). Importantly,
TIMP1 is consistently upregulated in myocardial fibrosis during
active remodeling phases (56). However, in very advanced end-
stage disease with extensive fibrosis and cardiomyocyte loss,
cardiac TIMPI transcription may decline while circulating
TIMP1 levels remain elevated due to extracardiac sources
cells) (57). This
interpretation is further supported by recent findings showing
that TIMPI gene with
advancement of heart failure (58), particularly in ischemic
The

trajectory—early upregulation (captured in our acute MI model)

(hepatic production, activated immune

transcriptional activity ~decreases

cardiomyopathy with severe dysfunction. temporal
followed by late-stage downregulation (reflected in GSE5406
end-stage samples)—aligns with the known biphasic nature of
post-infarction remodeling. Therefore, the apparent discrepancy
actually reveals disease stage-dependent TIMP1 regulation,
emphasizing the importance of considering temporal context
when interpreting biomarker expression in HF.

While this study elucidates the TIMP1-mediated metabolic-
immune regulatory network in heart failure, several limitations
the

expression trends of TIMP1 across species necessitate the

warrant acknowledgment. Firstly, observed divergent
development of humanized models to elucidate the underlying
regulatory heterogeneity. Secondly, the causal relationships
between the identified key upstream TFs/miRNAs and metabolic
pathway dysregulation remain to be functionally validated in
vivo. Thirdly, the immune infiltration profiles, derived from
(ssGSEA),
confirmation (e.g., flow cytometry, immunohistochemistry) to
definitively establish the mechanisms of CD8+ T cell and

dendritic cell infiltration. Therefore, future research should focus

computational algorithms require experimental

on utilizing CRISPR-Cas9 technology to perform targeted
editing of upstream regulatory factors of TIMPI, thereby
elucidating their causal impact on metabolic reprogramming.
Besides, experiments such as, TIMP1 knockout/overexpression
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models combined with metabolic flux analysis (seahorse assay,
LC-MS with
cardiomyocytes and immune cells were needed to demonstrate

metabolomics); Co-culture experiments
TIMP1-mediated metabolic-immune crosstalk. Concurrently,
qPCR/Western blot validation in human cardiac tissue samples
or developing human cardiac organoid models will be crucial to
species-specific TIMP1

expression. Ultimately, evaluating the therapeutic potential of

dissect the mechanisms governing
targeting the TIMPI1-chemokine axis for reversing metabolic-
immune dysregulation represents a critical translational goal.
While our study primarily focuses on the diagnostic utility of
TIMP1, its elevated expression in HF patients and significant
correlation with cardiac remodeling parameters suggest its
potential as a therapeutic target. However, comprehensive
preclinical ~ validation  studies, including  mechanistic
investigations in cellular and animal models, pharmacological
modulation experiments, and long-term efficacy assessments,
would be essential before drawing definitive conclusions about

its therapeutic applicability.

5 Conclusion

This study is the first to establish TIMP1 as the central
hub integrating dysregulation of the glycolysis-ketone metabolism
with in heart
failure. Through integrated multi-omics analysis and experimental

axis immune microenvironment imbalance
validation, we elucidate a stepwise cascade mechanism:
Dysregulation of upstream TF/miRNA networks drives TIMP1
overexpression, which subsequently promotes CCL2-mediated
immune cell infiltration. This immune dysregulation, in turn,
contributes to metabolic imbalance and ultimately leads to
myocardial remodeling. This work provides both a novel therapeutic
target and a conceptual framework for developing precision-targeted

strategies to modulate the metabolic-immune interface in heart failure.
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