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Introduction: Advanced heart failure (HF) is a clinically heterogeneous 
condition with poor prognosis, and traditional classification systems often fail 
to capture the complexity needed for personalized care. This study aimed to 
identify clinically meaningful phenotypic subgroups among patients with 
advanced HF using unsupervised machine learning and to evaluate their 
association with long-term outcomes.
Methods: A retrospective analysis was conducted on 524 patients with 
advanced HF who underwent comprehensive clinical, echocardiographic, 
hemodynamic, and cardiopulmonary exercise assessments. Using k-means 
clustering on standardized, multidimensional data, two distinct phenotypes 
were identified. The primary composite outcome was defined as all-cause 
mortality, left ventricular assist device implantation, or heart transplantation. 
Associations between cluster assignment and outcomes were evaluated using 
Kaplan–Meier analysis and Cox proportional hazards regression.
Results: The first cluster, representing patients with relatively preserved 
hemodynamics and functional status, was associated with a more favorable 
prognosis, while the second cluster included older individuals with significant 
biventricular dysfunction, higher pulmonary pressures, and poorer exercise 
capacity. These patients experienced a markedly higher rate of the composite 
outcome over a median follow-up of 2.4 years, with Cluster 2 showing a 
significantly increased risk (hazard ratio [HR]: 3.84; 95% CI: 2.72–5.43; 
p < 0.001).
Conclusion: Machine learning–based clustering revealed two distinct 
phenotypes in advanced HF with differing clinical features and prognoses. 
This approach may enhance risk stratification and inform individualized 
therapeutic strategies in this high-risk population.
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Introduction

Heart failure (HF) is a complex clinical syndrome 

characterized by substantial heterogeneity in etiology, 

pathophysiology, disease trajectory, and response to therapy. 

This heterogeneity becomes particularly evident in patients with 

advanced HF, a population that remains underrepresented in 

large-scale clinical trials despite experiencing the highest rates of 

morbidity and mortality (1). The prevalence of this patient 

group continues to rise due to both an aging global population 

and the increasing availability of life-prolonging therapies (2). 

These patients also represent a significant burden on healthcare 

systems, largely due to frequent hospital readmissions and 

progressive clinical deterioration (3).

Traditional classifications of heart failure—based on subjective 

measures of functional status, left ventricular ejection fraction 

(LVEF) thresholds, or broad stage designations (A to D)—are 

insufficient to re-ect the phenotypic complexity observed in 

clinical practice (2–4). Recent advances in machine learning 

(ML) have enabled novel phenotyping strategies, shifting from 

reductionist models to multidimensional frameworks that 

incorporate clinical, imaging, and biomarker data (5, 6). In 

particular, unsupervised learning methods have facilitated the 

identification of latent subgroups—so-called “phenoclusters”— 

within heterogeneous HF populations. These data-driven 

approaches do not rely on pre-labeled outcomes, allowing for 

the unbiased discovery of previously unrecognized clinical 

patterns and their prognostic implications (7, 8).

The clinical relevance of phenotypic clustering is increasingly 

recognized, as subgroups show differing treatment responses and 

outcomes (9). In heart failure with preserved ejection fraction 

(HFpEF)—the most extensively studied patient population— 

phenomapping has identified reproducible clusters linked to 

comorbidities, structural remodeling, and exercise intolerance (6, 

10, 11). However, advanced HF, despite its distinct 

pathophysiology and poor prognosis, remains underrepresented 

in such studies (12). The complexity of therapy selection, 

including transplantation and left ventricular assist device 

(LVAD), underscores the need for robust stratification models, 

yet ML applications in this population are still limited.

This study had two main objectives: to identify phenotypic 

clusters among patients with advanced HF using unsupervised 

ML techniques, and to assess the prognostic significance of 

these clusters.

Materials and methods

Study population

A total of 653 consecutive patients with advanced heart failure, 

defined according to the 2021 European Society of Cardiology 

(ESC) Guidelines as having persistent severe symptoms (NYHA 

class III–IV) with objective evidence of cardiac dysfunction and 

poor prognosis despite optimal medical therapy, and who were 

referred to our tertiary cardiovascular center for evaluation of 

advanced therapeutic options (including LVAD and 

transplantation), were initially evaluated between January 2021 

and April 2024 (2). Patients with prior durable LVAD 

implantation, previous heart transplantation, left ventricular 

ejection fraction (LVEF) > 25%, severe pulmonary disease, 

contraindications to CPET or RHC, or incomplete follow-up 

data were excluded. After applying these exclusion criteria, 524 

patients constituted the final study cohort (Supplementary 

Figure S1). All included patients underwent comprehensive 

baseline evaluation with transthoracic echocardiography, 

cardiopulmonary exercise testing (CPET), and right heart 

catheterization (RHC), performed within a 14-day time window. 

All demographic, clinical, laboratory, echocardiographic, and 

hemodynamic variables were obtained from the hospital’s 

electronic medical record (EMR) system. Clinical diagnoses were 

determined based on International Classification of Diseases 

(ICD) codes and subsequently verified through physician notes 

and laboratory reports to ensure accuracy. CPET parameters 

were extracted through additional manual chart review of 

exercise test reports by the investigator team. Standardized 

definitions were applied in line with established guidelines: 

diabetes mellitus (DM) was defined as a physician-documented 

diagnosis and/or use of antidiabetic medication (13); atrial 

fibrillation (AF) as documented arrhythmia on ECG or Holter 

monitoring (14); ischemic etiology as a history of myocardial 

infarction, percutaneous coronary intervention, or coronary 

artery bypass grafting; hypertension (HT) as a physician- 

documented diagnosis and/or use of antihypertensive therapy 

(15); hyperlipidemia (HL) as a physician-documented diagnosis 

and/or use of lipid-lowering therapy; chronic kidney disease 

(CKD) as an estimated glomerular filtration rate <60 ml/min/ 

1.73 m2 persisting for >3 months (16); cerebrovascular disease 

(CVD) as a history of ischemic or hemorrhagic stroke or 

transient ischemic attack; and chronic obstructive pulmonary 

disease (COPD) as a physician-documented chronic airway 

disease with or without pulmonary function testing.

The study was approved by the local ethics committee and 

conducted in accordance with the Declaration of Helsinki.

Echocardiography

LVEF was measured using the biplane method of disks 

summation (modified Simpson’s rule). Doppler 

echocardiographic examinations were performed by a single 

experienced cardiologist using the EPIQ CVx version 9.0.5 

system and both S5-1 and X5-1 transducers (Philips Medical 

Systems, Andover, MA, USA), in accordance with current 

guidelines. Tricuspid annular plane systolic excursion (TAPSE) 

was obtained using M-mode imaging from the apical four- 

chamber view with focus on the right ventricle. Pulmonary 

artery systolic pressure (PASP) was estimated by adding the 

peak tricuspid regurgitant jet velocity (using the Bernoulli 

equation) to the estimated central venous pressure, which was 

derived from the diameter and respiratory variation of the 
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inferior vena cava (IVC). All echocardiographic measurements 

adhered to the recommendations of the American Society of 

Echocardiography (17).

Exercise testing

Maximal cardiopulmonary exercise testing was performed 

using a continuous, individualized ramp treadmill protocol on 

a JAEGER Vyntus CPX system (Vyaire Medical, Germany). 

Exercise capacity was expressed in metabolic equivalents 

(METs), with oxygen uptake (VO2) measured breath by 

breath through an automated system. Measurements were 

recorded at rest, throughout graded exercise, and during a 

two-minute recovery period. METs were calculated by 

dividing VO2max by 3.5 ml/kg/min. VO2, VCO2, and the 

respiratory exchange ratio (RER = VCO2/VO2) were averaged 

every 10 s. Peak VO2 was defined as the highest 10 s averaged 

VO2 during the final stage of exercise. Blood pressure was 

measured prior to testing and at three-minute intervals 

throughout the protocol and recovery.

Cardiac catheterization

Right heart catheterization was performed via the right 

internal jugular or femoral vein using a 7Fr balloon-tipped 

Swan–Ganz catheter (Edwards Lifesciences, Irvine, CA, USA) or 

a pigtail catheter. Cardiac output was calculated using the 

indirect Fick method. All pressure waveforms were visually 

assessed to ensure physiological accuracy, and measurements 

were taken at end-expiration.

Endpoint definition

The composite outcome was defined as all-cause mortality, 

LVAD implantation, or heart transplantation, in line with 

definitions used in previous literature (18, 19).

Statistical analysis

To identify distinct phenotypic clusters within the study 

population, we employed unsupervised machine learning 

techniques. Prior to clustering, missing data were addressed via 

the MissForest algorithm, a non-parametric, iterative imputation 

method utilizing random forests (20) (Supplementary 

Figure S2). All continuous variables were standardized to zero 

mean and unit variance prior to distance-based modeling. 

Binary categorical variables (e.g., comorbidities, sex) were 

excluded from the clustering process to prevent distortion in 

Euclidean distance calculations arising from incompatible data 

types. Ordinal categorical variables (e.g., mitral regurgitation 

grade, tricuspid regurgitation grade, and LV diastolic 

dysfunction) were converted to integer scores respecting their 

inherent order, thereby preserving their rank information in the 

distance matrix. A total of 108 variables were considered, 

encompassing clinical, laboratory, echocardiographic, 

hemodynamic, and CPET parameters. After addressing 

multicollinearity (removing one variable from each pair with 

Pearson correlation >0.7 based on clinical judgment), 81 

variables remained for the final clustering analysis 

(Supplementary Table S1). Both hierarchical clustering (Ward’s 

method with Euclidean distance) and k-means clustering were 

applied to the scaled numeric data. These algorithms are well 

suited for standardized continuous data and have been widely 

applied in heart failure phenomapping studies (5, 6). The 

optimal number of clusters was determined using both the 

elbow method (within-cluster sum of squares) and the average 

silhouette width as complementary approaches (Figure 1). The 

elbow point was visually identified at k = 2, where the 

incremental reduction in WSS plateaued, and this was further 

supported by the highest silhouette score. While k = 3 showed a 

minor secondary in-ection, it yielded a lower silhouette width 

and produced less stable, clinically interpretable clusters. 

Hierarchical clustering provided an interpretable dendrogram 

and stable grouping (Supplementary Figure S3); however, 

k-means clustering demonstrated comparable or higher 

silhouette scores, offering more -exible partitioning and iterative 

refinement (Figures 1, 2). Therefore, k-means clustering (k = 2) 

was selected for the final classification (Supplementary Figures 

S4, S5), balancing statistical performance, model simplicity, and 

clinical interpretability. To evaluate the robustness of the 

identified clusters, internal validation was performed using 

bootstrap resampling with 1,000 iterations and Jaccard similarity 

indices. As a sensitivity analysis, clustering was repeated using 

Gower distance with partitioning around medoids (PAM) 

(Supplementary Figure S6). Additionally, internal validation was 

performed using the Calinski–Harabasz (CH) and Davies– 

Bouldin (DB) indices across different cluster numbers (k = 2–6) 

(Supplementary Table S2). The final cluster assignments were 

appended to the imputed dataset. Group differences between 

clusters were assessed using chi-squared tests for categorical 

variables and either Student’s t-test or Wilcoxon rank-sum test 

for continuous variables, depending on distributional 

assumptions. Scaled variables were compared between the two 

clusters using both bar plots and a radar chart to illustrate 

group-level differences (Figure 3). Survival was illustrated using 

the Kaplan–Meier method, and Cox proportional hazards 

regression models were applied to assess time-to-event 

associations between cluster membership and outcomes. 

Importantly, outcomes were not included as clustering inputs, 

ensuring independence between phenotype derivation and 

prognostic evaluation. The proportional hazards assumption was 

tested using Schoenfeld residuals and was not violated 

(Supplementary Figure S7). To further assess the reproducibility 

of the clustering solution, repeated split-sample validation was 

performed. In each of 100 random replications, the cohort was 

divided into 70% training and 30% validation subsets. K-means 

clustering (k = 2) was derived in the training set, and cluster 

centroids were used to assign patients in the validation set. 
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Agreement between original and validation cluster assignments 

was quantified by the adjusted Rand index, while prognostic 

validity was evaluated using log-rank tests and Cox regression 

(Supplementary Table S3). All statistical tests were two-tailed, 

and a p-value below 0.05 was considered statistically significant. 

All statistical analyses were performed using the R 4.4.1 software 

(R Foundation for Statistical Computing, Vienna, Austria) with 

packages “missForest”, “dplyr”, “stats”, “cluster”, “clusterCrit”, 

“fossil”, “naniar”, “dendextend”, “survival”, “survminer”, “rms”, 

“ggplot2”.

FIGURE 1 

Determination of the optimal number of clusters (k) using the elbow and silhouette methods. Total within-cluster sum of squares (WSS) plotted 
against increasing values of k. The elbow point was visually identified at k = 2, where the reduction in WSS began to plateau. Average silhouette 
width across varying k values, with the highest value observed at k = 2, supporting the two-cluster solution.

FIGURE 2 

Principal component analysis (PCA) for k-means and hierarchical clustering (k = 2). Visualization of patient distribution by unsupervised clustering 
(k-means and hierarchical) using first two principal components. Distinct separation is evident between the two clusters in k-means clustering.
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Results

Cluster validation

Unsupervised k-means clustering identified two distinct 

phenotypic clusters among 524 patients with advanced HF. For 

the primary k-means model based on continuous variables, both 

clusters showed excellent stability (Jaccard indices: 0.998 and 

0.985; Supplementary Figure S6). Sensitivity analysis using 

Gower distance with PAM clustering yielded consistent results, 

although with moderately lower stability (Jaccard indices: 0.851 

and 0.762). Internal validation using the Calinski–Harabasz 

(CH) and Davies–Bouldin (DB) indices across different cluster 

numbers (k = 2–6) consistently supported the two-cluster 

solution, which yielded the highest CH and the lowest DB 

values (Supplementary Table S2).

Split-sample validation further confirmed reproducibility. 

Across 100 replications of 70/30 splits, the adjusted Rand index 

averaged 0.77 ± 0.06, and prognostic separation was consistently 

observed (log-rank p < 0.05 in all subsets; pooled HR: 0.83, 95% 

CI: 0.78–0.89; Supplementary Table S3). Notably, this validation 

HR re-ects reproducibility across resampling iterations, whereas 

the full-cohort Cox model showed the absolute effect size (HR: 

3.84, 95% CI: 2.72–5.43).

Collectively, these analyses indicate that the identified 

phenotypes are reproducible, robust, and prognostically 

meaningful rather than artifacts of overfitting.

Cluster 1 comprised 282 patients (53.8%), while Cluster 2 

included 242 patients (46.2%). Based on their clinical and 

physiological profiles, we defined Cluster 1 as the Favorable Profile 

Cluster (FPC), characterized by more favorable hemodynamic and 

functional parameters—suggestive of a group appropriate for 

continued monitoring and optimization of standard therapies. In 

contrast, Cluster 2 was designated the Adverse Profile Cluster 

(APC), representing an older cohort with marked hemodynamic 

compromise and diminished exercise capacity, indicative of a 

phenotype that may benefit from earlier consideration of advanced 

interventions or intensified medical management.

Clinical and demographic characteristics

Patients in Cluster 2 were older (median age: 54 (45–60) vs. 52 

(43–58) years, p = 0.013) and had a lower body mass index (BMI: 

27.0 ± 4.8 vs. 28.2 ± 5.3 kg/m2, p = 0.005) (Table 1). There was no 

significant difference in sex distribution between the two clusters. 

The prevalence of ischemic etiology (54.7% vs. 38.2%, p < 0.001), 

history of percutaneous coronary intervention (45.9% vs. 28.5%, 

p < 0.001), coronary artery bypass grafting (14.5% vs. 7.8%, 

p = 0.015), diabetes mellitus (38.4% vs. 28.5%, p = 0.016), atrial 

fibrillation (28.1% vs. 10.3%, p < 0.001), and implantable 

cardioverter defibrillator (31.8% vs. 18.1%, p < 0.001) was 

significantly higher in Cluster 2.

Echocardiographic and hemodynamic 
findings

Table 2 demonstrates the echocardiographic findings of the 

patients. Cluster 2 demonstrated more advanced structural and 

functional cardiac abnormalities. Left ventricular ejection 

fraction (LVEF) was significantly lower in Cluster 2 (median: 

20% (18–24) vs. 23% (20–25), p < 0.001), suggesting more 

profound systolic dysfunction. Although left ventricular end- 

diastolic and end-systolic diameters (LVEDD, LVESD) were 

similar between groups, left atrial size was markedly increased in 

FIGURE 3 

Cluster radar chart and bar plot comparison,radar chart illustrating normalized distributions of selected parameters across the two clusters. Cluster 2 
demonstrated greater impairments in hemodynamic, biochemical, and echocardiographic variables compared with Cluster 1. Bar plot comparing 
scaled mean values for clinical, echocardiographic, laboratory, and hemodynamic parameters between clusters. Cluster 2 was characterized by 
older age, higher prevalence of comorbidities (diabetes mellitus, atrial fibrillation), worse hemodynamics (higher RAP, LVEDP, and PVR; lower CI), 
and impaired functional status (lower peak VO2).
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Cluster 2 (4.84 ± 0.53 cm vs. 4.45 ± 0.61 cm, p < 0.001), re-ecting 

chronic volume overload and diastolic impairment.

Mitral regurgitation severity was significantly greater in 

Cluster 2, with higher proportions of patients exhibiting 

moderate-to-severe regurgitation (Grade 2–3 in 82.6% vs. 47.8%, 

p < 0.001). Similarly, tricuspid regurgitation was more severe in 

Cluster 2, indicating substantial right-sided valvular involvement 

and volume burden.

Right ventricular systolic function was also significantly 

impaired in Cluster 2, with lower tricuspid annular plane 

systolic excursion (TAPSE: 1.4 ± 0.37 cm vs. 1.8 ± 0.44 cm, 

p < 0.001) and increased inferior vena cava (IVC) diameter 

(2.23 ± 0.43 cm vs. 1.64 ± 0.35 cm, p < 0.001), suggesting elevated 

right atrial pressures and reduced RV contractility. Plethora was 

observed in over half of Cluster 2 patients (55.8% vs. 2.3%, 

p < 0.001). Estimated pulmonary artery systolic pressure (PASP) 

by echocardiography was higher in Cluster 2 (median: 

50 mmHg vs. 30 mmHg, p < 0.001), consistent with 

pulmonary hypertension.

Invasive hemodynamic assessment via right heart 

catheterization revealed marked elevation in biventricular filling 

pressures and pulmonary vascular resistance in Cluster 2 

(Table 3). Left ventricular end-diastolic pressure (LVEDP), along 

with pulmonary artery systolic, diastolic, and mean pressures 

were significantly higher in Cluster 2 than Cluster 1. Cluster 2 

also exhibited elevated right atrial pressure (RAP: 12 (9–17) vs. 

6 (4–8) mmHg, p < 0.001), right ventricular systolic pressure 

(RVSP: 59 (48–71) vs. 36 (29–49) mmHg, p < 0.001), and 

transpulmonary gradient (TPG: 12 (8–19) vs. 6 (3–9) mmHg, 

p < 0.001) than Cluster 1, indicating more frequent combined 

pre- and post-capillary pulmonary hypertension in Cluster 2.

Cardiac output (CO) and cardiac index (CI) were significantly 

reduced in Cluster 2 than Cluster 1, re-ecting diminished global 

perfusion capacity. Pulmonary vascular resistance (PVR) was 

notably elevated (4.1 (2.56–6.4) vs. 1.4 (0.9–2.33) Wood units, 

p < 0.001), while systemic vascular resistance (SVR) was also 

modestly higher (24.2 (20.2–29.4) vs. 21.4 (17.6–29.4) Wood 

units, p < 0.001). Additionally, stroke volume (SV) and stroke 

volume index (SVI) were significantly lower in Cluster 2, 

consistent with advanced circulatory compromise.

Collectively, these findings underscore a more severe 

biventricular phenotype in Cluster 2, characterized by pronounced 

systolic dysfunction, elevated filling pressures, secondary valvular 

disease, and significant pulmonary hypertension.

Laboratory parameters and biomarkers

Patients in Cluster 2 exhibited a laboratory profile consistent 

with advanced disease severity, multiorgan involvement, and 

worse nutritional and metabolic status (Table 4). Serum urea 

levels were higher in Cluster 2, yet serum creatinine levels 

similar in both groups. Hepatic congestion and dysfunction 

were more prominent in Cluster 2, with significantly elevated 

total (1.08 (0.72–1.58) vs. 0.58 (0.41–0.81) mg/dl, p < 0.001) and 

direct bilirubin levels (0.51 (0.31–0.84) vs. 0.21 (0.15–0.30) mg/ 

dl, p < 0.001), as well as higher GGT (58.5 (30.6–103) vs. 28 

(18–44) U/L, p < 0.001) and ALP (100 (71–131) vs. 87 (71.5– 

105) U/L, p = 0.001).

TABLE 2 Echocardiographic parameters.

Variable Overall 
(n = 524)

Cluster 1 
(n = 282)

Cluster 2 
(n = 242)

p

LVEF (%) 22 (20–25) 23 (20–25) 20 (18–24) <.001

LVEDD (cm) 6.7 (6.2–7.4) 6.7 (6.2–7.35) 6.8 (6.2–7.4) 0.621

LVESD (cm) 5.9 (5.4–6.6) 5.8 (5.3–6.57) 6 (5.5–6.6) 0.106

LA (cm) 4.63 (0.61) 4.45 (0.61) 4.84 (0.53) <.001

MR

Grade 1 183 (34.9) 143 (52.2) 40 (17.0) <.001

Grade 2 210 (40.1) 97 (35.4) 113 (49.1)

Grade 3 111 (21.2) 34 (12.4) 77 (33.5)

TR

Grade 1 286 (54.6) 229 (82.7) 57 (23.8) <.001

Grade 2 154 (29.4) 43 (15.5) 111 (46.3)

Grade 3 77 (14.7) 5 (1.8) 72 (29.7)

Echo PASP (mmHg) 40 (30–53) 30 (25–40) 50 (42–63) <.001

LVDD

Grade 1 101 (19.3) 85 (31.7) 16 (6.6) <.001

Grade 2 106 (20.2) 78 (29.1) 28 (12.4)

Grade 3 287 (54.8) 105 (39.2) 182 (80.5)

TAPSE (cm) 1.68 (0.46) 1.8 (0.44) 1.4 (0.37) <.001

IVC (cm) 1.91 (0.49) 1.64 (0.35) 2.23 (0.43) <.001

Plethora 132 (25.2) 6 (2.3) 126 (55.8) <.001

LA, Left atrium; LVDD, Left ventricular diastolic dysfunction; LVEDD, Left ventricular end- 

diastolic diameter; LVEF, Left ventricular ejection fraction; LVESD, Left ventricular end- 

systolic diameter; MR, Mitral regurgitation; PASP, Pulmonary artery systolic pressure; 

TAPSE, Tricuspid annular plane systolic excursion; TR, Tricuspid regurgitation.

TABLE 1 Demographic data of patients.

Variable Overall 
(n = 524)

Cluster 1 
(n = 282)

Cluster 2 
(n = 242)

p

Gender (male) 447 (85.3) 241 (85.5) 206 (85.1) 0.913

Age (years) 53 (44–59) 52 (43–58) 54 (45–60) 0.013

BMI (kg/m2) 27.6 (5.1) 28.2 (5.3) 27 (4.8) 0.005

Ischemic etiology 231 (44.1) 102 (38.2) 129 (54.7) <.001

PCI 191 (36.5) 80 (28.5) 111 (45.9) <.001

CABG 57 (10.9) 22 (7.8) 35 (14.5) 0.015

HT 185 (35.3) 102 (36.3) 83 (34.3) 0.633

DM 173 (33.0) 80 (28.5) 93 (38.4) 0.016

AF 97 (18.5) 29 (10.3) 68 (28.1) <.001

HL 209 (39.9) 107 (38.1) 102 (42.1) 0.343

CKD 102 (19.5) 49 (17.4) 53 (21.9) 0.199

CVD 42 (8.0) 21 (7.5) 21 (8.7) 0.613

PAD 26 (5.0) 10 (3.6) 16 (6.6) 0.109

Smoker 371 (70.8) 196 (69.8) 175 (72.3) 0.520

COPD 60 (11.5) 30 (10.7) 30 (12.4) 0.538

ICD 128 (24.4) 51 (18.1) 77 (31.8) <.001

CRT 33 (6.3) 19 (6.8) 14 (5.8) 0.647

AF, Atrial Fibrillation; BMI, Body Mass Index; CABG, Coronary Artery Bypass Graft; CKD, 

Chronic Kidney Disease; COPD, Chronic Obstructive Pulmonary Disease; CRT, Cardiac 

Resynchronization Therapy; CVD, Cerebrovascular disease; DM, Diabetes mellitus; HL, 

Hyperlipidemia; HT, Hypertension; ICD, Implantable Cardioverter Defibrillator; LVAD, 

Left ventricular assist device; PAD, Peripheral artery disease; PCI, Percutaneous Coronary 

Intervention; Tx, Heart transplantation.
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TABLE 3 Cardiac catheterization parameters.

Variable Overall& 
(n = 524)

Cluster 1 
(n = 282)

Cluster 2 
(n = 242)

p

Aortic Systolic Pressure (mmHg) 117.3 (25.3) 123.2 (26.6) 111.2 (22.3) <.001

Aortic Diastolic Pressure (mmHg) 71.4 (13.8) 72.1 (14.5) 70.7 (12.9) 0.314

Aortic Mean Pressure (mmHg) 87.5 (15.6) 89.9 (15.9) 85.1 (14.9) 0.002

LVEDP (mmHg) 24 (15–28) 17 (12–24) 27 (23–30) <.001

Cath PASP (mmHg) 50 (35–63) 36 (28–50) 60 (50–72) <.001

Cath PADP (mmHg) 23 (14–29) 14 (10–21) 28 (24–33) <.001

Cath PAMP (mmHg) 33 (22–42) 23 (17–32) 40 (36–46) <.001

Cath RVSP (mmHg) 48 (36–62) 36 (29–49) 59 (48–71) <.001

Cath RAP (mmHg) 8 (5–14) 6 (4–8) 12 (9–17) <.001

TPG (mmHg) 9 (5–14) 6 (3–9) 12 (8–19) <.001

TSG (mmHg) 77.8 (16.3) 83.3 (15.5) 72.2 (15.1) <.001

Stroke Volume (ml/beat) 40.02 (32.31–51.00) 47.00 (39.00–57.59) 35.00 (29.20–41.00) <.001

Stroke Volume Index (ml/m2/beat) 20.80 (17.12–25.66) 23.80 (19.98–28.32) 18.00 (15.20–21.22) <.001

Aortic Oxygen Saturation (%) 96.1 (2.4) 96.5 (2.1) 95.7 (2.6) <.001

MPA Oxygen Saturation (%) 55.6 (10.7) 63.0 (7.0) 48.2 (8.3) <.001

Cardiac Output (L/min) 3.32 (2.80–4.12) 3.94 (3.22–4.54) 3.00 (2.50–3.45) <.001

Cardiac Index (L/min/m2) 1.70 (1.50–2.06) 1.92 (1.66–2.25) 1.57 (1.32–1.78) <.001

PVR (Woods Unit) 2.45 (1.36–4.30) 1.40 (0.90–2.33) 4.10 (2.56–6.40) <.001

SVR (Woods Unit) 22.80 (18.96–27.00) 21.40 (17.60–25.00) 24.20 (20.20–29.40) <.001

RVSWI (mm Hg × ml × m2) 6.55 (4.67–9.12) 5.90 (4.40–8.00) 7.12 (5.05–9.60) 0.045

LVEDP, Left ventricular end-diastolic pressure; MPA, Main pulmonary artery; PADP, Pulmonary arterial diastolic pressure; PAMP, Pulmonary arterial mean pressure; PASP, Pulmonary 

arterial systolic pressure; PVR, Pulmonary vascular resistance; RAP, Right atrial pressure; RVSP, Right ventricular systolic pressure; RVSWI, Right ventricular stroke work index; SVR, 

Systemic vascular resistance; TPG, Transpulmonary gradient; TSG, Trans-systemic gradient.

TABLE 4 Blood parameters of patients.

Variable Overall 
(n = 524)

Cluster 1 
(n = 282)

Cluster 2 
(n = 242)

p

Urea (mg/dl) 43.0 (34.4–56.0) 40.4 (32.9–52.1) 46.4 (37.8–60.9) <.001

Creatinine (mg/dl) 1.00 (0.83–1.20) 0.99 (0.82–1.16) 1.02 (0.84–1.22) 0.304

AST (U/L) 20.6 (15.6–27.2) 19.4 (15.4–16.4) 21.8 (16–27.7) 0.053

ALT (U/L) 20.6 (14.2–30.9) 21 (14.9–30.7) 19.9 (13.6–30.9) 0.618

Total bilirubin (mg/dl) 0.75 (0.50–1.20) 0.58 (0.41–0.81) 1.08 (0.72–1.58) <.001

Direct bilirubin (mg/dl) 0.30 (0.19–0.54) 0.21 (0.15–0.30) 0.51 (0.31–0.84) <.001

ALP (U/L) 90.5 (71.2–117.0) 87 (71.5–105) 100 (71–131) 0.001

GGT (U/L) 37.0 (21.0–72.0) 28 (18–44) 58.5 (30.6–103) <.001

ProBNP (ng/L) 2232 (1000–4411) 1330 (562–2241) 3969 (2441–6595) <.001

Total cholesterol (mg/dl) 161.2 (132.6–198.5) 184 (153–213) 140 (109–169) <.001

Triglyceride (mg/dl) 122.0 (88.0–172.3) 147 (108–221) 96.8 (74.2–132) <.001

HDL (mg/dl) 38.8 (32.0–48.3) 42 (36.2–50.5) 34.8 (28.1–43.3) <.001

LDL (mg/dl) 92.3 (65.3–121.8) 107 (78–131) 80.8 (58.6–107) <.001

Sodium (mmol/L) 138.0 (3.04) 138 (2.68) 138 (3.38) 0.015

Potasium (mmol/L) 4.5 (0.52) 4.59 (0.48) 4.39 (0.53) <.001

Total protein (g/L) 70.8 (7.30) 72 (6.35) 69.4 (8.07) <.001

Albumin (g/L) 43.1 (5.38) 44.9 (4.32) 41.2 (5.79) <.001

LDH (U/L) 216.0 (185.0–265.0) 203 (177–237) 229 (202–285) <.001

GFR (ml/min/1.73 m2) 81.9 (22.3) 83.5 (21.8) 80.1 (22.8) 0.080

TSH (mIU/L) 1.9 (1.2–3.1) 1.78 (1.13–2.79) 2.07 (1.33–3.46) 0.008

INR 1.2 (1.1–1.4) 1.09 (1.02–1.19) 1.33 (1.20–1.57) <.001

HGB (g/dl) 13.8 (1.98) 14.4 (1.65) 13 (2.09) <.001

HCT (%) 42.7 (5.53) 43.9 (4.73) 41.2 (6.02) <.001

Platelet (103/µl) 249.0 (205.0–291.0) 252 (215–289) 246 (199–293) 0.254

Lactate 1.40 (1.10–1.80) 1.3 (1.1–1.8) 1.5 (1.2–2.0) <.001

ALP, Alkaline phosphatase; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; GFR, Glomerular filtration rate; GGT, Gamma-glutamyl transferase; HCT, Hematocrit; HDL, 

High-density lipoprotein; HGB, Hemoglobin; INR, International normalized ratio; LDH, Lactate dehydrogenase; LDL, Low-density lipoprotein; ProBNP, Pro brain natriuretic peptide; TSH, 

Thyroid-stimulating hormone.
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NT-proBNP levels were nearly threefold higher in Cluster 2 

compared to Cluster 1 (3,969 (2,441–6,595) vs. 1,330 (562– 

2,241) ng/L, p < 0.001), indicating greater myocardial wall stress 

and hemodynamic overload.

Markers of nutritional status showed significant 

deterioration in Cluster 2. Serum albumin (41.2 ± 5.79 vs. 

44.9 ± 4.32 g/L, p < 0.001), total protein (69.4 ± 8.07 vs. 

72.0 ± 6.35 g/L, p < 0.001), and HDL cholesterol levels [34.8 

(28.1–43.3) vs. 42 (36.2–50.5) mg/dl, p < 0.001] were 

significantly lower, suggesting poor nutritional state and 

reduced hepatic synthetic function.

Hematologic findings were indicative of more pronounced 

anemia in Cluster 2. Both hemoglobin (13.0 ± 2.09 vs. 

14.4 ± 1.65 g/dl, p < 0.001) and hematocrit levels (41.2 ± 6.02% 

vs. 43.9 ± 4.73%, p < 0.001) were significantly lower compared to 

Cluster 1, suggesting impaired oxygen-carrying capacity and 

potential chronic disease-related anemia.

Cardiopulmonary exercise test (CPET) 
performance

Cluster 2 patients demonstrated significantly reduced 

functional capacity across multiple CPET parameters, 

consistent with more advanced heart failure physiology 

(Table 5). Peak oxygen consumption (peak VO2) was 

markedly lower in Cluster 2 [10.7 (9–13.2) vs. 16.0 (13.3– 

18.7) ml/kg/min, p < 0.001], re-ecting impaired aerobic 

capacity and cardiac output reserve. Similarly, the achieved 

metabolic equivalents (METS) were significantly reduced [3.1 

(2.6–3.8) vs. 4.6 (3.8–5.4), p < 0.001], indicating diminished 

ability to perform physical activity.

Ventilatory efficiency was also substantially worse in 

Cluster 2, as demonstrated by a significantly elevated VE/ 

VCO2 slope [49.1 (37.6–81.0) vs. 33.5 (29.2–39.8), p < 0.001]. 

Moreover, lower peak exercise oxygen pulse and VO2/work 

slope values in this group (both p < 0.001) further support 

compromised cardiovascular performance and peripheral 

oxygen extraction.

Outcomes and survival analysis

Over a median follow-up of 2.4 years (interquartile range: 1.4– 

4.1), the incidence of the composite endpoint was significantly 

higher in Cluster 2 compared to Cluster 1 (50.0% vs. 15.6%, 

p < 0.001), highlighting the adverse prognostic profile of this 

subgroup (Table 6). In Cox regression analysis, assignment to 

Cluster 2 was associated with a 3.84-fold increased risk of 

experiencing the composite endpoint (hazard ratio [HR]: 

3.84; 95% confidence interval [CI]: 2.72–5.43; p < 0.001) 

(Table 7, Figure 4).

Discussion

In this study, we identified two distinct phenotypic clusters— 

the FPC and the APC- within an advanced HF population by 

applying unsupervised ML to a comprehensive and multimodal 

dataset. These clusters exhibited significant differences in clinical 

profiles and were associated with long-term outcomes, 

underscoring their prognostic relevance.

TABLE 5 Cardiopulmonary exercise test parameters of patients.

Variable Overall 
(n = 524)

Cluster 1 
(n = 282)

Cluster 2 
(n = 242)

p

Time (Min) 6.6 (4.2–9.3) 8.41 (6.46–10.1) 5 (3.05–6.54) <.001

Load [Work (W)] 90.0 (45.0–140.0) 130 (80–170) 55 (30–95) <.001

VE (L/min) 46.0 (38.0–54.0) 49 (41–56) 43 (36–52) <.001

VO2 (ml/min) 1072 (802–1370) 1308 (1025–1590) 835 (652–1048) <.001

Peak VO2 (ml/min/kg) 13.6 (10.4–16.9) 16 (13.3–18.7) 10.7 (9–13.2) <.001

Pred (%) 29.0 (25.1–33.9) 29.4 (25.1–35.1) 28.8 (25.3–33.0) 0.227

RER 1.03 (0.08) 1.01 (0.07) 1.05 (0.08) <.001

METs 3.9 (3.0–4.8) 4.6 (3.8–5.4) 3.1 (2.6–3.8) <.001

VECO2 slope (VE/VCO2) 38.0 (31.5–52.3) 33.5 (29.2–39.8) 49.1 (37.6–81.0) <.001

VO2/Work slope [(ml/min)/W] 3.60 (2.02–5.27) 4.04 (2.5–5.6) 2.72 (0.45–4.6) <.001

MET, Metabolic Equivalent; RER, Respiratory Exchange Ratio; VCO2, Carbon Dioxide Production; VE, Ventilation; VE/VCO2, Carbon Dioxide Ventilatory Equivalent; VO2, Oxygen 

Consumption; VO2W, Oxygen Consumption/Workload Ratio; W, Watts; Pred (%), The percentage of the patient’s peak VO2 value during the cardiopulmonary exercise test relative to 

the predicted value.

TABLE 6 Clinical outcomes (LVAD implantation, heart transplantation, 
and death) according to phenotypic clusters.

Variable Cluster 1 
(n = 282)

Cluster 2 
(n = 242)

p

LVAD 11 (3.9) 55 (22.7) <.001

Tx 0 (0) 4 (1.7) 0.046

Death 34 (12.1) 79 (32.6) <.001

Composite 

endpoint

44 (15.6) 121 (50.0) <.001

LVAD, Left ventricular assist device; Tx, Heart transplantation.

TABLE 7 Cox regression analysis.

Cluster N (%) HR (CI)
1 280 (53.6) –

2 242 (46.4) 3.84 (2.72–5.43, p < 0.001)

CI, Confidence Interval; HR, Hazard Ratio, N, Number of patients.
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Recent studies by Zhang et al. and Yao et al. have applied 

supervised ML methods to predict the need for advanced HF 

therapies (18, 21). Zhang et al. used data from 557 

hospitalizations to develop a transparent, rule-based ML model 

that predicted which patients would require advanced heart 

failure therapies, such as LVAD or transplantation, during 

follow-up (18). Yao et al. introduced a novel ML framework 

that grouped clinical variables into -exible, overlapping 

categories—allowing a patient to belong partially to more than 

one risk group, rather than being forced into a single predefined 

class. This approach, inspired by fuzzy logic, better re-ects the 

clinical continuum and supports the derivation of interpretable 

reasoning rules. In their pilot application, the method was tested 

on a real-world cohort of patients evaluated for advanced heart 

failure therapies, demonstrating its potential to support 

eligibility classification through a rule-based, interpretable design 

(21). While these models offer interpretable decision support, 

they require labeled outcomes and focus on specific treatment 

decisions. In contrast, our approach aimed to identify clinically 

meaningful phenotypes associated with prognosis, rather than 

just treatment eligibility. This methodology offers a broader view 

of clinical heterogeneity in advanced HF.

Lamp et al. used unsupervised clustering to stratify patients 

into five risk categories based on a composite outcome of death, 

LVAD implantation, transplantation, and rehospitalization over 

six months, and subsequently applied supervised modeling to 

predict these outcomes (19). Their interpretable model was 

trained using two distinct input sets: the invasive set, which 

included variables derived solely from right heart catheterization 

(e.g., right atrial pressure, pulmonary artery pressures, cardiac 

output), and the all-feature set, which combined invasive 

hemodynamic data with a wider range of clinical and laboratory 

variables. The model achieved high predictive performance, with 

c-statistics ranging from 0.896 to 0.969 for the invasive set, and 

0.858 to 0.997 for the all-feature set, although confidence 

intervals were not explicitly reported. Despite the impressive 

discrimination, their analysis was primarily limited to 

hemodynamic domains. In contrast, our approach integrated 

a more comprehensive set of variables—including 

echocardiographic, cardiopulmonary exercise testing (CPET), 

biochemical, and invasive hemodynamic parameters—allowing 

for a multidimensional phenotypic characterization with 

prognostic relevance.

The concept of phenotyping HF patients has emerged from 

the need for personalized treatment. In heart failure with 

reduced ejection fraction (HFrEF), applying and titrating 

guideline-directed therapies can be challenging due to 

comorbidities and adverse effects on blood pressure, renal 

function, and electrolyte balance (22). As the HF population 

ages, comorbidity burden increases, reducing the feasibility of 

uniform treatment (“one size fit all”) approaches. Similar 

challenges exist in HFpEF, where pharmacological therapies 

FIGURE 4 

Kaplan–meier survival curves. Kaplan–Meier estimates for the composite outcome (all-cause mortality, LVAD, or transplantation) stratified by cluster 
assignment. Cluster 2 demonstrated significantly lower event-free survival (log-rank p < 0.0001).
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have generally failed to show mortality benefit in randomized large 

scale trials (23–25). However, ML-based clustering studies have 

revealed subgroups with variable treatment responses, 

supporting the role of precision medicine in this heterogeneous 

population (26, 27).

ML has gained attraction in HF research for its capacity to 

manage high-dimensional data and uncover latent phenotypes 

not captured by traditional statistics (5, 7). Beyond providing 

therapeutic guidance, it also aids in risk stratification, as 

demonstrated by a series of analyses that applied supervised 

machine learning techniques to predict short- and long-term 

mortality with high accuracy (5, 28, 29).

Patients with advanced heart failure represent the terminal 

stage of the disease and often present with overlapping symptoms 

and complex pathophysiology (3). Although machine learning– 

based clustering has previously been applied in advanced heart 

failure, prior studies were limited by narrower variable sets, often 

focusing predominantly on hemodynamics or clinical data. Our 

study is the first to integrate a comprehensive multimodal dataset 

—including echocardiographic, cardiopulmonary exercise test, 

and invasive hemodynamic parameters—allowing a more detailed 

phenotypic characterization and prognostic stratification in this 

high-risk population. In our study, the two identified clusters— 

the FPC and the APC—demonstrated distinct clinical profiles 

(Figure 5). FPC encompassed individuals with relatively preserved 

hemodynamic and functional status, whereas APC represented a 

cohort with marked physiological deterioration and higher disease 

burden. These contrasting profiles were associated with markedly 

different long-term outcomes. Patients in the FPC group may 

benefit from routine follow-up and medical optimization, whereas 

those in the APC group may require early evaluation for 

advanced therapies, including inotropic support, mechanical 

circulatory support, or palliative care planning.

Integrating clustering outputs into clinical work-ows could 

enable timely recognition of high-risk phenotypes and support 

personalized treatment strategies. As multimorbidity becomes 

more prevalent in HF populations, incorporating comorbidity 

profiles into clustering models may enhance patient stratification. 

Future studies should aim to externally validate these clusters and 

evaluate their applicability in prospective cohorts.

Limitations

Despite the strengths of our study, several important 

limitations should be acknowledged. First, the sample size, 

although relatively large for a single-center advanced HF cohort, 

remains modest. Second, our cohort was predominantly male, a 

FIGURE 5 

Phenotypic summary of machine learning–derived clusters in advanced HF.
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pattern commonly observed in advanced HF studies; nevertheless, 

this sex imbalance may restrict the generalizability of our findings 

to female patients. Third, the retrospective and observational 

design precludes causal inference. Fourth, although the dataset 

was comprehensive, it re-ects a single-center experience, which 

may limit external validity and generalizability. While we 

performed repeated split-sample validation within our cohort to 

strengthen internal reproducibility, external validation in larger, 

prospective multicenter cohorts will be essential to confirm the 

generalizability of our findings. Fifth, binary clinical variables 

(e.g., sex, diabetes, atrial fibrillation, ischemic etiology) were 

excluded from the clustering input for methodological reasons, 

potentially limiting completeness of phenotyping.

Conclusion

This study shows that unsupervised ML-based clustering can 

reveal clinically important phenotypes in advanced HF using 

routinely collected multimodal data. The identification of two 

distinct clusters with differing clinical profiles and outcomes 

highlights the potential of data-driven approaches to enhance 

risk stratification and guide personalized care. Prospective 

validation is warranted to confirm clinical utility.
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SUPPLEMENTARY FIGURE S1 

Flowchart of the study population. Flow diagram showing patient selection. 
Of 653 patients evaluated at the advanced HF clinic, 129 were excluded 
(prior LVAD/HTx, preserved LVEF, severe pulmonary disease, 
contraindications to CPET/RHC, or incomplete follow-up). The final 
cohort included 524 patients, who were classified into two clusters 
(Cluster 1, n=282; Cluster 2, n=242).

SUPPLEMENTARY FIGURE S2

Missing data map. Visualization of missingness across all variables in the 
study cohort. Overall, 8.3% of values were missing, while 91.7% were 
present. The plot highlights variable- and patient-level distribution of 
missing data.
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SUPPLEMENTARY FIGURE S3

Determination of the optimal number of clusters for hierarchical clustering. 
(Left) Elbow method: total within-cluster sum of squares plotted against 
increasing k values, with an inflection observed at k=2. (Right) Silhouette 
method: average silhouette width across k, peaking at k=2, supporting the 
choice of a two-cluster solution.

SUPPLEMENTARY FIGURE S4

PCA visualization of k-means clusters. Visualization of the two clusters 
identified using k-means clustering after dimensionality reduction with PCA.

SUPPLEMENTARY FIGURE S5

t-SNE visualization of k-means clusters. t-Distributed Stochastic Neighbor 
Embedding (t-SNE) plot depicting patient clustering based on high- 
dimensional input data. Clear distinction observed between Cluster 1 and 
Cluster 2.

SUPPLEMENTARY FIGURE S6

Cluster stability assessed by Jaccard similarity indices. Resampling-based 
stability analysis for the primary k-means model using continuous 
variables demonstrated excellent reproducibility of both clusters (Jaccard 
indices: 0.998 and 0.985). Sensitivity analysis with Gower distance and 
PAM clustering showed consistent cluster structures with moderately 
lower stability (Jaccard indices: 0.851 and 0.762), supporting the 
robustness of the identified phenotypes.

SUPPLEMENTARY FIGURE S7

Schoenfeld residuals for proportional hazards assumption. Plots of 
scaled Schoenfeld residuals over time for covariates included in the Cox 
regression models. No systematic trends were observed, indicating that 
the proportional hazards assumption was not violated. 
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