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Introduction: Advanced heart failure (HF) is a clinically heterogeneous
condition with poor prognosis, and traditional classification systems often fail
to capture the complexity needed for personalized care. This study aimed to
identify clinically meaningful phenotypic subgroups among patients with
advanced HF using unsupervised machine learning and to evaluate their
association with long-term outcomes.

Methods: A retrospective analysis was conducted on 524 patients with
advanced HF who underwent comprehensive clinical, echocardiographic,
hemodynamic, and cardiopulmonary exercise assessments. Using k-means
clustering on standardized, multidimensional data, two distinct phenotypes
were identified. The primary composite outcome was defined as all-cause
mortality, left ventricular assist device implantation, or heart transplantation.
Associations between cluster assignment and outcomes were evaluated using
Kaplan—Meier analysis and Cox proportional hazards regression.

Results: The first cluster, representing patients with relatively preserved
hemodynamics and functional status, was associated with a more favorable
prognosis, while the second cluster included older individuals with significant
biventricular dysfunction, higher pulmonary pressures, and poorer exercise
capacity. These patients experienced a markedly higher rate of the composite
outcome over a median follow-up of 2.4 years, with Cluster 2 showing a
significantly increased risk (hazard ratio [HR]: 3.84; 95% Cl. 2.72-5.43;
p<0.001).

Conclusion: Machine learning—based clustering revealed two distinct
phenotypes in advanced HF with differing clinical features and prognoses.
This approach may enhance risk stratification and inform individualized
therapeutic strategies in this high-risk population.

KEYWORDS

advanced heart failure, phenotyping, unsupervised clustering, machine learning, risk
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Introduction

(HF) is a clinical

substantial

Heart failure

characterized by

complex syndrome

heterogeneity in etiology,
pathophysiology, disease trajectory, and response to therapy.
This heterogeneity becomes particularly evident in patients with
advanced HF, a population that remains underrepresented in
large-scale clinical trials despite experiencing the highest rates of
morbidity and mortality (1). The prevalence of this patient
group continues to rise due to both an aging global population
and the increasing availability of life-prolonging therapies (2).
These patients also represent a significant burden on healthcare
systems, largely due to frequent hospital readmissions and
progressive clinical deterioration (3).

Traditional classifications of heart failure—based on subjective
measures of functional status, left ventricular ejection fraction
(LVEF) thresholds, or broad stage designations (A to D)—are
insufficient to reflect the phenotypic complexity observed in
clinical practice (2-4). Recent advances in machine learning
(ML) have enabled novel phenotyping strategies, shifting from
that
incorporate clinical, imaging, and biomarker data (5, 6). In

reductionist models to multidimensional frameworks
particular, unsupervised learning methods have facilitated the
identification of latent subgroups—so-called “phenoclusters”—
These

approaches do not rely on pre-labeled outcomes, allowing for

within heterogeneous HF populations. data-driven
the unbiased discovery of previously unrecognized clinical
patterns and their prognostic implications (7, 8).

The clinical relevance of phenotypic clustering is increasingly
recognized, as subgroups show differing treatment responses and
outcomes (9). In heart failure with preserved ejection fraction
(HFpEF)—the most extensively studied patient population—
phenomapping has identified reproducible clusters linked to
comorbidities, structural remodeling, and exercise intolerance (6,
10, 11). advanced HF,

pathophysiology and poor prognosis, remains underrepresented

However, despite its distinct
in such studies (12). The complexity of therapy selection,
including transplantation and left ventricular assist device
(LVAD), underscores the need for robust stratification models,
yet ML applications in this population are still limited.

This study had two main objectives: to identify phenotypic
clusters among patients with advanced HF using unsupervised
ML techniques, and to assess the prognostic significance of

these clusters.

Materials and methods
Study population

A total of 653 consecutive patients with advanced heart failure,
defined according to the 2021 European Society of Cardiology
(ESC) Guidelines as having persistent severe symptoms (NYHA
class ITI-1V) with objective evidence of cardiac dysfunction and
poor prognosis despite optimal medical therapy, and who were
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referred to our tertiary cardiovascular center for evaluation of
LVAD and
transplantation), were initially evaluated between January 2021
and April 2024 (2). Patients with prior durable LVAD
implantation, previous heart transplantation, left ventricular

advanced  therapeutic options  (including

ejection fraction (LVEF)>25%, severe pulmonary disease,
contraindications to CPET or RHC, or incomplete follow-up
data were excluded. After applying these exclusion criteria, 524
patients constituted the final study cohort (Supplementary
Figure S1). All included patients underwent comprehensive
with
cardiopulmonary exercise testing (CPET), and right heart

baseline evaluation transthoracic  echocardiography,
catheterization (RHC), performed within a 14-day time window.
All demographic, clinical, laboratory, echocardiographic, and
hemodynamic variables were obtained from the hospital’s
electronic medical record (EMR) system. Clinical diagnoses were
determined based on International Classification of Diseases
(ICD) codes and subsequently verified through physician notes
and laboratory reports to ensure accuracy. CPET parameters
were extracted through additional manual chart review of
exercise test reports by the investigator team. Standardized
definitions were applied in line with established guidelines:
diabetes mellitus (DM) was defined as a physician-documented
diagnosis and/or use of antidiabetic medication (13); atrial
fibrillation (AF) as documented arrhythmia on ECG or Holter
monitoring (14); ischemic etiology as a history of myocardial
infarction, percutaneous coronary intervention, or coronary
artery bypass grafting; hypertension (HT) as a physician-
documented diagnosis and/or use of antihypertensive therapy
(15); hyperlipidemia (HL) as a physician-documented diagnosis
and/or use of lipid-lowering therapy; chronic kidney disease
(CKD) as an estimated glomerular filtration rate <60 ml/min/
1.73 m? persisting for >3 months (16); cerebrovascular disease
(CVD) as a history of ischemic or hemorrhagic stroke or
transient ischemic attack; and chronic obstructive pulmonary
disease (COPD) as a physician-documented chronic airway
disease with or without pulmonary function testing.

The study was approved by the local ethics committee and
conducted in accordance with the Declaration of Helsinki.

Echocardiography

LVEF was measured using the biplane method of disks
(modified
echocardiographic examinations were performed by a single

summation Simpson’s rule). Doppler
experienced cardiologist using the EPIQ CVx version 9.0.5
system and both S5-1 and X5-1 transducers (Philips Medical
Systems, Andover, MA, USA), in accordance with current
guidelines. Tricuspid annular plane systolic excursion (TAPSE)
was obtained using M-mode imaging from the apical four-
chamber view with focus on the right ventricle. Pulmonary
artery systolic pressure (PASP) was estimated by adding the
peak tricuspid regurgitant jet velocity (using the Bernoulli
equation) to the estimated central venous pressure, which was

derived from the diameter and respiratory variation of the
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inferior vena cava (IVC). All echocardiographic measurements
adhered to the recommendations of the American Society of
Echocardiography (17).

Exercise testing

Maximal cardiopulmonary exercise testing was performed
using a continuous, individualized ramp treadmill protocol on
a JAEGER Vyntus CPX system (Vyaire Medical, Germany).
Exercise capacity was expressed in metabolic equivalents
(METs), with oxygen uptake (VO,) measured breath by
breath through an automated system. Measurements were
recorded at rest, throughout graded exercise, and during a
two-minute recovery period. METs were calculated by
dividing VO,max by 3.5 ml/kg/min. VO,, VCO,, and the
respiratory exchange ratio (RER =VCO,/VO,) were averaged
every 10 s. Peak VO, was defined as the highest 10 s averaged
VO, during the final stage of exercise. Blood pressure was
measured prior to testing and at three-minute intervals
throughout the protocol and recovery.

Cardiac catheterization

Right heart catheterization was performed via the right
internal jugular or femoral vein using a 7Fr balloon-tipped
Swan-Ganz catheter (Edwards Lifesciences, Irvine, CA, USA) or
a pigtail catheter. Cardiac output was calculated using the
indirect Fick method. All pressure waveforms were visually
assessed to ensure physiological accuracy, and measurements
were taken at end-expiration.

Endpoint definition

The composite outcome was defined as all-cause mortality,
LVAD implantation, or heart transplantation, in line with
definitions used in previous literature (18, 19).

Statistical analysis

To identify distinct phenotypic clusters within the study

population, we employed unsupervised machine learning
techniques. Prior to clustering, missing data were addressed via
the MissForest algorithm, a non-parametric, iterative imputation
method (20)

Figure S2). All continuous variables were standardized to zero

utilizing random forests (Supplementary
mean and unit variance prior to distance-based modeling.
Binary categorical variables (e.g., comorbidities, sex) were
excluded from the clustering process to prevent distortion in
Euclidean distance calculations arising from incompatible data
types. Ordinal categorical variables (e.g., mitral regurgitation
and LV diastolic

dysfunction) were converted to integer scores respecting their

grade, tricuspid regurgitation grade,
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inherent order, thereby preserving their rank information in the
distance matrix. A total of 108 variables were considered,
encompassing clinical, laboratory, echocardiographic,
After

multicollinearity (removing one variable from each pair with

hemodynamic, and CPET parameters. addressing
Pearson correlation >0.7 based on clinical judgment), 81
final  clustering

(Supplementary Table S1). Both hierarchical clustering (Ward’s

variables ~remained for the analysis
method with Euclidean distance) and k-means clustering were
applied to the scaled numeric data. These algorithms are well
suited for standardized continuous data and have been widely
applied in heart failure phenomapping studies (5, 6). The
optimal number of clusters was determined using both the
elbow method (within-cluster sum of squares) and the average
silhouette width as complementary approaches (Figure 1). The
elbow point was visually identified at k=2, where the
incremental reduction in WSS plateaued, and this was further
supported by the highest silhouette score. While k=3 showed a
minor secondary inflection, it yielded a lower silhouette width
stable,
Hierarchical clustering provided an interpretable dendrogram

and produced less clinically interpretable clusters.
and stable grouping (Supplementary Figure S3); however,

k-means clustering demonstrated comparable or higher
silhouette scores, offering more flexible partitioning and iterative
refinement (Figures 1, 2). Therefore, k-means clustering (k =2)
was selected for the final classification (Supplementary Figures
S4, S5), balancing statistical performance, model simplicity, and
clinical interpretability. To evaluate the robustness of the
identified clusters, internal validation was performed using
bootstrap resampling with 1,000 iterations and Jaccard similarity
indices. As a sensitivity analysis, clustering was repeated using
Gower distance with partitioning around medoids (PAM)
(Supplementary Figure S6). Additionally, internal validation was
performed using the Calinski-Harabasz (CH) and Davies-
Bouldin (DB) indices across different cluster numbers (k =2-6)
(Supplementary Table S2). The final cluster assignments were
appended to the imputed dataset. Group differences between
clusters were assessed using chi-squared tests for categorical
variables and either Student’s t-test or Wilcoxon rank-sum test
for continuous variables, depending on distributional
assumptions. Scaled variables were compared between the two
clusters using both bar plots and a radar chart to illustrate
group-level differences (Figure 3). Survival was illustrated using
the Kaplan-Meier method, and Cox proportional hazards
were assess time-to-event

regression models applied to

associations between cluster membership and outcomes.
Importantly, outcomes were not included as clustering inputs,
ensuring independence between phenotype derivation and
prognostic evaluation. The proportional hazards assumption was
tested using Schoenfeld residuals and was not violated
(Supplementary Figure S7). To further assess the reproducibility
of the clustering solution, repeated split-sample validation was
performed. In each of 100 random replications, the cohort was
divided into 70% training and 30% validation subsets. K-means
clustering (k=2) was derived in the training set, and cluster

centroids were used to assign patients in the validation set.
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FIGURE 1

Determination of the optimal number of clusters (k) using the elbow and silhouette methods. Total within-cluster sum of squares (WSS) plotted
against increasing values of k. The elbow point was visually identified at k = 2, where the reduction in WSS began to plateau. Average silhouette
width across varying k values, with the highest value observed at k = 2, supporting the two-cluster solution.
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FIGURE 2

Principal component analysis (PCA) for k-means and hierarchical clustering (k = 2). Visualization of patient distribution by unsupervised clustering
(k-means and hierarchical) using first two principal components. Distinct separation is evident between the two clusters in k-means clustering.
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Agreement between original and validation cluster assignments
was quantified by the adjusted Rand index, while prognostic
validity was evaluated using log-rank tests and Cox regression
(Supplementary Table S3). All statistical tests were two-tailed,
and a p-value below 0.05 was considered statistically significant.

Frontiers in Cardiovascular Medicine

All statistical analyses were performed using the R 4.4.1 software
(R Foundation for Statistical Computing, Vienna, Austria) with
packages “missForest”, “dplyr”, “stats”, “cluster”, “clusterCrit”,
“fossil”, “naniar”, “dendextend”, “survival”, “survminer”, “rms”,
“ggplot2”.
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and impaired functional status (lower peak VO,).

Cluster radar chart and bar plot comparison,radar chart illustrating normalized distributions of selected parameters across the two clusters. Cluster 2
demonstrated greater impairments in hemodynamic, biochemical, and echocardiographic variables compared with Cluster 1. Bar plot comparing
scaled mean values for clinical, echocardiographic, laboratory, and hemodynamic parameters between clusters. Cluster 2 was characterized by
older age, higher prevalence of comorbidities (diabetes mellitus, atrial fibrillation), worse hemodynamics (higher RAP, LVEDP, and PVR; lower Cl),
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Results
Cluster validation

Unsupervised k-means clustering identified two distinct
phenotypic clusters among 524 patients with advanced HF. For
the primary k-means model based on continuous variables, both
clusters showed excellent stability (Jaccard indices: 0.998 and
0.985; Supplementary Figure S6). Sensitivity analysis using
Gower distance with PAM clustering yielded consistent results,
although with moderately lower stability (Jaccard indices: 0.851
and 0.762). Internal validation using the Calinski-Harabasz
(CH) and Davies-Bouldin (DB) indices across different cluster
numbers (k=2-6) consistently supported the
solution, which yielded the highest CH and the lowest DB
values (Supplementary Table S2).

two-cluster

Split-sample validation further confirmed reproducibility.
Across 100 replications of 70/30 splits, the adjusted Rand index
averaged 0.77 +0.06, and prognostic separation was consistently
observed (log-rank p <0.05 in all subsets; pooled HR: 0.83, 95%
CI: 0.78-0.89; Supplementary Table S3). Notably, this validation
HR reflects reproducibility across resampling iterations, whereas
the full-cohort Cox model showed the absolute effect size (HR:
3.84, 95% CI: 2.72-5.43).

Collectively, these analyses indicate that the identified
phenotypes are reproducible, robust, and prognostically
meaningful rather than artifacts of overfitting.

Cluster 1 comprised 282 patients (53.8%), while Cluster 2
included 242 patients (46.2%). Based on their clinical and
physiological profiles, we defined Cluster 1 as the Favorable Profile
Cluster (FPC), characterized by more favorable hemodynamic and
functional parameters—suggestive of a group appropriate for

continued monitoring and optimization of standard therapies. In
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contrast, Cluster 2 was designated the Adverse Profile Cluster
(APC), representing an older cohort with marked hemodynamic
compromise and diminished exercise capacity, indicative of a
phenotype that may benefit from earlier consideration of advanced
interventions or intensified medical management.

Clinical and demographic characteristics

Patients in Cluster 2 were older (median age: 54 (45-60) vs. 52
(43-58) years, p=0.013) and had a lower body mass index (BMIL:
27.0+4.8 vs. 28.2+5.3 kg/m’, p=0.005) (Table 1). There was no
significant difference in sex distribution between the two clusters.
The prevalence of ischemic etiology (54.7% vs. 38.2%, p <0.001),
history of percutaneous coronary intervention (45.9% vs. 28.5%,
p<0.001), coronary artery bypass grafting (14.5% vs. 7.8%,
p=0.015), diabetes mellitus (38.4% vs. 28.5%, p=0.016), atrial
fibrillation (28.1% vs. 10.3%, p<0.001),
cardioverter ~defibrillator (31.8% vs. 18.1%,
significantly higher in Cluster 2.

and implantable

p<0.001) was

Echocardiographic and hemodynamic
findings

Table 2 demonstrates the echocardiographic findings of the
patients. Cluster 2 demonstrated more advanced structural and
functional cardiac abnormalities. Left ventricular ejection
fraction (LVEF) was significantly lower in Cluster 2 (median:
20% (18-24) vs. 23% (20-25), p<0.001), suggesting more
profound systolic dysfunction. Although left ventricular end-
diastolic and end-systolic diameters (LVEDD, LVESD) were

similar between groups, left atrial size was markedly increased in
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TABLE 1 Demographic data of patients.
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TABLE 2 Echocardiographic parameters.

Variable Overall Cluster 1 | Cluster 2 p Variable Overall | Clusterl Cluster2 @ p
(n=524) (n=282) (n=242) (n=524)  (n=282) | (n=242)
Gender (male) 447 (85.3) 241 (85.5) 206 (85.1) 0913 LVEF (%) 22 (20-25) 23 (20-25) 20 (18-24) <.001
Age (years) 53 (44-59) 52 (43-58) 54 (45-60) 0.013 LVEDD (cm) 6.7 (6.2-7.4) 6.7 (6.2-7.35) 6.8 (6.2-7.4) 0.621
BMI (kg/mz) 27.6 (5.1) 28.2 (5.3) 27 (4.8) 0.005 LVESD (cm) 5.9 (5.4-6.6) 5.8 (5.3-6.57) 6 (5.5-6.6) 0.106
Ischemic etiology 231 (44.1) 102 (38.2) 129 (54.7) <.001 LA (cm) 4.63 (0.61) 4.45 (0.61) 4.84 (0.53) <.001
PCI 191 (36.5) 80 (28.5) 111 (45.9) <.001 MR
CABG 57 (109) 22(78) 35 (145) | 0015 Grade 1 183 (34.9) 143 (52.2) 40 (17.0) | <001
HT 185 (35.3) 102 (36.3) 83 (34.3) 0.633 Grade 2 210 (40.1) 97 (35.4) 113 (49.1)
DM 173 (33.0) 80 (28.5) 93 (38.4) 0.016 Grade 3 111 (21.2) 34 (12.4) 77 (33.5)
AF 97 (18.5) 29 (10.3) 68 (28.1) <.001 ™
HL 209 (39.9) 107 (38.1) 102 (42.1) 0.343
Grade 1 286 (54.6) 229 (82.7) 57 (23.8) <.001
CKD 102 (19.5) 49 (17.4) 53 (21.9) 0.199
Grade 2 154 (29.4) 43 (15.5) 111 (46.3)
CVD 42 (8.0) 21 (7.5) 21 (8.7) 0.613
Grade 3 77 (14.7) 5(1.8) 72 (29.7)
PAD 26 (5.0) 10 (3.6) 16 (6.6) 0.109
Echo PASP (mmHg) 40 (30-53) 30 (25-40) 50 (42-63) <.001
Smoker 371 (70.8) 196 (69.8) 175 (72.3) 0.520
COPD 60 (11.5) 30 (10.7) 30 (12.4) 0.538 LvDD
ICD 128 (24.4) 51 (18.1) 77 (31.8) <.001 Grade 1 101 (19.3) 85 (31.7) 16 (6.6) <.001
CRT 33 (6.3) 19 (6.8) 14 (5.8) 0.647 Grade 2 106 (20.2) 78 (29.1) 28 (12.4)
Grade 3 287 (54.8) 105 (39.2) 182 (80.5)
AF, Atrial Fibrillation; BMI, Body Mass Index; CABG, Coronary Artery Bypass Graft; CKD,
Chronic Kidney Disease; COPD, Chronic Obstructive Pulmonary Disease; CRT, Cardiac TAPSE (cm) 1.68 (0.46) 1.8 (0.44) 14 (0.37) <.001
Resynchronization Therapy; CVD, Cerebrovascular disease; DM, Diabetes mellitus; HL, IVC (cm) 1.91 (0.49) 1.64 (0.35) 2.23 (0.43) <.001
Hyperlipidemia; HT, Hypertension; ICD, Implantable Cardioverter Defibrillator; LVAD, Plethora 132 (25.2) 6 (2.3) 126 (55.8) <.001

Left ventricular assist device; PAD, Peripheral artery disease; PCI, Percutaneous Coronary
Intervention; Tx, Heart transplantation.

Cluster 2 (4.84 £0.53 cm vs. 4.45 £ 0.61 cm, p <0.001), reflecting
chronic volume overload and diastolic impairment.

Mitral regurgitation severity was significantly greater in
Cluster 2, with higher proportions of patients exhibiting
moderate-to-severe regurgitation (Grade 2-3 in 82.6% vs. 47.8%,
P <0.001). Similarly, tricuspid regurgitation was more severe in
Cluster 2, indicating substantial right-sided valvular involvement
and volume burden.

Right ventricular systolic function was also significantly
impaired in Cluster 2, with lower tricuspid annular plane
systolic excursion (TAPSE: 1.4+037cm vs. 1.8+0.44cm,
p<0.001) and increased inferior vena cava (IVC) diameter
(2.23+0.43 cm vs. 1.64 +0.35 cm, p <0.001), suggesting elevated
right atrial pressures and reduced RV contractility. Plethora was
observed in over half of Cluster 2 patients (55.8% vs. 2.3%,
P <0.001). Estimated pulmonary artery systolic pressure (PASP)
by echocardiography was higher in Cluster 2 (median:

50 mmHg vs. 30mmHg, p<0.001), consistent with
pulmonary hypertension.
Invasive hemodynamic assessment via right heart

catheterization revealed marked elevation in biventricular filling
pressures and pulmonary vascular resistance in Cluster 2
(Table 3). Left ventricular end-diastolic pressure (LVEDP), along
with pulmonary artery systolic, diastolic, and mean pressures
were significantly higher in Cluster 2 than Cluster 1. Cluster 2
also exhibited elevated right atrial pressure (RAP: 12 (9-17) vs.
6 (4-8) mmHg, p<0.001), right ventricular systolic pressure
(RVSP: 59 (48-71) vs. 36 (29-49) mmHg, p<0.001), and
transpulmonary gradient (TPG: 12 (8-19) vs. 6 (3-9) mmHg,
p<0.001) than Cluster 1, indicating more frequent combined
pre- and post-capillary pulmonary hypertension in Cluster 2.

Frontiers in Cardiovascular Medicine

LA, Left atrium; LVDD, Left ventricular diastolic dysfunction; LVEDD, Left ventricular end-
diastolic diameter; LVEF, Left ventricular ejection fraction; LVESD, Left ventricular end-
systolic diameter; MR, Mitral regurgitation; PASP, Pulmonary artery systolic pressure;
TAPSE, Tricuspid annular plane systolic excursion; TR, Tricuspid regurgitation.

Cardiac output (CO) and cardiac index (CI) were significantly
reduced in Cluster 2 than Cluster 1, reflecting diminished global
perfusion capacity. Pulmonary vascular resistance (PVR) was
notably elevated (4.1 (2.56-6.4) vs. 1.4 (0.9-2.33) Wood units,
p<0.001), while systemic vascular resistance (SVR) was also
modestly higher (24.2 (20.2-29.4) vs. 21.4 (17.6-29.4) Wood
units, p<0.001). Additionally, stroke volume (SV) and stroke
volume index (SVI) were significantly lower in Cluster 2,
consistent with advanced circulatory compromise.
these
biventricular phenotype in Cluster 2, characterized by pronounced

Collectively, findings underscore a more severe
systolic dysfunction, elevated filling pressures, secondary valvular

disease, and significant pulmonary hypertension.

Laboratory parameters and biomarkers

Patients in Cluster 2 exhibited a laboratory profile consistent
with advanced disease severity, multiorgan involvement, and
worse nutritional and metabolic status (Table 4). Serum urea
levels were higher in Cluster 2, yet serum creatinine levels
similar in both groups. Hepatic congestion and dysfunction
were more prominent in Cluster 2, with significantly elevated
total (1.08 (0.72-1.58) vs. 0.58 (0.41-0.81) mg/dl, p <0.001) and
direct bilirubin levels (0.51 (0.31-0.84) vs. 0.21 (0.15-0.30) mg/
dl, p<0.001), as well as higher GGT (58.5 (30.6-103) vs. 28
(18-44) U/L, p<0.001) and ALP (100 (71-131) vs. 87 (71.5-
105) U/L, p =0.001).
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TABLE 3 Cardiac catheterization parameters.

10.3389/fcvm.2025.1669538

Variable Overall& Cluster 1

Aortic Systolic Pressure (mmHg) 117.3 (25.3) 123.2 (26.6) 111.2 (22.3) <.001
Aortic Diastolic Pressure (mmHg) 71.4 (13.8) 72.1 (14.5) 70.7 (12.9) 0.314
Aortic Mean Pressure (mmHg) 87.5 (15.6) 89.9 (15.9) 85.1 (14.9) 0.002
LVEDP (mmHg) 24 (15-28) 17 (12-24) 27 (23-30) <.001
Cath PASP (mmHg) 50 (35-63) 36 (28-50) 60 (50-72) <.001
Cath PADP (mmHg) 23 (14-29) 14 (10-21) 28 (24-33) <.001
Cath PAMP (mmHg) 33 (22-42) 23 (17-32) 40 (36-46) <.001
Cath RVSP (mmHg) 48 (36-62) 36 (29-49) 59 (48-71) <.001
Cath RAP (mmHg) 8 (5-14) 6 (4-8) 12 (9-17) <.001
TPG (mmHg) 9 (5-14) 6 (3-9) 12 (8-19) <.001
TSG (mmHg) 77.8 (16.3) 83.3 (15.5) 72.2 (15.1) <.001
Stroke Volume (ml/beat) 40.02 (32.31-51.00) 47.00 (39.00-57.59) 35.00 (29.20-41.00) <.001
Stroke Volume Index (ml/mzlbeat) 20.80 (17.12-25.66) 23.80 (19.98-28.32) 18.00 (15.20-21.22) <.001
Aortic Oxygen Saturation (%) 96.1 (2.4) 96.5 (2.1) 95.7 (2.6) <.001
MPA Oxygen Saturation (%) 55.6 (10.7) 63.0 (7.0) 482 (8.3) <001
Cardiac Output (L/min) 3.32 (2.80-4.12) 3.94 (3.22-4.54) 3.00 (2.50-3.45) <001
Cardiac Index (L/min/m?) 1.70 (1.50-2.06) 1.92 (1.66-2.25) 1.57 (1.32-1.78) <001
PVR (Woods Unit) 2.45 (1.36-4.30) 1.40 (0.90-2.33) 4.10 (2.56-6.40) <001
SVR (Woods Unit) 22.80 (18.96-27.00) 21.40 (17.60-25.00) 24.20 (20.20-29.40) <001
RVSWI (mm Hg x ml x m?) 6.55 (4.67-9.12) 5.90 (4.40-8.00) 7.12 (5.05-9.60) 0.045

LVEDP, Left ventricular end-diastolic pressure; MPA, Main pulmonary artery; PADP, Pulmonary arterial diastolic pressure; PAMP, Pulmonary arterial mean pressure; PASP, Pulmonary
arterial systolic pressure; PVR, Pulmonary vascular resistance; RAP, Right atrial pressure; RVSP, Right ventricular systolic pressure; RVSWI, Right ventricular stroke work index; SVR,

Systemic vascular resistance; TPG, Transpulmonary gradient; TSG, Trans-systemic gradient.

TABLE 4 Blood parameters of patients.

Variable

Cluster 1

(n=282)

Cluster 2
(n=242)

Urea (mg/dl) 43.0 (34.4-56.0) 40.4 (32.9-52.1) 46.4 (37.8-60.9) <.001
Creatinine (mg/dl) 1.00 (0.83-1.20) 0.99 (0.82-1.16) 1.02 (0.84-1.22) 0.304
AST (U/L) 20.6 (15.6-27.2) 19.4 (15.4-16.4) 21.8 (16-27.7) 0.053
ALT (U/L) 20.6 (14.2-30.9) 21 (14.9-30.7) 19.9 (13.6-30.9) 0.618
Total bilirubin (mg/dl) 0.75 (0.50-1.20) 0.58 (0.41-0.81) 1.08 (0.72-1.58) <.001
Direct bilirubin (mg/dl) 0.30 (0.19-0.54) 0.21 (0.15-0.30) 0.51 (0.31-0.84) <.001
ALP (U/L) 90.5 (71.2-117.0) 87 (71.5-105) 100 (71-131) 0.001
GGT (U/L) 37.0 (21.0-72.0) 28 (18-44) 58.5 (30.6-103) <.001
ProBNP (ng/L) 2232 (1000-4411) 1330 (562-2241) 3969 (2441-6595) <.001
Total cholesterol (mg/dl) 161.2 (132.6-198.5) 184 (153-213) 140 (109-169) <.001
Triglyceride (mg/dl) 122.0 (88.0-172.3) 147 (108-221) 96.8 (74.2-132) <.001
HDL (mg/dl) 38.8 (32.0-48.3) 42 (36.2-50.5) 34.8 (28.1-43.3) <.001
LDL (mg/dl) 92.3 (65.3-121.8) 107 (78-131) 80.8 (58.6-107) <.001
Sodium (mmol/L) 138.0 (3.04) 138 (2.68) 138 (3.38) 0.015
Potasium (mmol/L) 4.5 (0.52) 4.59 (0.48) 4.39 (0.53) <.001
Total protein (g/L) 70.8 (7.30) 72 (6.35) 69.4 (8.07) <.001
Albumin (g/L) 43.1 (5.38) 449 (4.32) 412 (5.79) <.001
LDH (U/L) 216.0 (185.0-265.0) 203 (177-237) 229 (202-285) <.001
GFR (ml/min/1.73 m?) 81.9 (22.3) 83.5 (21.8) 80.1 (22.8) 0.080
TSH (mIU/L) 1.9 (1.2-3.1) 1.78 (1.13-2.79) 2,07 (1.33-3.46) 0.008
INR 1.2 (1.1-1.4) 1.09 (1.02-1.19) 1.33 (1.20-1.57) <.001
HGB (g/dl) 13.8 (1.98) 14.4 (1.65) 13 (2.09) <.001
HCT (%) 427 (5.53) 43.9 (4.73) 412 (6.02) <.001
Platelet (10°/ul) 249.0 (205.0-291.0) 252 (215-289) 246 (199-293) 0.254
Lactate 1.40 (1.10-1.80) 1.3 (L1-1.8) 1.5 (1.2-2.0) <.001

ALP, Alkaline phosphatase; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; GFR, Glomerular filtration rate; GGT, Gamma-glutamyl transferase; HCT, Hematocrit; HDL,
High-density lipoprotein; HGB, Hemoglobin; INR, International normalized ratio; LDH, Lactate dehydrogenase; LDL, Low-density lipoprotein; ProBNP, Pro brain natriuretic peptide; TSH,
Thyroid-stimulating hormone.
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TABLE 5 Cardiopulmonary exercise test parameters of patients.
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Variable Overall Cluster 1 Cluster 2 P
(n =524) (n = 282) (n=242)

Time (Min) 6.6 (4.2-9.3) 8.41 (6.46-10.1) 5 (3.05-6.54) <.001
Load [Work (W)] 90.0 (45.0-140.0) 130 (80-170) 55 (30-95) <.001
VE (L/min) 46.0 (38.0-54.0) 49 (41-56) 43 (36-52) <.001
VO, (ml/min) 1072 (802-1370) 1308 (1025-1590) 835 (652-1048) <.001
Peak VO, (ml/min/kg) 13.6 (10.4-16.9) 16 (13.3-18.7) 10.7 (9-13.2) <.001
Pred (%) 29.0 (25.1-33.9) 29.4 (25.1-35.1) 28.8 (25.3-33.0) 0.227
RER 1.03 (0.08) 1.01 (0.07) 1.05 (0.08) <.001
METs 3.9 (3.0-4.8) 4.6 (3.8-5.4) 3.1 (2.6-3.8) <.001
VECO, slope (VE/VCO,) 38.0 (31.5-52.3) 33.5 (29.2-39.8) 49.1 (37.6-81.0) <.001
VO,/Work slope [(ml/min)/W] 3.60 (2.02-5.27) 4.04 (2.5-5.6) 2.72 (0.45-4.6) <.001

MET, Metabolic Equivalent; RER, Respiratory Exchange Ratio; VCO,, Carbon Dioxide Production; VE, Ventilation; VE/VCO,, Carbon Dioxide Ventilatory Equivalent; VO,, Oxygen
Consumption; VO,W, Oxygen Consumption/Workload Ratio; W, Watts; Pred (%), The percentage of the patient’s peak VO, value during the cardiopulmonary exercise test relative to

the predicted value.

NT-proBNP levels were nearly threefold higher in Cluster 2
compared to Cluster 1 (3,969 (2,441-6,595) vs. 1,330 (562-
2,241) ng/L, p <0.001), indicating greater myocardial wall stress
and hemodynamic overload.

Markers  of
deterioration in Cluster 2. Serum albumin (41.2+5.79 vs.
44.9+4.32¢g/L, p<0.001), total protein (69.4+8.07 vs.
72.0+6.35 g/L, p<0.001), and HDL cholesterol levels [34.8
(28.1-43.3) vs. 42 (36.2-50.5) mg/dl, p<0.001]
significantly lower, suggesting poor nutritional state and
reduced hepatic synthetic function.

nutritional  status showed significant

were

Hematologic findings were indicative of more pronounced
anemia in Cluster 2. Both hemoglobin (13.0+2.09 vs.
14.4+1.65g/dl, p<0.001) and hematocrit levels (41.2 +6.02%
vs. 43.9+4.73%, p <0.001) were significantly lower compared to
Cluster 1, suggesting impaired oxygen-carrying capacity and
potential chronic disease-related anemia.

Cardiopulmonary exercise test (CPET)
performance

Cluster 2 patients demonstrated significantly reduced

functional capacity across multiple CPET parameters,
consistent with more advanced heart failure physiology
(Table 5). Peak oxygen consumption (peak VO,) was
markedly lower in Cluster 2 [10.7 (9-13.2) vs. 16.0 (13.3-
18.7) ml/kg/min, p<0.001], reflecting
capacity and cardiac output reserve. Similarly, the achieved
metabolic equivalents (METS) were significantly reduced [3.1
(2.6-3.8) vs. 4.6 (3.8-5.4), p<0.001], indicating diminished

ability to perform physical activity.

impaired aerobic

Ventilatory efficiency was also substantially worse in
Cluster 2, as demonstrated by a significantly elevated VE/
VCO, slope [49.1 (37.6-81.0) vs. 33.5 (29.2-39.8), p <0.001].
Moreover, lower peak exercise oxygen pulse and VO,/work
slope values in this group (both p<0.001) further support
compromised cardiovascular performance and peripheral
oxygen extraction.
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TABLE 6 Clinical outcomes (LVAD implantation, heart transplantation,
and death) according to phenotypic clusters.

Variable Cluster 1 Cluster 2

(n=282) (n=242)
LVAD 11 (3.9) 55 (22.7) <.001
Tx 0 (0) 4 (1.7) 0.046
Death 34 (12.1) 79 (32.6) <.001
Composite 44 (15.6) 121 (50.0) <.001
endpoint

LVAD, Left ventricular assist device; Tx, Heart transplantation.

TABLE 7 Cox regression analysis.

Cluster N (%) HR (CI)

1 280 (53.6)
2 242 (46.4)

3.84 (2.72-5.43, p<0.001)

CI, Confidence Interval; HR, Hazard Ratio, N, Number of patients.

Outcomes and survival analysis

Over a median follow-up of 2.4 years (interquartile range: 1.4—
4.1), the incidence of the composite endpoint was significantly
higher in Cluster 2 compared to Cluster 1 (50.0% vs. 15.6%,
p<0.001), highlighting the adverse prognostic profile of this
subgroup (Table 6). In Cox regression analysis, assignment to
Cluster 2 was associated with a 3.84-fold increased risk of
experiencing the composite endpoint (hazard ratio [HR]:
3.84; 95% confidence [CI]: 2.72-5.43; p<0.001)
(Table 7, Figure 4).

interval

Discussion

In this study, we identified two distinct phenotypic clusters—
the FPC and the APC- within an advanced HF population by
applying unsupervised ML to a comprehensive and multimodal
dataset. These clusters exhibited significant differences in clinical
and were associated with

profiles long-term  outcomes,

underscoring their prognostic relevance.
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Survival curves for clusters
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FIGURE 4
Kaplan—meier survival curves. Kaplan—Meier estimates for the composite outcome (all-cause mortality, LVAD, or transplantation) stratified by cluster
assignment. Cluster 2 demonstrated significantly lower event-free survival (log-rank p <0.0001).

Recent studies by Zhang et al. and Yao et al. have applied
supervised ML methods to predict the need for advanced HF
therapies (18, 21). Zhang et al. used data from 557
hospitalizations to develop a transparent, rule-based ML model
that predicted which patients would require advanced heart
failure therapies, such as LVAD or transplantation, during
follow-up (18). Yao et al. introduced a novel ML framework
that grouped clinical variables into flexible, overlapping
categories—allowing a patient to belong partially to more than
one risk group, rather than being forced into a single predefined
class. This approach, inspired by fuzzy logic, better reflects the
clinical continuum and supports the derivation of interpretable
reasoning rules. In their pilot application, the method was tested
on a real-world cohort of patients evaluated for advanced heart
failure therapies, demonstrating its potential to support
eligibility classification through a rule-based, interpretable design
(21). While these models offer interpretable decision support,
they require labeled outcomes and focus on specific treatment
decisions. In contrast, our approach aimed to identify clinically
meaningful phenotypes associated with prognosis, rather than
just treatment eligibility. This methodology offers a broader view
of clinical heterogeneity in advanced HF.

Lamp et al. used unsupervised clustering to stratify patients
into five risk categories based on a composite outcome of death,
LVAD implantation, transplantation, and rehospitalization over

six months, and subsequently applied supervised modeling to
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predict these outcomes (19). Their interpretable model was
trained using two distinct input sets: the invasive set, which
included variables derived solely from right heart catheterization
(e.g., right atrial pressure, pulmonary artery pressures, cardiac
output), and the all-feature set, which combined invasive
hemodynamic data with a wider range of clinical and laboratory
variables. The model achieved high predictive performance, with
c-statistics ranging from 0.896 to 0.969 for the invasive set, and
0.858 to 0.997 for the all-feature set, although confidence
intervals were not explicitly reported. Despite the impressive
their
hemodynamic domains. In contrast, our approach integrated

discrimination, analysis was primarily limited to

a more comprehensive set of variables—including
echocardiographic, cardiopulmonary exercise testing (CPET),
biochemical, and invasive hemodynamic parameters—allowing
for a multidimensional phenotypic characterization with
prognostic relevance.

The concept of phenotyping HF patients has emerged from
the need for personalized treatment. In heart failure with
reduced ejection fraction (HFrEF), applying and titrating

guideline-directed therapies can be challenging due to
comorbidities and adverse effects on blood pressure, renal
function, and electrolyte balance (22). As the HF population
ages, comorbidity burden increases, reducing the feasibility of
uniform treatment (“one size fit all”) approaches. Similar

challenges exist in HFpEF, where pharmacological therapies
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have generally failed to show mortality benefit in randomized large
scale trials (23-25). However, ML-based clustering studies have
revealed with
supporting the role of precision medicine in this heterogeneous
population (26, 27).

subgroups variable treatment responses,

ML has gained attraction in HF research for its capacity to
manage high-dimensional data and uncover latent phenotypes
not captured by traditional statistics (5, 7). Beyond providing
therapeutic guidance, it also aids in risk stratification, as
demonstrated by a series of analyses that applied supervised
machine learning techniques to predict short- and long-term
mortality with high accuracy (5, 28, 29).

Patients with advanced heart failure represent the terminal
stage of the disease and often present with overlapping symptoms
and complex pathophysiology (3). Although machine learning-
based clustering has previously been applied in advanced heart
failure, prior studies were limited by narrower variable sets, often
focusing predominantly on hemodynamics or clinical data. Our
study is the first to integrate a comprehensive multimodal dataset
—including echocardiographic, cardiopulmonary exercise test,
and invasive hemodynamic parameters—allowing a more detailed
phenotypic characterization and prognostic stratification in this
high-risk population. In our study, the two identified clusters—
the FPC and the APC—demonstrated distinct clinical profiles
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(Figure 5). FPC encompassed individuals with relatively preserved
hemodynamic and functional status, whereas APC represented a
cohort with marked physiological deterioration and higher disease
burden. These contrasting profiles were associated with markedly
different long-term outcomes. Patients in the FPC group may
benefit from routine follow-up and medical optimization, whereas
those in the APC group may require early evaluation for
advanced therapies, including inotropic support, mechanical
circulatory support, or palliative care planning.

Integrating clustering outputs into clinical workflows could
enable timely recognition of high-risk phenotypes and support
personalized treatment strategies. As multimorbidity becomes
more prevalent in HF populations, incorporating comorbidity
profiles into clustering models may enhance patient stratification.
Future studies should aim to externally validate these clusters and
evaluate their applicability in prospective cohorts.

Limitations

Despite the strengths of our study, several important
limitations should be acknowledged. First, the sample size,
although relatively large for a single-center advanced HF cohort,
remains modest. Second, our cohort was predominantly male, a
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pattern commonly observed in advanced HF studies; nevertheless,
this sex imbalance may restrict the generalizability of our findings
to female patients. Third, the retrospective and observational
design precludes causal inference. Fourth, although the dataset
was comprehensive, it reflects a single-center experience, which
may limit external validity and generalizability. While we
performed repeated split-sample validation within our cohort to
strengthen internal reproducibility, external validation in larger,
prospective multicenter cohorts will be essential to confirm the
generalizability of our findings. Fifth, binary clinical variables
(e.g., sex, diabetes, atrial fibrillation, ischemic etiology) were
excluded from the clustering input for methodological reasons,
potentially limiting completeness of phenotyping.

Conclusion

This study shows that unsupervised ML-based clustering can
reveal clinically important phenotypes in advanced HF using
routinely collected multimodal data. The identification of two
distinct clusters with differing clinical profiles and outcomes
highlights the potential of data-driven approaches to enhance
risk stratification and guide personalized care. Prospective
validation is warranted to confirm clinical utility.
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SUPPLEMENTARY FIGURE S1

Flowchart of the study population. Flow diagram showing patient selection.
Of 653 patients evaluated at the advanced HF clinic, 129 were excluded
(prior  LVAD/HTx, preserved LVEF, severe pulmonary disease,
contraindications to CPET/RHC, or incomplete follow-up). The final
cohort included 524 patients, who were classified into two clusters
(Cluster 1, n=282; Cluster 2, n=242).

SUPPLEMENTARY FIGURE S2

Missing data map. Visualization of missingness across all variables in the
study cohort. Overall, 8.3% of values were missing, while 91.7% were
present. The plot highlights variable- and patient-level distribution of
missing data.
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SUPPLEMENTARY FIGURE S3
Determination of the optimal number of clusters for hierarchical clustering.
(Left) Elbow method: total within-cluster sum of squares plotted against
increasing k values, with an inflection observed at k=2. (Right) Silhouette
method: average silhouette width across k, peaking at k=2, supporting the
choice of a two-cluster solution.

SUPPLEMENTARY FIGURE S4
PCA visualization of k-means clusters. Visualization of the two clusters
identified using k-means clustering after dimensionality reduction with PCA.

SUPPLEMENTARY FIGURE S5

t-SNE visualization of k-means clusters. t-Distributed Stochastic Neighbor
Embedding (t-SNE) plot depicting patient clustering based on high-
dimensional input data. Clear distinction observed between Cluster 1 and
Cluster 2.
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