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Objective: To compare intraoperative hemodynamics between transesophageal 

echocardiography (TEE) combined with FloTrac vs. TEE with invasive arterial 

pressure monitoring, and to examine associations with postoperative cognitive 

dysfunction (POCD) in patients undergoing cardiac valve replacement.

Methods: A retrospective matched-cohort study included 162 patients (81 per 

group) matched by surgical type, ASA classification, age, and 

cardiopulmonary bypass time. Hemodynamic parameters were measured at 

four time points (T1–T4). Linear mixed-effects models assessed group, time, 

and interaction effects. Exploratory logistic regression preserving the matched 

design evaluated associations with POCD.

Results: Group effects were significant for heart rate (HR, F = 6.79, p = 0.009), 

cardiac output (CO, F = 17.05, p < 0.001), cardiac index (CI, F = 16.49, 

p < 0.001), and stroke volume variation (SVV, F = 18.73, p < 0.001). 

Group × time interactions were observed for MAP, CVP, HR, SV, CI, SVRI, SVV, 

VTI, and LVEDV (all p < 0.05). Pearson correlations at T3 were weak (SV vs. CI 

r = 0.274; FAC vs. SVRI r = −0.220). Postoperative complication rates, including 

POCD (9.9% vs. 18.5%, OR = 0.48, 95% CI: 0.19–1.21, p = 0.115), were not 

significantly different. HR at T2 and SVRI at T4 showed nominal associations 

with POCD, but predictive ability was limited.

Conclusion: TEE combined with FloTrac provides a more detailed intraoperative 

hemodynamic assessment and reveals distinct temporal trends compared to 

invasive arterial pressure monitoring. These differences did not correspond to 

changes in clinical outcomes in this cohort, but the observations may inform 

the design of future studies on hemodynamic monitoring strategies and 

POCD risk.
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1 Introduction

Cardiac valve replacement is a high-risk surgical procedure involving the repair or 

replacement of cardiac structures and is often accompanied by significant perioperative 

challenges. Maintaining stable hemodynamics throughout the operation is crucial, as 

instability has been linked to adverse outcomes (1). Hemodynamic monitoring plays a 

vital role in cardiac surgery (2). Conventional techniques such as invasive arterial 
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blood pressure monitoring and central venous pressure (CVP) 

monitoring provide essential baseline parameters but fall short 

in capturing the dynamic functional changes of the heart in 

real time.

Transesophageal echocardiography (TEE) is a dynamic 

imaging modality that enables real-time visualization of cardiac 

structures and function, which is particularly valuable in 

assessing left ventricular performance, valvular status, and 

volume status during surgery (3). Previous studies have 

demonstrated that TEE significantly enhances intraoperative 

decision-making accuracy in cardiac procedures (4). The 

FloTrac system, a minimally invasive cardiac output monitoring 

technology based on arterial pulse contour analysis, calculations 

of cardiac output (CO) and cardiac index (CI) using arterial 

pressure waveforms, allows for continuous and real-time 

hemodynamic assessment (5). While FloTrac has shown 

favorable monitoring performance in non-cardiac surgeries (6), 

its utility in high-risk cardiac surgeries requires further 

investigation. The combined use of TEE and FloTrac during 

cardiac valve replacement offers a complementary approach, 

integrating dynamic cardiac imaging with continuous 

hemodynamic monitoring.

To date, studies have explored the individual application of 

either TEE or FloTrac in cardiac surgery. TEE has been shown 

to effectively evaluate left ventricular function and guide volume 

management (7), while FloTrac has demonstrated reliable 

hemodynamic prediction in non-cardiac surgical settings (8). 

However, limited research has addressed the combined use of 

TEE and FloTrac specifically in cardiac valve replacement, and 

evidence from retrospective matched-cohort cohort studies 

remains scarce.

The present study compared TEE combined with FloTrac to 

TEE with invasive arterial blood pressure monitoring in cardiac 

valve replacement surgery. The objective is to clarify the 

advantages and clinical value of the TEE + FloTrac approach in 

this complex surgical context.

2 Materials and methods

2.1 Study objects

This was a retrospective matched cohort study. Electronic 

medical records from January 2021 to June 2025 were reviewed. 

During this period, 81 patients who underwent TEE combined 

with FloTrac monitoring were identified and included as the 

TEE + FloTrac group. Using 1:1 individual matching, another 81 

patients who received TEE combined with invasive arterial 

blood pressure monitoring during the same period were selected 

as the TEE + Invasive Arterial Pressure group. Inclusion criteria 

were as follows: (1) patients meeting the diagnostic criteria for 

valvular heart disease according to relevant clinical guidelines 

(9) and scheduled for valve replacement surgery; (2) patients 

assessed by cardiothoracic surgeons to be eligible for 

cardiopulmonary bypass-assisted valve replacement; and (3) 

patients with complete postoperative follow-up data available in 

the medical records for at least 30 days; and (4) with American 

Society of Anesthesiologists (ASA) physical status classification 

III–IV.

Exclusion criteria included: (1) patients with severe 

comorbidities such as end-stage liver disease, renal failure, 

severe pulmonary disease, or multiple organ dysfunction 

syndrome who were unable to tolerate surgery; (2) patients with 

severe left ventricular dysfunction, e.g., left ventricular ejection 

fraction (LVEF) <30% as measured by transthoracic 

echocardiography within 30 days prior to surgery due to their 

significantly higher perioperative risk profile and potential 

impact on hemodynamic parameter interpretation; patients 

undergoing emergency surgery for conditions such as acute 

myocardial infarction (<30 days before surgery) or acute aortic 

dissection; patients with uncontrolled arrhythmias posing 

significant hemodynamic instability (e.g., rapid ventricular 

response atrial fibrillation refractory to medical management); 

(3) patients with severe postoperative complications (e.g., major 

infection, postoperative stroke) affecting pain or cognitive 

assessment; and (4) patients with specific technical 

contraindications to monitoring, such as failed radial artery 

cannulation or contraindications to TEE probe placement (e.g., 

esophageal stricture, recent upper GI surgery). This study was 

approved by the hospital’s ethics committee and conducted in 

accordance with the ethical principles of the Declaration of 

Helsinki. The requirement for informed consent was waived.

Although retrospective in design, a post hoc sample size 

calculation was performed for the primary endpoint of 

postoperative cognitive dysfunction (POCD) within 30 days. The 

sample size calculation was based on a previous report (10). 

Assuming a POCD incidence of 18.5% in the conventional 

monitoring group vs. 9.9% in the combined monitoring group, 

with α = 0.05 and β = 0.20, the sample size of 81 patients per 

group would be able to detect an absolute risk reduction of 

approximately 8.6% (corresponding to an odds ratio of 0.48) 

under the specified conditions.

Ultimately, 81 patients per group (total n = 162) were included 

in the analysis. Patients in the control group were matched based 

on surgical type and ASA classification (exact matching), as well as 

age (±5 years) and cardiopulmonary bypass time (±15 min) 

(tolerance matching). Standardized mean difference (SMD) was 

used to assess balance after matching, with all SMD values <0.1 

indicating good balance. The patient selection and matching 

process is illustrated in Figure 1.

2.2 Anesthesia protocol

Upon entering the operating room, all patients received 

standard monitoring, including electrocardiogram, heart rate 

(HR), invasive arterial pressure, and peripheral oxygen 

saturation. Anesthesia induction included intravenous 

administration of: 0.03 mg/kg Midazolam, 0.3 mg/kg Etomidate, 

1 µg/kg Sufentanil, and 0.15 mg/kg Cisatracurium besylate. After 

endotracheal intubation, mechanical ventilation was initiated 

using intermittent positive pressure ventilation, with tidal 
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volume set at 8 ml/kg, respiratory rate (RR) of 10–14 breaths/min, 

end-tidal CO2 (PETCO2) maintained at 35–40 mmHg, and 

inspired oxygen concentration at 50%.

Anesthesia maintenance was achieved with: SevoJurane 

inhalation (1%–2%), intravenous infusion of cisatracurium 

besylate at 0.2 mg/kg/h, Dexmedetomidine at 1 µg/kg/h, with 

additional sufentanil (1–2 µg/kg) as needed. The bispectral index 

(BIS) was maintained between 40 and 60 throughout the 

procedure (11).

2.3 Hemodynamic monitoring

A three-lumen central venous catheter was inserted under 

ultrasound guidance into the right internal jugular vein in both 

groups, connected to a CVP transducer. Arterial pressure 

transducers were connected to the FloTrac system (Edwards 

Lifesciences, Irvine, CA, USA).

In the TEE + FloTrac group, TEE monitoring was performed 

using the Philips IE33 ultrasound system (Philips Healthcare, 

Amsterdam, Netherlands) and compatible TEE probe. Standard 

imaging planes included the mid-esophageal four-chamber view, 

transgastric mid–short-axis view, and transgastric long-axis view. 

Left ventricular dimensions were measured at end-systole and 

end-diastole from M-mode images. The difference multiplied by 

HR yielded cardiac output (CO), which was normalized to body 

surface area to obtain cardiac index (CI). Pulse Doppler was 

used in the transgastric long-axis view to measure blood Jow 

velocity across the left ventricular outJow tract (LVOT). The 

velocity-time integral (VTI) was calculated from the spectral 

tracing. LVOT diameter (D) was measured in the mid- 

esophageal long-axis view, and cross-sectional area was 

computed as: LVOT = π (D/2)2. Stroke volume (SV) was then 

derived as: SV = VTI × LVOT. All TEE procedures were 

performed by the same professionally trained operator. FloTrac 

monitoring provided continuous real-time measurements of CO, 

CI, and systemic vascular resistance index (SVRI) based on 

arterial waveform analysis.

In the TEE + Invasive Arterial Pressure group, invasive blood 

pressure monitoring was performed using the Philips IntelliVue 

MP70 monitor (Philips Healthcare, Amsterdam, Netherlands). 

A radial arterial catheter was placed to monitor invasive arterial 

pressure (AP), CVP, HR, and other vital signs. TEE monitoring 

was conducted identically to the TEE + FloTrac group.

2.4 Data collection and monitoring 
indicators

Baseline data included patient age, weight, LVEF, and 

comorbidities (e.g., diabetes mellitus, hypertension, congestive 

heart failure). Intraoperative data included operative time, 

cardiopulmonary bypass (CPB) duration, aortic cross-clamp 

time, time from cardiac resuscitation to CPB termination, and 

type and dosage of vasoactive medications.

Hemodynamic parameters were recorded at four key time 

points: T1: After anesthesia induction and monitoring line 

placement, before surgical incision; T2: 10 min after initiation of 

FIGURE 1 

Patient selection and matching flowchart for the retrospective matched cohort study.

Li et al.                                                                                                                                                                   10.3389/fcvm.2025.1667017 

Frontiers in Cardiovascular Medicine 03 frontiersin.org



partial CPB Jow (partial Jow reestablishment); T3: At the 

termination of CPB, immediately prior to weaning and 

decannulation; T4: 6 h postoperatively. Parameters recorded at each 

time point included: Mean Arterial Pressure (MAP), Central 

Venous Pressure (CVP), HR, SV, CO, CI, SVRI, Stroke Volume 

Variation (SVV), Velocity-Time Integral (VTI), Left Ventricular 

End-Diastolic Volume (LVEDV), and Fraction of Area Change 

(FAC). At T4 (6 h postoperatively), TEE was not routinely 

performed; therefore, VTI, FAC, and LVEDV were not available. 

Only FloTrac-derived parameters (SV, SVV, CO, CI, SVRI) and 

standard monitoring indices (MAP, CVP, HR) were recorded.

Within 30 days postoperatively, outcomes recorded included 

POCD and major complications [low cardiac output syndrome, 

new-onset atrial fibrillation, acute kidney injury [AKI], and 

stroke or transient ischemic attack [TIA]]. AKI was defined 

according to the KDIGO criteria: an increase in serum 

creatinine by ≥0.3 mg/dl within 48 h, or an increase to ≥1.5 

times the baseline value, or urine output <0.5 ml/kg/h for at 

least 6 consecutive hours.

Low cardiac output syndrome was defined as a cardiac index 

<2.0 L/min/m2 requiring inotropic support or mechanical 

circulatory assistance.

New-onset atrial fibrillation was defined as a postoperative 

episode of AF lasting ≥30 s, documented by continuous 

electrocardiographic monitoring, in patients without a prior 

history of AF.

POCD was identified retrospectively from medical records 

based on a documented diagnosis by neurologists or 

psychiatrists, supported by standardized neurocognitive 

assessments (MMSE or MoCA) performed during routine 

postoperative follow-up. Baseline cognitive assessment was 

conducted within 3 days before surgery, and postoperative 

assessment was performed within 7 days (±2 days). POCD was 

defined as a decline of ≥2 points in MMSE or ≥3 points in 

MoCA compared with baseline, consistent with published 

thresholds for clinically significant cognitive decline.

The primary analysis focused on POCD incidence within 30 

days. Secondary analyses included differences in intraoperative 

hemodynamic parameters (SV, CO, CI, SVRI) across T1–T4, 

and postoperative complications (POCD, low CO syndrome, 

new-onset AF, AKI, stroke/TIA), and an exploratory analysis 

assessing the potential of hemodynamic parameters as predictors 

of POCD. As the study was not preregistered and no predefined 

primary endpoint had been specified in advance, these 

endpoints should be regarded as post hoc definitions, and all 

analyses are considered exploratory and hypothesis-generating.

2.5 Statistical analysis

All statistical analyses were performed using SPSS version 26.0 

(IBM Corp., Armonk, NY, USA) and Python version 3.11.6 

(Python Software Foundation, Wilmington, DE, USA), with key 

packages including pandas 2.1.1, numpy 1.26.0, and statsmodels 

0.14.0 for data processing and regression analyses. Continuous 

variables were expressed as mean ± SD or median [M (P25, 

P75)]. For longitudinal hemodynamic data, linear mixed-effects 

models (LMM) were employed. To account for the matched- 

pair design, models were initially fitted with a random intercept 

for matched pairs; however, the estimated variance for pairs was 

negligible, thus the final models included only a subject-specific 

random intercept to handle repeated measures. Fixed effects 

included group, time, and their interaction. A pre-specified 

analysis plan focused on CI and SV, including their group main 

effects, group × time interactions, and inter-group differences at 

T1–T3. The False Discovery Rate (FDR) procedure was applied 

to this family of tests, with corrected *p*-values (*q*-values) 

reported for these primary contrasts. All other model outputs 

and the T3 correlation analysis are considered exploratory and 

are presented without multiplicity adjustment. For the primary 

endpoint POCD, conditional logistic regression respecting the 

matched pairs was used for group comparisons. To explore 

factors associated with POCD, an exploratory ordinary logistic 

regression was employed. This exploratory model did not 

preserve the matched design due to the inclusion of multiple 

continuous hemodynamic covariates and the limited number of 

events. A sensitivity analysis using conditional logistic regression 

(preserving matching) confirmed the robustness of the group 

effect estimate (see Supplementary material). A two-sided *p* 

(or *q*) < 0.05 was considered statistically significant.

3 Results

3.1 Comparison of baseline characteristics

A total of 162 patients were included, with 81 patients in the 

TEE + FloTrac group and 81 in the TEE + invasive arterial 

pressure monitoring group. Control group patients were selected 

via 1:1 individual matching: exact matching for surgical type 

and ASA physical status, and tolerance matching for age (±5 

years) and CPB time (±15 min).

Standardized mean differences (SMDs) for all preoperative 

variables ranged from 0.04 to 0.09, with no value exceeding 0.1, 

confirming good balance between groups (Table 1). No 

statistically significant differences were observed for age 

(SMD = 0.08, p = 0.56), sex (SMD = 0.04, p = 0.748), BMI 

(SMD = 0.07, p = 0.248), LVEF (SMD = 0.04, p = 0.777), ASA 

classification (SMD = 0.05, p = 0.703), predicted CPB time 

(SMD = 0.09, p = 0.598), diabetes (SMD = 0.08, p = 0.603), or 

hypertension (SMD = 0.06, p = 0.637). Intraoperative indicators, 

including surgical duration, actual CPB time, aortic cross-clamp 

time, and vasoactive drug use, were analyzed separately 

(Table 2). Overall, baseline characteristics appeared comparable 

between the two groups.

3.2 Comparison of hemodynamic 
parameter changes between groups

As detailed in the Methods, the reported linear mixed-effects 

model results are based on models incorporating a subject 
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random intercept, which were determined to be the most 

appropriate after evaluation of the matched-pair design showed 

no substantial pair-level correlation.

Linear mixed-effects models were fitted to analyze the 

hemodynamic trajectories. In line with our pre-specified analysis 

plan, the primary focus was on CI and SV, with FDR correction 

applied to the corresponding tests. The complete, unadjusted 

results for all parameters are available in Supplementary Table S1.

A significant group × time interaction was observed for the 

pre-specified primary parameter, Cardiac Index (F = 18.10, 

q < 0.001), indicating distinct temporal patterns between the 

two monitoring strategies. The group main effect for CI was 

also significant (F = 16.49, q < 0.001). For the pre-specified 

secondary parameter, Stroke Volume, the group × time 

interaction showed a non-significant trend after FDR 

correction (F = 5.26, q = 0.054). The detailed results for all 

pre-specified contrasts, including inter-group differences at 

individual time points, are provided in Supplementary 

Table S2. Among other parameters not part of the pre- 

specified primary testing, significant group effects were found 

for HR and SVV after FDR correction (q = 0.024 and 

q < 0.001, respectively). The summarized results of the key 

pre-specified contrasts are presented in Table 3.

3.3 Pearson correlation analysis

Pearson correlation analysis was performed at T3 (post-CPB) 

to explore potential linear associations between selected 

hemodynamic parameters derived from TEE and FloTrac 

monitoring. Correlation coefficients (r) with 95% confidence 

intervals (CIs) were calculated for all parameter pairs. Most 

correlations were weak and not statistically significant (|r| < 0.2, 

p > 0.05). Two exceptions were observed: SV and CI (r = 0.274, 

95% CI 0.123–0.412, p = 0.0004) and FAC and SVRI (r = −0.220, 

95% CI −0.360–0.075, p = 0.0049). These results indicate 

that although a few parameter pairs showed statistically 

significant correlations, the overall strength of linear associations 

was weak. No adjustment for multiple comparisons was 

applied due to the exploratory nature of the analysis. We 

emphasize that correlation does not imply clinical agreement, 

interchangeability, or causal relationship between the two 

monitoring methods. These findings solely describe statistical 

associations and should not be interpreted as evidence of 

measurement equivalence (Figure 2).

3.4 Comparison of postoperative 
complications and adverse outcomes

In the matched cohort of 81 pairs, no statistically significant 

differences were observed between the TEE + FloTrac group and 

the TEE + invasive arterial pressure group in postoperative 

complications or adverse outcomes. The incidence of POCD was 

9.9% vs. 18.5% (paired OR = 0.48, 95% CI: 0.19–1.21; McNemar 

P = 0.115), low cardiac output syndrome 7.4% vs. 14.8% 

(OR = 0.46, 95% CI: 0.16–1.29; P = 0.134), new-onset atrial 

fibrillation 27.2% vs. 30.9% (OR = 0.84, 95% CI: 0.42–1.65; 

P = 0.603), AKI 9.9% vs. 6.2% (OR = 1.67, 95% CI: 0.52–5.33; 

P = 0.386), and stroke/TIA 2.5% vs. 5.0% (OR = 0.49, 95% CI: 

0.09–2.74; P = 0.405). McNemar’s test accounted for the paired 

design. Conditional logistic regression produced similar effect 

directions without statistical significance (Table 4). A sensitivity 

analysis using conditional logistic regression yielded an identical 

OR and CI (see Supplementary Table S3), confirming the 

robustness of this null finding.

TABLE 1 Baseline characteristics comparison (preoperative variables only).

Variables TEE + FloTrac group (n = 81) TEE + invasive arterial pressure group (n = 81) t/χ2 P-value SMD

Age (years) 60.07 ± 12.23 65.56 ± 10.86 −0.585 0.560 0.08

Sex (Male/Female) 48/33 50/31 0.103 0.748 0.04

BMI (kg/m2) 25.00 ± 3.13 24.45 ± 2.89 1.159 0.248 0.18

LVEF (%) 58.26 ± 6.33 58.00 ± 5.14 0.283 0.777 0.04

Diabetes mellitus [n (%)] 25 (30.9%) 22 (27.2%) 0.27 0.603 0.08

Hypertension [n (%)] 40 (49.4%) 43 (53.1%) 0.222 0.637 0.07

ASA classification [n (%)] 0.145 0.703 0.05

III 52 (64.2%) 50 (61.7%)

IV 29 (35.8%) 31 (38.3%)

Predicted CPB time (min)a 180.52 ± 52.31 185.17 ± 48.69 −0.528 0.598 0.09

a(1) Predicted CPB time refers to the estimated value used for tolerance matching during group assignment; (2) All SMD values < 0.1, confirming balanced baseline characteristics after 

matching; (3) ASA classification was included as a key exact-matching variable to explicitly verify the effectiveness of matching.

TABLE 2 Intraoperative indicators comparison.

Variables TEE + FloTrac group (n = 81) TEE + invasive arterial pressure group (n = 81) t/χ2 P-value

Surgical duration (min) 345.48 ± 91.30 299.01 ± 58.77 1.044 0.298

Actual CPB time (min) 182.31 ± 54.72 197.13 ± 50.43 −1.311 0.192

Aortic cross-clamp time (min) 142.48 ± 52.05 130.04 ± 49.21 1.167 0.245

Use of vasoactive drugs [n (%)] 28 (34.6%) 30 (37.0%) 0.107 0.743

Actual CPB time refers to the recorded duration during surgery, distinguished from the predicted CPB time used for matching.
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3.5 Univariate and multivariate logistic 
regression analysis of postoperative POCD

To explore factors associated with POCD, we performed an 

exploratory analysis using univariate and multivariate ordinary 

logistic regression (Tables 5, 6). This approach was chosen due 

to the limited number of POCD events and the inclusion of 

multiple continuous hemodynamic covariates, which can lead to 

model instability in conditional logistic regression. Given the 

exploratory, hypothesis-generating nature of this analysis and 

the fact that the matching variables were well-balanced between 

groups (Tables 1, 2), ordinary logistic regression was deemed 

appropriate for assessing potential associations.

To explore factors associated with POCD, we first performed 

univariate logistic regression analysis including baseline variables 

(Age, BMI, Baseline_LVEF, Surgery_Time, CPB_Time, 

TABLE 3 Primary analysis of key hemodynamic parameters using linear mixed-effects models (FDR-corrected).

Parameter Effect type F-value Original p-value FDR-corrected q-value Significance

CI Group × Time 18.1 <0.001 <0.001 **

Group Main Effect 16.49 <0.001 <0.001 **

SV Group × Time 5.26 0.001 0.054 ns

Group Main Effect 1.01 0.316 0.421 ns

HR Group Main Effect 6.79 0.009 0.024 *

SVV Group Main Effect 18.73 <0.001 <0.001 **

*Indicates *q* < 0.05.

**Indicates *q* < 0.01.

***Indicates *q* < 0.001, ns indicates not significant.

This table presents results for pre-specified primary (CI) and secondary (SV) parameters, along with other significant findings after FDR correction.

*q* < 0.05 is considered significant.

FDR, false discovery rate.

FIGURE 2 

Pearson correlation analysis of hemodynamic parameters.
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Aortic_Clamp_Time, and group) and intraoperative 

hemodynamic parameters (MAP, CVP, HR, SV, CO, CI, SVRI, 

SVV, VTI, LVEDV, FAC) measured at clinically relevant time 

points (T1–T3). The study group variable indicated whether the 

patient belonged to the TEE + FloTrac group or the 

TEE + Invasive Arterial Pressure group. Variables with the 

smallest P values in univariate analysis were selected for 

multivariate modeling, taking into account the limited number 

of events (n = 23) to avoid overfitting (Table 5).

In univariate analysis, Surgery_Time was significantly 

associated with POCD (OR = 0.994, 95% CI: 0.988–0.999, 

P = 0.045). Other variables, including baseline characteristics and 

hemodynamic parameters at T1–T3, did not reach statistical 

significance (P > 0.05), although some showed trends (e.g., 

CI_T3 OR = 2.548, 95% CI: 0.826–7.861, P = 0.104).

A parsimonious multivariate model including Surgery_Time 

and CI_T3 was then constructed. In this model, Surgery_Time 

remained statistically significant (OR = 0.993, 95% CI: 0.987– 

0.999, P = 0.032), while CI_T3 showed a trend toward higher 

risk of POCD without reaching statistical significance 

(OR = 2.953, 95% CI: 0.923–9.447, P = 0.068) (Table 6).

These results suggest that longer surgery time is independently 

associated with a lower likelihood of postoperative POCD, 

whereas intraoperative cardiac index at T3 may have a potential 

but non-significant effect. No predictive claims are made due to 

limited events, and post-T3 measurements (including T4) were 

not considered in the model to respect the “early prediction” 

landmark. All analyses were conducted respecting the matched 

study design.

4 Discussion

Accurate hemodynamic management during cardiac valve 

replacement surgery is important for intraoperative safety and 

postoperative recovery. Conventional monitoring methods, such 

as invasive arterial blood pressure measurement, provide basic 

circulatory information but are limited in assessing cardiac 

function and volume status changes (12). TEE allows real-time 

evaluation of cardiac structure and function, offering valuable 

intraoperative guidance. The FloTrac system, which derives 

continuous estimates of CO, SV, and other parameters based on 

arterial waveform analysis, facilitates dynamic adjustments of 

Juid therapy and vasoactive medications (13). This study 

examined the combined use of TEE and FloTrac during valve 

replacement surgery, focusing on hemodynamic monitoring, 

TABLE 4 Comparison of postoperative complications and adverse outcomes between the two groups (n, %).

Complications TEE + FloTrac group 
(n = 81)

TEE + Invasive Arterial 
Pressure group (n = 81)

Discordant 
pairs (b/c)

Paired OR 
(95% CI)

McNemar’s P 
value

POCD 8 (9.9%) 15 (18.5) 3/10 0.482 (0.192– 

1.210)a

0.115

Low cardiac output 

syndrome

6 (7.4%) 12 (14.8%) 2/8 0.460 (0.164– 

1.292)a

0.134

New-onset atrial 
fibrillation

22 (27.2%) 25 (30.9%) 6/9 0.835 (0.423– 
1.648)a

0.603

AKI 8 (9.9%) 5 (6.2%) 5/2 1.666 (0.521– 

5.327)a

0.386

Stroke/TIA 2 (2.5%) 4 (5.0%) 1/3 0.487 (0.087– 
2.738)a

0.405

aPaired OR and 95% CI estimated from conditional logistic regression; McNemar’s test used for unadjusted paired binary comparison.

TABLE 5 Univariate logistic regression analysis of factors associated with 
POCD.

Variable B SE OR 95% CI P

Surgery_Time −0.006 0.003 0.994 0.988–0.999 0.045

CI_T3 0.935 0.575 2.548 0.826–7.861 0.104

type −0.729 0.47 0.482 0.192–1.210 0.120

VTI_T3 0.200 0.137 1.221 0.933–1.598 0.146

SVRI_T2 −0.002 0.002 0.998 0.995–1.001 0.181

CO_T3 −0.406 0.337 0.666 0.344–1.290 0.228

Age −0.039 0.035 0.962 0.897–1.030 0.266

LVEDV_T3 0.018 0.018 1.018 0.983–1.055 0.322

HR_T3 0.012 0.013 1.013 0.987–1.039 0.335

SVV_T1 −0.08 0.093 0.923 0.770–1.108 0.391

MAP_T2 0.019 0.027 1.02 0.967–1.075 0.471

CO_T2 0.214 0.33 1.238 0.648–2.365 0.517

Aortic_Clamp_Time 0.003 0.005 1.003 0.994–1.012 0.518

SVRI_T3 −0.001 0.002 0.999 0.996–1.002 0.526

CPB_Time 0.003 0.004 1.003 0.994–1.011 0.532

CVP_T2 0.146 0.245 1.157 0.716–1.870 0.551

Baseline_LVEF 0.018 0.04 1.018 0.942–1.100 0.647

FAC_T3 −0.021 0.054 0.98 0.880–1.090 0.705

SV_T3 −0.007 0.023 0.993 0.949–1.039 0.766

CVP_T3 −0.041 0.15 0.96 0.715–1.288 0.784

MAP_T3 0.004 0.019 1.004 0.968–1.042 0.824

CI_T2 0.129 0.691 1.137 0.294–4.406 0.852

BMI −0.012 0.075 0.988 0.853–1.144 0.87

SV_T2 0.004 0.025 1.004 0.956–1.054 0.877

TABLE 6 Multivariate logistic regression analysis of factors associated 
with POCD.

Constant B SE OR 95% CI P

Surgery_Time −0.007 0.003 0.993 0.987–0.999 0.032

CI_T3 1.083 0.593 2.953 0.923–9.447 0.068

Cconst −2.274 1.666 0.103 0.004–2.692 0.172

This analysis avoids stepwise selection, prevents overfitting by limiting variables according 

to the events-per-variable (EPV) principle, and does not include post-treatment variables 

without clear clinical relevance for early prediction.
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postoperative complications, and exploratory risk assessment 

of POCD.

Mixed-effects analysis revealed significant group, time, and 

interaction effects across multiple hemodynamic parameters. 

Notably, differences in SV, CO, and CI between the two 

monitoring strategies suggest that FloTrac may be more sensitive 

for detecting changes in stroke volume and cardiac output 

during early perfusion and weaning phases, while TEE provides 

complementary insights into ventricular volumes and wall 

motion. These findings are consistent with prior studies 

indicating that TEE enables detailed assessment of cardiac 

structure and function, whereas FloTrac offers continuous 

monitoring of dynamic trends (14–16). The combination of 

these modalities therefore provides complementary 

hemodynamic perspectives, which may support individualized 

intraoperative decision-making.

Pearson correlation analysis at T3 demonstrated only weak 

associations between corresponding TEE- and FloTrac-derived 

parameters. These correlations were interpreted as exploratory 

associations only, without implying agreement or interchangeability 

between the two modalities. The observed weak correlations likely 

reJect differences in measurement principles: FloTrac relies on 

arterial waveform analysis and algorithmic estimations sensitive to 

vascular compliance and arterial tone (17), whereas TEE-derived 

indices depend on geometric assumptions and operator technique 

(18). These results suggest that data from the two modalities 

provide complementary perspectives, but should not be considered 

equivalent or interchangeable.

From a technical standpoint, FloTrac appeared more suited for 

tracking dynamic trends (e.g., CO, SVV, SV), while TEE was more 

appropriate for anatomical assessments (e.g., LVEDV, FAC, VTI) 

and regional ventricular function (19). In clinical practice, 

parameters such as CVP and CO may track trends in parallel across 

modalities, but they are not interchangeable. However, for 

parameters like SVRI and LVEDV, a consistent monitoring 

approach is recommended, supplemented by clinical judgment to 

avoid misinterpretation due to differences in measurement principles.

With respect to postoperative complications, we observed no 

statistically significant differences between groups in the incidence of 

POCD, low cardiac output syndrome, atrial fibrillation, AKI, or 

cerebrovascular events. The observed rate of POCD (overall 14.2%) 

falls within the wide range reported in previous literature (5%–50%) 

(20, 21). Exploratory logistic regression analysis suggested that 

longer Surgery_Time was associated with lower likelihood of POCD, 

while higher CI at T3 showed a non-significant trend toward 

increased risk; other baseline and intraoperative hemodynamic 

parameters at T1–T3 were not significantly associated with POCD. 

These results indicate that intraoperative hemodynamic parameters 

alone, measured at isolated time points, are insufficient to explain 

postoperative cognitive decline. Prior studies have emphasized that 

POCD is multifactorial, involving perioperative inJammation, 

cerebral oxygen desaturation, and patient-specific susceptibility (22, 

23). Our findings therefore reinforce the notion that multimodal 

risk assessment, integrating hemodynamic monitoring with 

biomarkers and cerebral oximetry, may be required to understand 

and manage POCD.

In summary, TEE and FloTrac each offer unique advantages: 

TEE provides high-resolution visualization of ventricular 

function and valvular dynamics, while FloTrac delivers 

continuous trend monitoring of cardiac output and related 

indices. Their combined use provides a more comprehensive 

dataset for intraoperative hemodynamic management. However, 

the exploratory analysis of POCD highlights the current 

limitations of hemodynamic parameters as sole predictors, and 

underscores the need for larger, preregistered retrospective 

matched-cohort studies incorporating multimodal data to 

validate these preliminary observations.

5 Limitation

This study has several limitations. First, its retrospective, 

matched-cohort design at a single center limits the 

generalizability of the findings. Although matching was 

employed to enhance comparability, residual and unmeasured 

confounding factors (e.g., subtle differences in surgical 

technique or anesthesia management) may persist, and any 

postoperative exclusions could introduce selection bias. The 

modest sample size and low incidence of postoperative 

complications, particularly POCD, limited the statistical power 

to detect differences in clinical outcomes between the 

monitoring strategies. In addition, the study was not 

preregistered, and no predefined primary endpoint was 

established. Therefore, all analyses, including the exploratory 

modeling of POCD, should be regarded as hypothesis-generating.

Second, the subjective nature of TEE-based measurements 

(e.g., FAC, LVEDV) introduces potential operator-dependent 

variability, despite all examinations being performed by an 

experienced echocardiographer.

Third, data availability varied across time points. At T4 (6 h 

postoperatively), TEE was not routinely performed, so 

parameters such as VTI, LVEDV, and FAC were not measured 

for most patients and were excluded from the T4 analysis. The 

available case numbers for each parameter at each time point 

are reported in the Results section for clarity.

Finally, it is important to reiterate that while some 

hemodynamic parameters (e.g., CVP, CO) may exhibit parallel 

trends when measured by TEE and FloTrac, the two methods 

are based on fundamentally different principles and cannot be 

considered interchangeable.

6 Conclusion

The combined use of TEE and FloTrac provides 

complementary information for intraoperative hemodynamic 

monitoring during cardiac valve replacement surgery, allowing 

more detailed assessment of cardiac function and trends in 

stroke volume, cardiac output, and systemic vascular resistance. 

However, these findings represent observational associations 

rather than causal effects, and the two methods cannot be 

considered interchangeable based on the current data. This 
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study did not find evidence that one monitoring strategy was 

superior to the other in reducing postoperative complications, 

including POCD.

Exploratory analyses of POCD suggested nominal associations 

of certain hemodynamic parameters with postoperative cognitive 

outcomes, but predictive performance was limited and effect 

sizes were unstable. Therefore, these findings should be 

interpreted as hypothesis-generating rather than confirmatory.

Future studies should focus on retrospective matched-cohort, 

preregistered trials with standardized monitoring protocols, larger 

sample sizes, and multimodal data integration—including 

hemodynamic, cerebral oximetry, and biomarker measurements 

—to more accurately evaluate perioperative management 

strategies and postoperative cognitive risk.
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