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Oxidative stress and its related
epigenetic modifications in
vascular calcification:
mechanisms and advances

Yanxia Lin, Huanrui Zhang, Yugqi Jiang and Wen Tian*

Department of Geriatric Cardiology, The First Hospital of China Medical University, Shenyang,
Liaoning, China

Vascular calcification (VC) refers to the pathological deposition of
hydroxyapatite within the arterial wall and is characterized by the
transdifferentiation of vascular smooth muscle cells (VSMCs) into osteogenic
phenotypes. Emerging evidence indicates that oxidative stress plays a pivotal
role in the initiation and progression of vascular calcification. Excessive
production of reactive oxygen species (ROS) not only activates the expression
of calcification-related genes but also promotes VSMC phenotypic switching
through diverse epigenetic mechanisms. In this review, we summarize current
advances in understanding the interplay between oxidative stress and
epigenetic regulation in VC, to provide novel theoretical perspectives on the
pathogenesis of this complex vascular disorder.
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1 Introduction

Vascular calcification (VC) is defined as the pathological
deposition of hydroxyapatite crystals within the arterial wall. It
is recognized as a hallmark of advanced vascular disease and a
strong predictor of adverse cardiovascular outcomes (1-3). VC
contributes to increased arterial stiffness, systolic blood pressure,
and pulse wave velocity (4), thereby exacerbating the morbidity
and mortality of cardiovascular diseases (5, 6). Mechanistically,
VC mirrors physiological bone formation, with the phenotypic
switch of vascular smooth muscle cells (VSMCs) from a
contractile to an osteoblast-like phenotype serving as the central
This
downregulation  of

process (7). transition is characterized by the

contractile marker genes and the
upregulation of osteogenic transcription factors, including runt-
related transcription factor 2 (RUNX2), Msh homeobox 2
(MSX2), and alkaline phosphatase (ALP), among others (8, 9).
Beyond these phenotypic changes, dysregulated biological
processes linked to oxidative stress—such as VSMC apoptosis,
impaired autophagy, and endoplasmic reticulum stress—also
play critical roles in the pathogenesis of VC (10).

Recent evidence highlights the significance of oxidative stress
and epigenetic changes in VC development (11, 12). Although
the direct interactions between these two processes remain
insufficiently explored, their synergistic effects on VSMC
function and vascular homeostasis are increasingly recognized.
This review aims to clarify how oxidative stress and its related
epigenetic changes contribute to VC, offering a comprehensive

understanding of this complex condition.

2 Oxidative stress and vascular
calcification

Oxidative stress occurs when excessive reactive oxygen species
(ROS) accumulate and overwhelm the body’s natural antioxidant
defenses, resulting in damage to DNA, proteins, and lipids (13).
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ROS can be broadly classified into free radicals—such as the
superoxide anion (O3") and hydroxyl radical ("OH)—and non-
radical oxidants, including hydrogen peroxide (H,0O,) and
peroxynitrite (ONOO—-) (14, 15). These reactive molecules are
usually neutralized by antioxidant defense systems such as
(SOD),
peroxidase (GPx) (14, 16). Two main sources of ROS in vascular

superoxide dismutase catalase, and glutathione

cells are nicotinamide adenine dinucleotide phosphate
(NADPH) (NOX) and mitochondria (17, 18).

Mitochondria are the primary sources of cellular ROS (mtROS),

oxidases

generated as byproducts of electron transport chain (ETC)
activity (15, 19, 20) (Figure 1). Under physiological conditions,
redox balance is maintained through dynamic regulation
between ROS production and antioxidant defenses. However,
mitochondrial dysfunction leads to excessive ROS accumulation,
thereby aggravating oxidative stress (21). Similarly, increased
NOX activity and impaired ROS clearance synergistically
contribute to vascular oxidative damage and calcification
(18, 22). Accumulating evidence highlights oxidative stress as a
key driver of VC. ROS overproduction not only promotes
VSMC transdifferentiation into osteogenic-like phenotypes but
also accelerates the progression of calcification (23, 24).
Conversely, interventions that suppress oxidative stress,
including antioxidants and ROS inhibitors, have been shown to
attenuate VC development (25).

Mitochondria undergo dynamic fission and fusion to preserve
their functional integrity. Excessive fission causes fragmentation,
reduced bioenergetics, and increased ROS production (26).
(DRP1),

mitochondrial

Dynamin-related protein 1 a key mediator of

fission, promotes fragmentation, membrane
depolarization, and oxidative stress when overexpressed (27).
DRP1 has been implicated in the osteogenic phenotypic switch
of VSMCs, and its enrichment at calcified vascular sites has
been confirmed. Pharmacological or genetic inhibition of DRP1
attenuates oxidative stress-induced VSMC calcification (28, 29).
Notably, quercetin, an antioxidant flavonoid, reduces DRP1

expression and prevents phosphate (Pi)-induced calcification in
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of NADPH to NADP+, generating O3 .

Generation and clearance of ROS. Mitochondrial ETC complexes | and Ill and NADPH oxidases are major sources of O>". NOX catalyze the oxidation
NO reacts with O3~ to form ONOO-. O3 is rapidly converted to H,O, by SOD. H,O, is further decomposed
into H,O and O, by catalase, or reduced to H,O by GPX using GSH as a substrate, producing GSSG. Meanwhile, GR reduces oxidized GSSG to GSH
using NADPH as an electron donor. In the presence of Fe?*, H,O, undergoes the Fenton reaction to form *OH, which exerts strong oxidative
damage. ETC, electron transport chain; NADPH, nicotinamide adenine dinucleotide phosphate; NOX, NADPH oxidases; O3, superoxide anion;
NO, nitric oxide; ONOO™, peroxynitrite; H,O,, hydrogen peroxide; “OH, hydroxyl radical; SOD, superoxide dismutase; GSH, glutathione (reduced
form); GSSG, glutathione disulfide (oxidized form); GR, glutathione reductase

renal failure rat models, further linking mitochondrial dynamics
and oxidative stress to VC (28).

Mitochondrial DNA (mtDNA) is highly vulnerable to
oxidative damage because of its proximity to sources of ROS
and the absence of protective histones and introns (30).
Alterations in mtDNA copy number are considered sensitive
biomarkers of oxidative stress (31). Accumulation of oxidative
mtDNA damage has been observed in VC and other vascular
pathologies  (1). (PolG), the only
mitochondrial DNA polymerase, is for mtDNA
replication, proofreading, and repair. Its exonuclease activity

DNA polymerase y
crucial

maintains genomic accuracy and prevents mutations. Recent
studies show that PolG, along with p53, helps preserve
mitochondrial function, reduces oxidative stress, and alleviates
VC. Conversely, the loss of this repair ability, as seen in the
PolG D257A mutation, accelerates oxidative damage and
vascular calcification (32).

The mitochondrial permeability transition pore (MPTP) also
plays a crucial role in mitochondrial homeostasis. Elevated Ca®*
and oxidative stress promote MPTP opening (33). Transient
openings enable solute exchange, while prolonged openings
trigger ROS bursts, mitochondrial swelling, Ca®" release, and

cell death (34). Inorganic polyphosphate-induced VC is
primarily mediated by mitochondrial dysfunction, ATP
depletion, and sustained MPTP opening (24, 35, 36).

Concurrent accumulation of Ca** and Pi in the cytoplasm and
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mitochondria aggravates oxidative stress and drives VC
progression (10).

Phosphate transporters (PiT-1/-2) mediate Pi entry into
VSMCs via sodium-dependent cotransport, while mitochondrial
phosphate carriers (PiC) facilitate intramitochondrial Pi uptake
(23).
hyperpolarization and superoxide overproduction (23). H,O,, a
key ROS in VSMC

differentiation by upregulating RUNX2 (37). ROS accumulation

Excessive Pi  uptake leads to  mitochondrial

atherosclerosis, induces osteogenic
further damages the mitochondrial outer membrane, causing
Ca®" overload and DNA injury (38). In addition, advanced
glycation end products (AGEs) and their receptor (RAGE)
significantly contribute to VC by amplifying oxidative stress
(39). Pi-induced RAGE ligand production enhances oxidative
stress, upregulates Pit-1 transcription, and increases RUNX2
expression (40). Meanwhile, NOX-derived ROS participate in
AGE-mediated VSMC apoptosis, a critical mechanism in
chronic kidney disease and diabetes-associated VC (41) (Figure 2).

Antioxidant systems are essential for maintaining vascular
health. Dietary antioxidants, particularly polyphenols, can
modulate the uncoupling of endothelial nitric oxide synthase
(eNOS). In vascular diseases, eNOS uncoupling favors the
generation of superoxide radicals rather than nitric oxide.
Polyphenols mitigate oxidative stress and improve vascular
endothelial dysfunction (VED) by scavenging free radicals or
inhibiting radical-generating pathways (42).
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FIGURE 2

NOX drives excessive ROS production and contributes to oxidative stress. Ca®* and Pi overload promote mitochondrial damage through
DRP1-mediated pathways, opening of the MPTP, Pi transport via the PiC, and mtDNA strand breaks. The rapid production of RAGE ligands in
response to Pi induces the activation of RAGE signalling. These events enhance oxidative stress and ultimately accelerate vascular calcification.
NOX, NADPH oxidases; RAGE, receptor for advanced glycation end products; DRP1, dynamin-related protein 1, MPTP, mitochondrial permeability
transition pore; mtDNA, mitochondrial DNA.

3 Epigenetic regulation and oxidative
stress in vascular calcification

Current research on oxidative stress and epigenetics in VC
emphasizes their complex interaction. In aging, studies reveal
that oxidative stress and epigenetic changes—including DNA
methylation, histone modifications, and non-coding RNAs—play
a role in the molecular mechanisms behind age-related decline
(43). In cancer biology, more focus is being placed on how
thereby
encouraging tumor initiation, progression, and chemoresistance.

oxidative stress alters the epigenetic machinery,
Understanding these relationships may lead to new therapeutic
strategies (44).

Epigenetics refers to heritable changes in gene expression
without alterations in the DNA sequence, including DNA
methylation, histone modifications, and regulation by non-
coding RNAs (45, 46). Accumulating evidence links ROS with

epigenetic modifications in VC.

3.1 DNA methylation

DNA methylation is regulated by DNA methyltransferases
(DNMTs) and ten-eleven (TET)
Usually, CpG island methylation
promoters is linked to transcriptional silencing. Typically, CpG

translocation family

dioxygenases. in gene

island methylation in gene promoters is associated with
transcriptional silencing (47). TET proteins are Fe (II)/a-
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ketoglutarate (0-KG)-dependent dioxygenases that oxidize
5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC)
and subsequent products (48). TET activity can be inhibited by
2-hydroxyglutarate (2-HG). a-KG, a tricarboxylic acid (TCA)
cycle intermediate, is generated by isocitrate dehydrogenases
(IDHs). Their activity is inhibited by 2-HG, which is produced
by mutant IDHs through aberrant oxidation of isocitrate. This
results in TET inhibition, DNA hypermethylation, increased
ROS generation, and enhanced oxidative stress sensitivity (49, 50).

3.1.1 ROS-mediated DNA methylation changes
in VC

TET2 overexpression promotes VSMC differentiation by
enhancing contractile gene expression and reducing DNA
methylation (51). Recent studies also show that the o-KG
mitigates VC by activating TET2, which in turn suppresses NLR
family pyrin domain containing 3 (NLRP3) inflammasome
signaling (52). High-phosphate conditions upregulate DNMTs,
increase smooth muscle 2200 (SM220) promoter methylation,
SM22a RUNX2
expression and mineral deposition. These findings underscore

downregulate expression, and enhance
epigenetic SM220 methylation as an early event in VC (53).
Numerous studies confirm that oxidative stress activates and
upregulates DNMTs (54, 55).
demonstrated that H,O, enhances osteogenic transdifferentiation
of VSMCs by reducing ALP and RUNX2 methylation, an effect

reversible by DNMT3a overexpression (56).

Consistently, Li et al
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3.1.2 DNA methylation-mediated ROS changes
in VC

DNA methylation can also affect ROS homeostasis. Folate
supplementation  prevents

atherosclerosis by  lowering

homocysteine levels, increasing the S-adenosylmethionine
(SAM)/S-adenosylhomocysteine (SAH) ratio, and enhancing
DNMT activity (29). Folate further protects against oxidative
damage and apoptosis in ApoE—/— mice by promoting DNMT
activity, increasing methylation of the vascular peroxidase 1
(VPO1l) promoter, and reducing VPOl thus

providing vascular protection (57). MtDNA methylation also

expression,

plays a role in redox regulation. Studies suggest that DNMTs
can methylate mtDNA when SAM enters mitochondria (58). Liu
et al. demonstrated that platelet-derived growth factor (PDGF)-
BB stimulation causes DNMT1 to translocate into mitochondria,
where it methylates the mtDNA D-loop. This process suppresses
mtDNA transcription, impairs mitochondrial function, reduces
ATP production, and results in VSMC dedifferentiation and loss
of the contractile phenotype (59). These findings strengthen the
link between DNA methylation dynamics, ROS, and VC (60, 61).

3.2 Histone modifications

Histone modifications have significant effects on vascular cells.
In eukaryotes, nucleosomes are made up of DNA wrapped around
histone octamers, with histone “tails” extending outward that
undergo diverse post-translational modifications. These include
acetylation, methylation, phosphorylation, ubiquitination, and
sumoylation, collectively known as histone modifications.
Increasing evidence suggests that histone modifications are

closely associated with vascular calcification (62).

3.2.1 Histone acetylation

Histone acetylation is a dynamic and reversible process
regulated by histone acetyltransferases (HATSs), which add acetyl
groups, and histone deacetylases (HDACs), which remove them.
Acetyl-CoA acts as the donor of acetyl groups and functions
both as a metabolic intermediate and as a signaling molecule in
maintaining homeostasis (63). HATs and HDACs regulate the
VSMC
differentiation, extracellular matrix deposition, and responses to

expression of genes involved in contractility,

vasoactive stimuli such as angiotensin II (64).

3.2.1.1 ROS-Mediated histone acetylation changes in VC

HDAG:s are essential in controlling the osteogenic transition of
VSMCs (65, 66). For example, HDACI1 suppresses lysine-specific
demethylase 1 (LSD1) transcription via H3K9ac modification at
the LSD1 through the
mechanistic target of rapamycin (mTOR) pathway and
ultimately attenuating VC (67). Similarly, HDACS inhibits
osteogenic differentiation by suppressing H3K9 acetylation and

promoter, activating autophagy

RUNX2 expression (68, 69). Accumulating evidence suggests
that oxidative stress alters HDAC activity (70). Wu et al.
reported that H,O, can inhibit HDACs such as HDAC1 and
HDACS, thereby affecting downstream gene acetylation (71-73).
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Moreover, NOX4-mediated oxidative stress promotes oxidative
modification and nuclear translocation of HDAC4, reducing its
inhibitory effect on transcription (74). In VSMCs, cytosolic
HDAC4 interacts with cytoskeletal proteins such as ENIGMA
(Pdlim7), a process essential for VC development (65). Thus,
oxidative stress may promote VC progression by controlling
HDACH4 localization and activity.

Acetyl-CoA, derived from glucose, fatty acids, or acetate, not
only fuels ATP production but also serves as the primary
substrate for histone acetylation. It serves as the primary
substrate for histone acetylation. The majority of cytosolic
acetyl-CoA is supplied by mitochondrial metabolism through
ATP citrate lyase (ACLY), while acetyl-CoA synthetase 2
(ACSS2) provides an additional source from acetate (63).
Consequently, the availability of acetyl-CoA establishes a link
between cellular energy metabolism and epigenetic regulation,
presenting a vital mechanism through which metabolic states
can influence vascular calcification. Shao et al. show that the
inhibition of acyl-CoA synthetase blocks the mineralization of
VSMC (75).

3.2.1.2 Histone acetylation-mediated ROS changes in VC

Conversely, histone acetylation can control ROS production.
Sirtuins (SIRTs), a class of NAD+-dependent lysine deacetylases,
serve as important redox signaling molecules. Mitochondria play
an important role in regulating the cellular NAD*/NADH ratio,
which in turn controls the activities of sirtuins. By deacetylating
transcription factors, SIRTs regulate the expression of enzymes
that generate ROS and antioxidant defenses (76, 77). Multiple
studies have identified SIRTs as key effectors in oxidative stress
signaling (78-80). Overexpression of SIRT1 protects against
H,0;-induced vascular dysfunction and premature aging by
deacetylating p53, which results in decreased plasminogen
activator inhibitor-1 (PAI-1) expression and increased eNOS
activity (81, 82). SIRT1 activation has also been shown to reduce
NOX-derived ROS, thus providing antioxidant and anti-aging
benefits in the cardiovascular system (83, 84). Notably, SIRT1
H,0,-induced DNA damage and
highlighting its role in counteracting oxidative stress (1).

reverses calcification,
Luteolin, a natural tetrahydroxyl flavonoid, can protect against
vascular calcification by modulating the Sirtuinl (SIRT1)/CXC
4 (CXCR4)
promoting autophagy. In rats, luteolin significantly improved

Chemokine Receptor signaling pathway and
vascular calcification induced by a high-fat diet and vitamin D3.
In vitro, it repressed the formation of mineralized nodules and
ALP activity in H,O,-treated VSMCs (85). Thus, luteolin may
inhibit
activating SIRT1-mediated regulation. HDACs also interact with

oxidative stress-induced vascular calcification by
oxidative stress during VSMC osteogenic differentiation. For
example, Bai et al. reported that HDACS5 inhibition reduced
angiotensin II-induced oxidative stress in VSMCs (86).
Collectively, these findings indicate that histone acetylation
not only mediates ROS-induced transcriptional changes but also
provides feedback to control oxidative stress, thereby supporting

the epigenetic-redox interaction in VC.
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3.2.2 Histone methylation

Histone methylation, a major epigenetic modification, is
controlled by histone methyltransferases (HMTs) and reversed
by histone demethylases (HDMs). Lysine methylation is the
main type in eukaryotes, with common methylation sites
including H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20
(87). Two major HDM families regulate histone demethylation:
the LSD family and the Jumonji C (JmjC) domain-containing
family (JMJD) (88). For example, Kang et al. reported that
JMJD2B/KDM4B promotes osteogenic differentiation of VSMCs
by lowering H3K9me2 levels at the RUNX2 promoter (89).
Similar to DNA methylation, histone methylation requires SAM
as the methyl donor, linking mitochondrial function to histone
methylation through SAM synthesis. JMJD enzymes depend on
Fe (II), oxygen, and a-KG, and are inhibited by fumarate and
succinate. Mitochondrial dysfunction can cause excessive histone
methylation, partly due to increased ROS, which impairs HDM
activity  (90). that
methylation is closely linked to the initiation and progression of

Cumulative evidence shows histone

VC, affecting processes such as metabolic reprogramming,
apoptosis, oxidative stress, and multiple signaling pathways (91).

10.3389/fcvm.2025.1662989

3.2.2.1 ROS-Mediated histone methylation changes in VC
SET 7  (SETD7),
methyltransferase, promotes nuclear factor kappa-B (NF-kB)

domain-containing a  histone
activation and pro-inflammatory cytokine production via
H3K4mel-dependent transcription in response to ROS (92).
NF-«kB signaling, in turn, plays a central role in phosphate-
induced VC (93-95). Intracellular ROS can activate NF-xB,
which genes
inflammation, including interleukin-6 (IL-6) (96). Kurozumi
et al. showed that IL-6 recruits JMJD2B to the RUNX2
reducing H3K9me3
calcification (97). Moreover, adenosine-mediated activation of

regulates involved in atherosclerosis and

promoter, and promoting VSMC
AMP-activated protein kinase (AMPK), a central regulator of
cellular energy balance (98), inhibits DNMT3b and leads to
hypomethylation of the H19 promoter and decreases RUNX2
thereby VSMC
differentiation (99). Since AMPK is a vital energy sensor in

expression, mitigating osteogenic
cellular metabolism, especially during metabolic stresses like
these imply
connection between oxidative stress, histone methylation,

and VC (100).
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Mitochondrial metabolism tightly links oxidative stress to epigenetic regulation. Pyruvate-derived acetyl-CoA (supplied to the cytosol by ACLY)
promotes histone acetylation, whereas SAM produced by folate metabolism serves as the methyl donor for DNA and histone methylation. a-KG
is a co-substrate of TET and JMJD demethylases, which is generated by IDHs. It follows that metabolic changes driven by oxidative stress shape
the epigenetic landscape. ACLY, ATP citrate lyase; a-KG, alpha-Ketoglutarate; 2-HG, 2-hydroxyglutarate; IDH, isocitrate dehydrogenase; FH,
C domain-containing; TET,
methyltransferase; HMT, histone methyltransferase; LSD, Lys-specific demethylase; HDAC, histone deacetylase.

ten-eleven translocation; DNMT, DNA
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3.2.2.2 Histone methylation-mediated ROS changes in VC

Histone methylation can also regulate oxidative stress.
Hypoxia-inducible factor-loa (HIF-1o) stabilization depends on
mitochondrial ROS (101), and its activation promotes RUNX2
expression and VC (101, 102). a ROS
scavenger, inhibits extracellular calcification by
suppressing HIF-1a expression (103). SETD7 has been identified

N-acetylcysteine,
matrix

as a negative regulator of HIF-la transcriptional activity (104,
105), and Liu et al. demonstrated that SETD7 inhibits HIF-1a-
mediated genes involved in metabolic reprogramming. The
knockdown of SETD7 increases glucose uptake and intracellular
ATP levels (104). Furthermore, SETD7 regulates ROS signaling
by proliferator-activated receptor-y
coactivator la (PGCla) and antioxidant enzymes such as SOD2

inhibiting peroxisome

and catalase (92). Together, these findings suggest that histone
methylation not only responds to oxidative stress but also
actively regulates ROS production, thereby contributing to
VC (Figure 3).

10.3389/fcvm.2025.1662989

3.3 MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are small noncoding RNAs, about
20-24 nucleotides long, that suppress target gene expression
by binding to the 3" untranslated regions (UTRs) of messenger
RNAs (mRNAs). Depending on their genomic location, miRNA
genes are categorized as intronic, exonic, or intergenic (106). As
post-transcriptional regulators, miRNAs are crucial for mRNA
degradation and repression of translation (107). They are
increasingly recognized as biomarkers and regulators in
cardiovascular diseases, including VC.

Oxidative stress significantly impacts miRNA expression,
affecting VSMC function and phenotype. For instance, miR-
4463 regulates VSMC phenotypic switching under oxidative
When miR-4463 it

osteopontin (OPN) expression while decreasing smooth muscle

stress. is downregulated, increases

actin (SMA) and F-actin, thereby promoting calcification (108).
Basic fibroblast growth factor (bFGF), a potential miR-4463

Histone

FIGURE 4

Vascular Calcification

Crosstalk between oxidative stress and epigenetic regulation in VC. Oxidative stress and epigenetic mechanisms create a regulatory loop in VC. DNA
methylation, ROS enhance DNMT activity, leading to the methylation of VSMC contractile genes (e.g., SM22a) and osteogenic activation (RUNX2,
ALP). Additionally, DNA methylation influences ROS through folate-SAM pathways, VPO1 suppression, and mitochondrial DNA methylation.
Histone modifications, ROS change HDAC localization and activity and suppress LSD1 transcription through histone acetylation, reducing
vascular calcification; sirtuins (e.g., SIRT1) counteract oxidative stress and inhibit VC. Histone methylation (e.g., SETD, JMJD2B) connects ROS
signals with NF-xB, HIF-1a, PGC-10, and RUNX2 regulation, linking inflammation, energy metabolism, and calcification. MicroRNAs, PARP1
suppresses miR-204 during oxidative stress. ROS-sensitive miRNAs (e.g., miR-4463, miR-92b-3p, miR-204) regulating VSMC osteogenic
transformation. transformation. Overall, oxidative stress not only induces but is also modulated by DNA methylation, histone modifications, and
non-coding RNAs, driving VC progression. VC, vascular calcification; ROS, reactive oxygen species; DNMT, DNA methyltransferase; TET, ten—
eleven translocation protein; SAM, S-adenosylmethionine; 2-HG, 2-hydroxyglutarate; VSMC, vascular smooth muscle cell; ALP, alkaline
phosphatase; RUNX2, runt-related transcription factor 2; NLRP3, NLR family pyrin domain containing 3; VPOL, vascular peroxidase 1; mtDNA,
mitochondrial DNA; HAT, histone acetyltransferase; HDAC, histone deacetylase; JMJD, Jumonji C domain-containing; SETD, SET domain—
containing; CXCR4, CXC chemokine receptor 4; SIRT, sirtuin; AMPK, AMP-activated protein kinase; NF-xB, nuclear factor kappa-B; IL-6,
interleukin-6; PGCla, peroxisome proliferator-activated receptor-y coactivator la;
demethylase; miRNA, microRNA; PARP1, Poly (ADP-ribose) polymerase 1; OPN, osteopontin; SMA, smooth muscle actin;.

HIF-10, hypoxia-inducible factor-1a; LSD, lys-specific
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target, promotes VSMC migration through ROS production (109).
Similarly, downregulation of miR-92b-3p reduces hypoxia-
induced VSMC proliferation by inhibiting the mTOR pathway
(110). Poly (ADP-ribose) polymerase 1 (PARP1) also interacts
with miRNAs in VC. PARP1 suppresses miR-204 expression,
thereby enhancing RUNX2 expression and promoting VSMC
osteogenic transformation (111). Excessive PARP1 activation
during oxidative stress leads to mitochondrial membrane
depolarization (112). Therefore, the PARP1-miR-204-RUNX2
axis is a crucial connection between oxidative stress, miRNA
regulation, and VC. More generally, oxidative stress influences
the expression of many miRNAs, which then regulate redox
sensors and adjust antioxidant defenses (113) (Figure 4).

4 Summary

Vascular calcification is a hallmark of advanced cardiovascular
disease, caused by VSMC phenotypic switching from a contractile
to an osteogenic state marked by RUNX2, MSX2, and ALP
expression (8, 9). Oxidative stress and epigenetic reprogramming
serve as central mechanisms in this process. Phosphate overload
increases TCA cycle activity, leading to higher mitochondrial
ROS production and connecting metabolic intermediates like
acetyl-CoA and SAM to epigenetic regulation (114, 115). DNA
methylation, influenced by ROS-regulated DNMT and TET
activity, modifies key genes such as SM22a and RUNX2, while
mtDNA methylation exacerbates mitochondrial dysfunction
(51, 53-61). Histone acetylation/deacetylation (via HDACs and
SIRTs) and histone methylation (e.g., H3K9, H3K4) regulate
RUNX2, HIF-la, and NF-xB pathways (67-73, 89-92, 94-98,
116-119).  Additionally, miRNAs the VSMC
phenotype and oxidative stress responses, thereby reinforcing

modulate

the feedback loop between ROS and epigenetic changes.
Considering the essential physiological roles of epigenetic
mechanisms, non-specific inhibitors present therapeutic
challenges. Future research should clarify how ROS, chromatin
modifications (such as H3K9me3 and H3K4mel), and non-

coding RNAs interact in VC, with focus on metabolic

intermediates that connect energy status to epigenetic
programming. Targeting this redox-epigenetic axis could lead to
new strategies for preventing VC and associated

cardiovascular diseases.
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