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Oxidative stress and its related 
epigenetic modifications in 
vascular calcification: 
mechanisms and advances
Yanxia Lin, Huanrui Zhang, Yuqi Jiang and Wen Tian*

Department of Geriatric Cardiology, The First Hospital of China Medical University, Shenyang, 
Liaoning, China

Vascular calcification (VC) refers to the pathological deposition of 
hydroxyapatite within the arterial wall and is characterized by the 
transdifferentiation of vascular smooth muscle cells (VSMCs) into osteogenic 
phenotypes. Emerging evidence indicates that oxidative stress plays a pivotal 
role in the initiation and progression of vascular calcification. Excessive 
production of reactive oxygen species (ROS) not only activates the expression 
of calcification-related genes but also promotes VSMC phenotypic switching 
through diverse epigenetic mechanisms. In this review, we summarize current 
advances in understanding the interplay between oxidative stress and 
epigenetic regulation in VC, to provide novel theoretical perspectives on the 
pathogenesis of this complex vascular disorder.
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GRAPHICAL ABSTRACT

1 Introduction

Vascular calcification (VC) is defined as the pathological 
deposition of hydroxyapatite crystals within the arterial wall. It 
is recognized as a hallmark of advanced vascular disease and a 
strong predictor of adverse cardiovascular outcomes (1–3). VC 
contributes to increased arterial stiffness, systolic blood pressure, 
and pulse wave velocity (4), thereby exacerbating the morbidity 
and mortality of cardiovascular diseases (5, 6). Mechanistically, 
VC mirrors physiological bone formation, with the phenotypic 
switch of vascular smooth muscle cells (VSMCs) from a 
contractile to an osteoblast-like phenotype serving as the central 
process (7). This transition is characterized by the 
downregulation of contractile marker genes and the 
upregulation of osteogenic transcription factors, including runt- 
related transcription factor 2 (RUNX2), Msh homeobox 2 
(MSX2), and alkaline phosphatase (ALP), among others (8, 9). 
Beyond these phenotypic changes, dysregulated biological 
processes linked to oxidative stress—such as VSMC apoptosis, 
impaired autophagy, and endoplasmic reticulum stress—also 
play critical roles in the pathogenesis of VC (10).

Recent evidence highlights the significance of oxidative stress 
and epigenetic changes in VC development (11, 12). Although 
the direct interactions between these two processes remain 
insufficiently explored, their synergistic effects on VSMC 
function and vascular homeostasis are increasingly recognized. 
This review aims to clarify how oxidative stress and its related 
epigenetic changes contribute to VC, offering a comprehensive 
understanding of this complex condition.

2 Oxidative stress and vascular 
calcification

Oxidative stress occurs when excessive reactive oxygen species 
(ROS) accumulate and overwhelm the body’s natural antioxidant 
defenses, resulting in damage to DNA, proteins, and lipids (13). 

ROS can be broadly classified into free radicals—such as the 
superoxide anion (O2

•−) and hydroxyl radical (•OH)—and non- 
radical oxidants, including hydrogen peroxide (H2O2) and 
peroxynitrite (ONOO−) (14, 15). These reactive molecules are 
usually neutralized by antioxidant defense systems such as 
superoxide dismutase (SOD), catalase, and glutathione 
peroxidase (GPx) (14, 16). Two main sources of ROS in vascular 
cells are nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidases (NOX) and mitochondria (17, 18). 
Mitochondria are the primary sources of cellular ROS (mtROS), 
generated as byproducts of electron transport chain (ETC) 
activity (15, 19, 20) (Figure 1). Under physiological conditions, 
redox balance is maintained through dynamic regulation 
between ROS production and antioxidant defenses. However, 
mitochondrial dysfunction leads to excessive ROS accumulation, 
thereby aggravating oxidative stress (21). Similarly, increased 
NOX activity and impaired ROS clearance synergistically 
contribute to vascular oxidative damage and calcification 
(18, 22). Accumulating evidence highlights oxidative stress as a 
key driver of VC. ROS overproduction not only promotes 
VSMC transdifferentiation into osteogenic-like phenotypes but 
also accelerates the progression of calcification (23, 24). 
Conversely, interventions that suppress oxidative stress, 
including antioxidants and ROS inhibitors, have been shown to 
attenuate VC development (25).

Mitochondria undergo dynamic fission and fusion to preserve 
their functional integrity. Excessive fission causes fragmentation, 
reduced bioenergetics, and increased ROS production (26). 
Dynamin-related protein 1 (DRP1), a key mediator of 
fission, promotes mitochondrial fragmentation, membrane 
depolarization, and oxidative stress when overexpressed (27). 
DRP1 has been implicated in the osteogenic phenotypic switch 
of VSMCs, and its enrichment at calcified vascular sites has 
been confirmed. Pharmacological or genetic inhibition of DRP1 
attenuates oxidative stress-induced VSMC calcification (28, 29). 
Notably, quercetin, an antioxidant flavonoid, reduces DRP1 
expression and prevents phosphate (Pi)-induced calcification in 
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renal failure rat models, further linking mitochondrial dynamics 
and oxidative stress to VC (28).

Mitochondrial DNA (mtDNA) is highly vulnerable to 
oxidative damage because of its proximity to sources of ROS 
and the absence of protective histones and introns (30). 
Alterations in mtDNA copy number are considered sensitive 
biomarkers of oxidative stress (31). Accumulation of oxidative 
mtDNA damage has been observed in VC and other vascular 
pathologies (1). DNA polymerase γ (PolG), the only 
mitochondrial DNA polymerase, is crucial for mtDNA 
replication, proofreading, and repair. Its exonuclease activity 
maintains genomic accuracy and prevents mutations. Recent 
studies show that PolG, along with p53, helps preserve 
mitochondrial function, reduces oxidative stress, and alleviates 
VC. Conversely, the loss of this repair ability, as seen in the 
PolG D257A mutation, accelerates oxidative damage and 
vascular calcification (32).

The mitochondrial permeability transition pore (MPTP) also 
plays a crucial role in mitochondrial homeostasis. Elevated Ca2+ 

and oxidative stress promote MPTP opening (33). Transient 
openings enable solute exchange, while prolonged openings 
trigger ROS bursts, mitochondrial swelling, Ca2+ release, and 
cell death (34). Inorganic polyphosphate-induced VC is 
primarily mediated by mitochondrial dysfunction, ATP 
depletion, and sustained MPTP opening (24, 35, 36). 
Concurrent accumulation of Ca2+ and Pi in the cytoplasm and 

mitochondria aggravates oxidative stress and drives VC 
progression (10).

Phosphate transporters (PiT-1/-2) mediate Pi entry into 
VSMCs via sodium-dependent cotransport, while mitochondrial 
phosphate carriers (PiC) facilitate intramitochondrial Pi uptake 
(23). Excessive Pi uptake leads to mitochondrial 
hyperpolarization and superoxide overproduction (23). H2O2, a 
key ROS in atherosclerosis, induces VSMC osteogenic 
differentiation by upregulating RUNX2 (37). ROS accumulation 
further damages the mitochondrial outer membrane, causing 
Ca2+ overload and DNA injury (38). In addition, advanced 
glycation end products (AGEs) and their receptor (RAGE) 
significantly contribute to VC by amplifying oxidative stress 
(39). Pi-induced RAGE ligand production enhances oxidative 
stress, upregulates Pit-1 transcription, and increases RUNX2 
expression (40). Meanwhile, NOX-derived ROS participate in 
AGE-mediated VSMC apoptosis, a critical mechanism in 
chronic kidney disease and diabetes-associated VC (41) (Figure 2).

Antioxidant systems are essential for maintaining vascular 
health. Dietary antioxidants, particularly polyphenols, can 
modulate the uncoupling of endothelial nitric oxide synthase 
(eNOS). In vascular diseases, eNOS uncoupling favors the 
generation of superoxide radicals rather than nitric oxide. 
Polyphenols mitigate oxidative stress and improve vascular 
endothelial dysfunction (VED) by scavenging free radicals or 
inhibiting radical-generating pathways (42).

FIGURE 1 

Generation and clearance of ROS. Mitochondrial ETC complexes I and III and NADPH oxidases are major sources of O2
•−. NOX catalyze the oxidation 

of NADPH to NADP+, generating O2
•−. NO reacts with O2

•− to form ONOO−. O2
•− is rapidly converted to H2O2 by SOD. H2O2 is further decomposed 

into H2O and O2 by catalase, or reduced to H2O by GPX using GSH as a substrate, producing GSSG. Meanwhile, GR reduces oxidized GSSG to GSH 
using NADPH as an electron donor. In the presence of Fe2+, H2O2 undergoes the Fenton reaction to form •OH, which exerts strong oxidative 
damage. ETC, electron transport chain; NADPH, nicotinamide adenine dinucleotide phosphate; NOX, NADPH oxidases; O2

•−, superoxide anion; 
NO, nitric oxide; ONOO−, peroxynitrite; H2O2, hydrogen peroxide; •OH, hydroxyl radical; SOD, superoxide dismutase; GSH, glutathione (reduced 
form); GSSG, glutathione disulfide (oxidized form); GR, glutathione reductase.
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3 Epigenetic regulation and oxidative 
stress in vascular calcification

Current research on oxidative stress and epigenetics in VC 
emphasizes their complex interaction. In aging, studies reveal 
that oxidative stress and epigenetic changes—including DNA 
methylation, histone modifications, and non-coding RNAs—play 
a role in the molecular mechanisms behind age-related decline 
(43). In cancer biology, more focus is being placed on how 
oxidative stress alters the epigenetic machinery, thereby 
encouraging tumor initiation, progression, and chemoresistance. 
Understanding these relationships may lead to new therapeutic 
strategies (44).

Epigenetics refers to heritable changes in gene expression 
without alterations in the DNA sequence, including DNA 
methylation, histone modifications, and regulation by non- 
coding RNAs (45, 46). Accumulating evidence links ROS with 
epigenetic modifications in VC.

3.1 DNA methylation

DNA methylation is regulated by DNA methyltransferases 
(DNMTs) and ten–eleven translocation (TET) family 
dioxygenases. Usually, CpG island methylation in gene 
promoters is linked to transcriptional silencing. Typically, CpG 
island methylation in gene promoters is associated with 
transcriptional silencing (47). TET proteins are Fe (II)/α- 

ketoglutarate (α-KG)-dependent dioxygenases that oxidize 
5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) 
and subsequent products (48). TET activity can be inhibited by 
2-hydroxyglutarate (2-HG). α-KG, a tricarboxylic acid (TCA) 
cycle intermediate, is generated by isocitrate dehydrogenases 
(IDHs). Their activity is inhibited by 2-HG, which is produced 
by mutant IDHs through aberrant oxidation of isocitrate. This 
results in TET inhibition, DNA hypermethylation, increased 
ROS generation, and enhanced oxidative stress sensitivity (49, 50).

3.1.1 ROS-mediated DNA methylation changes 
in VC

TET2 overexpression promotes VSMC differentiation by 
enhancing contractile gene expression and reducing DNA 
methylation (51). Recent studies also show that the α-KG 
mitigates VC by activating TET2, which in turn suppresses NLR 
family pyrin domain containing 3 (NLRP3) inflammasome 
signaling (52). High-phosphate conditions upregulate DNMTs, 
increase smooth muscle 22α (SM22α) promoter methylation, 
downregulate SM22α expression, and enhance RUNX2 
expression and mineral deposition. These findings underscore 
epigenetic SM22α methylation as an early event in VC (53). 
Numerous studies confirm that oxidative stress activates and 
upregulates DNMTs (54, 55). Consistently, Li et al. 
demonstrated that H2O2 enhances osteogenic transdifferentiation 
of VSMCs by reducing ALP and RUNX2 methylation, an effect 
reversible by DNMT3a overexpression (56).

FIGURE 2 

NOX drives excessive ROS production and contributes to oxidative stress. Ca2+ and Pi overload promote mitochondrial damage through 
DRP1-mediated pathways, opening of the MPTP, Pi transport via the PiC, and mtDNA strand breaks. The rapid production of RAGE ligands in 
response to Pi induces the activation of RAGE signalling. These events enhance oxidative stress and ultimately accelerate vascular calcification. 
NOX, NADPH oxidases; RAGE, receptor for advanced glycation end products; DRP1, dynamin-related protein 1; MPTP, mitochondrial permeability 
transition pore; mtDNA, mitochondrial DNA.
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3.1.2 DNA methylation-mediated ROS changes 
in VC

DNA methylation can also affect ROS homeostasis. Folate 
supplementation prevents atherosclerosis by lowering 
homocysteine levels, increasing the S-adenosylmethionine 
(SAM)/S-adenosylhomocysteine (SAH) ratio, and enhancing 
DNMT activity (29). Folate further protects against oxidative 
damage and apoptosis in ApoE−/− mice by promoting DNMT 
activity, increasing methylation of the vascular peroxidase 1 
(VPO1) promoter, and reducing VPO1 expression, thus 
providing vascular protection (57). MtDNA methylation also 
plays a role in redox regulation. Studies suggest that DNMTs 
can methylate mtDNA when SAM enters mitochondria (58). Liu 
et al. demonstrated that platelet-derived growth factor (PDGF)- 
BB stimulation causes DNMT1 to translocate into mitochondria, 
where it methylates the mtDNA D-loop. This process suppresses 
mtDNA transcription, impairs mitochondrial function, reduces 
ATP production, and results in VSMC dedifferentiation and loss 
of the contractile phenotype (59). These findings strengthen the 
link between DNA methylation dynamics, ROS, and VC (60, 61).

3.2 Histone modifications

Histone modifications have significant effects on vascular cells. 
In eukaryotes, nucleosomes are made up of DNA wrapped around 
histone octamers, with histone “tails” extending outward that 
undergo diverse post-translational modifications. These include 
acetylation, methylation, phosphorylation, ubiquitination, and 
sumoylation, collectively known as histone modifications. 
Increasing evidence suggests that histone modifications are 
closely associated with vascular calcification (62).

3.2.1 Histone acetylation
Histone acetylation is a dynamic and reversible process 

regulated by histone acetyltransferases (HATs), which add acetyl 
groups, and histone deacetylases (HDACs), which remove them. 
Acetyl-CoA acts as the donor of acetyl groups and functions 
both as a metabolic intermediate and as a signaling molecule in 
maintaining homeostasis (63). HATs and HDACs regulate the 
expression of genes involved in VSMC contractility, 
differentiation, extracellular matrix deposition, and responses to 
vasoactive stimuli such as angiotensin II (64).

3.2.1.1 ROS-Mediated histone acetylation changes in VC
HDACs are essential in controlling the osteogenic transition of 

VSMCs (65, 66). For example, HDAC1 suppresses lysine-specific 
demethylase 1 (LSD1) transcription via H3K9ac modification at 
the LSD1 promoter, activating autophagy through the 
mechanistic target of rapamycin (mTOR) pathway and 
ultimately attenuating VC (67). Similarly, HDAC8 inhibits 
osteogenic differentiation by suppressing H3K9 acetylation and 
RUNX2 expression (68, 69). Accumulating evidence suggests 
that oxidative stress alters HDAC activity (70). Wu et al. 
reported that H2O2 can inhibit HDACs such as HDAC1 and 
HDAC6, thereby affecting downstream gene acetylation (71–73). 

Moreover, NOX4-mediated oxidative stress promotes oxidative 
modification and nuclear translocation of HDAC4, reducing its 
inhibitory effect on transcription (74). In VSMCs, cytosolic 
HDAC4 interacts with cytoskeletal proteins such as ENIGMA 
(Pdlim7), a process essential for VC development (65). Thus, 
oxidative stress may promote VC progression by controlling 
HDAC4 localization and activity.

Acetyl-CoA, derived from glucose, fatty acids, or acetate, not 
only fuels ATP production but also serves as the primary 
substrate for histone acetylation. It serves as the primary 
substrate for histone acetylation. The majority of cytosolic 
acetyl-CoA is supplied by mitochondrial metabolism through 
ATP citrate lyase (ACLY), while acetyl-CoA synthetase 2 
(ACSS2) provides an additional source from acetate (63). 
Consequently, the availability of acetyl-CoA establishes a link 
between cellular energy metabolism and epigenetic regulation, 
presenting a vital mechanism through which metabolic states 
can influence vascular calcification. Shao et al. show that the 
inhibition of acyl-CoA synthetase blocks the mineralization of 
VSMC (75).

3.2.1.2 Histone acetylation-mediated ROS changes in VC
Conversely, histone acetylation can control ROS production. 

Sirtuins (SIRTs), a class of NAD+-dependent lysine deacetylases, 
serve as important redox signaling molecules. Mitochondria play 
an important role in regulating the cellular NAD+/NADH ratio, 
which in turn controls the activities of sirtuins. By deacetylating 
transcription factors, SIRTs regulate the expression of enzymes 
that generate ROS and antioxidant defenses (76, 77). Multiple 
studies have identified SIRTs as key effectors in oxidative stress 
signaling (78–80). Overexpression of SIRT1 protects against 
H2O2-induced vascular dysfunction and premature aging by 
deacetylating p53, which results in decreased plasminogen 
activator inhibitor-1 (PAI-1) expression and increased eNOS 
activity (81, 82). SIRT1 activation has also been shown to reduce 
NOX-derived ROS, thus providing antioxidant and anti-aging 
benefits in the cardiovascular system (83, 84). Notably, SIRT1 
reverses H2O2-induced DNA damage and calcification, 
highlighting its role in counteracting oxidative stress (1). 
Luteolin, a natural tetrahydroxyl flavonoid, can protect against 
vascular calcification by modulating the Sirtuin1 (SIRT1)/CXC 
Chemokine Receptor 4 (CXCR4) signaling pathway and 
promoting autophagy. In rats, luteolin significantly improved 
vascular calcification induced by a high-fat diet and vitamin D3. 
In vitro, it repressed the formation of mineralized nodules and 
ALP activity in H2O2-treated VSMCs (85). Thus, luteolin may 
inhibit oxidative stress-induced vascular calcification by 
activating SIRT1-mediated regulation. HDACs also interact with 
oxidative stress during VSMC osteogenic differentiation. For 
example, Bai et al. reported that HDAC5 inhibition reduced 
angiotensin II–induced oxidative stress in VSMCs (86).

Collectively, these findings indicate that histone acetylation 
not only mediates ROS-induced transcriptional changes but also 
provides feedback to control oxidative stress, thereby supporting 
the epigenetic–redox interaction in VC.
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3.2.2 Histone methylation
Histone methylation, a major epigenetic modification, is 

controlled by histone methyltransferases (HMTs) and reversed 
by histone demethylases (HDMs). Lysine methylation is the 
main type in eukaryotes, with common methylation sites 
including H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20 
(87). Two major HDM families regulate histone demethylation: 
the LSD family and the Jumonji C (JmjC) domain-containing 
family (JMJD) (88). For example, Kang et al. reported that 
JMJD2B/KDM4B promotes osteogenic differentiation of VSMCs 
by lowering H3K9me2 levels at the RUNX2 promoter (89). 
Similar to DNA methylation, histone methylation requires SAM 
as the methyl donor, linking mitochondrial function to histone 
methylation through SAM synthesis. JMJD enzymes depend on 
Fe (II), oxygen, and α-KG, and are inhibited by fumarate and 
succinate. Mitochondrial dysfunction can cause excessive histone 
methylation, partly due to increased ROS, which impairs HDM 
activity (90). Cumulative evidence shows that histone 
methylation is closely linked to the initiation and progression of 
VC, affecting processes such as metabolic reprogramming, 
apoptosis, oxidative stress, and multiple signaling pathways (91).

3.2.2.1 ROS-Mediated histone methylation changes in VC
SET domain–containing 7 (SETD7), a histone 

methyltransferase, promotes nuclear factor kappa-B (NF-κB) 
activation and pro-inflammatory cytokine production via 
H3K4me1-dependent transcription in response to ROS (92). 
NF-κB signaling, in turn, plays a central role in phosphate- 
induced VC (93–95). Intracellular ROS can activate NF-κB, 
which regulates genes involved in atherosclerosis and 
inflammation, including interleukin-6 (IL-6) (96). Kurozumi 
et al. showed that IL-6 recruits JMJD2B to the RUNX2 
promoter, reducing H3K9me3 and promoting VSMC 
calcification (97). Moreover, adenosine-mediated activation of 
AMP-activated protein kinase (AMPK), a central regulator of 
cellular energy balance (98), inhibits DNMT3b and leads to 
hypomethylation of the H19 promoter and decreases RUNX2 
expression, thereby mitigating VSMC osteogenic 
differentiation (99). Since AMPK is a vital energy sensor in 
cellular metabolism, especially during metabolic stresses like 
oxidative stress, these findings imply a mechanistic 
connection between oxidative stress, histone methylation, 
and VC (100).

FIGURE 3 

Mitochondrial metabolism tightly links oxidative stress to epigenetic regulation. Pyruvate-derived acetyl-CoA (supplied to the cytosol by ACLY) 
promotes histone acetylation, whereas SAM produced by folate metabolism serves as the methyl donor for DNA and histone methylation. α-KG 
is a co-substrate of TET and JMJD demethylases, which is generated by IDHs. It follows that metabolic changes driven by oxidative stress shape 
the epigenetic landscape. ACLY, ATP citrate lyase; α-KG, alpha-Ketoglutarate; 2-HG, 2-hydroxyglutarate; IDH, isocitrate dehydrogenase; FH, 
fumarate hydratase; SAM, S-adenosylmethionine; JMJD, Jumonji C domain-containing; TET, ten-eleven translocation; DNMT, DNA 
methyltransferase; HMT, histone methyltransferase; LSD, Lys-specific demethylase; HDAC, histone deacetylase.
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3.2.2.2 Histone methylation-mediated ROS changes in VC
Histone methylation can also regulate oxidative stress. 

Hypoxia-inducible factor-1α (HIF-1α) stabilization depends on 
mitochondrial ROS (101), and its activation promotes RUNX2 
expression and VC (101, 102). N-acetylcysteine, a ROS 
scavenger, inhibits extracellular matrix calcification by 
suppressing HIF-1α expression (103). SETD7 has been identified 
as a negative regulator of HIF-1α transcriptional activity (104, 
105), and Liu et al. demonstrated that SETD7 inhibits HIF-1α- 
mediated genes involved in metabolic reprogramming. The 
knockdown of SETD7 increases glucose uptake and intracellular 
ATP levels (104). Furthermore, SETD7 regulates ROS signaling 
by inhibiting peroxisome proliferator-activated receptor-γ 
coactivator 1α (PGC1α) and antioxidant enzymes such as SOD2 
and catalase (92). Together, these findings suggest that histone 
methylation not only responds to oxidative stress but also 
actively regulates ROS production, thereby contributing to 
VC (Figure 3).

3.3 MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are small noncoding RNAs, about 
20–24 nucleotides long, that suppress target gene expression 
by binding to the 3′ untranslated regions (UTRs) of messenger 
RNAs (mRNAs). Depending on their genomic location, miRNA 
genes are categorized as intronic, exonic, or intergenic (106). As 
post-transcriptional regulators, miRNAs are crucial for mRNA 
degradation and repression of translation (107). They are 
increasingly recognized as biomarkers and regulators in 
cardiovascular diseases, including VC.

Oxidative stress significantly impacts miRNA expression, 
affecting VSMC function and phenotype. For instance, miR- 
4463 regulates VSMC phenotypic switching under oxidative 
stress. When miR-4463 is downregulated, it increases 
osteopontin (OPN) expression while decreasing smooth muscle 
actin (SMA) and F-actin, thereby promoting calcification (108). 
Basic fibroblast growth factor (bFGF), a potential miR-4463 

FIGURE 4 

Crosstalk between oxidative stress and epigenetic regulation in VC. Oxidative stress and epigenetic mechanisms create a regulatory loop in VC. DNA 
methylation, ROS enhance DNMT activity, leading to the methylation of VSMC contractile genes (e.g., SM22α) and osteogenic activation (RUNX2, 
ALP). Additionally, DNA methylation influences ROS through folate–SAM pathways, VPO1 suppression, and mitochondrial DNA methylation. 
Histone modifications, ROS change HDAC localization and activity and suppress LSD1 transcription through histone acetylation, reducing 
vascular calcification; sirtuins (e.g., SIRT1) counteract oxidative stress and inhibit VC. Histone methylation (e.g., SETD, JMJD2B) connects ROS 
signals with NF-κB, HIF-1α, PGC-1α, and RUNX2 regulation, linking inflammation, energy metabolism, and calcification. MicroRNAs, PARP1 
suppresses miR-204 during oxidative stress. ROS-sensitive miRNAs (e.g., miR-4463, miR-92b-3p, miR-204) regulating VSMC osteogenic 
transformation. transformation. Overall, oxidative stress not only induces but is also modulated by DNA methylation, histone modifications, and 
non-coding RNAs, driving VC progression. VC, vascular calcification; ROS, reactive oxygen species; DNMT, DNA methyltransferase; TET, ten– 
eleven translocation protein; SAM, S-adenosylmethionine; 2-HG, 2-hydroxyglutarate; VSMC, vascular smooth muscle cell; ALP, alkaline 
phosphatase; RUNX2, runt-related transcription factor 2; NLRP3, NLR family pyrin domain containing 3; VPO1, vascular peroxidase 1; mtDNA, 
mitochondrial DNA; HAT, histone acetyltransferase; HDAC, histone deacetylase; JMJD, Jumonji C domain-containing; SETD, SET domain– 
containing; CXCR4, CXC chemokine receptor 4; SIRT, sirtuin; AMPK, AMP-activated protein kinase; NF-κB, nuclear factor kappa-B; IL-6, 
interleukin-6; PGC1α, peroxisome proliferator-activated receptor-γ coactivator 1α; HIF-1α, hypoxia-inducible factor-1α; LSD, lys-specific 
demethylase; miRNA, microRNA; PARP1, Poly (ADP-ribose) polymerase 1; OPN, osteopontin; SMA, smooth muscle actin;.
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target, promotes VSMC migration through ROS production (109). 
Similarly, downregulation of miR-92b-3p reduces hypoxia- 
induced VSMC proliferation by inhibiting the mTOR pathway 
(110). Poly (ADP-ribose) polymerase 1 (PARP1) also interacts 
with miRNAs in VC. PARP1 suppresses miR-204 expression, 
thereby enhancing RUNX2 expression and promoting VSMC 
osteogenic transformation (111). Excessive PARP1 activation 
during oxidative stress leads to mitochondrial membrane 
depolarization (112). Therefore, the PARP1–miR-204–RUNX2 
axis is a crucial connection between oxidative stress, miRNA 
regulation, and VC. More generally, oxidative stress influences 
the expression of many miRNAs, which then regulate redox 
sensors and adjust antioxidant defenses (113) (Figure 4).

4 Summary

Vascular calcification is a hallmark of advanced cardiovascular 
disease, caused by VSMC phenotypic switching from a contractile 
to an osteogenic state marked by RUNX2, MSX2, and ALP 
expression (8, 9). Oxidative stress and epigenetic reprogramming 
serve as central mechanisms in this process. Phosphate overload 
increases TCA cycle activity, leading to higher mitochondrial 
ROS production and connecting metabolic intermediates like 
acetyl-CoA and SAM to epigenetic regulation (114, 115). DNA 
methylation, influenced by ROS-regulated DNMT and TET 
activity, modifies key genes such as SM22α and RUNX2, while 
mtDNA methylation exacerbates mitochondrial dysfunction 
(51, 53–61). Histone acetylation/deacetylation (via HDACs and 
SIRTs) and histone methylation (e.g., H3K9, H3K4) regulate 
RUNX2, HIF-1α, and NF-κB pathways (67–73, 89–92, 94–98, 
116–119). Additionally, miRNAs modulate the VSMC 
phenotype and oxidative stress responses, thereby reinforcing 
the feedback loop between ROS and epigenetic changes.

Considering the essential physiological roles of epigenetic 
mechanisms, non-specific inhibitors present therapeutic 
challenges. Future research should clarify how ROS, chromatin 
modifications (such as H3K9me3 and H3K4me1), and non- 
coding RNAs interact in VC, with focus on metabolic 
intermediates that connect energy status to epigenetic 
programming. Targeting this redox–epigenetic axis could lead to 
new strategies for preventing VC and associated 
cardiovascular diseases.
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