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Background: Timely and accurate detection of arrhythmias from 

electrocardiograms (ECGs) is crucial for improving patient outcomes. While 

artificial intelligence (AI)-based ECG classification has shown promising 

results, limited transparency and interpretability often impede clinical adoption.

Methods: We present ECG-XPLAIM, a novel deep learning model dedicated to 

ECG classification that employs a one-dimensional inception-style 

convolutional architecture to capture local waveform features (e.g., waves 

and intervals) and global rhythm patterns. To enhance interpretability, we 

integrate Grad-CAM visualization, highlighting key waveform segments that 

drive the model’s predictions. ECG-XPLAIM was trained on the MIMIC-IV 

dataset and externally validated on PTB-XL for multiple arrhythmias, including 

atrial fibrillation (AFib), sinus tachycardia (STach), conduction disturbances 

(RBBB, LBBB, LAFB), long QT (LQT), Wolff-Parkinson-White (WPW) pattern, 

and paced rhythm detection. We evaluated performance using sensitivity, 

specificity, and area under the receiver operating characteristic curve 

(AUROC), and benchmarked against a simplified convolutional neural 

network, a two-layer gated recurrent unit (GRU), and an external, pre-trained, 

ResNet-based model.

Results: Internally (MIMIC-IV), ECG-XPLAIM achieved high diagnostic 

performance (sensitivity, specificity, AUROC > 0.9) across most tasks. External 

evaluation (PTB-XL) confirmed generalizability, with metric values exceeding 

0.95 for AFib and STach. For conduction disturbances, macro-averaged 

sensitivity reached 0.90, specificity 0.95, and AUROC 0.98. Performance for 

LQT, WPW, and pacing rhythm detection was 0.691/0.864/0.878, 0.773/ 

0.973/0.895, and 0.96/0.988/0.993 (sensitivity/specificity/AUROC), respectively. 

Compared to baseline models, ECG-XPLAIM offered superior performance 

across most tests, and improved sensitivity over the external ResNet-based 

model, albeit at the cost of specificity. Grad-CAM revealed physiologically 

relevant ECG segments influencing predictions and highlighted patterns of 

potential misclassification.
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Conclusion: ECG-XPLAIM combines high diagnostic performance with 

interpretability, addressing a key limitation in AI-driven ECG analysis. The open- 

source release of ECG-XPLAIM’s architecture and pre-trained weights 

encourages broader adoption, external validation, and further refinement for 

diverse clinical applications.

KEYWORDS

arrhythmia, electrocardiogram, artificial intelligence, deep learning, machine learning, 

cardiac signals, explainability

1 Introduction

Accurate arrhythmia detection from electrocardiogram (ECG) 

recordings is crucial for early intervention, particularly for life- 

threatening conditions such as atrial fibrillation, conduction 

disturbances, and other arrhythmic syndromes. If left 

undiagnosed or untreated, these conditions can lead to severe 

complications that adversely affect patient morbidity and 

mortality. For instance, atrial fibrillation increases the risk of 

stroke fivefold (1), while Wolff-Parkinson-White syndrome, long 

QT syndrome, and other arrhythmic disorders markedly raise 

susceptibility to fatal cardiac events (2). Despite the importance 

of prompt diagnosis, ECG interpretation is highly specialized; 

underdiagnosis rates exceeding 50% are reported among non- 

cardiologists, varying with disease, population, and clinical 

setting (3). This highlights the pressing need for automated 

diagnostic tools that can support clinicians, reduce human error, 

and improve arrhythmia detection rates.

Artificial intelligence (AI) and deep learning (DL) have emerged 

as powerful tools capable of automating ECG analysis, achieving high 

accuracy even in detecting atypical cases. These models can recognize 

complex patterns in ECG signals, often outperforming rule-based 

algorithms and, in some scenarios, surpassing human expertise 

(4–7). Nonetheless, significant challenges remain. Existing DL 

models frequently overlook the unique attributes of ECG signals— 

which exhibit both repetitive waveforms and global rhythmic 

patterns—requiring both local (wave- and interval-level) and global 

(rhythm-level) analysis (8, 9). Additionally, many proposed methods 

are closed-source, limiting adaptation to specialized clinical 

applications and generalization across diverse populations (10, 11). 

Another critical concern is the interpretability of AI-driven 

decisions; clinicians must understand model reasoning before 

relying on these tools for patient care (12–14). Explainable AI (XAI) 

techniques, including Grad-CAM (15, 16), highlight the salient ECG 

waveform features that contribute most to the model’s decisions, 

thus improving interpretability. However, relatively few ECG- 

focused architectures combine robust performance with built- 

in explainability.

In this study, we introduce ECG-XPLAIM—an eXPlainable, 

Locally-adaptive Artificial Intelligence Model designed for ECG 

classification. By leveraging a deep inception-style convolutional 

architecture (17), ECG-XPLAIM is well-suited for time-series data 

analysis where capturing temporal dependencies is essential. The 

model further integrates XAI principles (13), aligning its decision- 

making process with the clinical reasoning that underpins ECG 

interpretation. Trained on large-scale ECG datasets to ensure 

scalability and broad clinical applicability, ECG-XPLAIM is also 

released as open-source, complete with pre-trained weights. The 

open framework facilitates external validation, transfer learning, and 

customization for specialized tasks. Overall, our work aims to 

advance interpretable machine learning in healthcare, offering a 

framework that balances high diagnostic performance with 

transparency and adaptability, thereby enhancing trust in AI-driven 

ECG diagnostics.

2 Materials and methods

2.1 Study population and data sources

We employed two large-scale, publicly available ECG datasets 

for model development and evaluation: MIMIC-IV and PTB-XL 

(18–20). MIMIC-IV contains over 800,000 12-lead ECG 

recordings, while PTB-XL comprises more than 25,000 12-lead 

ECG records, each sampled at 500 Hz for a uniform duration of 

10 s (Figure 1). The raw waveform data were used without 

additional preprocessing, aside from replacing missing values 

with zeros. To evaluate the impact of conventional ECG 

preprocessing, additional experiments applied a 0.5–40 Hz 

Butterworth bandpass filter and a 50 Hz notch filter prior to 

training and inference, while keeping all other parameters 

identical (see Supplementary Section S4). Demographic and 

patient-specific metadata were deliberately excluded from the 

training process to focus exclusively on ECG waveforms and to 

minimize bias related to patient characteristics.

2.2 Diagnostic labels and outcome 
selection

We defined five classification tasks, each of them corresponding 

to a clinically significant arrhythmic category (Table 1). The first task 

(tachycardia—TACHY) involved distinguishing atrial fibrillation 

(AFib) from sinus tachycardia (STach). The second task focused 

on detecting conduction disturbances (CD), encompassing right 

bundle branch block (RBBB), left bundle branch block (LBBB), 

and left anterior fascicular block (LAFB). The remaining tasks 

targeted the identification of long QT (LQT), the detection of 

Wolff-Parkinson-White (WPW) pattern, and the recognition of 

paced (PACE) rhythms.
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Labels were derived from structured diagnostic reports and 

automated ECG annotations provided within the source 

databases (a detailed list of key terms is presented in the 

Supplementary Section S1). Negative samples for each task were 

defined by the absence of the corresponding arrhythmic 

condition but could include other pathologies unrelated to the 

primary label. Overlapping conditions (for example, AFib 

coexisting with LQT or WPW overlapping with LBBB) were not 

excluded to reGect the complexity of real-world ECG 

interpretations. A manual review of the entire PTB-XL test 

subset, and an additional random 10% of the MIMIC-IV dataset 

was performed by expert clinicians to validate labeling accuracy. 

Agreement with database-provided labels was quantified using 

Cohen’s kappa with bootstrapped CIs (Supplementary Section S5).

2.3 Model design and explainability 
mechanism

We developed ECG-XPLAIM using a custom Inception- 

style convolutional neural network (CNN) architecture, 

designed for time-series analysis (17, 21). This framework 

captures both local waveform features (e.g., P, QRS, and 

T waves and intervals) and global rhythm patterns, such as 

irregularities that underlie arrhythmias. The model comprises 

three residual blocks, each containing two one-dimensional 

Inception modules. Within each module, three convolutional 

kernels of lengths 2, 10, and 40 data points (corresponding to 

4, 20, and 80 ms at 500 Hz sampling frequency) operate 

in parallel. The outputs of these parallel paths are 

concatenated before being fed into the subsequent layer. By 

incorporating skip connections, we preserved signal integrity 

and avoided feature degradation as the network depth 

increased (Figure 2). The receptive field expands 

progressively, roughly doubling after each block, which allows 

ECG-XPLAIM to detect both brief waveform and broader 

rhythm disturbances. This emphasizes high sensitivity for 

transient lesions while maintaining robust generalization 

across diverse ECG patterns.

To enhance interpretability, we integrated a customized 

one-dimensional Gradient-weighted Class Activation 

Mapping (Grad-CAM) mechanism tailored for multi-lead 

FIGURE 1 

Visualization of a 12-lead normal electrocardiogram sample from the MIMIC-IV database.

TABLE 1 Arrhythmia classification tasks and definitions.

Task Diagnostic labels Details

TACHY (Tachyarrhythmias) AFib vs. STach vs. Nega Differentiates AFib, characterized by irregular RR intervals and absent P-waves, from STach, which exhibits 

regular RR intervals with elevated heart rates. The Neg class includes ECGs that do not show these 

tachyarrhythmias.

CD (Conduction Disturbances) RBBB vs. LBBB vs. LAFB 

vs. Nega

Detects bundle branch blocks based on QRS complex morphology and duration. RBBB is marked by a 

prolonged QRS (>120 ms) with an rSR’ pattern in V1, LBBB by a broad QRS with deep S waves in V1, and 

LAFB by left-axis deviation and qR pattern in aVL. The Neg group excludes these conditions.b

LQT (Long QT) LQT vs. Nega Identifies prolonged QT intervals, measured using standard correction formulas.

WPW (Wolff-Parkinson- 

White) pattern

WPW pattern vs. Nega Detects pre-excitation patterns characterized by short PR intervals, delta waves, and wide QRS complexes, 

which indicate an accessory conduction pathway.

PACE (Paced rhythm) Paced rhythm vs. Nega Identifies cardiac pacing (atrial and/or ventricular), marked by pacemaker spikes preceding P-waves and/or 

QRS complexes, respectively.

AFib, atrial fibrillation; LAFB, left anterior fascicular block; LBBB, left bundle branch block; LQT, long QT; RBBB, right bundle branch block; STach, sinus tachycardia; WPW, Wolff- 

Parkinson-White pattern.
aNeg, the negative class within each task does not necessarily represent normal ECGs—it may include other non-target arrhythmias or abnormalities.
bLeft posterior fascicular block (LPFB) was excluded due to limited representation in the dataset.
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ECGs (15). This approach generates activation heatmaps that 

highlight the waveform regions most inGuential for the 

model’s predictions. By aggregating lead-specific Grad-CAM 

maps across all 12 leads, ECG-XPLAIM provides a 

comprehensive view of its decision-making. We overlayed 

these heatmaps on the raw ECG traces to underline clinically 

relevant features such as the presence or absence of P-wave 

and their morphology, QRS complex widening, and RR 

interval variations.

2.4 Training and evaluation strategies

We trained ECG-XPLAIM on the MIMIC-IV dataset and then 

evaluated internally on independent cohorts from the same 

dataset, while also testing externally on PTB-XL. To address 

class imbalance, the maximum number of samples per class was 

capped at 50,000, except for WPW detection, where data 

scarcity necessitated a 1:2 positive-to-negative ratio (600 vs. 

1,220 samples). For AFib vs. STach vs. Negative, 50,000 samples 

FIGURE 2 

ECG-XPLAIM architecture. The model consists of three sequential Inception blocks optimized for time-series ECG analysis. Each block contains two 

repeated Inception modules, each incorporating three parallel one-dimensional convolutional filters with multiple channels. These filters, with 

receptive field lengths of 2, 10, and 40 data points, capture fine-grained, intermediate, and long-range ECG features, respectively. At the end of 

each module, the outputs are concatenated and passed to the next layer. The input dimensions are 12 (number of leads) * 5,000 (10-s recordings 

at a 500 Hz sampling rate), while the output depends on the classification task. ADD, addition layer; BN, batch normalization layer; C, one- 

dimensional convolutional layer; CONCAT, concatenation layer; ch, channels; FC, fully connected (dense) layer; GAP, global average pooling 

layer; MP2, max pooling layer with pool size 2; N, number of data points; Sigmoid, Sigmoid activation function.
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were used per class. For RBBB, LBBB, LAFB, and Negative, 25,000 

were assigned to each category. For LQT vs. Negative, 39,000 

samples per class were used, and for PACE vs. Negative, 30,000 

per class were retained. Distinct training, validation, and test 

subsets were prepared to avoid overlapping. As an illustrative 

experiment, we further fine-tuned the pre-trained MIMIC-IV 

model on varying fractions of PTB-XL (0%, 5%, 10%, 20%, 

50%) and evaluated it on the remaining data (Supplementary 

Section S6). This setup is included to demonstrate feature 

transferability, while it is not part of our primary claims, since it 

does not fulfill the requirement for independence of the external 

dataset (22).Training was performed in mini-batches using 

TensorFlow/Keras on an NVIDIA L4 GPU (24GB VRAM) for 

100 epochs without early stopping. We adopted the Adaptive 

Moment Estimation (ADAM) optimizer (23), with an initial 

learning rate of 0.01, subject to exponential decay (0.95 per 

epoch). The batch size was 128 for most tasks but reduced to 32 

for WPW detection due to fewer positive samples. We selected 

the optimal checkpoint based on validation metrics during 

training to minimize overfitting.

2.5 Diagnostic performance and statistical 
analysis

We evaluated model performance using sensitivity (recall), 

specificity, and area under the receiver operating characteristic 

curve (AUROC), estimating 95% confidence intervals (CIs) for 

each metric. Internal assessment took place on the MIMIC-IV 

test set, whereas external evaluation was performed on the PTB- 

XL cohort, ensuring no overlap with training data. CIs for 

sensitivity and specificity were computed using the Clopper- 

Pearson exact method (24), and AUROC CIs were derived via 

DeLong’s method (25). We also evaluated task-wise operating 

points suitable for screening (maximizing sensitivity) and 

diagnostic confirmation (maximizing specificity), by scanning 

model decision thresholds from 0.0 to 1.0, at 0.1 increments, 

and reporting macro-averaged sensitivity/specificity pairs.

To establish benchmark comparisons, we trained two deep 

learning baselines under identical conditions. First, we 

implemented a conventional one-dimensional CNN model 

(vanilla CNN) with three standard convolutional layers followed 

by batch normalization and max pooling. Second, we applied a 

more advanced, double-layered, gated recurrent unit (GRU) 

architecture, designed for time-series feature extraction 

(implementation details are provided in Supplementary Section 

S2) (26). We also compared against an external, pre-trained, 

ResNet-based deep network that had been previously validated 

for 12-lead ECG classification (27). This external model was 

adapted to match our sampling frequency, lead configuration, 

and data settings. As the commonly supported diagnostic 

categories were only four (AFib, STach, RBBB, and LBBB), 

comparisons were restricted to these conditions.

We performed pairwise statistical analyses between ECG- 

XPLAIM and the counterpart models, across all classification 

tasks, to identify significant differences in performance. We used 

McNemar’s test to compare model sensitivity and specificity (28, 

29), and applied bootstrap resampling (n = 1,000) to compare 

AUROC differences (30), employing a significance threshold of 

0.05. To assess interpretability, we generated Grad-CAM 

heatmaps for correctly classified and misclassified recordings, 

examining which waveform components informed the model’s 

predictions. We compared these heatmaps across all tasks, 

offering insight into potential biases and failure modes.

3 Results

3.1 Diagnostic performance evaluation

3.1.1 Internal evaluation

ECG-XPLAIM demonstrated robust classification 

performance across all arrhythmia detection tasks in the 

MIMIC-IV test set (Table 2). For tachyarrhythmia classification, 

it achieved a sensitivity of 0.897 (95% CI: 0.876–0.915) for AFib, 

and 0.95 (95% CI: 0.935–0.963) for STach. Specificity and 

AUROC values were greater or equal to 0.94 and 0.98, 

respectively. When detecting conduction disturbances (RBBB, 

LBBB, and LAFB), the model yielded macro-averaged sensitivity, 

specificity, and AUROC of 0.941, 0.972, and 0.993, respectively, 

demonstrating consistent performance across these abnormalities.

ECG-XPLAIM achieved a sensitivity of 0.93 (95% CI: 0.912– 

0.945) and specificity of 0.897 (95% CI: 0.876–0.915) for LQT 

detection, with an AUROC of 0.969 (95% CI: 0.962–0.977). For 

WPW pattern, it attained a sensitivity of 0.99 (95% CI: 0.946–1) 

and specificity of 0.95 (95% CI: 0.887–0.984), translating to an 

AUROC of 0.992 (95% CI: 0.980–1). PACE detection yielded a 

sensitivity of 0.927 (95% CI: 0.909–0.942) and specificity of 

0.983 (95% CI: 0.973–0.99), with an AUROC of 0.985 (95% CI: 

0.979–0.99). Overall, macro-averaged AUROC values exceeded 

0.96 for all tasks in the internal evaluation, as illustrated 

in Figure 3.

3.1.2 External evaluation
Evaluation on PTB-XL, which was not used during model 

development, confirmed the strong generalizability of ECG- 

XPLAIM for most arrhythmias (Table 2). In AFib and STach 

classification, sensitivity values were 0.954 (95% CI: 0.942–0.964) 

and 0.956 (95% CI: 0.940–0.969), respectively, with specificity of 

0.964 (95% CI: 0.955–0.971) and 0.974 (95% CI: 0.967–0.979), 

and AUROC of 0.988 (95% CI: 0.984–0.991) and 0.991 (95% CI: 

0.988–0.994). Conduction disturbance detection remained 

similarly robust, with RBBB identified at a sensitivity of 0.996 

(95% CI: 0.986–1) and specificity of 0.966 (95% CI: 0.959– 

0.972). Although LBBB achieved a sensitivity of 0.99 (95% CI: 

0.977–0.997), its specificity was lower at 0.927 (95% CI: 0.918– 

0.936). LAFB exhibited a reduced sensitivity of 0.714 (95% CI: 

0.691–0.736), but maintained a high specificity of 0.962 (95% 

CI: 0.954–0.970).

LQT detection showed a modest decline in performance 

compared to internal evaluation, with a sensitivity of 0.691 (95% 

CI: 0.596–0.776), specificity of 0.864 (95% CI: 0.785–0.922), and 
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TABLE 2 Diagnostic performance of ECG-XPLAIM in internal and external evaluation.

Task Internal evaluation (MIMIC-IV) External evaluation (PTB-XL)

Sensitivity Specificity AUROC Sensitivity Specificity AUROC

TACHY

AFib 0.897 (0.876, 0.915) 0.939 (0.928, 0.949) 0.976 (0.97, 0.981) 0.954 (0.942, 0.964) 0.964 (0.955, 0.971) 0.988 (0.984, 0.991)

STach 0.95 (0.935, 0.963) 0.978 (0.97, 0.984) 0.995 (0.992, 0.997) 0.956 (0.94, 0.969) 0.974 (0.967, 0.979) 0.991 (0.988, 0.994)

macro-avg 0.924 0.958 0.987 0.955 0.969 0.99

CD

RBBB 0.95 (0.938, 0.961) 0.974 (0.967, 0.98) 0.994 (0.992, 0.997) 0.996 (0.986, 1) 0.966 (0.959, 0.972) 0.994 (0.992, 0.997)

LBBB 0.945 (0.929, 0.958) 0.982 (0.976, 0.986) 0.995 (0.993, 0.998) 0.99 (0.977, 0.997) 0.927 (0.918, 0.936) 0.99 (0.987, 0.993)

LAFB 0.928 (0.913, 0.941) 0.961 (0.953, 0.968) 0.989 (0.985, 0.992) 0.714 (0.691, 0.736)* 0.962 (0.954, 0.97) 0.946 (0.939, 0.953)

macro-avg 0.941 0.972 0.993 0.9 0.952 0.977

LQT 0.93 (0.912, 0.945) 0.897 (0.876, 0.915) 0.969 (0.962, 0.977) 0.691 (0.596, 0.776)* 0.864 (0.785, 0.922) 0.878 (0.835, 0.922)

WPW 0.99 (0.946, 1) 0.95 (0.887, 0.984) 0.992 (0.98, 1) 0.773 (0.662, 0.862)* 0.973 (0.907, 0.997) 0.895 (0.846, 0.944)

PACE 0.927 (0.909, 0.942) 0.983 (0.973, 0.99) 0.985 (0.979, 0.99) 0.96 (0.928, 0.981) 0.988 (0.965, 0.998) 0.993 (0.985, 1)

AFib, atrial fibrillation; AUROC, area under the receiver operating characteristic; CD, conduction disturbance task; LAFB, left anterior fascicular block; LBBB, left bundle branch block; LQT, 

long QT; Macro-avg, macro-averaged metric; PACE, Paced rhythm; RBBB, right bundle branch block; STach, Sinus tachycardia; TACHY, Tachycardia task; WPW, Wolff-Parkinson- 

White pattern.

Metrics are reported with 95% confidence intervals; The exact number of samples per class for each task is provided in the Supplementary Material; Metrics marked with an asterisk (*) 

indicate values below 0.9 with 95% confidence.

FIGURE 3 

Area under the receiver operating characteristic (AUROC) curves for internal (Int.) and external (Ext.) evaluations, on MIMIC-IV and PTB-XL datasets, 

respectively. The curves are plotted with their corresponding 95% confidence intervals. CD, conduction disturbance task (includes right and left 

bundle branch block, as well as left anterior fascicular block); LQT, long QT detection task; PACE, paced rhythm task; TACHY, tachycardia task 

(includes atrial fibrillation and sinus tachycardia); WPW, Wolff-Parkinson-White pattern.
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an AUROC of 0.878 (95% CI: 0.835–0.922). Detection of WPW 

pattern also revealed a drop in sensitivity to 0.773 (95% CI: 

0.662–0.862), with specificity remaining high at [0.973 (95% CI: 

0.907–0.997)]. Paced rhythm detection achieved a sensitivity of 

0.96 [95% CI: 0.928–0.981)], specificity of 0.988 (95% CI: 0.965– 

0.998), and AUROC of 0.993 (95% CI: 0.985–1).

Overall, while certain conditions (notably LQT and WPW) 

showed reduced sensitivity on the external dataset, AUROC 

values persisted between 0.88 and 0.99 across tasks, confirming 

the model’s strong generalization capabilities (Figure 3).

3.1.3 Supplementary analyses

We explored the effect of preprocessing (bandpass, notch), 

showing minimal or adverse impact on performance 

(Supplementary Table S3). For example, pacing detection 

sensitivity fell when filtering likely attenuated pacing spikes. 

Inter-observer agreement confirmed excellent label quality 

(Cohen’s α ≥ 0.99 across all classes; Supplementary Table S4). 

Transfer learning experiments demonstrated that fine-tuning 

with small PTB-XL fractions could improve sensitivity for some 

tasks (e.g., WPW), but at the cost of specificity for some classes 

such as LQT, consistent with overfitting (Supplementary 

Table S5, Supplementary Figure S3). Threshold scans revealed 

balanced operating points at thresholds 0.4–0.6 for specific tasks, 

such as TACHY, CD and PACE, while for the rest, particularly 

for LQT, context-dependent trade-offs were illustrated 

(Supplementary Table S6).

3.1.4 Explainability analysis
We performed Grad-CAM-based analysis to visualize the 

waveform regions that informed ECG-XPLAIM’s classification 

decisions. The model highlighted clinically meaningful features 

for each arrhythmia, while misclassifications offered insights 

into the model’s potential attention biases, comprising focus on 

specific wave morphology abnormalities and interval duration 

deviations. Figure 4 presents single- or few-lead visualizations of 

selected correctly and incorrectly classified cases, highlighting 

the waveform regions that inGuenced model predictions. A more 

extensive demonstration, including 16 full-lead case studies with 

heatmaps, is available in Supplementary Section S8.

3.2 Performance benchmarking

ECG-XPLAIM outperformed both baselines across most tasks, 

while, compared to the pre-trained model, ECG-XPLAIM 

exhibited superior sensitivity but slightly lower specificity, 

suggesting a tendency to minimize false negatives (Table 3).

In AFib detection, ECG-XPLAIM reached an AUROC of 0.958 

(95% CI: 0.951–0.965), surpassing the vanilla CNN (0.835, 95% CI: 

0.823–0.848) and GRU model (0.951, 95% CI: 0.943–0.958), while 

achieving comparable performance to the external model (0.964, 

95% CI: 0.956–0.971). Sensitivity was 0.964 (95% CI: 0.944– 

0.979), significantly higher or comparable against all baselines, 

and specificity (0.849, 95% CI: 0.835–0.861) was higher than 

CNN and GRU, but slightly lower than the external model. For 

STach, ECG-XPLAIM achieved a sensitivity of 0.966 (95% CI: 

0.946–0.980), a specificity of 0.949 (95% CI: 0.941–0.957), and an 

AUROC of 0.983 (95% CI: 0.979–0.988). Compared to the 

external model, ECG-XPLAIM reported higher sensitivity and 

slightly lower specificity, while AUROC was similar.

In conduction disturbances, ECG-XPLAIM maintained 

superior or comparable performance relative to the CNN and 

GRU baselines in most categories, with a slight exception in 

LAFB, where the GRU displayed a marginally higher AUROC. 

Sensitivity in detecting RBBB and LBBB was significantly higher 

than that of the external model (0.996, 95% CI: 0.986–1 for 

RBBB and 0.988, 95% CI: 0.974–0.996 for LBBB), although 

specificity was somewhat lower. For long QT (LQT) detection, 

ECG-XPLAIM achieved an AUROC of 0.81 (95% CI: 0.797– 

0.823), outperforming the CNN (0.727, 95% CI: 0.713–0.742) 

and GRU (0.675, 95% CI: 0.660–0.691). It also showed higher 

AUROC for WPW (0.863, 95% CI: 0.852–0.874) compared to 

CNN (0.562, 95% CI: 0.546–0.579) and GRU (0.521, 95% CI: 

0.504–0.537), yielding also better sensitivity and specificity. For 

paced rhythm detection, ECG-XPLAIM surpassed both baselines 

in AUROC, with a value of 0.985 (95% CI: 0.981–0.989), while 

delivering a markedly higher specificity than both other models 

and comparable sensitivity. A summary of these comparative 

results is illustrated in Figure 5.

3.3 User experience and integration

To facilitate the adoption and practical utilization of ECG- 

XPLAIM, in both research and clinical environments, we 

provide pre-trained model weights and ready-to-use 

implementations for each classification task. We also provide the 

source code of model architecture, along with detailed 

documentation. A step-by-step user guide has been developed to 

assist clinicians and researchers in utilizing ECG-XPLAIM, 

outlining input formatting requirements, framework 

specifications, inference execution, and interpretation of outputs. 

Additionally, a dedicated Grad-CAM visualization module is 

included to support explainability assessment. This module 

enables users to generate heatmaps themselves that can point to 

ECG regions of importance, providing transparency into the 

model’s decision-making process. By providing these tools and 

resources, we aim to position ECG-XPLAIM as a highly 

accessible, reproducible, and interpretable tool for AI-powered 

ECG analysis, both for clinical application and future research.

4 Discussion

4.1 Summary and interpretation

ECG-XPLAIM is a deep learning model that aims to balance 

high diagnostic accuracy with interpretability in automated ECG 

analysis. Its Inception-style architecture, optimized for time- 

series data, employs multi-scale processing with adaptive 

receptive fields, allowing the detection of short-duration 
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waveform alterations, alongside global rhythm irregularities. 

Unlike traditional deep learning models that act as “black- 

box” classifiers, ECG-XPLAIM incorporates explainability 

mechanisms through one-dimensional Grad-CAM visualization, 

allowing for clinically meaningful interpretations and graspable 

explanations of its predictions.

Performance-wise, ECG-XPLAIM was assessed on held-out 

subsets of the development dataset (MIMIC-IV) for each task, 

where the model achieved metrics over 0.9 for all tasks. Most 

importantly, its diagnostic capability remained consistent on an 

external basis, when validated on the development-independent 

PTB-XL dataset. ECG-XPLAIM retained its competing 

performance, scoring metric values equal to or greater than 0.9 

for most tasks, with only a few exceptions. Notably, certain 

arrhythmias, particularly LAFB, long QT, and WPW pattern, 

posed greater challenges in external evaluation, with sensitivity 

dropping to approximately 0.7–0.8, while specificity and 

AUROC remained consistently high. Additional analyses 

confirmed that introducing conventional signal preprocessing 

(bandpass 0.5–40 Hz, notch 50 Hz) did not materially improve 

performance compared to training on raw signals. In fact, 

pacing detection sensitivity declined under filtering, likely 

because sharp pacemaker spikes were attenuated. These findings 

(Supplementary Table S3) support training on raw signals for 

the primary claims, while providing reproducible code 

for transparency.

This study acknowledges that class imbalance, particularly for 

rare arrhythmias like WPW and LQT, remains a persistent 

challenge in automated ECG interpretation. Imbalances may 

result in reduced sensitivity for these categories and affect 

generalization to broader patient populations. Systematic reviews 

of data augmentation and synthetic signal generation techniques 

FIGURE 4 

Selected correct and misclassified cases. Correctly classified cases (light blue background, upper half): (A) atrial fibrillation (AFib)—Lead II, (B) sinus 

tachycardia—Lead V1, (C) long QT (LQT)—Lead II, (D) right bundle branch block—Lead V1, (E) left bundle branch block—Lead V1, (F) left anterior 

fascicular block (LAFB)—Limb leads, (G) Wolff–Parkinson–White (WPW) pattern—Lead II, (H) paced rhythm (PACE)—Lead V1. Misclassified cases 

(light red background, lower half) with only limb leads shown: (I) AFib—false Positive due to coexisting first-degree AV block (I-AVB), possibly 

leading to P-wave misinterpretation, (J) LQT—false Negative possibly due to unclear/biphasic T-waves preventing accurate QT interval 

measurement, (K) WPW—False Negative where multiple points of interest before the QRS complex cause potential misinterpretation, (L) PACE— 

False Positive due to possible misclassification of a narrow QRS as a pacing spike, (M) LAFB—False Positive where a premature ventricular 

complex is possibly mistaken for a normal beat, leading to axis misinterpretation as LAFB-like.
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FIGURE 5 

Performance bar graphs for specific arrhythmias. Classification performance metrics, including sensitivity, specificity, and area under the receiver 

operating characteristic (AUROC) curve, are displayed for individual arrhythmias. AFib, atrial fibrillation; CNN, convolutional neural network; 

External, external, pre-trained model (27); GRU, gated recurrent unit; LAFB, left anterior fascicular block; LBBB, left bundle branch block; LQT, 

long QT; PACE, paced rhythm; RBBB, right bundle branch block; STach, sinus tachycardia; WPW, Wolff-Parkinson-White pattern.
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suggest that targeted strategies can ameliorate the impact of 

imbalance while enhancing the robustness and fairness of 

diagnostic models (31). To mitigate this, the model training 

employed a maximum cap of 50,000 samples per class where 

feasible, ensuring balanced representation across major 

arrhythmia categories. For WPW detection, due to data scarcity, 

a positive-to-negative sample ratio of approximately 1:12 (600 

positive vs. 1,220 negative samples) was maintained, while LQT 

classification utilized around 39,000 samples per class. Other 

categories such as atrial fibrillation, sinus tachycardia, and 

conduction disturbances had similarly controlled sample sizes, 

with negative classes including non-target arrhythmic 

pathologies to reGect real-world complexity. These efforts aimed 

to limit dominant class bias without aggressive oversampling or 

augmentation. Supplementary analyses suggest that targeted 

augmentation and transfer learning strategies could further 

enhance detection of rare arrhythmias, supporting ongoing 

research in this direction (31).

The performance discrepancy between external and internal 

validation on specific labels, may stem from training set biases, 

class underrepresentation, or even inherent model limitations in 

capturing the subtle waveform characteristics. In particular, the 

reduced sensitivity for LQT (0.691) and WPW (0.773) in PTB- 

XL can be explained by cross-dataset domain shifts (differences 

in lead placement, sampling rates, acquisition chains, and 

annotation criteria), phenotype definition heterogeneity (e.g., 

QT correction formulas), and waveform ambiguity (e.g., when 

borderline QT prolongation or delta-like pre-excitation 

morphologies overlap with ectopy). These considerations 

highlight the importance of dataset-specific calibration and may 

motivate future domain adaptation strategies. Data 

augmentation (31–33), targeted fine-tuning (34), and signal pre- 

processing (35), might help enhance the detection of these 

patterns. Illustrative fine-tuning experiments on PTB-XL (0%– 

50% train/test splits) demonstrated that features transfer 

sufficiently across datasets: WPW AUROC improved steadily 

with additional PTB-XL data, LQT sensitivity spiked with very 

small fractions but at the expense of specificity, and TACHY/ 

CD/PACE performance remained relatively robust. AUROC 

generally increased as more external data were used 

(Supplementary Table S5, Supplementary Figure S3). We 

emphasize that this violates strict external independence, so it is 

not part of our primary claims, but it highlights transfer 

learning as a promising future avenue.

Benchmarking against three counterpart models—a vanilla 

CNN, a more advanced two-layer GRU model, and an external, 

pre-trained ResNet-based architecture—revealed that ECG- 

XPLAIM generally demonstrates competitive performance. ECG- 

XPLAIM consistently outperformed both baseline CNN and 

GRU models, achieving higher sensitivity, specificity, and 

AUROC scores across most tasks. Compared to the external, 

pre-trained model, ECG-XPLAIM demonstrated higher 

sensitivity, leading to a slightly reduced specificity. This 

preference for minimizing false negatives aligns with its 

potential role as a screening tool, where missing critical 

arrhythmias is more concerning than erroneously Gagging some 

normal cases. Benchmarking against such leading architectures 

demonstrates the competitive diagnostic performance of the 

present approach. Importantly, comparison with large-scale 

neural network frameworks for ECG interpretation, such as that 

developed by Ribeiro et al., highlights the added clinical value of 

integrated interpretability, which is increasingly recognized as a 

prerequisite for real-world deployment in cardiology settings (27).

4.2 Clinical applicability and added value

ECG-XPLAIM is designed to integrate seamlessly into clinical 

workGows by prioritizing both diagnostic accuracy and 

interpretability. Its high sensitivity ensures that clinically 

significant arrhythmias are detected early, aiding in timely 

referrals to cardiology specialists and reducing the risk of 

underdiagnosis in severe conditions such as conduction blocks or 

arrhythmias predisposing to ventricular events. Additionally, it 

enhances efficiency in high-throughput diagnostic environments 

by assisting in automated triaging of abnormal ECGs, reducing 

the burden on specialists, offering a fatigue-free screening 

solution, and facilitating early identification of high-risk patients.

Unlike many prior approaches that primarily distinguish 

normal from abnormal ECGs, ECG-XPLAIM focuses on 

challenging arrhythmias and leverages multi-class, overlap- 

tolerant training. Negative classes in each task are not purely 

“normal” recordings but instead exclude only the target 

arrhythmic entity while potentially containing other conditions. 

Consequently, ECG-XPLAIM learns to differentiate subtle, 

overlapping abnormalities—a skill crucial in real-world practice 

where arrhythmias often coexist or mimic one another. 

Furthermore, ECG-XPLAIM was specifically trained on well- 

defined classification tasks, ensuring a balanced representation 

across involved classes and focusing only on arrhythmias that are 

challenging to differentiate. This task-specific design increases its 

applicability in real-world settings, where ECGs often present 

overlapping abnormalities that require fine-grained discrimination.

ECG-XPLAIM represents a highly scalable solution, capable of 

handling large-scale ECG datasets, supporting both high-volume 

batch processing and low-latency real-time inference, making it 

suitable for both retrospective research and live clinical 

deployments. From a technical perspective, it exhibits short 

inference times (4.5–16 milliseconds per 10-s ECG), enabling 

near real-time deployment in edge- or server-based 

infrastructures. The model is open-source, enabling research 

groups to extend its architecture, adapt it for novel classification 

tasks, and implement custom modifications tailored to specific 

clinical needs. The availability of pre-trained weights facilitates 

direct deployment without extensive retraining, while also 

allowing for transfer learning and fine-tuning on new datasets, 

significantly reducing computational costs and making it 

accessible to a broader user base.

An additional threshold analysis (Supplementary Table S6) 

demonstrated how sensitivity and specificity trade-offs evolve 

across thresholds 0.0–1.0. For example, TACHY achieved a 

balanced operating point at 0.4–0.5 (SEN 0.968–0.955, SPE 
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0.952–0.969), CD balanced at 0.5, and PACE maintained excellent 

performance across a wide range of thresholds. In contrast, LQT 

sensitivity dropped steeply as thresholds increased, suggesting 

that lower thresholds (≤0.3–0.4) may be preferable in screening 

contexts, but not for disease confirmation, due to high risk for 

false positives. These findings support the potential for site- 

specific threshold personalization, where operating points can be 

pre-specified depending on whether the model is used for broad 

screening (favoring sensitivity) or confirmatory diagnostics 

(favoring specificity).

More broadly, ECG-XPLAIM fits into the growing role of AI 

in electrophysiology (EP) workGows, which extends beyond ECG 

classification into procedural guidance, ablation planning, and 

arrhythmia risk stratification (36). AI tools are increasingly 

applied for automated mapping of atrial and ventricular 

arrhythmias, predicting catheter ablation outcomes, optimizing 

device programming, and guiding individualized risk assessment 

for sudden cardiac death. Within this framework, ECG-based 

algorithms such as ours provide the critical front-end signal 

interpretation layer: by ensuring reliable, explainable detection 

of arrhythmias and conduction disturbances, ECG-XPLAIM can 

serve as the entry point that feeds into downstream EP 

workGows, including rhythm monitoring, decision-support in 

invasive procedures, and integration with longitudinal risk 

prediction models. In this way, ECG-XPLAIM’s emphasis on 

transparency and adaptability positions it as a foundational 

component in the translational pipeline of AI in EP. Explainable 

and open-source models such as ours align with these 

translational goals, as highlighted in recent consensus 

perspectives on AI in EP (13).

4.3 Explainability and trust in AI-driven 
diagnostics

A primary barrier to the clinical adoption of deep learning in 

healthcare is the “black-box” nature of most models. The 

interpretability of deep learning models applied to 

electrocardiogram analysis is increasingly acknowledged as 

essential for facilitating clinical adoption and patient safety. 

Contemporary literature highlights that XAI methods require 

rigorous evaluation to ensure reliability and relevance in clinical 

practice. Salih et al. conducted a systematic review of XAI 

evaluations in cardiology, revealing that only a minority of 

studies applied systematic assessment: 37% benchmarked XAI 

quality based on prior literature, 11% involved clinicians as 

domain experts, and 11% relied on quantitative proxies or 

statistical analysis, while 43% did not assess explanation quality 

at all. The authors advocate for formal, multi-dimensional 

frameworks that include faithfulness, fidelity, and direct clinician 

feedback, emphasizing that thorough evaluation of explanations 

is critical for the development of trustworthy and safe AI 

models in medicine (14).

Recent advances also underscore the utility of combining 

multiple interpretability techniques and actively involving 

clinicians in validation processes. Zhang et al. demonstrated the 

application of Grad-CAM in medical text classification, 

illustrating how visualization of salient features through 

heatmaps can intuitively communicate the basis for predictions 

to human users. Their comparative study using word 

embeddings and various classifier architectures (Word2Vec, 

BERT, ResNet, CNN, Bi-LSTM) showed that integrating Grad- 

CAM with high-performing deep learning models enables more 

transparent identification of decision-inGuencing input signals. 

The study found that Grad-CAM visualization reliably 

highlighted text regions most relevant to the model’s outputs, 

supporting the practical integration of XAI in clinical decision 

making and error analysis (37).

ECG-XPLAIM confronts this challenge by integrating Grad- 

CAM-based explainability, enabling visualization of the 

waveform regions that contribute most to its predictions. This 

transparency fulfills several objectives. First, it strengthens 

clinician trust by revealing the model’s decision-making process. 

Second, it facilitates potential feature discovery, unearthing 

subtle waveform variations that may carry clinical significance. 

Third, it supports adherence to emerging regulatory guidelines 

—such as those from the U.S. Food and Drug Administration 

(FDA) and the European Medicines Agency (EMA)—that 

increasingly emphasize interpretability requirements for medical 

AI systems (38, 39). Finally, it assists in error analysis: 

highlighting waveforms that led to misclassifications allows 

targeted improvements to the model’s training and architecture.

In this study, Grad-CAM visualizations helped pinpoint areas 

of interest, in both correctly identified and misclassified cases. For 

AFib, the model consistently focused on the absence of P waves in 

the pre-QRS region (Figure 4A), while the STach detection was 

primarily driven by P-wave presence and regularly appearing 

points of interest that signify rhythmicity (Figure 4B). RBBB 

and LBBB cases showed strong attention to the QRS complex 

morphology (Figures 4D,E), while in LAFB, the model seemed 

to capture the associated axis deviation-related changes 

(Figure 4F). For LQT, ECG-XPLAIM correctly identified the QT 

interval by focusing on the onset and termination of the 

repolarization phase in certain beats (Figure 4C). WPW 

classification relied on the characteristic delta wave and the PR 

interval (Figure 4G). Paced rhythm cases were accurately 

identified by highlighting both atrial and ventricular pacing 

spikes across all beats (Figure 4H).

On the other hand, false classifications revealed cases where 

the model’s attention was misdirected, particularly for 

arrhythmias with lower sensitivities. In an AFib false positive 

case, ECG-XPLAIM incorrectly interpreted a conduction delay 

due to first-degree AV block (I-AVB) as an absent P wave 

(Figure 4I), demonstrating a potential bias in P-wave 

localization. Conversely, in a false negative STach case, the 

model correctly detected rapid rhythm but misclassified it as 

AFib due to near-fusion of the P wave with the preceding 

T wave at high heart rates. Bundle branch block 

misclassifications were primarily linked to variations in QRS 

duration that seemed borderline. False positive classifications 

often involved misinterpretation of extrasystoles or 

morphological changes in the QRS complex (Figure 4M). For 
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LQT false negatives, the model’s attention was restricted to a 

segment within the repolarization phase rather than spanning the 

full QT interval, for some cases (Figure 4J). In WPW false 

positive examples, ECG-XPLAIM placed significant focus on the 

pre-QRS regions of wide-QRS extrasystoles, mistaking premature 

beats for delta waves, indicating a bias in distinguishing abnormal 

conduction patterns. Similarly, a false positive classification of 

pacing occurred when the model misinterpreted a narrow QRS 

complex as a pacing spike (Figure 4L). (Detailed examples with 

explanations are offered in Supplementary Section S8.) These 

findings indicate the origin of prediction faults and suggest 

strategies to mitigate them, such as augmenting training data with 

borderline and atypical presentations (31).

Despite its utility, Grad-CAM is not a perfect solution. 

Although it highlights inGuential waveform regions, it does not 

fully elucidate the underlying rationale—why certain features are 

attributed to one arrhythmia rather than another (37). Future 

research could explore more advanced or complementary 

explainable AI techniques, potentially integrating rule-based 

logic or interpretability frameworks that capture inter-lead 

relationships. These refinements may further reduce model 

rigidity and enhance its ability to handle the complexities of 

real-world ECG data.

4.4 Limitations and future directions

Despite strong performance and explainability, ECG-XPLAIM 

faces certain limitations. Class imbalance was present across tasks, 

particularly for rare arrhythmias such as WPW and LQT, where 

positive samples were substantially fewer than negatives (e.g., 

WPW 600 vs. 1,220). Although we capped maximum samples 

per class and applied balanced mini-batching, residual 

imbalance may have contributed to lower external sensitivities. 

Future work could leverage more targeted data collection or 

dedicated augmentation strategies for ECG signals to enrich rare 

classes and improve model calibration (31). Importantly, the 

reliability of diagnostic labels was confirmed via inter-observer 

agreement analysis: in a random 10% subset of MIMIC-IV, 

kappa values ranged from 0.990 to 0.998 across all labels, 

supporting the sufficiency of pre-annotations (Supplementary 

Table S4). Finally, real-world clinical performance can only be 

validated prospectively; although robust, retrospective testing on 

MIMIC-IV and PTB-XL does not guarantee identical outcomes 

in diverse clinical environments.

While Grad-CAM visualizations partly address the 

interpretability gap, they do not provide an explicit rationale for 

how certain features lead to a diagnosis. For instance, 

identifying a lengthened QRS complex does not clarify how the 

model distinguishes between RBBB and LBBB. More 

sophisticated XAI methods could further demystify the decision 

process and illuminate nuanced inter-lead relationships that 

underlie arrhythmia detection.

Finally, exploratory transfer learning experiments on PTB-XL 

(Section 6 of the Supplementary Material) demonstrated that 

ECG-XPLAIM’s feature representations are transferable across 

datasets, particularly for WPW and LQT detection. While these 

experiments can improve metrics, such as AUROC and 

sensitivity, for specific labels under certain splits, they are 

illustrative only, as they break the requirement for independence 

in external validation. Nonetheless, they motivate future 

research directions.

Future research will focus on refining ECG-XPLAIM’s 

generalization and interpretability. Fine-tuning on localized, 

hospital-specific datasets could account for regional ECG 

variations and acquisition protocols, while federated learning 

approaches may broaden the model’s adaptability without 

centralized data pooling (40). Investigating additional XAI 

techniques or combining Grad-CAM with rule-based logic could 

strengthen interpretability and expedite regulatory acceptance. 

Finally, prospective clinical trials will be essential to evaluate 

real-world feasibility, confirm performance in diverse patient 

populations, and measure clinical outcomes and workGow 

improvements attributable to ECG-XPLAIM’s integration.

5 Conclusions

In this work, we propose ECG-XPLAIM, an explainable deep 

learning model for automated arrhythmia detection, which 

demonstrates robust generalization in both the MIMIC-IV and 

PTB-XL datasets. ECG-XPLAIM outperforms baseline CNN and 

advanced GRU models in most classification tasks and offers 

performance comparable to a state-of-the-art pre-trained 

network, with a priority to minimize the risk of underdiagnosis. 

By emphasizing sensitivity, it reduces missed diagnoses, making 

it particularly well-suited for screening workGows. Its integrated 

Grad-CAM mechanism provides interpretable visualizations of 

the waveform regions guiding classification, simultaneously 

furnishing critical feedback for model refinement. Additional 

analyses confirmed the robustness of training on raw signals, 

and the Gexibility to adapt performance through threshold 

calibration or transfer learning to new datasets. These features 

strengthen the model’s translational potential. Although further 

optimization for rare arrhythmias, larger datasets, and real- 

world prospective validation are warranted, ECG-XPLAIM’s 

scalability, open-source implementation, and rapid inference, 

position it as a valuable tool for integrating AI-driven cardiac 

diagnostics into clinical practice.
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