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Background: Timely and accurate detection of arrhythmias from
electrocardiograms (ECGs) is crucial for improving patient outcomes. While
artificial intelligence (Al)-based ECG classification has shown promising
results, limited transparency and interpretability often impede clinical adoption.
Methods: We present ECG-XPLAIM, a novel deep learning model dedicated to
ECG classification that employs a one-dimensional inception-style
convolutional architecture to capture local waveform features (e.g., waves
and intervals) and global rhythm patterns. To enhance interpretability, we
integrate Grad-CAM visualization, highlighting key waveform segments that
drive the model's predictions. ECG-XPLAIM was trained on the MIMIC-IV
dataset and externally validated on PTB-XL for multiple arrhythmias, including
atrial fibrillation (AFib), sinus tachycardia (STach), conduction disturbances
(RBBB, LBBB, LAFB), long QT (LQT), Wolff-Parkinson-White (WPW) pattern,
and paced rhythm detection. We evaluated performance using sensitivity,
specificity, and area under the receiver operating characteristic curve
(AUROC), and benchmarked against a simplified convolutional neural
network, a two-layer gated recurrent unit (GRU), and an external, pre-trained,
ResNet-based model.

Results: Internally (MIMIC-1V), ECG-XPLAIM achieved high diagnostic
performance (sensitivity, specificity, AUROC >0.9) across most tasks. External
evaluation (PTB-XL) confirmed generalizability, with metric values exceeding
0.95 for AFib and STach. For conduction disturbances, macro-averaged
sensitivity reached 0.90, specificity 0.95, and AUROC 0.98. Performance for
LQT, WPW, and pacing rhythm detection was 0.691/0.864/0.878, 0.773/
0.973/0.895, and 0.96/0.988/0.993 (sensitivity/specificity/ AUROC), respectively.
Compared to baseline models, ECG-XPLAIM offered superior performance
across most tests, and improved sensitivity over the external ResNet-based
model, albeit at the cost of specificity. Grad-CAM revealed physiologically
relevant ECG segments influencing predictions and highlighted patterns of
potential misclassification.
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Conclusion:

ECG-XPLAIM combines

10.3389/fcvm.2025.1659971

high diagnostic performance with

interpretability, addressing a key limitation in Al-driven ECG analysis. The open-

source

release of

ECG-XPLAIM's architecture and pre-trained weights

encourages broader adoption, external validation, and further refinement for
diverse clinical applications.

KEYWORDS
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1 Introduction

Accurate arrhythmia detection from electrocardiogram (ECG)
recordings is crucial for early intervention, particularly for life-
threatening conditions such as atrial fibrillation, conduction
other
undiagnosed or untreated, these conditions can lead to severe

disturbances, and arrhythmic  syndromes. If left
complications that adversely affect patient morbidity and
mortality. For instance, atrial fibrillation increases the risk of
stroke fivefold (1), while Wolff-Parkinson-White syndrome, long
QT syndrome, and other arrhythmic disorders markedly raise
susceptibility to fatal cardiac events (2). Despite the importance
of prompt diagnosis, ECG interpretation is highly specialized;
underdiagnosis rates exceeding 50% are reported among non-
cardiologists, varying with disease, population, and clinical
setting (3). This highlights the pressing need for automated
diagnostic tools that can support clinicians, reduce human error,
and improve arrhythmia detection rates.

Artificial intelligence (AI) and deep learning (DL) have emerged
as powerful tools capable of automating ECG analysis, achieving high
accuracy even in detecting atypical cases. These models can recognize
complex patterns in ECG signals, often outperforming rule-based
algorithms and, in some scenarios, surpassing human expertise
(4-7). Nonetheless, significant challenges remain. Existing DL
models frequently overlook the unique attributes of ECG signals—
which exhibit both repetitive waveforms and global rhythmic
patterns—requiring both local (wave- and interval-level) and global
(rhythm-level) analysis (8, 9). Additionally, many proposed methods
are closed-source, limiting adaptation to specialized clinical
applications and generalization across diverse populations (10, 11).
Another critical concern is the interpretability of Al-driven
decisions; clinicians must understand model reasoning before
relying on these tools for patient care (12-14). Explainable AI (XAI)
techniques, including Grad-CAM (15, 16), highlight the salient ECG
waveform features that contribute most to the model’s decisions,
thus improving interpretability. However, relatively few ECG-
focused architectures combine robust performance with built-
in explainability.

In this study, we introduce ECG-XPLAIM—an eXPlainable,
Locally-adaptive Artificial Intelligence Model designed for ECG
classification. By leveraging a deep inception-style convolutional
architecture (17), ECG-XPLAIM is well-suited for time-series data
analysis where capturing temporal dependencies is essential. The
model further integrates XAI principles (13), aligning its decision-
making process with the clinical reasoning that underpins ECG
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interpretation. Trained on large-scale ECG datasets to ensure
scalability and broad clinical applicability, ECG-XPLAIM is also
released as open-source, complete with pre-trained weights. The
open framework facilitates external validation, transfer learning, and
customization for specialized tasks. Overall, our work aims to
advance interpretable machine learning in healthcare, offering a
framework that balances high diagnostic performance with
transparency and adaptability, thereby enhancing trust in Al-driven
ECG diagnostics.

2 Materials and methods
2.1 Study population and data sources

We employed two large-scale, publicly available ECG datasets
for model development and evaluation: MIMIC-IV and PTB-XL

(18-20). MIMIC-IV contains 800,000 12-lead ECG
recordings, while PTB-XL comprises more than 25,000 12-lead

over

ECG records, each sampled at 500 Hz for a uniform duration of
10s (Figure 1). The raw waveform data were used without
additional preprocessing, aside from replacing missing values
with zeros. To evaluate the impact of conventional ECG
preprocessing, additional experiments applied a 0.5-40 Hz
Butterworth bandpass filter and a 50 Hz notch filter prior to
training and inference, while keeping all other parameters
identical (see Supplementary Section S4). Demographic and
patient-specific metadata were deliberately excluded from the
training process to focus exclusively on ECG waveforms and to
minimize bias related to patient characteristics.

2.2 Diagnostic labels and outcome
selection

We defined five classification tasks, each of them corresponding
to a clinically significant arrhythmic category (Table 1). The first task
(tachycardia—TACHY) involved distinguishing atrial fibrillation
(AFib) from sinus tachycardia (STach). The second task focused
on detecting conduction disturbances (CD), encompassing right
bundle branch block (RBBB), left bundle branch block (LBBB),
and left anterior fascicular block (LAFB). The remaining tasks
targeted the identification of long QT (LQT), the detection of
Wolff-Parkinson-White (WPW) pattern, and the recognition of
paced (PACE) rhythms.
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FIGURE 1

Visualization of a 12-lead normal electrocardiogram sample from the MIMIC-IV database.
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TABLE 1 Arrhythmia classification tasks and definitions.

Task
TACHY (Tachyarrhythmias)

Diagnostic labels
AFib vs. STach vs. Neg®

tachyarrhythmias.

Differentiates AFib, characterized by irregular RR intervals and absent P-waves, from STach, which exhibits
regular RR intervals with elevated heart rates. The Neg class includes ECGs that do not show these

Details

CD (Conduction Disturbances) | RBBB vs. LBBB vs. LAFB

Detects bundle branch blocks based on QRS complex morphology and duration. RBBB is marked by a

vs. Neg" prolonged QRS (>120 ms) with an rSR’ pattern in V1, LBBB by a broad QRS with deep S waves in V1, and
LAFB by left-axis deviation and qR pattern in aVL. The Neg group excludes these conditions.”
LQT (Long QT) LQT vs. Neg® Identifies prolonged QT intervals, measured using standard correction formulas.

WPW (Wolff-Parkinson-
White) pattern

WPW pattern vs. Neg®

Detects pre-excitation patterns characterized by short PR intervals, delta waves, and wide QRS complexes,
which indicate an accessory conduction pathway.

PACE (Paced rhythm) Paced rhythm vs. Neg®

Identifies cardiac pacing (atrial and/or ventricular), marked by pacemaker spikes preceding P-waves and/or
QRS complexes, respectively.

AFib, atrial fibrillation; LAFB, left anterior fascicular block; LBBB, left bundle branch block; LQT, long QT; RBBB, right bundle branch block; STach, sinus tachycardia; WPW, Wolff-

Parkinson-White pattern.

*Neg, the negative class within each task does not necessarily represent normal ECGs—it may include other non-target arrhythmias or abnormalities.
P eft posterior fascicular block (LPFB) was excluded due to limited representation in the dataset.

Labels were derived from structured diagnostic reports and
automated ECG annotations provided within the
databases (a detailed list of key terms is presented in the

source

Supplementary Section S1). Negative samples for each task were
defined by the absence of the corresponding arrhythmic
condition but could include other pathologies unrelated to the
primary label. Overlapping conditions (for example, AFib
coexisting with LQT or WPW overlapping with LBBB) were not
excluded the
interpretations. A manual review of the entire PTB-XL test
subset, and an additional random 10% of the MIMIC-IV dataset
was performed by expert clinicians to validate labeling accuracy.

to reflect complexity of real-world ECG

Agreement with database-provided labels was quantified using
Cohen’s kappa with bootstrapped CIs (Supplementary Section S5).

2.3 Model design and explainability
mechanism

We developed ECG-XPLAIM using a custom Inception-

style convolutional neural network (CNN) architecture,
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designed for time-series analysis (17, 21). This framework
captures both local waveform features (e.g., P, QRS, and
T waves and intervals) and global rhythm patterns, such as
irregularities that underlie arrhythmias. The model comprises
three residual blocks, each containing two one-dimensional
Inception modules. Within each module, three convolutional
kernels of lengths 2, 10, and 40 data points (corresponding to
4, 20, and 80 ms at 500 Hz sampling frequency) operate
The outputs of these paths
concatenated before being fed into the subsequent layer. By

in parallel. parallel are
incorporating skip connections, we preserved signal integrity
and avoided feature degradation as the network depth
2). The field
progressively, roughly doubling after each block, which allows
ECG-XPLAIM to detect both brief waveform and broader

rhythm disturbances. This emphasizes high sensitivity for

increased  (Figure receptive expands

transient lesions while maintaining robust generalization
across diverse ECG patterns.

To enhance interpretability, we integrated a customized
Class
Mapping (Grad-CAM) mechanism tailored for multi-lead

one-dimensional  Gradient-weighted Activation
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FIGURE 2

ECG-XPLAIM architecture. The model consists of three sequential Inception blocks optimized for time-series ECG analysis. Each block contains two
repeated Inception modules, each incorporating three parallel one-dimensional convolutional filters with multiple channels. These filters, with
receptive field lengths of 2, 10, and 40 data points, capture fine-grained, intermediate, and long-range ECG features, respectively. At the end of
each module, the outputs are concatenated and passed to the next layer. The input dimensions are 12 (number of leads) * 5,000 (10-s recordings
at a 500 Hz sampling rate), while the output depends on the classification task. ADD, addition layer; BN, batch normalization layer; C, one-
dimensional convolutional layer; CONCAT, concatenation layer; ch, channels; FC, fully connected (dense) layer; GAP, global average pooling
layer; MP2, max pooling layer with pool size 2; N, number of data points; Sigmoid, Sigmoid activation function.
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ECGs (15). This approach generates activation heatmaps that
highlight the waveform regions most influential for the
model’s predictions. By aggregating lead-specific Grad-CAM
ECG-XPLAIM provides a
comprehensive view of its decision-making. We overlayed

maps across all 12 leads,
these heatmaps on the raw ECG traces to underline clinically
relevant features such as the presence or absence of P-wave
and their morphology, QRS complex widening, and RR

interval variations.
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2.4 Training and evaluation strategies

We trained ECG-XPLAIM on the MIMIC-IV dataset and then
evaluated internally on independent cohorts from the same
dataset, while also testing externally on PTB-XL. To address
class imbalance, the maximum number of samples per class was
capped at 50,000, except for WPW detection, where data
scarcity necessitated a 1:2 positive-to-negative ratio (600 vs.
1,220 samples). For AFib vs. STach vs. Negative, 50,000 samples
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were used per class. For RBBB, LBBB, LAFB, and Negative, 25,000
were assigned to each category. For LQT vs. Negative, 39,000
samples per class were used, and for PACE vs. Negative, 30,000
per class were retained. Distinct training, validation, and test
subsets were prepared to avoid overlapping. As an illustrative
experiment, we further fine-tuned the pre-trained MIMIC-IV
model on varying fractions of PTB-XL (0%, 5%, 10%, 20%,
50%) and evaluated it on the remaining data (Supplementary
Section S6). This setup is included to demonstrate feature
transferability, while it is not part of our primary claims, since it
does not fulfill the requirement for independence of the external
dataset (22).Training was performed in mini-batches using
TensorFlow/Keras on an NVIDIA L4 GPU (24GB VRAM) for
100 epochs without early stopping. We adopted the Adaptive
Moment Estimation (ADAM) optimizer (23), with an initial
learning rate of 0.01, subject to exponential decay (0.95 per
epoch). The batch size was 128 for most tasks but reduced to 32
for WPW detection due to fewer positive samples. We selected
the optimal checkpoint based on validation metrics during
training to minimize overfitting.

2.5 Diagnostic performance and statistical
analysis

We evaluated model performance using sensitivity (recall),
specificity, and area under the receiver operating characteristic
curve (AUROC), estimating 95% confidence intervals (ClIs) for
each metric. Internal assessment took place on the MIMIC-IV
test set, whereas external evaluation was performed on the PTB-
XL cohort, ensuring no overlap with training data. Cls for
sensitivity and specificity were computed using the Clopper-
Pearson exact method (24), and AUROC CIs were derived via
DeLong’s method (25). We also evaluated task-wise operating
points suitable for screening (maximizing sensitivity) and
diagnostic confirmation (maximizing specificity), by scanning
model decision thresholds from 0.0 to 1.0, at 0.1 increments,
and reporting macro-averaged sensitivity/specificity pairs.

To establish benchmark comparisons, we trained two deep
identical
implemented a conventional one-dimensional CNN model

learning baselines under conditions. First, we
(vanilla CNN) with three standard convolutional layers followed
by batch normalization and max pooling. Second, we applied a
more advanced, double-layered, gated recurrent unit (GRU)
architecture, designed for time-series feature extraction
(implementation details are provided in Supplementary Section
S2) (26). We also compared against an external, pre-trained,
ResNet-based deep network that had been previously validated
for 12-lead ECG classification (27). This external model was
adapted to match our sampling frequency, lead configuration,
and data settings. As the commonly supported diagnostic
categories were only four (AFib, STach, RBBB, and LBBB),
comparisons were restricted to these conditions.

We performed pairwise statistical analyses between ECG-
XPLAIM and the counterpart models, across all classification

tasks, to identify significant differences in performance. We used
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McNemar’s test to compare model sensitivity and specificity (28,
29), and applied bootstrap resampling (n=1,000) to compare
AUROC differences (30), employing a significance threshold of
0.05. To assess interpretability, we generated Grad-CAM
heatmaps for correctly classified and misclassified recordings,
examining which waveform components informed the model’s
predictions. We compared these heatmaps across all tasks,
offering insight into potential biases and failure modes.

3 Results
3.1 Diagnostic performance evaluation

3.1.1 Internal evaluation

ECG-XPLAIM
performance across all arrhythmia detection tasks in the
MIMIC-IV test set (Table 2). For tachyarrhythmia classification,
it achieved a sensitivity of 0.897 (95% CI: 0.876-0.915) for AFib,
and 0.95 (95% CI: 0.935-0.963) for STach. Specificity and
AUROC values were greater or equal to 0.94 and 0.98,

demonstrated robust classification

respectively. When detecting conduction disturbances (RBBB,
LBBB, and LAFB), the model yielded macro-averaged sensitivity,
specificity, and AUROC of 0.941, 0.972, and 0.993, respectively,
demonstrating consistent performance across these abnormalities.

ECG-XPLAIM achieved a sensitivity of 0.93 (95% CI: 0.912—
0.945) and specificity of 0.897 (95% CI: 0.876-0.915) for LQT
detection, with an AUROC of 0.969 (95% CI: 0.962-0.977). For
WPW pattern, it attained a sensitivity of 0.99 (95% CI: 0.946-1)
and specificity of 0.95 (95% CI: 0.887-0.984), translating to an
AUROC of 0.992 (95% CI: 0.980-1). PACE detection yielded a
sensitivity of 0.927 (95% CI: 0.909-0.942) and specificity of
0.983 (95% CI: 0.973-0.99), with an AUROC of 0.985 (95% CI:
0.979-0.99). Overall, macro-averaged AUROC values exceeded
0.96 for all tasks in the internal evaluation, as illustrated
in Figure 3.

3.1.2 External evaluation

Evaluation on PTB-XL, which was not used during model
development, confirmed the strong generalizability of ECG-
XPLAIM for most arrhythmias (Table 2). In AFib and STach
classification, sensitivity values were 0.954 (95% CI: 0.942-0.964)
and 0.956 (95% CI: 0.940-0.969), respectively, with specificity of
0.964 (95% CI: 0.955-0.971) and 0.974 (95% CI: 0.967-0.979),
and AUROC of 0.988 (95% CI: 0.984-0.991) and 0.991 (95% CI:
0.988-0.994).
similarly robust, with RBBB identified at a sensitivity of 0.996
(95% CI: 0.986-1) and specificity of 0.966 (95% CI: 0.959-
0.972). Although LBBB achieved a sensitivity of 0.99 (95% CI:
0.977-0.997), its specificity was lower at 0.927 (95% CI: 0.918-
0.936). LAFB exhibited a reduced sensitivity of 0.714 (95% CI:
0.691-0.736), but maintained a high specificity of 0.962 (95%
CI: 0.954-0.970).

LQT detection showed a modest decline in performance

Conduction disturbance detection remained

compared to internal evaluation, with a sensitivity of 0.691 (95%
CI: 0.596-0.776), specificity of 0.864 (95% CI: 0.785-0.922), and
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TABLE 2 Diagnostic performance of ECG-XPLAIM in internal and external evaluation.

Internal evaluation (MIMIC-IV)

10.3389/fcvm.2025.1659971

External evaluation (PTB-XL)

Sensitivity Specificity AUROC Sensitivity Specificity AUROC
TACHY
AFib 0.897 (0.876, 0.915) 0.939 (0.928, 0.949) 0.976 (0.97, 0.981) 0.954 (0.942, 0.964) 0.964 (0.955, 0.971) 0.988 (0.984, 0.991)
STach 0.95 (0.935, 0.963) 0.978 (0.97, 0.984) 0.995 (0.992, 0.997) 0.956 (0.94, 0.969) 0.974 (0.967, 0.979) 0.991 (0.988, 0.994)
macro-avg 0.924 0.958 0.987 0.955 0.969 0.99
CD
RBBB 0.95 (0.938, 0.961) 0.974 (0.967, 0.98) 0.994 (0.992, 0.997) 0.996 (0.986, 1) 0.966 (0.959, 0.972) 0.994 (0.992, 0.997)
LBBB 0.945 (0.929, 0.958) 0.982 (0.976, 0.986) 0.995 (0.993, 0.998) 0.99 (0.977, 0.997) 0.927 (0.918, 0.936) 0.99 (0.987, 0.993)
LAFB 0.928 (0.913, 0.941) 0.961 (0.953, 0.968) 0.989 (0.985, 0.992) 0.714 (0.691, 0.736)* 0.962 (0.954, 0.97) 0.946 (0.939, 0.953)
macro-avg 0.941 0.972 0.993 0.9 0.952 0.977
LQT 0.93 (0.912, 0.945) 0.897 (0.876, 0.915) 0.969 (0.962, 0.977) 0.691 (0.596, 0.776)* 0.864 (0.785, 0.922) 0.878 (0.835, 0.922)
WPW 0.99 (0.946, 1) 0.95 (0.887, 0.984) 0.992 (0.98, 1) 0.773 (0.662, 0.862)* 0.973 (0.907, 0.997) 0.895 (0.846, 0.944)
PACE 0.927 (0.909, 0.942) 0.983 (0.973, 0.99) 0.985 (0.979, 0.99) 0.96 (0.928, 0.981) 0.988 (0.965, 0.998) 0.993 (0.985, 1)

AFib, atrial fibrillation; AUROC, area under the receiver operating characteristic; CD, conduction disturbance task; LAFB, left anterior fascicular block; LBBB, left bundle branch block; LQT,
long QT; Macro-avg, macro-averaged metric; PACE, Paced rhythm; RBBB, right bundle branch block; STach, Sinus tachycardia; TACHY, Tachycardia task; WPW, Wolff-Parkinson-

White pattern.
Metrics are reported with 95% confidence intervals; The exact number of samples per class for each task is provided in the Supplementary Material; Metrics marked with an asterisk (*)

indicate values below 0.9 with 95% confidence.
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FIGURE 3
Area under the receiver operating characteristic (AUROC) curves for internal (Int.) and external (Ext.) evaluations, on MIMIC-IV and PTB-XL datasets,
respectively. The curves are plotted with their corresponding 95% confidence intervals. CD, conduction disturbance task (includes right and left
bundle branch block, as well as left anterior fascicular block); LQT, long QT detection task; PACE, paced rhythm task; TACHY, tachycardia task
(includes atrial fibrillation and sinus tachycardia); WPW, Wolff-Parkinson-White pattern.
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an AUROC of 0.878 (95% CI: 0.835-0.922). Detection of WPW
pattern also revealed a drop in sensitivity to 0.773 (95% CI:
0.662-0.862), with specificity remaining high at [0.973 (95% CI:
0.907-0.997)]. Paced rhythm detection achieved a sensitivity of
0.96 [95% CI: 0.928-0.981)], specificity of 0.988 (95% CI: 0.965—
0.998), and AUROC of 0.993 (95% CI: 0.985-1).

Overall, while certain conditions (notably LQT and WPW)
showed reduced sensitivity on the external dataset, AUROC
values persisted between 0.88 and 0.99 across tasks, confirming
the model’s strong generalization capabilities (Figure 3).

3.1.3 Supplementary analyses

We explored the effect of preprocessing (bandpass, notch),
showing minimal or adverse impact on performance
(Supplementary Table S3). For example, pacing detection
sensitivity fell when filtering likely attenuated pacing spikes.
Inter-observer agreement confirmed excellent label quality
(Cohen’s a>0.99 across all classes; Supplementary Table S4).
Transfer learning experiments demonstrated that fine-tuning
with small PTB-XL fractions could improve sensitivity for some
tasks (e.g., WPW), but at the cost of specificity for some classes
LQT,

Table S5, Supplementary Figure S3). Threshold scans revealed

such as consistent with overfitting (Supplementary
balanced operating points at thresholds 0.4-0.6 for specific tasks,
such as TACHY, CD and PACE, while for the rest, particularly
for LQT, trade-offs illustrated
(Supplementary Table S6).

context-dependent were

3.1.4 Explainability analysis

We performed Grad-CAM-based analysis to visualize the
waveform regions that informed ECG-XPLAIM’s classification
decisions. The model highlighted clinically meaningful features
for each arrhythmia, while misclassifications offered insights
into the model’s potential attention biases, comprising focus on
specific wave morphology abnormalities and interval duration
deviations. Figure 4 presents single- or few-lead visualizations of
selected correctly and incorrectly classified cases, highlighting
the waveform regions that influenced model predictions. A more
extensive demonstration, including 16 full-lead case studies with
heatmaps, is available in Supplementary Section S8.

3.2 Performance benchmarking

ECG-XPLAIM outperformed both baselines across most tasks,
while, compared to the pre-trained model, ECG-XPLAIM
exhibited superior sensitivity but slightly lower specificity,
suggesting a tendency to minimize false negatives (Table 3).

In AFib detection, ECG-XPLAIM reached an AUROC of 0.958
(95% CI: 0.951-0.965), surpassing the vanilla CNN (0.835, 95% CI:
0.823-0.848) and GRU model (0.951, 95% CI: 0.943-0.958), while
achieving comparable performance to the external model (0.964,
95% CI: 0.956-0.971). Sensitivity was 0.964 (95% CI: 0.944-
0.979), significantly higher or comparable against all baselines,
and specificity (0.849, 95% CIL: 0.835-0.861) was higher than
CNN and GRU, but slightly lower than the external model. For
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STach, ECG-XPLAIM achieved a sensitivity of 0.966 (95% CI:
0.946-0.980), a specificity of 0.949 (95% CI: 0.941-0.957), and an
AUROC of 0.983 (95% CI: 0.979-0.988). Compared to the
external model, ECG-XPLAIM reported higher sensitivity and
slightly lower specificity, while AUROC was similar.

ECG-XPLAIM maintained
superior or comparable performance relative to the CNN and

In conduction disturbances,

GRU baselines in most categories, with a slight exception in
LAFB, where the GRU displayed a marginally higher AUROC.
Sensitivity in detecting RBBB and LBBB was significantly higher
than that of the external model (0.996, 95% CI: 0.986-1 for
RBBB and 0.988, 95% CI: 0.974-0.996 for LBBB), although
specificity was somewhat lower. For long QT (LQT) detection,
ECG-XPLAIM achieved an AUROC of 0.81 (95% CI: 0.797-
0.823), outperforming the CNN (0.727, 95% CI: 0.713-0.742)
and GRU (0.675, 95% CI: 0.660-0.691). It also showed higher
AUROC for WPW (0.863, 95% CI: 0.852-0.874) compared to
CNN (0.562, 95% CI: 0.546-0.579) and GRU (0.521, 95% CI:
0.504-0.537), yielding also better sensitivity and specificity. For
paced rhythm detection, ECG-XPLAIM surpassed both baselines
in AUROC, with a value of 0.985 (95% CI: 0.981-0.989), while
delivering a markedly higher specificity than both other models
and comparable sensitivity. A summary of these comparative
results is illustrated in Figure 5.

3.3 User experience and integration

To facilitate the adoption and practical utilization of ECG-
XPLAIM, in both research and clinical environments, we
provide pre-trained model weights and ready-to-use
implementations for each classification task. We also provide the
source code of model architecture, along with detailed
documentation. A step-by-step user guide has been developed to
assist clinicians and researchers in utilizing ECG-XPLAIM,
outlining  input  formatting  requirements,  framework
specifications, inference execution, and interpretation of outputs.
Additionally, a dedicated Grad-CAM visualization module is
included to support explainability assessment. This module
enables users to generate heatmaps themselves that can point to
ECG regions of importance, providing transparency into the
model’s decision-making process. By providing these tools and
resources, we aim to position ECG-XPLAIM as a highly
accessible, reproducible, and interpretable tool for Al-powered

ECG analysis, both for clinical application and future research.

4 Discussion
4.1 Summary and interpretation

ECG-XPLAIM is a deep learning model that aims to balance
high diagnostic accuracy with interpretability in automated ECG
analysis. Its Inception-style architecture, optimized for time-
series data, employs multi-scale processing with adaptive

receptive fields, allowing the detection of short-duration
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Selected correct and misclassified cases. Correctly classified cases (light blue background, upper half): (A) atrial fibrillation (AFib)—Lead Il, (B) sinus
tachycardia—Lead V1, (C) long QT (LQT)—Lead II, (D) right bundle branch block—Lead V1, (E) left bundle branch block—Lead V1, (F) left anterior
fascicular block (LAFB)—Limb leads, (G) Wolff-Parkinson-White (WPW) pattern—Lead II, (H) paced rhythm (PACE)—Lead V1. Misclassified cases
(light red background, lower half) with only limb leads shown: (I) AFib—false Positive due to coexisting first-degree AV block (I-AVB), possibly
leading to P-wave misinterpretation, (J) LQT—false Negative possibly due to unclear/biphasic T-waves preventing accurate QT interval
measurement, (K) WPW—False Negative where multiple points of interest before the QRS complex cause potential misinterpretation, (L) PACE—
False Positive due to possible misclassification of a narrow QRS as a pacing spike, (M) LAFB—False Positive where a premature ventricular
complex is possibly mistaken for a normal beat, leading to axis misinterpretation as LAFB-like.

(K) (L) (M)

waveform alterations, alongside global rhythm irregularities.
Unlike traditional deep learning models that act as “black-
ECG-XPLAIM
mechanisms through one-dimensional Grad-CAM visualization,

>

box” classifiers, incorporates  explainability
allowing for clinically meaningful interpretations and graspable
explanations of its predictions.

Performance-wise, ECG-XPLAIM was assessed on held-out
subsets of the development dataset (MIMIC-IV) for each task,
where the model achieved metrics over 0.9 for all tasks. Most
importantly, its diagnostic capability remained consistent on an
external basis, when validated on the development-independent
PTB-XL dataset. ECG-XPLAIM

performance, scoring metric values equal to or greater than 0.9

retained its competing

for most tasks, with only a few exceptions. Notably, certain

arrhythmias, particularly LAFB, long QT, and WPW pattern,
posed greater challenges in external evaluation, with sensitivity

Frontiers in Cardiovascular Medicine

dropping to approximately 0.7-0.8, while
AUROC
confirmed that introducing conventional signal preprocessing

specificity and

remained consistently high. Additional analyses
(bandpass 0.5-40 Hz, notch 50 Hz) did not materially improve
performance compared to training on raw signals. In fact,
pacing detection sensitivity declined under filtering, likely
because sharp pacemaker spikes were attenuated. These findings
(Supplementary Table S3) support training on raw signals for
the primary claims, while providing reproducible code
for transparency.

This study acknowledges that class imbalance, particularly for
rare arrhythmias like WPW and LQT, remains a persistent
challenge in automated ECG interpretation. Imbalances may
result in reduced sensitivity for these categories and affect
generalization to broader patient populations. Systematic reviews

of data augmentation and synthetic signal generation techniques
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suggest that targeted strategies can ameliorate the impact of
imbalance while enhancing the robustness and fairness of
diagnostic models (31). To mitigate this, the model training
employed a maximum cap of 50,000 samples per class where
feasible, ensuring balanced representation across major
arrhythmia categories. For WPW detection, due to data scarcity,
a positive-to-negative sample ratio of approximately 1:12 (600
positive vs. 1,220 negative samples) was maintained, while LQT
classification utilized around 39,000 samples per class. Other
categories such as atrial fibrillation, sinus tachycardia, and
conduction disturbances had similarly controlled sample sizes,
with arrhythmic

pathologies to reflect real-world complexity. These efforts aimed

negative classes including non-target
to limit dominant class bias without aggressive oversampling or
augmentation. Supplementary analyses suggest that targeted
augmentation and transfer learning strategies could further
enhance detection of rare arrhythmias, supporting ongoing
research in this direction (31).

The performance discrepancy between external and internal
validation on specific labels, may stem from training set biases,
class underrepresentation, or even inherent model limitations in
capturing the subtle waveform characteristics. In particular, the
reduced sensitivity for LQT (0.691) and WPW (0.773) in PTB-
XL can be explained by cross-dataset domain shifts (differences
in lead placement, sampling rates, acquisition chains, and
annotation criteria), phenotype definition heterogeneity (e.g.,
QT correction formulas), and waveform ambiguity (e.g., when

or delta-like
ectopy). These
highlight the importance of dataset-specific calibration and may
strategies.  Data
augmentation (31-33), targeted fine-tuning (34), and signal pre-

borderline QT prolongation pre-excitation

morphologies overlap with considerations

motivate  future domain  adaptation
processing (35), might help enhance the detection of these
patterns. Illustrative fine-tuning experiments on PTB-XL (0%-
50% train/test splits) demonstrated that features
sufficiently across datasets: WPW AUROC improved steadily
with additional PTB-XL data, LQT sensitivity spiked with very
small fractions but at the expense of specificity, and TACHY/
CD/PACE performance remained relatively robust. AUROC
data

Supplementary Figure S3).

transfer

used
We
emphasize that this violates strict external independence, so it is

generally increased as more external were

(Supplementary Table S5,

not part of our primary claims, but it highlights transfer
learning as a promising future avenue.

Benchmarking against three counterpart models—a vanilla
CNN, a more advanced two-layer GRU model, and an external,
pre-trained ResNet-based architecture—revealed that ECG-
XPLAIM generally demonstrates competitive performance. ECG-
XPLAIM consistently outperformed both baseline CNN and
GRU models, achieving higher sensitivity, specificity, and
AUROC scores across most tasks. Compared to the external,
ECG-XPLAIM demonstrated higher
sensitivity, leading to a slightly reduced specificity. This

pre-trained  model,
preference for minimizing false negatives aligns with its

potential role as a screening tool, where missing critical
arrhythmias is more concerning than erroneously flagging some
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normal cases. Benchmarking against such leading architectures
demonstrates the competitive diagnostic performance of the
present approach. Importantly, comparison with large-scale
neural network frameworks for ECG interpretation, such as that
developed by Ribeiro et al., highlights the added clinical value of
integrated interpretability, which is increasingly recognized as a
prerequisite for real-world deployment in cardiology settings (27).

4.2 Clinical applicability and added value

ECG-XPLAIM is designed to integrate seamlessly into clinical

workflows by prioritizing both diagnostic accuracy and
Its high that

significant arrhythmias are detected early, aiding in timely

interpretability. sensitivity ensures clinically
referrals to cardiology specialists and reducing the risk of
underdiagnosis in severe conditions such as conduction blocks or
arrhythmias predisposing to ventricular events. Additionally, it
enhances efficiency in high-throughput diagnostic environments
by assisting in automated triaging of abnormal ECGs, reducing
the burden on specialists, offering a fatigue-free screening
solution, and facilitating early identification of high-risk patients.
Unlike many prior approaches that primarily distinguish
ECGs, ECG-XPLAIM focuses
and leverages

normal from abnormal on

challenging arrhythmias multi-class, overlap-
tolerant training. Negative classes in each task are not purely
but
arrhythmic entity while potentially containing other conditions.
ECG-XPLAIM subtle,

overlapping abnormalities—a skill crucial in real-world practice

“normal”  recordings instead exclude only the target

Consequently, learns to differentiate

where arrhythmias often coexist or mimic one another.
Furthermore, ECG-XPLAIM was specifically trained on well-
defined classification tasks, ensuring a balanced representation
across involved classes and focusing only on arrhythmias that are
challenging to differentiate. This task-specific design increases its
applicability in real-world settings, where ECGs often present
overlapping abnormalities that require fine-grained discrimination.

ECG-XPLAIM represents a highly scalable solution, capable of
handling large-scale ECG datasets, supporting both high-volume
batch processing and low-latency real-time inference, making it
suitable for both retrospective research and live clinical
deployments. From a technical perspective, it exhibits short
inference times (4.5-16 milliseconds per 10-s ECG), enabling
real-time in or server-based

deployment edge-

infrastructures. The model is open-source, enabling research

near

groups to extend its architecture, adapt it for novel classification
tasks, and implement custom modifications tailored to specific
clinical needs. The availability of pre-trained weights facilitates
direct deployment without extensive retraining, while also
allowing for transfer learning and fine-tuning on new datasets,
significantly reducing computational costs and making it
accessible to a broader user base.

An additional threshold analysis (Supplementary Table S6)
demonstrated how sensitivity and specificity trade-offs evolve
across thresholds 0.0-1.0. For example, TACHY achieved a
balanced operating point at 0.4-0.5 (SEN 0.968-0.955, SPE
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0.952-0.969), CD balanced at 0.5, and PACE maintained excellent
performance across a wide range of thresholds. In contrast, LQT
sensitivity dropped steeply as thresholds increased, suggesting
that lower thresholds (<0.3-0.4) may be preferable in screening
contexts, but not for disease confirmation, due to high risk for
false positives. These findings support the potential for site-
specific threshold personalization, where operating points can be
pre-specified depending on whether the model is used for broad
screening (favoring sensitivity) or confirmatory diagnostics
(favoring specificity).

More broadly, ECG-XPLAIM fits into the growing role of Al
in electrophysiology (EP) workflows, which extends beyond ECG
classification into procedural guidance, ablation planning, and
arrhythmia risk stratification (36). AI tools are increasingly
applied for automated mapping of atrial and ventricular
arrhythmias, predicting catheter ablation outcomes, optimizing
device programming, and guiding individualized risk assessment
for sudden cardiac death. Within this framework, ECG-based
algorithms such as ours provide the critical front-end signal
interpretation layer: by ensuring reliable, explainable detection
of arrhythmias and conduction disturbances, ECG-XPLAIM can
serve as the entry point that feeds into downstream EP
workflows, including rhythm monitoring, decision-support in
invasive procedures, and integration with longitudinal risk
prediction models. In this way, ECG-XPLAIM’s emphasis on
transparency and adaptability positions it as a foundational
component in the translational pipeline of AI in EP. Explainable
and open-source models such as ours align with these
highlighted
perspectives on Al in EP (13).

translational goals, as in recent consensus

4.3 Explainability and trust in Al-driven
diagnostics

A primary barrier to the clinical adoption of deep learning in
healthcare is the “black-box” The
of deep to
electrocardiogram analysis is increasingly acknowledged as

nature of most models.

interpretability learning  models  applied
essential for facilitating clinical adoption and patient safety.
Contemporary literature highlights that XAI methods require
rigorous evaluation to ensure reliability and relevance in clinical
practice. Salih et al. conducted a systematic review of XAI
evaluations in cardiology, revealing that only a minority of
studies applied systematic assessment: 37% benchmarked XAI
quality based on prior literature, 11% involved clinicians as
domain experts, and 11% relied on quantitative proxies or
statistical analysis, while 43% did not assess explanation quality
at all. The authors advocate for formal, multi-dimensional
frameworks that include faithfulness, fidelity, and direct clinician
feedback, emphasizing that thorough evaluation of explanations
is critical for the development of trustworthy and safe Al
models in medicine (14).

Recent advances also underscore the utility of combining
multiple

interpretability techniques and actively involving

clinicians in validation processes. Zhang et al. demonstrated the
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application of Grad-CAM in medical text Cclassification,

illustrating how visualization of salient features through
heatmaps can intuitively communicate the basis for predictions
Their
embeddings and various classifier architectures (Word2Vec,
BERT, ResNet, CNN, Bi-LSTM) showed that integrating Grad-

CAM with high-performing deep learning models enables more

to human users. comparative study using word

transparent identification of decision-influencing input signals.
The that Grad-CAM visualization
highlighted text regions most relevant to the model’s outputs,

study found reliably
supporting the practical integration of XAI in clinical decision
making and error analysis (37).

ECG-XPLAIM confronts this challenge by integrating Grad-
CAM-based of the
waveform regions that contribute most to its predictions. This

explainability, enabling visualization
transparency fulfills several objectives. First, it strengthens
clinician trust by revealing the model’s decision-making process.
Second, it facilitates potential feature discovery, unearthing
subtle waveform variations that may carry clinical significance.
Third, it supports adherence to emerging regulatory guidelines
—such as those from the U.S. Food and Drug Administration
(FDA) and the European Medicines Agency (EMA)—that
increasingly emphasize interpretability requirements for medical
Al systems (38, 39). Finally, it assists in error analysis:
highlighting waveforms that led to misclassifications allows
targeted improvements to the model’s training and architecture.

In this study, Grad-CAM visualizations helped pinpoint areas
of interest, in both correctly identified and misclassified cases. For
AFib, the model consistently focused on the absence of P waves in
the pre-QRS region (Figure 4A), while the STach detection was
primarily driven by P-wave presence and regularly appearing
points of interest that signify rhythmicity (Figure 4B). RBBB
and LBBB cases showed strong attention to the QRS complex
morphology (Figures 4D,E), while in LAFB, the model seemed
to capture the associated axis deviation-related changes
(Figure 4F). For LQT, ECG-XPLAIM correctly identified the QT
interval by focusing on the onset and termination of the
repolarization phase in certain beats (Figure 4C). WPW
classification relied on the characteristic delta wave and the PR
interval (Figure 4G). Paced rhythm cases were accurately
identified by highlighting both atrial and ventricular pacing
spikes across all beats (Figure 4H).

On the other hand, false classifications revealed cases where
the
arrhythmias with lower sensitivities. In an AFib false positive

model’s attention was misdirected, particularly for
case, ECG-XPLAIM incorrectly interpreted a conduction delay
due to first-degree AV block (I-AVB) as an absent P wave
A1),

localization. Conversely, in a false negative STach case, the

(Figure demonstrating a potential bias in P-wave

model correctly detected rapid rhythm but misclassified it as
AFib due to near-fusion of the P wave with the preceding
high heart Bundle branch block
misclassifications were primarily linked to variations in QRS

T wave at rates.
duration that seemed borderline. False positive classifications
of

morphological changes in the QRS complex (Figure 4M). For

often involved  misinterpretation extrasystoles  or
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LQT false negatives, the model’s attention was restricted to a
segment within the repolarization phase rather than spanning the
full QT interval, for some cases (Figure 4]). In WPW false
positive examples, ECG-XPLAIM placed significant focus on the
pre-QRS regions of wide-QRS extrasystoles, mistaking premature
beats for delta waves, indicating a bias in distinguishing abnormal
conduction patterns. Similarly, a false positive classification of
pacing occurred when the model misinterpreted a narrow QRS
complex as a pacing spike (Figure 4L). (Detailed examples with
explanations are offered in Supplementary Section S8.) These
findings indicate the origin of prediction faults and suggest
strategies to mitigate them, such as augmenting training data with
borderline and atypical presentations (31).

Despite its utility, Grad-CAM is not a perfect solution.
Although it highlights influential waveform regions, it does not
fully elucidate the underlying rationale—why certain features are
attributed to one arrhythmia rather than another (37). Future
research could explore more advanced or complementary
explainable AI techniques, potentially integrating rule-based
logic or interpretability frameworks that capture inter-lead
relationships. These refinements may further reduce model
rigidity and enhance its ability to handle the complexities of
real-world ECG data.

4.4 Limitations and future directions

Despite strong performance and explainability, ECG-XPLAIM
faces certain limitations. Class imbalance was present across tasks,
particularly for rare arrhythmias such as WPW and LQT, where
positive samples were substantially fewer than negatives (e.g.,
WPW 600 vs. 1,220). Although we capped maximum samples
per
imbalance may have contributed to lower external sensitivities.

class and applied balanced mini-batching, residual
Future work could leverage more targeted data collection or
dedicated augmentation strategies for ECG signals to enrich rare
classes and improve model calibration (31). Importantly, the
reliability of diagnostic labels was confirmed via inter-observer
agreement analysis: in a random 10% subset of MIMIC-IV,
kappa values ranged from 0.990 to 0.998 across all labels,
supporting the sufficiency of pre-annotations (Supplementary
Table S4). Finally, real-world clinical performance can only be
validated prospectively; although robust, retrospective testing on
MIMIC-IV and PTB-XL does not guarantee identical outcomes
in diverse clinical environments.

While Grad-CAM partly the

interpretability gap, they do not provide an explicit rationale for

visualizations address

how certain features lead to a diagnosis. For instance,
identifying a lengthened QRS complex does not clarify how the
distinguishes RBBB and LBBB. More
sophisticated XAI methods could further demystify the decision

process and illuminate nuanced inter-lead relationships that

model between

underlie arrhythmia detection.

Finally, exploratory transfer learning experiments on PTB-XL
(Section 6 of the Supplementary Material) demonstrated that
ECG-XPLAIM’s feature representations are transferable across
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datasets, particularly for WPW and LQT detection. While these
such as AUROC and
sensitivity, for specific labels under certain splits, they are

experiments can improve metrics,
illustrative only, as they break the requirement for independence

in external validation. Nonetheless, they motivate future
research directions.

Future research will focus on refining ECG-XPLAIM’s
generalization and interpretability. Fine-tuning on localized,
hospital-specific datasets could account for regional ECG
variations and acquisition protocols, while federated learning
approaches may broaden the model’s adaptability without
centralized data pooling (40). Investigating additional XAI
techniques or combining Grad-CAM with rule-based logic could
strengthen interpretability and expedite regulatory acceptance.
Finally, prospective clinical trials will be essential to evaluate
real-world feasibility, confirm performance in diverse patient
populations, and measure clinical outcomes and workflow

improvements attributable to ECG-XPLAIM’s integration.

5 Conclusions

In this work, we propose ECG-XPLAIM, an explainable deep
learning model for automated arrhythmia detection, which
demonstrates robust generalization in both the MIMIC-IV and
PTB-XL datasets. ECG-XPLAIM outperforms baseline CNN and
advanced GRU models in most classification tasks and offers
state-of-the-art
network, with a priority to minimize the risk of underdiagnosis.

performance comparable to a pre-trained
By emphasizing sensitivity, it reduces missed diagnoses, making
it particularly well-suited for screening workflows. Its integrated
Grad-CAM mechanism provides interpretable visualizations of
the waveform regions guiding classification, simultaneously
furnishing critical feedback for model refinement. Additional
analyses confirmed the robustness of training on raw signals,
and the flexibility to adapt performance through threshold
calibration or transfer learning to new datasets. These features
strengthen the model’s translational potential. Although further
optimization for rare arrhythmias, larger datasets, and real-
world prospective validation are warranted, ECG-XPLAIM’s
scalability, open-source implementation, and rapid inference,
position it as a valuable tool for integrating AI-driven cardiac

diagnostics into clinical practice.
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