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Objective: To systematically evaluate in-hospital mortality risk prediction models
for patients with acute coronary syndrome (ACS) and provide valuable insights and
references for the construction, application, and optimization of these models.
Methods: A comprehensive search was conducted in five databases, including
CNKI, Wanfang, PubMed, Web of Science, and Embase, from inception to
November 2024. Researchers screened the literature, extracted relevant data,
and assessed the quality of the prediction models using the Prediction Model
Risk of Bias Assessment Tool (PROBAST). Extracted data included study
design, data sources, outcome definitions, sample size, predictive factors,
model development, and performance.

Results: A total of 18 studies involving 44 prediction models were included. The
area under the receiver operating characteristic curve (AUC) or C-index of these
models ranged from 0.79 to 0.96. Overall, the included prediction models
demonstrated a high risk of bias, primarily due to issues such as unreported
missing data, methodological flaws in model construction, and a lack of
model performance evaluation.

Conclusion: The construction of in-hospital mortality risk prediction models for
patients with ACS is still in the developmental stage. Future development and
validation of prediction models should adhere to the PROBAST and TRIPOD
guidelines to establish models with strong predictive performance and
high generalizability.

Systematic Review Registration: PROSPERO CRD42024567755.

KEYWORDS

models, acute coronary syndrome, in-hospital mortality, risk prediction, systematic
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1 Background

Acute coronary syndrome (ACS) is a severe cardiovascular condition that
encompasses three clinical types: ST-segment elevation myocardial infarction (STEMI),
non-ST-segment elevation myocardial infarction (NSTEMI), and unstable angina
(UAP). Globally, more than 7 million people are diagnosed with ACS each year. In
2023, approximately 50% of cardiovascular-related deaths were attributable to this
condition, underscoring ACS as one of the leading causes of mortality worldwide
(1, 2). During hospitalization, more than 5% of ACS patients experience in-hospital
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mortality, with certain subgroups showing mortality rates as high
as 26.7%. Long-term follow-up studies indicate mortality rates
reaching up to 26.5%. In contemporary cohorts of STEMI
patients, in-hospital mortality exceeds 50% (3, 4). Additionally, a
Swiss study reported that in-hospital mortality rates significantly
increase when ACS is accompanied by multivessel disease, with
no observed improvement in this trend over time (5). Therefore,
accurately identifying the in-hospital mortality risk in ACS
patients is crucial for developing effective treatment strategies.
In recent years, numerous prediction models for in-hospital
mortality risk in ACS patients have emerged (6). Among them,
the Global Registry of Acute Coronary Events (GRACE) score
and the Thrombolysis in Myocardial Infarction (TIMI) score are
the most recommended and widely used risk assessment tools in
clinical practice guidelines. Additionally, the Acute Coronary
Treatment and Intervention Outcomes Network (ACTION) risk
model has demonstrated excellent performance in predicting in-
hospital mortality (7). However, a systematic evaluation of the
quality and applicability of these models in different clinical
settings remains lacking. This study aims to systematically
review and evaluate existing in-hospital mortality risk prediction
ACS patients,

references for scholars in the construction, optimization, and

models developed for providing valuable
validation of such models. The findings of this study will offer

critical scientific support for clinical practice and future research.

2 Methods

The study protocol was registered on PROSPERO

(Registration Number: CRD42024567755).

2.1 Search strategy

To ensure a comprehensive literature search and account for
the broad dissemination of relevant studies, both Chinese and
English databases were searched. The databases included CNKI,
Wanfang, PubMed, Embase, and Web of Science, with the
search period extending from the inception of each database to
November 2024. A combination of subject terms and free-text
terms was used in both Chinese and English searches. The main
Chinese and English search terms are acute coronary syndrome
(ACS), including its various variant forms such as acute
coronary syndromes (plural form), coronary syndrome, acute
(inverted form), and coronary syndromes, acute (inverted plural
form); patients with acute coronary syndrome; risk, risk
assessment, relative risk; death, cardiac death, in-hospital death,
of death;
prediction, early warning, influencing factors, impact factor; risk

mortality rate, in-hospital mortality rate, risk
prediction, model, tool and score. The detailed search strategy is
provided in the supplementary material. To further enhance the
comprehensiveness and accuracy of the literature collection,
manual searching and a snowballing method were employed to

supplement the references and citations of the included studies.

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1659184

2.2 Inclusion and exclusion criteria

Inclusion Criteria: (1) Population: Patients with acute
coronary syndrome (ACS), including ST-segment elevation
myocardial infarction (STEMI), non-ST-segment elevation
myocardial infarction (NSTEMI), and unstable angina (UAP).
(2) Study Focus: Construction or validation of in-hospital
mortality risk prediction models for ACS patients. (3)Study
Design: Observational studies.

Exclusion Criteria: (1) Non-English and non-Chinese
publications. (2) Duplicate studies and articles with inaccessible
full texts. (3) Publications in the form of abstracts, conference
notices, reviews, or meta-analyses. (4) Studies that only analyzed
predictive factors for in-hospital mortality in ACS patients
without constructing a prediction model.

2.3 Literature screening and data extraction

Two researchers independently screened the literature by
reviewing the titles and abstracts according to the inclusion and
exclusion criteria. In cases of disagreement, discussions or
consultation with a third party were conducted to reach a
consensus. After excluding irrelevant studies, the full texts of the
remaining articles were thoroughly reviewed to determine the final
included studies. Data extraction was guided by the Critical
Appraisal and Data Extraction for Systematic Reviews of Prediction
Modelling Studies (CHARMS) checklist (8). Extracted data
included: Publication Date, Study Design, Country, Data Source,
Sample Size, Candidate Variables, Modeling Methods, Variable
Selection Methods, Number of Models, Model Performance, Model
Validation Methods, Model Presentation Format.

2.4 Risk of bias and applicability assessment

Two researchers independently assessed the risk of bias and
applicability of the included studies using the Prediction Model
Risk Of Bias Assessment Tool (PROBAST) (9). In case of
disagreement, a third party’s opinion was sought.

The risk of bias assessment covered four domains: participants,
predictors, outcomes, and analysis, comprising a total of 20 specific
questions. Following the “shortest plank theory,” each domain was
evaluated as follows: Low Risk:If all items were marked as “probably
yes” or “yes.” High Risk: If any item was marked as “no” or
“probably no.” Unclear Risk: If insufficient information was
provided for any item. For the overall risk of bias, a study was
classified as “low risk” only if all four domains were rated as “low
risk.” If any domain was rated as “high risk,” the overall bias risk
was deemed “high.” If any domain was rated as “unclear,” the
overall risk of bias was also classified as “unclear.” Applicability
was evaluated across three domains: study population, predictors,
and outcomes. The assessment method was consistent with the
risk of bias evaluation, using the same criteria for low, high, and
unclear applicability.
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2.5 Data synthesis
A descriptive analysis method will be used to summarize the

basic characteristics of the included studies and the constructed

prediction models.

3 Results

3.1 Literature screening process and results

A total of 5232 relevant studies were identified through
database searches and other resources. After removing 741
duplicate records, 4,491 articles remained. Initial screening of

10.3389/fcvm.2025.1659184

titles and abstracts resulted in 168 studies for full-text review.
Following a detailed assessment, 19 studies were deemed
eligible, and finally, 18 studies were included in the descriptive

analysis. The screening process is shown in Figure 1.

3.2 Basic characteristics of included studies

This study conducted a comprehensive analysis of 18 relevant
studies (10-27). It was found that 67% (12/18) of the in-hospital
risk prediction models for acute coronary syndrome (ACS) were
published within the past five years (10-15, 18, 19, 21, 23,
26, 27). These studies primarily originated from China (n=09)
(9, 10, 11, 13, 19, 20, 23, 25-27), the United States (n=2)

Records identified through database
searching (N=5225)

Literature screening process

The corresponding number of articles was

e PubMed(N=763)
*  Wed of Science(N=1934) obtained through other sources
¢  Embase(N=2226) N=7)
= e CNKI(N=55)
=] e Wang fang(N=247)
=
=
=
-
=
%}
E & | Duplicate records was eliminated
o (N=741)
A
Records screened(N=4491)
o Excluded based on tittle and abstract
» (N=4323)
éo Full-text articles assessed for eligibility
= (N=168)
8 Reports excluded(N =149)
- e Unable to get the full text(N=22)
z e  Study design was inconsistent(N=57)
> The model is not built(N=59)
e Duplicate publication(N=1)
e  Literature that is not in Chinese or English(N=1)
e  The type of article does not match(N=9)
Studies included in review(N=19)
= Data overlap,
% » exclude literature with small impact factors
= (N=1)
o)
= y
P
Studies included in descriptive analysis
(N=18)
FIGURE 1

Literature screening process diagram. During the data analysis, two included literatures showed overlapping data in terms of modeling methods, data
time, and screening variables. To avoid bias in the analysis results, the one with a lower impact factor was excluded.
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(12, 21), and Poland (n=2) (16, 24). All included studies were
retrospective cohort studies. In terms of data sources, half of the
studies were based on single-center data (10, 11, 13, 15-18, 23,
24), while the other half utilized multi-center data (12, 14,
19-22, 25-27). All studies reported the sample sizes required for
model development, with sample sizes ranging from 502 to
755,402. The in-hospital mortality rates varied between 1.88%
and 12.3%. For details, please refer to Table 1.

3.3 Basic information on prediction model
construction

The number of candidate variables varied widely among
studies, ranging from 8 to 89. When handling continuous
variables, the majority of the studies retained their continuous
nature, with only two studies converting continuous variables
into binary categories (18, 20). For missing data, common

TABLE 1 Basic characteristics of included literature.

Data
sources

Model
type

Research
design

Area

First author/
year of

publication

Research

10.3389/fcvm.2025.1659184

approaches included exclusion and imputation. The variable
selection process typically followed a stepwise procedure,
starting with univariate analysis and subsequently proceeding to
multivariate analysis. In terms of modeling methods, most
studies employed traditional regression analysis to construct
models, while others integrated machine learning or deep
learning techniques. For specifics, please refer to Table 2.

3.4 Characteristics of prediction models

3.4.1 Predictive performance of models
All
including the area under the curve (AUC) or C-index, ranging

included studies reported discrimination metrics,
from 0.79 to 0.96. These values indicate that most prediction
models demonstrated at least moderate accuracy and good
discriminatory ability. In terms of model calibration, the most

commonly used test method was the Hosmer-Lemeshow (HL)

Final
result

Total sample

object
) Total

number of
people

Number of
events

In-hospital
mortality
rate

Jun Ke (10)/2022 China ® Single-center b ACS A 122 6,482 1.88%

Rong Li (11)/2023 | China ® Single-center b ACS A 85 2,414 3.5%

Ashraf Abugroun America @ Multicenter b ACS undergoing A 6,312 252,443 2.5%

(12)/2020 PCI

Bai Li (13)/2023 China @ Single-center 2 ACS undergoing B 414 19,237 2.2%
CAG or PCI

Sazzli Kasim (14)/ | Malaysia () Multicenter b STEMI and A 4,809 68,528 7.02%

2022 NSTEMI

Claudio Parco (15)/ | Germany () Single-center @ STEMI and B 119 1,567 7.5%

2021 NSTEMI

Konrad Pieszko Poland @ Single-center b ACS A 97 6,769 1.4%

(16)/2018

Raposeiras-Roubin | Spain @ Single-center * ACS A 265 4,497 5.9%

S (17)/2012

Raymond Indonesia @ Single-center 2 ACS A 159 1,504 10.6%

Bernardus (18)/

2023

Qiang Chen (19)/ | China ® Multicenter @ AMI A 40 613 6.5%

2022

Rui Fu (20)/2018 China @ Multicenter b NSTEMI A 342 5,775 5.92%

Rohan Khera (21)/ | America @ Multicenter b AMI A 33,238 755,402 4.4%

2021

Joon-Myoung Korea @ Multicenter b AMI A 1,081 22,875 4.4%

Kwon (22)/2019

He Lin (23)/2024 China ® Single-center b Elderly patients A 62 502 12.3%
with AMI

Konrad Pieszko Poland @ Single-center b ACS A 83 5,053 1.64%

(24)/2019

Chenxi Song (25)/ | China @ Multicenter b AMI A 1,504 23,417 6.4%

2018

Jingang Yang (26)/ | China ® Multicenter b AMI A 2,416 30,849 7.8%

2024

Peng Ran (27)/2021 | China () Multicenter b ACS A 1,181 62,546 1.9%

Special symbols are used to represent the corresponding content due to its length. D: retrospective cohort study.

“Verification.

Development and validation; A: In-hospital death; B died in the backyard after surgery; ACS, acute coronary syndrome; AMI, acute myocardial infarction; STEMI, ST segment elevation
myocardial infarction; NSTEMI, non ST segment elevation myocardial infarction; PCI, percutaneous coronary intervention therapy; CAG, coronary angiography.
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TABLE 2 Basic information for constructing prediction models.

Candidate variables

Continuous variable
method

Number

Missing data

Number

10.3389/fcvm.2025.1659184

Variable
selection

Modeling method

Processing
method

Jun Ke (10)/2022 22 MC No Mean Imp UMA ML:LR, GBDT, RF, SVM

Rong Li (11)/2023 44 MC 3,585 Imp UMA LR, XGBoost

Ashraf Abugroun (12)/ 8 MC No Exclude UMA LR

2020

Bai Li (13)/2023 24 MC 3,964 MF Imp No No

Sazzli Kasim (14)/2022 54 MC 55,338 MF Imp, Multi Imp FSA ML:LR, RF, SVM;DL:LR,
RF, SVM

Claudio Parco (15)/ No MC 1,510 Imp No No

2021

Konrad Pieszko (16)/ 23 MC No Mean Imp, VC- UA LR, XGBoost, DRSA-BRE

2018 DomLEM Imp

Raposeiras-Roubin S 13 MC 107 Exclude No No

(17)/2012

Raymond Bernardus 14 Bin Var No No MA LR

(18)/2023

Qiang Chen (19)/2022 No MC No Exclude UMA LR

Rui Fu (20)/2018 21 Bin Var 393 Mean Imp or Med Imp | UMA LR

Rohan Khera (21)/ 56 MC 295,987 Mode Imp, 5x MI No LR, LASSO, XGBoost,

2021 Neural net

Joon-Myoung Kwon No MC 3,102 Exclude No DL, ML:LR, RF

(22)/2019

He Lin (23)/2024 26 MC No MI UA, LASSO Reg COX

Konrad Pieszko (24)/ 28 MC 394 Exclude UMCA COX, XGBoost

2019

Chenxi Song (25)/2018 25 MC 2,619 Exclude UMA LR

Jingang Yang (26)/ 89 MC Provide missing | MICE ML XGBoost

2024 rate

Peng Ran (27)/2021 32 MC 1,095 Exclude UMA LR

MC, maintain continuity; Bin Var, binary variable; Mean Imp, Fill in the average value; Imp, fill; MF Imp, Massforest algorithm filling; Multi Imp, multivariate filling; VC DomLEM Imp, VC
DomLEM algorithm filling; Med Imp, median filling; Mode Imp, Pattern filling; 5xMI, 5x multiple filling; MI, multiple filling; MICE, chain equation multiple interpolation; UMA, single
factor analysis followed by multiple factor analysis; UMCA, single factor analysis followed by COX regression analysis; FSA, feature selection algorithm; UA, univariate analysis; MA,
multivariate analysis; LASSO Reg, LASSO regression; ML, machine learning; LR logistic regression; GBDT, gradient boosting decision tree; RF, random forest; SVM, support vector

machine; XGBoost, gradient boosting tree; DL, deep learning DRSA-BRE, dominated rough set balancing rule ensemble; COX, proportional hazard regression model.

goodness-of-fit test, which was employed in six studies (13, 17, 20,
25-27), followed by the calibration slope, used in four studies (11,
12, 19, 21). Additionally, five studies did not provide calibration
information (10, 16, 18, 22, 24), while others utilized calibration
plots, calibration curves, calibration intercepts, nomograms, or
the Brier score either individually or in combination.

The results indicated good calibration performance. For
details, please refer to Table 3.

3.4.2 Predictive factors in the models

The number of predictive factors included in the models
ranged from 5 to 20. However, four studies (13, 15, 17, 21) did
not provide detailed information about the final predictive
factors included in their models. Among the top nine predictors
most frequently included in the models, age (n=12), systolic
blood pressure (n=9), Killip classification (n=38), heart rate
(n=7), creatinine (n=7), body mass index (n =4), cardiac arrest
(n=3), sex (n=23), and white blood cell count (n=3) were the
most prominent. For details, please refer to Table 4 and Figure 2.

3.4.3 Model validation and presentation methods

Among the studies validating predictive models, 13 studies
(10, 11, 14, 16, 17-22, 24, 25, 27) utilized only internal

Frontiers in Cardiovascular Medicine

validation methods, 2 study (15) employed only external
validation, and 3 studies (12, 14, 23, 26) combined both internal
and external validation. Regarding the presentation methods of
the models, 6 studies (17-20, 25, 27) chose to display them
through scoring systems, 2 studies (14, 26) opted for mobile
websites, 2 studies (12, 23) used nomograms, while the
remaining 8 studies (10, 11, 13, 15, 16, 21, 22, 24) did not
specify the presentation methods of their models. For details,
please refer to Table 5.

3.5 Risk of bias and applicability assessment
results

3.5.1 Risk of bias domains

The overall risk of bias was high across all domains. In the
participants domain, all studies (10-27) were identified as
having a high risk of bias, primarily because the studies relied
on retrospective cohort data, which depended on historical
records. This led to issues such as missing data, recording
errors, or inconsistencies. The selection of participants may not
have been representative, and it was challenging to control for
all confounding factors, resulting in potential information bias,

frontiersin.org
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TABLE 3 The predictive performance of the prediction model.

Model performance

10.3389/fcvm.2025.1659184

TABLE 4 Prediction factors of the prediction model.

Final predictive factor

AUC Calibration Number Content
Jun Ke (10)/ LR:0.884, XGBoost:0.918, No Jun Ke (10)/2022 10 NT-proBNP, D-dimer, cTnl, age, HDL-C,
2022 RF:0.913, SVM:0.896 statins, NSTEMI, Killip III, Killip IV, CK
Rong Li (11)/ LR:0.904, XGBoost:0.913 Calibrate slope, calibration Rong Li (11)/2023 20 HR, age, MB, LAD, LVEDD, RCA stenosis,
2023 intercept, and Brier score BNP, LM stenosis, CK-MB, c¢Tnl, Killip class,
Ashraf 0.83 Calibration slope, renal dysfunction, elevated Cre, elevated MB,
Abugroun (12)/ calibration intercept, history of PCI, presentation in CS, elevated
2020 calibration chart BNP, elevated HR, Higher BMI, SBP
Bai Li (13)/2023 | GRACE:0.926, GRACE2.0:0.920, | Graphical analysis of risk Ashraf Abugroun 7 CHF, Hypotension/CS, Age >65, Age 275,
ACTION:0.945, TIMI:0.811, model calibration/goodness (12)/2020 DM, Stroke, PVD
CPACS:0.841 of fit, HL Bai Li (13)/2023 No No
Sazzli Kasim Optimization model:0.96 McNemar test, Sazzli Kasim (14)/ 14 Age, HR, Killip class, FBG, anti-arrhythmic
(14)/2022 hyperparameter adjustment 2022 agent, LDL, HDL, statins, lipid lowering
Claudio Parco | GRACE 1.0: 0.84; GRACE 2.0: | Calibration chart agent, chronic angina past 2 weeks, ST-
(15)/2021 0.79; ACTION: 0.84; NCDR: 0.89 segment elevation >1 mm in >2 contiguous
Konrad Pieszko | LR: 68 + 11, XGBoost: 78 + 3, No limb leads, CABG, oral hypoglycemic agent,
(16)/2018 DRSA-BRE: 80.8 cardiac catheterization
Raposeiras- Original GRACE RS: 0.91; HL Claudio Parco (15)/ No No
Roubin S (17)/ | Update GRACE RS: 0.90; AR- 2021
2012 GRS: 0.90 Konrad Pieszko 5 Neutrophil count, SBP, Cr, age, hematocrit
Raymond 0.820 No (16)/2018
Bernardus (18)/ Raposeiras-Roubin No No
2023 S (17)/2012
Qiang Chen 0.814 Calibration curve, Raymond 5 Age, history of angina, history of
(19)/2022 calibration slope, calibration Bernardus (18)/ revascularization, modified shock index, Killip
intercept, Brier score 2023 class
Rui Fu (20)/ 0.81 HL Qiang Chen (19)/ 9 Age, HR, SBP, Cr, Killip class, ST-segment
2018 2022 deviation, cardiac biomarkers, CA at
Rohan Khera LR: 0.888, LASSO: 0.886, Calibrate slope, Brier score, admission, SHR
(21)/2021 XGBoost:0.898, Neural net:0.885, | shift schedule Rui Fu (20)/2018 11 Age, BMLI, SBP, Killip class, CA, ECG ST-
meta-classification0.899 segment depression, Cr, WBC, smoking
Joon-Myoung | Optimization mode:STEMI: No status, previous MI, previous PCI
Kwon (22)/ 0.905; NSTEMI: 0.870 Rohan Khera (21)/ No No
2019 2021
He Lin (23)/ 10 day in-hospital death: 0.9079; | Calibration curve Joon-Myoung 13 Age, sex, BMI, CA before visit, SBP, HR,
2024 20 day in-hospital death: 0.8355; Kwon (22)/2019 Killip class, CK-MB, blood glucose, CRP, Cr,
Konrad Pieszko | 0.89 No LDL, elevation of the ST segment
(24)/2019 He Lin (23)/2024 8 Ventricular tachycardia fibrillation, AF,
Chenxi Song 0.83 HL nicorandil, Bblockers, ACCI, CO2CP, Ca,
(25)/2018 ACEI/ARB
Jingang Yang 0.896 Calibration chart, HL Konrad Pieszko 19 troponin elevation ratio, NLR, PLR, RDW,
(26)/2024 (24)/2019 CRP, platelet count, Cr, Hb, MCV, Na, PT,
Peng Ran (27)/ | 0.84 HL fibrinogen, age, neutrophil count, BMI, SBP,
2021 DBP, HR, sex
Chenxi Song (25)/ 16 Age, sex, BMI, SBP, HR, Cr, WBC, K, Na,
CPACS, clinical pathway syndrome of acute coronary artery; NCDR, national cardiovascular 2018 ECG ST-segment elevation, anterior wall
disease data registry center; AR-GRS, action registry and GWTG (Get with the guidelines) involvement, CA, Killip class, hypertension,
database risk score. hyperlipidemia, smoking status
Jingang Yang (26)/ 10 Age, LVEF, Killip class, HR, Cr, blood
2024 glucose, WBC, SBP, ACEI/ARB, TC
selection bias, and confounding bias. In the predictors domain, 9 Peng Ran (27)/2021 7 Age, SBP, CA, ITDM, history of AF, AHF
studies (12, 14, 19-22, 25-27) were assessed as having a high risk and/or CS, ST-segment deviation

of bias, mainly due to the lack of uniformity in the definition and
measurement of predictors. Data were derived from multi-center
studies, where differences in patient characteristics, medical
standards, and data collection methods across centers could
introduce selection bias and performance bias. In the outcome
domain, the same 9 studies (12, 14, 19-22, 25-27) were also
considered to have a high risk of bias, primarily because of the
multi-center nature of the data sources and inconsistencies in
The lack of
standardization and the complexity of statistical analyses

the definition and measurement of outcomes.

increased the likelihood of confounding bias. Two studies (16,

Frontiers in Cardiovascular Medicine

NT proBNP, N-terminal B-type natriuretic peptide precursor; cTnl, troponin I; HDL-C, high
density lipoprotein cholesterol; CK, creatine kinase; HR, heart rate; MB, myoglobin; LAD, left
atrial diameter; LVEDD, left ventricular end diastolic diameter; RCA, right coronary artery;
BNP, brain natriuretic peptide; LM, left main trunk; CK-MB, creatine kinase isoenzyme; CS,
cardiogenic shock; BMI, body mass index; SBP, systolic blood pressure; CHF, congestive
heart failure; DM, diabetes; PVD, peripheral vascular disease; FBG, fasting blood glucose;
LDL, low density lipoprotein; HDL, high density lipoprotein; CABG, coronary artery bypass
grafting; Cr, creatinine; CA cardiac arrest; SHR, stress hyperglycemia ratio; ECG,
electrocardiogram; MI, miocardial infarction; AF, atrial fibrillation; ACCI, Charlson
comorbidity index adjusted for age; CO2CP, CO2 binding force; Ca, calcium ACEI/ARB,
angiotensin-converting enzyme inhibitors/angiotensin receptor blockers; NLR, ratio of
neutrophil to lymphocyte counts; PLR, platelet to lymphocyte ratio, RDW, red blood cell
distribution width; CRP, C-reactive protein; Hb, hemoglobin; MCV, mean cell volume; Na,
sodium; PT, prothrombin time; DBP, diastolic blood pressure; K, potassium; LVEF, left
ventricular ejection fraction; TC, total cholesterol; ITDM, insulin-dependent diabetes mellitus.
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Included syudies

.

Cardiac arrest
BMI

Cr
Heart rate
Killip class
SBP

Age ‘

FIGURE 2

Distribution of occurrence frequencies of common predictors in Included literatures.

TABLE 5 Validation and presentation of prediction models.

Author Verification method Model presentation method
Jun Ke (10)/2022 Cross validation No

Rong Li (11)/2023 Cross validation No

Ashraf Abugroun (12)/2020 Internal verification, external verification Nomogram

Bai Li (13)/2023 External verification No

Sazzli Kasim (14)/2022 Cross validation Mobile site

Claudio Parco (15)/2021 External verification No

Konrad Pieszko (16)/2018 Cross validation No

Raposeiras-Roubin S (17)/2012

Internal verification

Rating system

Raymond Bernardus (18)/2023

Internal verification

Rating system

Qiang Chen (19)/2022

Internal verification

Rating system

Rui Fu (20)/2018

Internal verification

Rating system

Rohan Khera (21)/2021 Internal verification No
Joon-Myoung Kwon (22)/2019 Internal verification No
He Lin (23)/2024 Cross validation, external verification Nomogram
Konrad Pieszko (24)/2019 Cross validation No

Chenxi Song (25)/2018 Internal verification

Rating system

Jingang Yang (26)/2024

Internal verification, external verification

Mobile site

Peng Ran (27)/2021 Internal verification

Rating system

23) were rated as “unclear” because they did not specify the
definition of outcomes. In the analysis domain, 1 study (14) was
rated as having a low risk of bias, while 17 studies (10-13,
15-27) were rated as having a high risk of bias. Specific issues
included: 6 studies (10, 11, 16, 19, 23, 24) had an events per
variable (EPV) of <20; 2 studies (18, 20) converted continuous
variables into binary categories; 3 studies (24, 26, 27) did not
include all participants in the statistical analysis; 7 studies (12,
17, 19, 22, 25, 27) directly excluded missing values; 10 studies
(10-12, 16, 19, 20, 23-25, 27) selected predictors based solely on
univariate analysis, which was considered inappropriate; 9
studies (10, 16-18, 20, 22, 24, 25, 27) had incomplete evaluation
of the models; 14 studies (10, 11, 13, 15-18, 20-25, 27) were
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overly optimistic in assessing model fit. These inappropriate
experimental designs and data processing methods inevitably
introduced varying degrees of bias risk. For details, please refer
to Table 6.

3.5.2 Applicability assessment

In terms of applicability, 15 studies (10-15, 17, 20-27)
demonstrated good overall applicability, while 3 studies (16, 18,
19) showed poor applicability. In the selection of study
participants, all studies established inclusion and exclusion
criteria that aligned with the principles of this review,
demonstrating good applicability. Regarding the selection of
predictors, all studies adhered to the inclusion principles of this
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review, also indicating good applicability. However, in the
outcome domain, 3 studies (16, 18, 19) did not report specific
definitions of the outcomes, resulting in poor applicability. For
details, please refer to Table 6.

3.6 Key risk prediction models

In the field of clinical research, to more accurately grasp
disease risks and improve diagnosis and treatment outcomes, it
is crucial to sort out and evaluate various clinical risk prediction
models. We first select the optimal model from each study by
synthesizing factors such as predictive performance, stability,
and applicability, and then screen out the most common models
based on the frequency of occurrence of model construction
methods. This initiative aims to promote direct comparison
between different models, provide them with high-quality
objects and a clear scope, so as to eliminate interference,
enhance the reliability of results, and facilitate clinical decision-
making and the development of the field. Details are shown in
Table 7.

4 Discussion

4.1 Existing prediction models have clinical
significance

Patients with ACS face a relatively high risk of in-hospital
death. Constructing an accurate and effective risk prediction
system and formulating intervention strategies in advance are
of great

significance for improving patient prognosis.

TABLE 6 Risk of bias and applicability evaluation of included studies.

Include studies Risk of bias

Final
result

Research | Predictive
object factors

Analysis

10.3389/fcvm.2025.1659184

In-hospital death risk prediction models can identify high-
risk populations at an early stage, thus gaining time for
clinical intervention. This review included 44 prediction
models from 18 studies for analysis. The results showed that
their AUC or C-index ranged from 0.79 to 0.96, indicating
good discriminative ability and prediction accuracy, which
enables accurate identification of patients at high risk of in-
hospital death. Moreover, most models are presented in the
form of scoring
understand, and use, meeting the needs of efficient clinical

systems, which are easy to operate,
decision-making.

Age, systolic blood pressure, Killip classification, heart rate,
and creatinine are frequently included predictors. Multiple
studies (28-33) have confirmed that these factors are strongly
associated with in-hospital death, serving as the core basis for
that the RURUS
SURYAWAN score proposed by scholars such as Suryawan IG

risk modeling. It is worth noting
(34) is designed for patients with acute myocardial infarction
undergoing primary percutaneous coronary intervention. By
quantifying clinical indicators to construct a scoring system, it
achieves the stratification of 30-day death risk. From a
practical perspective, it confirms the feasibility of the model
construction path of “screening key factors—quantifying and
assigning values—risk stratification” and also provides a
reference for subgroup scenarios in the overall risk prediction
of ACS.

In summary, in clinical practice, it is necessary to rely on
existing prediction models, pay attention to the risk factors of
death,
individual clinical characteristics, conduct dynamic assessments,

in-hospital combine model scores with patients’

and intervene in a timely manner to ensure patients in-
hospital safety.

Applicability risk Overall risk

Predictive
factors

Research
object

Final = Risk | Applicability
result | of

Jun Ke (10)/2022 -

bias

Rong Li (11)/2023 - + +

Ashraf Abugroun (12)/2020 - - -

Bai Li (13)/2023 - + +

Sazzli Kasim (14)/2022 - - -

Claudio Parco (15)/2021 -

Konrad Pieszko (16)/2018 -

Raposeiras-Roubin S (17)/2012 -

Raymond Bernardus (18)/2023 -

Qiang Chen (19)/2022 - - _

Rui Fu (20)/2018 - - -

Rohan Khera (21)/2021 - - _

Joon-Myoung Kwon (22)/2019 - - -

He Lin (23)/2024 - + ?

Konrad Pieszko (24)/2019 - + +

Chenxi Song (25)/2018 - - R

Jingang Yang (26)/2024 - - -

Peng Ran (27)/2021 - - R

o e e o I o I o IR (P IS IS IR PR VA I Il I o
B e I 1 o I S I S I I S I S I AV Ao Ao o o
\
.
\

o+
o+

+: Low risk of bias/high applicability; -: High risk of bias/low applicability; ?: unclear.
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TABLE 7 Summary of key risk prediction models.

Author/

Method/

Key predictors (Top 3)

Key validation set AUC

10.3389/fcvm.2025.1659184

Calibration metrics (brief)

year name (95% ClI)

Rong Li (11)/ | XGBoost HR, Age, MB 0.913 (0.910-0.916) Calibration slope, calibration intercept,
2023 and Brier score

Bai Li (13)/ GRACE Age, SBP, HR 0.926 (0.911-0.940) Graphical analysis of risk model
2023 calibration/goodness-of-fit, HL
Raposeiras- GRACE Age, HR, SBP 0.907 (0.889-0.924) HL

Roubin S (17)/

2012

Qiang Chen GRACE + SHR No importance analysis performed 0.814 (0.781-0.844) Calibration curve, calibration slope,
(19)/2022 calibration intercept, Brier score
Rohan Khera | XGBoost No importance analysis performed 0.898 (0.894-0.902) Calibration slope, Brier score, shift
(21)/2021 table

Konrad XGBoost No importance analysis performed 0.89 (not provided) None

Pieszko (24)/

2019

Jingang Yang | XGBoost Age, LVEF, Killip 0.896 (0.884-0.909) Calibration plot, HL

(26)/2024

Author/
year

External
validation
performed

Clinical application scenarios

Advantages

Limitations

Rong Li (11)/ | No Risk stratification for in-hospital death in | XGBoost performance is significantly better | Single-center study; excludes patients
2023 ACS patients from 24 hours after admission than traditional models; incorporates with early death; low importance of ST-
to before discharge, especially suitable for dynamically changing indicators; excellent | segment related indicators; lacks long-
assessment scenarios requiring combination | calibration effect; identifies new predictors | term prognosis assessment
of dynamic biomarkers and cardiac
structural indicators.
Bai Li (13)/ Yes All ACS patients (especially when Optimal comprehensive performance; Low proportion of Asians in the
2023 comprehensive risk stratification is needed), applicable to all ACS subtypes; original development population;
recommended as the preferred model, recommended by guidelines in multiple | calculation requires laboratory data,
suitable for assessment throughout countries; high clinical recognition slightly complex
hospitalization
Raposeiras- No Early risk stratification of ACS patients after | High discrimination and high calibration; | High false positive rate in high-risk
Roubin S (17)/ admission applicable to multiple populations; high | patients; does not include angiographic
2012 clinical practicability; extremely high parameters
negative predictive value
Qiang Chen No Suitable for risk stratification of in-hospital Has independent predictive value; good | Small sample size; retrospective cohort
(19)/2022 mortality in AMI patients incremental predictive ability; clinical study; lack of external validation
applicability of the combined model is
higher than GRACE score alone; applicable
to diabetic patients
Rohan Khera | No Suitable for refined risk stratification of AMI | Excellent calibration performance; strong | Limited improvement in discriminative
(21)/2021 patients after admission risk reclassification ability; wide ability; uneven model performance;
applicability in subgroups; no additional | lack of external validation; variable
data required limitations; lack of clinical tools
Konrad No Applicable to in-hospital and long-term More accurate long-term prediction; relies | Slightly inferior in short-term
Pieszko (24)/ prediction of ACS patients on easily accessible indicators; integrates | prediction; small sample size; does not
2019 inflammatory mechanisms; easy for system | include clinical features; lack of
integration external validation; single outcome
Jingang Yang | Yes Suitable for early risk stratification of in- Excellent prediction accuracy; strong Population limitations; variable
(26)/2024 hospital mortality in STEMI patients after | interpretability; high flexibility; incorporates | restrictions; insufficient subgroup data
admission new key variables

4.2 Data collection and processing impact
prediction model performance

In this review, the in-hospital mortality rate of patients with
ACS showed a significant variation (1.88%-12.3%), which is
closely associated with inconsistent definitions of outcome
indicators: 88% of the studies used “all-cause in-hospital
mortality”, 12% adopted
mortality”. Such inconsistency severely impairs the cross-study

while “postoperative  in-hospital

comparability of models, leading to a lack of unified reference
for prediction results and making it difficult to screen superior
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models. From the perspective of disease characteristics, ACS-
related death is affected by multiple factors; focusing only on
“postoperative in-hospital mortality” will miss non-surgical fatal
events and fail to reflect the real risk. From the clinical practice
perspective, it is unfavorable for evaluating the efficacy of
conservative drug treatment and conducting objective
comparisons of different treatment strategies. From the research
value perspective, “all-cause in-hospital mortality” is more
conducive to the promotion of research findings in different
medical settings. Therefore, it is recommended that future
on ACS

studies in-hospital mortality prediction models
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take “all-cause

standardized outcome indicator, so as to facilitate global sharing

uniformly in-hospital mortality” as the
of medical achievements and promote the advancement of ACS
diagnosis and treatment.

All studies included in this review were retrospective cohort
studies, involving extensive data collection and long-term
follow-up. Such studies inherently face challenges with missing
data, Additionally, the
multicenter nature of the data sources led to

contributing to information bias.
inconsistent
definitions and measurement standards for predictive factors,
further increasing the risk of bias.

During the development of prediction models, the selection of
predictive factors might not always be comprehensive, leading to
potential information bias. For example, Konrad Pieszko and
colleagues (24) utilized hospital electronic medical records for
data collection and found that the data in medical records were
often incomplete, complex, and disorganized. This introduced
potential bias when extracting information for predictive factors.
Particularly concerning was the presence of unstructured data
stored in physicians’ notes, highlighting the importance of the
expertise of the personnel designated to assess predictive factors.
The performance of a model could vary significantly depending
on whether experienced experts or inexperienced researchers
handled this task.

Regarding sample size estimation, six studies (10, 11, 16, 19,
23, 24) did not meet the event per variable (EPV) principle,
potentially leading to an overfitting risk in the models.
Researchers must ensure a sufficient sample size to maintain
model performance while recognizing that an excessively large
sample size does not necessarily enhance model accuracy.

In terms of data preprocessing, 7 studies (12, 17, 19, 22, 25, 27)
directly excluded missing data. This approach may bias the
association between predictors and study outcomes, thereby
constructing a biased model. Even if no bias occurs, it will still
reduce the sample size and compromise information integrity,
further decreasing the model’s predictive accuracy. In the
clinical data of ACS patients, variables such as laboratory
indicators and comorbidities often have certain missing values.
Simple exclusion or mean imputation can also lead to reduced
sample size or data distortion, while multiple imputation can
effectively retain sample information and reduce bias. To
minimize the loss of valuable information during model
development and evaluation, we should consider adopting
advanced imputation techniques (e.g., multiple imputation) to
appropriately account for the uncertainty of missing data,
reduce bias, and improve model performance.

4.3 Variable selection affects prediction
model performance

During the selection of predictive factors, 10 studies (10-12,
16, 19, 20, 23-25, 27) in this review used univariate analysis as
the basis for variable selection. This approach might lead to
improper selection of predictive factors because it overlooks
interactions between variables and potential collinearity issues.
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When univariate modeling results in the omission of relevant
variables, it introduces bias, causing overfitting and reducing the
predictive accuracy of the model. Therefore, optimization during
model development is crucial.

For instance, in the study by Jun Ke et al. (10), researchers
initially performed univariate analysis to select the most
appropriate variables for model development. To avoid
overfitting and enhance model accuracy, they split the training
dataset
hyperparameters of each machine learning model to optimize
The final then

developed using the best hyperparameters to fit all training data.

into a cross-validation scheme and adjusted the

cross-validation performance. model was

Additionally, when selecting variables, it is essential not only
to rely on statistical significance but also to consider potential
confounding factors and other independent variables
comprehensively. Ashraf Abugoun et al. (12) illustrated this
approach while optimizing the modified CHA2DS2-VASc score.
In their exploratory study, they found that hypertension and
vascular disease had minimal impact on predicting mortality in
ACS patients without a history of stroke. Conversely, low blood
pressure and shock were associated with the highest mortality,
while female gender contributed insignificantly to the model. As
a result, they replaced hypertension with low blood pressure and
shock, reduced the score for a history of stroke to 1 point, and
removed the female gender variable.

Notably, contemporary model development needs to enhance
the scientific rigor and transparency of feature selection. Among
relevant approaches, penalized regression, cross-validation,
and feature selection algorithms represent the best practices for
screening predictive variables. High-dimensional data easily
leads to model overfitting. LASSO compresses the coefficients
of redundant features through L1 regularization, enabling
simultaneous modeling and feature screening. Cross-validation
dynamically tests the generalization ability of the model,
avoiding evaluation bias caused by a single data partition.
Feature selection reduce

algorithms dimensionality and

computational consumption in advance, and can also
complement and optimize LASSO. These three approaches form
a modeling loop, balancing accuracy, generalization, and
interpretability, and serve as the key to addressing complex data.
Therefore, we should adopt advanced techniques such as
penalized regression methods and automatic feature selection
with cross-validation. When screening predictors, we need to
balance the correlation of variables and the generalization
ability of the model, avoid model bias caused by the limitations
of univariate analysis, reduce the risk of overfitting
through technical approaches, and improve the rigor of
model construction.

In summary, although existing prediction models are clinically
instructive, whether for the development and validation of existing
models or the reconstruction of new models, the data sources
and the selection methods of predictors should be considered
before construction. For example, prospective cohort studies
with good data representativeness can be used, and predictors
can be screened through literature review combined with

multivariate analysis.
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4.4 Application of artificial intelligence in
in-hospital mortality risk prediction models
for acute coronary syndrome

Currently, the construction methods for in-hospital death risk
prediction models in ACS are relatively singular. Most studies
adopt Logistic regression for modeling, while some studies
attempt to break through traditional limitations through
machine learning and deep learning technologies. For example,
the team of Rong Li (11) applied the XGBoost algorithm, which
showed higher accuracy than traditional logistic regression in
identifying the risk of in-hospital death in ACS patients. Studies
have demonstrated that machine learning is efficient and highly
adaptive in processing large volumes of data, discovering
complex patterns, and achieving accurate predictions (35); on
this basis, deep learning can further automatically extract
features, solve more complex problems, and realize high-
precision prediction and classification (36). After comparing
multiple methods, Sazzli Kasim et al. (14) confirmed that the
deep learning model (SVM selected var) is more effective in
predicting in-hospital mortality of ACS. These achievements
fully confirm the great potential of AI technology in the field of
risk prediction. However, from the perspective of clinical
practice, traditional scoring systems are still applied more
frequently in real-world settings.

In this review, multiple studies (13, 16, 17, 19, 25, 27) indicate
that the GRACE model still performs excellently in various
aspects. It remains a reliable tool for ACS risk prediction in the
foreseeable future and is currently the most suitable model for
routine clinical use. This score was developed based on large-
scale, unbiased multicenter registry data and validated by
external datasets, thus showing excellent performance when
applied to the general population. However, its prediction
accuracy for patients undergoing PCI is suboptimal. Therefore,
there is a need for updated risk scores adapted to current
clinical practices to supplement the application of existing
scoring systems.

Among the 8 studies (10, 11, 14, 16, 21, 22, 24, 26) included in
this review, machine learning and deep learning technologies were
applied either independently or in combination, and the
constructed models showed excellent performance in predictive
ability. Among them, only the model constructed by scholars
such as Sazzli Kasim (14) has been integrated into routine
clinical diagnosis and treatment processes. This model has been
deployed on a risk calculator within the hospital’s internal
network, but the network is not open to the public as the
research is still in the testing phase. Other machine learning-
based methods have not yet been fully validated in clinical
integration, and most remain in the stage of research and small-
scale validation. The core obstacles lie in the universality of
validation, interpretability, and compatibility with clinical
workflows. For interpretability assessment, only 3 studies (11,
14, 26) employed the SHAP value method. The remaining
studies merely reported model performance without clarifying
the logic underlying predictive outcomes. Clinicians, however,
need to understand this logic to trust the model; unexplainable
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“black-box models” may cause confusion in clinical decision-
making, highlighting a severe lack of interpretability. In terms of
reproducibility, only 3 studies (14, 24, 26) made model codes or
detailed parameter settings publicly available. For the rest,
reporting the model
construction process irreproducible. In contrast, regression-

incomplete methodological rendered
based models exhibit significantly higher reproducibility due to
their transparent parameters and simple calculation. Regarding
clinical integration, only 1 study (14) conducted clinical

applicability testing; the remaining studies only achieved
performance validation at the data level. Clinical decision-
making for ACS requires models to be “fast and convenient,”
yet most current AI models fail to meet practical clinical needs,
as they are time-consuming for computation and require
professional software support. It is thus evident that compared
with regression-based models, current Al models in the ACS
field  have

reproducibility, and clinical integration.” The translation of Al

obvious disadvantages in  “interpretability,
technology from research to clinical application still requires
addressing key issues.

Firstly, the adaptability to clinical scenarios needs to be clarified.
Traditional scoring systems, due to their simplicity of operation and
mature clinical application, still have advantages in primary medical
institutions or rapid emergency assessment. Although AI models
have higher prediction accuracy, their operational complexity and
the difficulty in interpreting results may affect clinical acceptance.
The SPADAFORA L team (37) included 23,270 ACS patients and
found that the impact of in-hospital bleeding (IHB) on 1-year
prognosis varies among subgroups such as age, gender, and
treatment pathways. This suggests that different models need
further comparison in specific scenarios. For example, regarding
the whether the

performance advantages of Al models can cover their application

precise stratification of complex cases,
costs still requires more practical verification.

Secondly, the value of clinical intervention needs to be
deepened. The SPADAFORA L team (37) also revealed that
IHB, as one of the markers of the severity of ACS patients’
condition, suggests that risk prediction models should expand
their dimensions, not limited to identifying death risks, but also
include indicators such as bleeding risk and prognostic changes
after intervention. However, existing AI models mostly remain
in the stage of risk stratification and have not fully explored
their guiding role in clinical decision-making. For example,
whether dynamic risk assessment can be used to adjust the
intensity of antithrombotic therapy, optimize monitoring
frequency, and whether they can more effectively reduce the
incidence of adverse events and improve patients’ long-term
prognosis compared with traditional models, these still need in-
depth research combined with clinical practice.

In general, artificial intelligence technology has provided new
tools for ACS risk prediction and shown great potential. However,
the full realization of its clinical value needs to focus on the
verification of scenario adaptability and the exploration of
intervention pathways, focusing on the closed-loop verification
of “model-clinical scenario-patient outcome”. Through more

real-world studies, the technology can be promoted from
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“accurate prediction” to “clinical practicality”, ultimately achieving
effective supplementation and optimization of traditional models.

4.5 The applicability of prediction models
requires further validation

Model validation is a critical step in assessing the performance
and generalizability of prediction models, involving both internal
and external validation. Internal validation estimates model
performance by training and evaluating the model on the same
dataset, which helps identify whether the model is overfitting or
underfitting. In contrast, external validation evaluates the model
on an independent dataset to assess its generalizability and
extrapolation capability.

In this review, 13 studies (10, 11, 14, 16, 17-22, 24, 25, 27)
conducted only internal validation, while 2 study (13, 15)
performed external validation exclusively. Therefore, 72% of
ACS in-hospital mortality prediction models may be overfitted
due to the lack of external validation, resulting in insufficient
clinical generalization. Unless a model undergoes external
validation across multiple centers and diverse populations (e.g.,
cross-regional and cross-ethnic cohorts), it is not recommended
for direct use in clinical decision-making; further validation is
still
researchers acknowledged the limitation of lacking external
the

required to support its clinical application. Many

validation and expressed concerns about model’s
applicability to different regional populations.

For example, in the study by Peng Ran et al. (27), although the
model was developed using a large dataset, it was limited to
Chinese patients. The authors highlighted the need for further
research to verify the model’s performance in other populations
and emphasized the necessity of external validation before
widespread clinical adoption.

Overall, most studies on in-hospital mortality risk prediction
models for ACS are single-center studies, lacking consideration
for differences in applicability across diverse cultural and
geographical environments.

Therefore, when constructing in-hospital mortality risk
prediction models for acute coronary syndrome, researchers
should both

Techniques such as cross-validation, bootstrap resampling, and

integrate internal and external validation.
the “internal-external” approach can be employed for internal
validation, while temporal validation, spatial validation, and
domain validation methods can be utilized for external
validation. Additionally, conducting multi-center studies can

significantly enhance the generalizability of the prediction models.

4.6 The presentation and reporting of
prediction models need further
standardization

The reporting of prediction model results should adhere to

the Transparent Reporting of a Multivariate Prediction Model
for Individual Prognosis or Diagnosis (TRIPOD) statement,
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ensuring that the report includes a complete model equation to
enable reproducibility and independent external validation
studies. Unfortunately, all studies included in this review lack
transparency in their construction processes, with information
gaps that affect the quality assessment of the literature. When
evaluating prediction models, model calibration is a core
indicator for measuring model reliability, whose importance is
equivalent to or even greater than discriminative ability in
clinical practice. Therefore, in addition to these two core
indicators, comprehensive evaluation should be conducted from
multiple aspects such as overall performance, reclassification,
and clinical utility to improve the assessment of model
performance. For example, consideration should be given to
indicators including the model’s sensitivity, specificity, accuracy,
as well as the Hosmer-Leme show test and calibration curve that
directly reflect calibration performance, while combining metrics
like Decision Curve Analysis (DCA) and clinical impact curve.
Notably, although DCA is highly valuable for evaluating the
clinical utility of clinical prediction models, its adoption in
practical research remains low. Three reasons account for this:
first, traditional studies focus more on model predictive accuracy
and insufficiently emphasize “clinical utility,” with inertial
thinking leading to DCA being overlooked; second, DCA is not
a universal indicator—it only applies to models for which
“interventions are needed after outcome prediction,” resulting in
limited application scope; third, compared with easily calculable
indicators such as AUC and calibration curves, DCA is more
complex to operate, requiring higher data standards and relying
on professional programming software, which raises the
threshold for researchers to use it.

Furthermore, there are challenges in applying machine
learning and deep learning to model construction while
adhering to TRIPOD. Since machine learning and deep learning
models are often regarded as “black boxes,” their internal
decision-making processes and interpretability of feature impacts
are poor, which contradicts the transparency required by the
TRIPOD statement. The TRIPOD statement does not provide
detailed reporting guidelines for feature selection of input
variables and feature engineering that improves and transforms
raw data, leading to deficiencies in reporting—particularly the
potential neglect of systematic assessment and reporting of
calibration, which is a critical prerequisite for the application of
models in clinical decision-making. When applying machine
learning or deep learning algorithms, researchers should select
appropriate visualization and interpretation tools to demonstrate
the impact of each variable on outcomes, while ensuring the
practical significance of model-predicted probabilities through
rigorous calibration validation. For instance, when constructing
a deep learning model, Rui Fu (20) and colleagues, despite being
able to fit the model through individual weights, still found it
difficult to interpret the deep learning model using methods
such as variable importance or risk score-based decision-
making. This highlights the need for further exploration in the
field of interpretable deep learning, with optimization and
validation of calibration as one of its core objectives. When

using machine learning models, Jingang Yang (26) and
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colleagues utilized SHAP (SHapley Additive exPlanations) to
explain how the predicted risk for individual patients is
the
predictors and outcomes embedded in the XGBoost model, and

determined, revealed complex relationships between
combined this with calibration assessment—greatly enhancing
the clinical credibility of the model.

Therefore, when constructing risk prediction models, scholars
should strictly follow the requirements of the TRIPOD document,
attach importance to and standardize the assessment and
reporting of model calibration, comprehensively improve the
transparency of the construction process, and further optimize
the application of artificial intelligence technology in prediction

model construction.

5 Limitations of the study

This systematic review has several limitations: (1) The review
included only Chinese and English literature and searched only
five databases, potentially leading to literature omissions. (2)
The included studies were predominantly conducted in Chinese
regions, which may limit the generalizability of the findings to
Western countries and other diverse populations. (3) This study
only included Chinese and English literature, which may
Additionally, 50% of the study
populations were Chinese, leading to an overrepresentation of

introduce language bias.

models developed for the Chinese population and insufficient
coverage of models for other regions. Consequently, the
conclusions have low applicability to non-Chinese populations.

6 Conclusion

The construction of in-hospital mortality risk prediction
models for acute coronary syndrome (ACS) is currently in a
phase of rapid development. While many models demonstrate
good predictive ability, there remain significant gaps in data
analysis and processing methods. Many studies did not adhere
to the TRIPOD reporting guidelines, lacked external validation,
and were predominantly single-center studies, resulting in a
high overall risk of bias and limited generalizability.

Looking forward, the development of ACS in-hospital
mortality risk prediction models should follow the PROBAST
standards to create models with strong predictive performance
and broad applicability. Rigorous adherence to reporting and
validation protocols will enhance the clinical utility and
reliability of these models.
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