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Objective: To systematically evaluate in-hospital mortality risk prediction models 

for patients with acute coronary syndrome (ACS) and provide valuable insights and 

references for the construction, application, and optimization of these models.

Methods: A comprehensive search was conducted in five databases, including 

CNKI, Wanfang, PubMed, Web of Science, and Embase, from inception to 

November 2024. Researchers screened the literature, extracted relevant data, 

and assessed the quality of the prediction models using the Prediction Model 

Risk of Bias Assessment Tool (PROBAST). Extracted data included study 

design, data sources, outcome definitions, sample size, predictive factors, 

model development, and performance.

Results: A total of 18 studies involving 44 prediction models were included. The 

area under the receiver operating characteristic curve (AUC) or C-index of these 

models ranged from 0.79 to 0.96. Overall, the included prediction models 

demonstrated a high risk of bias, primarily due to issues such as unreported 

missing data, methodological flaws in model construction, and a lack of 

model performance evaluation.

Conclusion: The construction of in-hospital mortality risk prediction models for 

patients with ACS is still in the developmental stage. Future development and 

validation of prediction models should adhere to the PROBAST and TRIPOD 

guidelines to establish models with strong predictive performance and 

high generalizability.

Systematic Review Registration: PROSPERO CRD42024567755.

KEYWORDS

models, acute coronary syndrome, in-hospital mortality, risk prediction, systematic 
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1 Background

Acute coronary syndrome (ACS) is a severe cardiovascular condition that 

encompasses three clinical types: ST-segment elevation myocardial infarction (STEMI), 

non-ST-segment elevation myocardial infarction (NSTEMI), and unstable angina 

(UAP). Globally, more than 7 million people are diagnosed with ACS each year. In 

2023, approximately 50% of cardiovascular-related deaths were attributable to this 

condition, underscoring ACS as one of the leading causes of mortality worldwide 

(1, 2). During hospitalization, more than 5% of ACS patients experience in-hospital 
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mortality, with certain subgroups showing mortality rates as high 

as 26.7%. Long-term follow-up studies indicate mortality rates 

reaching up to 26.5%. In contemporary cohorts of STEMI 

patients, in-hospital mortality exceeds 50% (3, 4). Additionally, a 

Swiss study reported that in-hospital mortality rates significantly 

increase when ACS is accompanied by multivessel disease, with 

no observed improvement in this trend over time (5). Therefore, 

accurately identifying the in-hospital mortality risk in ACS 

patients is crucial for developing effective treatment strategies. 

In recent years, numerous prediction models for in-hospital 

mortality risk in ACS patients have emerged (6). Among them, 

the Global Registry of Acute Coronary Events (GRACE) score 

and the Thrombolysis in Myocardial Infarction (TIMI) score are 

the most recommended and widely used risk assessment tools in 

clinical practice guidelines. Additionally, the Acute Coronary 

Treatment and Intervention Outcomes Network (ACTION) risk 

model has demonstrated excellent performance in predicting in- 

hospital mortality (7). However, a systematic evaluation of the 

quality and applicability of these models in different clinical 

settings remains lacking. This study aims to systematically 

review and evaluate existing in-hospital mortality risk prediction 

models developed for ACS patients, providing valuable 

references for scholars in the construction, optimization, and 

validation of such models. The findings of this study will offer 

critical scientific support for clinical practice and future research.

2 Methods

The study protocol was registered on PROSPERO 

(Registration Number: CRD42024567755).

2.1 Search strategy

To ensure a comprehensive literature search and account for 

the broad dissemination of relevant studies, both Chinese and 

English databases were searched. The databases included CNKI, 

Wanfang, PubMed, Embase, and Web of Science, with the 

search period extending from the inception of each database to 

November 2024. A combination of subject terms and free-text 

terms was used in both Chinese and English searches. The main 

Chinese and English search terms are acute coronary syndrome 

(ACS), including its various variant forms such as acute 

coronary syndromes (plural form), coronary syndrome, acute 

(inverted form), and coronary syndromes, acute (inverted plural 

form); patients with acute coronary syndrome; risk, risk 

assessment, relative risk; death, cardiac death, in-hospital death, 

mortality rate, in-hospital mortality rate, risk of death; 

prediction, early warning, in?uencing factors, impact factor; risk 

prediction, model, tool and score. The detailed search strategy is 

provided in the supplementary material. To further enhance the 

comprehensiveness and accuracy of the literature collection, 

manual searching and a snowballing method were employed to 

supplement the references and citations of the included studies.

2.2 Inclusion and exclusion criteria

Inclusion Criteria: (1) Population: Patients with acute 

coronary syndrome (ACS), including ST-segment elevation 

myocardial infarction (STEMI), non-ST-segment elevation 

myocardial infarction (NSTEMI), and unstable angina (UAP). 

(2) Study Focus: Construction or validation of in-hospital 

mortality risk prediction models for ACS patients. (3)Study 

Design: Observational studies.

Exclusion Criteria: (1) Non-English and non-Chinese 

publications. (2) Duplicate studies and articles with inaccessible 

full texts. (3) Publications in the form of abstracts, conference 

notices, reviews, or meta-analyses. (4) Studies that only analyzed 

predictive factors for in-hospital mortality in ACS patients 

without constructing a prediction model.

2.3 Literature screening and data extraction

Two researchers independently screened the literature by 

reviewing the titles and abstracts according to the inclusion and 

exclusion criteria. In cases of disagreement, discussions or 

consultation with a third party were conducted to reach a 

consensus. After excluding irrelevant studies, the full texts of the 

remaining articles were thoroughly reviewed to determine the final 

included studies. Data extraction was guided by the Critical 

Appraisal and Data Extraction for Systematic Reviews of Prediction 

Modelling Studies (CHARMS) checklist (8). Extracted data 

included: Publication Date, Study Design, Country, Data Source, 

Sample Size, Candidate Variables, Modeling Methods, Variable 

Selection Methods, Number of Models, Model Performance, Model 

Validation Methods, Model Presentation Format.

2.4 Risk of bias and applicability assessment

Two researchers independently assessed the risk of bias and 

applicability of the included studies using the Prediction Model 

Risk Of Bias Assessment Tool (PROBAST) (9). In case of 

disagreement, a third party’s opinion was sought.

The risk of bias assessment covered four domains: participants, 

predictors, outcomes, and analysis, comprising a total of 20 specific 

questions. Following the “shortest plank theory,” each domain was 

evaluated as follows: Low Risk:If all items were marked as “probably 

yes” or “yes.” High Risk: If any item was marked as “no” or 

“probably no.” Unclear Risk: If insufficient information was 

provided for any item. For the overall risk of bias, a study was 

classified as “low risk” only if all four domains were rated as “low 

risk.” If any domain was rated as “high risk,” the overall bias risk 

was deemed “high.” If any domain was rated as “unclear,” the 

overall risk of bias was also classified as “unclear.” Applicability 

was evaluated across three domains: study population, predictors, 

and outcomes. The assessment method was consistent with the 

risk of bias evaluation, using the same criteria for low, high, and 

unclear applicability.
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2.5 Data synthesis

A descriptive analysis method will be used to summarize the 

basic characteristics of the included studies and the constructed 

prediction models.

3 Results

3.1 Literature screening process and results

A total of 5,232 relevant studies were identified through 

database searches and other resources. After removing 741 

duplicate records, 4,491 articles remained. Initial screening of 

titles and abstracts resulted in 168 studies for full-text review. 

Following a detailed assessment, 19 studies were deemed 

eligible, and finally, 18 studies were included in the descriptive 

analysis. The screening process is shown in Figure 1.

3.2 Basic characteristics of included studies

This study conducted a comprehensive analysis of 18 relevant 

studies (10–27). It was found that 67% (12/18) of the in-hospital 

risk prediction models for acute coronary syndrome (ACS) were 

published within the past five years (10–15, 18, 19, 21, 23, 

26, 27). These studies primarily originated from China (n = 9) 

(9, 10, 11, 13, 19, 20, 23, 25–27), the United States (n = 2) 

FIGURE 1 

Literature screening process diagram. During the data analysis, two included literatures showed overlapping data in terms of modeling methods, data 

time, and screening variables. To avoid bias in the analysis results, the one with a lower impact factor was excluded.

Jian et al.                                                                                                                                                                10.3389/fcvm.2025.1659184 

Frontiers in Cardiovascular Medicine 03 frontiersin.org



(12, 21), and Poland (n = 2) (16, 24). All included studies were 

retrospective cohort studies. In terms of data sources, half of the 

studies were based on single-center data (10, 11, 13, 15–18, 23, 

24), while the other half utilized multi-center data (12, 14, 

19–22, 25–27). All studies reported the sample sizes required for 

model development, with sample sizes ranging from 502 to 

755,402. The in-hospital mortality rates varied between 1.88% 

and 12.3%. For details, please refer to Table 1.

3.3 Basic information on prediction model 
construction

The number of candidate variables varied widely among 

studies, ranging from 8 to 89. When handling continuous 

variables, the majority of the studies retained their continuous 

nature, with only two studies converting continuous variables 

into binary categories (18, 20). For missing data, common 

approaches included exclusion and imputation. The variable 

selection process typically followed a stepwise procedure, 

starting with univariate analysis and subsequently proceeding to 

multivariate analysis. In terms of modeling methods, most 

studies employed traditional regression analysis to construct 

models, while others integrated machine learning or deep 

learning techniques. For specifics, please refer to Table 2.

3.4 Characteristics of prediction models

3.4.1 Predictive performance of models

All included studies reported discrimination metrics, 

including the area under the curve (AUC) or C-index, ranging 

from 0.79 to 0.96. These values indicate that most prediction 

models demonstrated at least moderate accuracy and good 

discriminatory ability. In terms of model calibration, the most 

commonly used test method was the Hosmer-Lemeshow (HL) 

TABLE 1 Basic characteristics of included literature.

First author/ 
year of  
publication

Area Research 
design

Data 
sources

Model 
type

Research 
object

Final 
result

Total sample

Number of 
events

Total 
number of 

people

In-hospital 
mortality 

rate

Jun Ke (10)/2022 China ① Single-center b ACS A 122 6,482 1.88%

Rong Li (11)/2023 China ① Single-center b ACS A 85 2,414 3.5%

Ashraf Abugroun 

(12)/2020

America ① Multicenter b ACS undergoing 

PCI

A 6,312 252,443 2.5%

Bai Li (13)/2023 China ① Single-center a ACS undergoing 

CAG or PCI

B 414 19,237 2.2%

Sazzli Kasim (14)/ 

2022

Malaysia ① Multicenter b STEMI and 

NSTEMI

A 4,809 68,528 7.02%

Claudio Parco (15)/ 

2021

Germany ① Single-center a STEMI and 

NSTEMI

B 119 1,567 7.5%

Konrad Pieszko 

(16)/2018

Poland ① Single-center b ACS A 97 6,769 1.4%

Raposeiras-Roubin 

S (17)/2012

Spain ① Single-center a ACS A 265 4,497 5.9%

Raymond 

Bernardus (18)/ 

2023

Indonesia ① Single-center a ACS A 159 1,504 10.6%

Qiang Chen (19)/ 

2022

China ① Multicenter a AMI A 40 613 6.5%

Rui Fu (20)/2018 China ① Multicenter b NSTEMI A 342 5,775 5.92%

Rohan Khera (21)/ 

2021

America ① Multicenter b AMI A 33,238 755,402 4.4%

Joon-Myoung 

Kwon (22)/2019

Korea ① Multicenter b AMI A 1,081 22,875 4.4%

He Lin (23)/2024 China ① Single-center b Elderly patients 

with AMI

A 62 502 12.3%

Konrad Pieszko 

(24)/2019

Poland ① Single-center b ACS A 83 5,053 1.64%

Chenxi Song (25)/ 

2018

China ① Multicenter b AMI A 1,504 23,417 6.4%

Jingang Yang (26)/ 

2024

China ① Multicenter b AMI A 2,416 30,849 7.8%

Peng Ran (27)/2021 China ① Multicenter b ACS A 1,181 62,546 1.9%

Special symbols are used to represent the corresponding content due to its length. ①: retrospective cohort study.
aVerification.
bDevelopment and validation; A: In-hospital death; B died in the backyard after surgery; ACS, acute coronary syndrome; AMI, acute myocardial infarction; STEMI, ST segment elevation 

myocardial infarction; NSTEMI, non ST segment elevation myocardial infarction; PCI, percutaneous coronary intervention therapy; CAG, coronary angiography.
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goodness-of-fit test, which was employed in six studies (13, 17, 20, 

25–27), followed by the calibration slope, used in four studies (11, 

12, 19, 21). Additionally, five studies did not provide calibration 

information (10, 16, 18, 22, 24), while others utilized calibration 

plots, calibration curves, calibration intercepts, nomograms, or 

the Brier score either individually or in combination.

The results indicated good calibration performance. For 

details, please refer to Table 3.

3.4.2 Predictive factors in the models

The number of predictive factors included in the models 

ranged from 5 to 20. However, four studies (13, 15, 17, 21) did 

not provide detailed information about the final predictive 

factors included in their models. Among the top nine predictors 

most frequently included in the models, age (n = 12), systolic 

blood pressure (n = 9), Killip classification (n = 8), heart rate 

(n = 7), creatinine (n = 7), body mass index (n = 4), cardiac arrest 

(n = 3), sex (n = 3), and white blood cell count (n = 3) were the 

most prominent. For details, please refer to Table 4 and Figure 2.

3.4.3 Model validation and presentation methods
Among the studies validating predictive models, 13 studies 

(10, 11, 14, 16, 17–22, 24, 25, 27) utilized only internal 

validation methods, 2 study (15) employed only external 

validation, and 3 studies (12, 14, 23, 26) combined both internal 

and external validation. Regarding the presentation methods of 

the models, 6 studies (17–20, 25, 27) chose to display them 

through scoring systems, 2 studies (14, 26) opted for mobile 

websites, 2 studies (12, 23) used nomograms, while the 

remaining 8 studies (10, 11, 13, 15, 16, 21, 22, 24) did not 

specify the presentation methods of their models. For details, 

please refer to Table 5.

3.5 Risk of bias and applicability assessment 
results

3.5.1 Risk of bias domains
The overall risk of bias was high across all domains. In the 

participants domain, all studies (10–27) were identified as 

having a high risk of bias, primarily because the studies relied 

on retrospective cohort data, which depended on historical 

records. This led to issues such as missing data, recording 

errors, or inconsistencies. The selection of participants may not 

have been representative, and it was challenging to control for 

all confounding factors, resulting in potential information bias, 

TABLE 2 Basic information for constructing prediction models.

Author Candidate variables Missing data Variable 
selection

Modeling method

Number Continuous variable 
method

Number Processing 
method

Jun Ke (10)/2022 22 MC No Mean Imp UMA ML:LR, GBDT, RF, SVM

Rong Li (11)/2023 44 MC 3,585 Imp UMA LR, XGBoost

Ashraf Abugroun (12)/ 

2020

8 MC No Exclude UMA LR

Bai Li (13)/2023 24 MC 3,964 MF Imp No No

Sazzli Kasim (14)/2022 54 MC 55,338 MF Imp, Multi Imp FSA ML:LR, RF, SVM;DL:LR, 

RF, SVM

Claudio Parco (15)/ 

2021

No MC 1,510 Imp No No

Konrad Pieszko (16)/ 

2018

23 MC No Mean Imp, VC- 

DomLEM Imp

UA LR, XGBoost, DRSA-BRE

Raposeiras-Roubin S 

(17)/2012

13 MC 107 Exclude No No

Raymond Bernardus 

(18)/2023

14 Bin Var No No MA LR

Qiang Chen (19)/2022 No MC No Exclude UMA LR

Rui Fu (20)/2018 21 Bin Var 393 Mean Imp or Med Imp UMA LR

Rohan Khera (21)/ 

2021

56 MC 295,987 Mode Imp, 5× MI No LR, LASSO, XGBoost, 

Neural net

Joon-Myoung Kwon 

(22)/2019

No MC 3,102 Exclude No DL, ML:LR, RF

He Lin (23)/2024 26 MC No MI UA, LASSO Reg COX

Konrad Pieszko (24)/ 

2019

28 MC 394 Exclude UMCA COX, XGBoost

Chenxi Song (25)/2018 25 MC 2,619 Exclude UMA LR

Jingang Yang (26)/ 

2024

89 MC Provide missing 

rate

MICE ML XGBoost

Peng Ran (27)/2021 32 MC 1,095 Exclude UMA LR

MC, maintain continuity; Bin Var, binary variable; Mean Imp, Fill in the average value; Imp, fill; MF Imp, Massforest algorithm filling; Multi Imp, multivariate filling; VC DomLEM Imp, VC 

DomLEM algorithm filling; Med Imp, median filling; Mode Imp, Pattern filling; 5×MI, 5× multiple filling; MI, multiple filling; MICE, chain equation multiple interpolation; UMA, single 

factor analysis followed by multiple factor analysis; UMCA, single factor analysis followed by COX regression analysis; FSA, feature selection algorithm; UA, univariate analysis; MA, 

multivariate analysis; LASSO Reg, LASSO regression; ML, machine learning; LR logistic regression; GBDT, gradient boosting decision tree; RF, random forest; SVM, support vector 

machine; XGBoost, gradient boosting tree; DL, deep learning DRSA-BRE, dominated rough set balancing rule ensemble; COX, proportional hazard regression model.
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selection bias, and confounding bias. In the predictors domain, 9 

studies (12, 14, 19–22, 25–27) were assessed as having a high risk 

of bias, mainly due to the lack of uniformity in the definition and 

measurement of predictors. Data were derived from multi-center 

studies, where differences in patient characteristics, medical 

standards, and data collection methods across centers could 

introduce selection bias and performance bias. In the outcome 

domain, the same 9 studies (12, 14, 19–22, 25–27) were also 

considered to have a high risk of bias, primarily because of the 

multi-center nature of the data sources and inconsistencies in 

the definition and measurement of outcomes. The lack of 

standardization and the complexity of statistical analyses 

increased the likelihood of confounding bias. Two studies (16, 

TABLE 3 The predictive performance of the prediction model.

Author Model performance

AUC Calibration

Jun Ke (10)/ 

2022

LR:0.884, XGBoost:0.918, 

RF:0.913, SVM:0.896

No

Rong Li (11)/ 

2023

LR:0.904, XGBoost:0.913 Calibrate slope, calibration 

intercept, and Brier score

Ashraf 

Abugroun (12)/ 

2020

0.83 Calibration slope, 

calibration intercept, 

calibration chart

Bai Li (13)/2023 GRACE:0.926, GRACE2.0:0.920, 

ACTION:0.945, TIMI:0.811, 

CPACS:0.841

Graphical analysis of risk 

model calibration/goodness 

of fit, HL

Sazzli Kasim 

(14)/2022

Optimization model:0.96 McNemar test, 

hyperparameter adjustment

Claudio Parco 

(15)/2021

GRACE 1.0: 0.84; GRACE 2.0: 

0.79; ACTION: 0.84; NCDR: 0.89

Calibration chart

Konrad Pieszko 

(16)/2018

LR: 68 ± 11, XGBoost: 78 ± 3, 

DRSA-BRE: 80.8

No

Raposeiras- 

Roubin S (17)/ 

2012

Original GRACE RS: 0.91; 

Update GRACE RS: 0.90; AR- 

GRS: 0.90

HL

Raymond 

Bernardus (18)/ 

2023

0.820 No

Qiang Chen 

(19)/2022

0.814 Calibration curve, 

calibration slope, calibration 

intercept, Brier score

Rui Fu (20)/ 

2018

0.81 HL

Rohan Khera 

(21)/2021

LR: 0.888, LASSO: 0.886, 

XGBoost:0.898, Neural net:0.885, 

meta-classification0.899

Calibrate slope, Brier score, 

shift schedule

Joon-Myoung 

Kwon (22)/ 

2019

Optimization mode:STEMI: 

0.905; NSTEMI: 0.870

No

He Lin (23)/ 

2024

10 day in-hospital death: 0.9079; 

20 day in-hospital death: 0.8355;

Calibration curve

Konrad Pieszko 

(24)/2019

0.89 No

Chenxi Song 

(25)/2018

0.83 HL

Jingang Yang 

(26)/2024

0.896 Calibration chart, HL

Peng Ran (27)/ 

2021

0.84 HL

CPACS, clinical pathway syndrome of acute coronary artery; NCDR, national cardiovascular 

disease data registry center; AR-GRS, action registry and GWTG (Get with the guidelines) 

database risk score.

TABLE 4 Prediction factors of the prediction model.

Author Final predictive factor

Number Content

Jun Ke (10)/2022 10 NT-proBNP, D-dimer, cTnI, age, HDL-C, 

statins, NSTEMI, Killip III, Killip IV, CK

Rong Li (11)/2023 20 HR, age, MB, LAD, LVEDD, RCA stenosis, 

BNP, LM stenosis, CK-MB, cTnI, Killip class, 

renal dysfunction, elevated Cre, elevated MB, 

history of PCI, presentation in CS, elevated 

BNP, elevated HR, Higher BMI, SBP

Ashraf Abugroun 

(12)/2020

7 CHF, Hypotension/CS, Age ≥65, Age ≥75, 

DM, Stroke, PVD

Bai Li (13)/2023 No No

Sazzli Kasim (14)/ 

2022

14 Age, HR, Killip class, FBG, anti-arrhythmic 

agent, LDL, HDL, statins, lipid lowering 

agent, chronic angina past 2 weeks, ST- 

segment elevation ≥1 mm in ≥2 contiguous 

limb leads, CABG, oral hypoglycemic agent, 

cardiac catheterization

Claudio Parco (15)/ 

2021

No No

Konrad Pieszko 

(16)/2018

5 Neutrophil count, SBP, Cr, age, hematocrit

Raposeiras-Roubin 

S (17)/2012

No No

Raymond 

Bernardus (18)/ 

2023

5 Age, history of angina, history of 

revascularization, modified shock index, Killip 

class

Qiang Chen (19)/ 

2022

9 Age, HR, SBP, Cr, Killip class, ST-segment 

deviation, cardiac biomarkers, CA at 

admission, SHR

Rui Fu (20)/2018 11 Age, BMI, SBP, Killip class, CA, ECG ST- 

segment depression, Cr, WBC, smoking 

status, previous MI, previous PCI

Rohan Khera (21)/ 

2021

No No

Joon-Myoung 

Kwon (22)/2019

13 Age, sex, BMI, CA before visit, SBP, HR, 

Killip class, CK-MB, blood glucose, CRP, Cr, 

LDL, elevation of the ST segment

He Lin (23)/2024 8 Ventricular tachycardia fibrillation, AF, 

nicorandil, βblockers, ACCI, CO2CP, Ca, 

ACEI/ARB

Konrad Pieszko 

(24)/2019

19 troponin elevation ratio, NLR, PLR, RDW, 

CRP, platelet count, Cr, Hb, MCV, Na, PT, 

fibrinogen, age, neutrophil count, BMI, SBP, 

DBP, HR, sex

Chenxi Song (25)/ 

2018

16 Age, sex, BMI, SBP, HR, Cr, WBC, K, Na, 

ECG ST-segment elevation, anterior wall 

involvement, CA, Killip class, hypertension, 

hyperlipidemia, smoking status

Jingang Yang (26)/ 

2024

10 Age, LVEF, Killip class, HR, Cr, blood 

glucose, WBC, SBP, ACEI/ARB, TC

Peng Ran (27)/2021 7 Age, SBP, CA, ITDM, history of AF, AHF 

and/or CS, ST-segment deviation

NT proBNP, N-terminal B-type natriuretic peptide precursor; cTnI, troponin I; HDL-C, high 

density lipoprotein cholesterol; CK, creatine kinase; HR, heart rate; MB, myoglobin; LAD, left 

atrial diameter; LVEDD, left ventricular end diastolic diameter; RCA, right coronary artery; 

BNP, brain natriuretic peptide; LM, left main trunk; CK-MB, creatine kinase isoenzyme; CS, 

cardiogenic shock; BMI, body mass index; SBP, systolic blood pressure; CHF, congestive 

heart failure; DM, diabetes; PVD, peripheral vascular disease; FBG, fasting blood glucose; 

LDL, low density lipoprotein; HDL, high density lipoprotein; CABG, coronary artery bypass 

grafting; Cr, creatinine; CA cardiac arrest; SHR, stress hyperglycemia ratio; ECG, 

electrocardiogram; MI, miocardial infarction; AF, atrial fibrillation; ACCI, Charlson 

comorbidity index adjusted for age; CO2CP, CO2 binding force; Ca, calcium ACEI/ARB, 

angiotensin-converting enzyme inhibitors/angiotensin receptor blockers; NLR, ratio of 

neutrophil to lymphocyte counts; PLR, platelet to lymphocyte ratio; RDW, red blood cell 

distribution width; CRP, C-reactive protein; Hb, hemoglobin; MCV, mean cell volume; Na, 

sodium; PT, prothrombin time; DBP, diastolic blood pressure; K, potassium; LVEF, left 

ventricular ejection fraction; TC, total cholesterol; ITDM, insulin-dependent diabetes mellitus.
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23) were rated as “unclear” because they did not specify the 

definition of outcomes. In the analysis domain, 1 study (14) was 

rated as having a low risk of bias, while 17 studies (10–13, 

15–27) were rated as having a high risk of bias. Specific issues 

included: 6 studies (10, 11, 16, 19, 23, 24) had an events per 

variable (EPV) of <20; 2 studies (18, 20) converted continuous 

variables into binary categories; 3 studies (24, 26, 27) did not 

include all participants in the statistical analysis; 7 studies (12, 

17, 19, 22, 25, 27) directly excluded missing values; 10 studies 

(10–12, 16, 19, 20, 23–25, 27) selected predictors based solely on 

univariate analysis, which was considered inappropriate; 9 

studies (10, 16–18, 20, 22, 24, 25, 27) had incomplete evaluation 

of the models; 14 studies (10, 11, 13, 15–18, 20–25, 27) were 

overly optimistic in assessing model fit. These inappropriate 

experimental designs and data processing methods inevitably 

introduced varying degrees of bias risk. For details, please refer 

to Table 6.

3.5.2 Applicability assessment

In terms of applicability, 15 studies (10–15, 17, 20–27) 

demonstrated good overall applicability, while 3 studies (16, 18, 

19) showed poor applicability. In the selection of study 

participants, all studies established inclusion and exclusion 

criteria that aligned with the principles of this review, 

demonstrating good applicability. Regarding the selection of 

predictors, all studies adhered to the inclusion principles of this 

FIGURE 2 

Distribution of occurrence frequencies of common predictors in Included literatures.

TABLE 5 Validation and presentation of prediction models.

Author Verification method Model presentation method

Jun Ke (10)/2022 Cross validation No

Rong Li (11)/2023 Cross validation No

Ashraf Abugroun (12)/2020 Internal verification, external verification Nomogram

Bai Li (13)/2023 External verification No

Sazzli Kasim (14)/2022 Cross validation Mobile site

Claudio Parco (15)/2021 External verification No

Konrad Pieszko (16)/2018 Cross validation No

Raposeiras-Roubin S (17)/2012 Internal verification Rating system

Raymond Bernardus (18)/2023 Internal verification Rating system

Qiang Chen (19)/2022 Internal verification Rating system

Rui Fu (20)/2018 Internal verification Rating system

Rohan Khera (21)/2021 Internal verification No

Joon-Myoung Kwon (22)/2019 Internal verification No

He Lin (23)/2024 Cross validation, external verification Nomogram

Konrad Pieszko (24)/2019 Cross validation No

Chenxi Song (25)/2018 Internal verification Rating system

Jingang Yang (26)/2024 Internal verification, external verification Mobile site

Peng Ran (27)/2021 Internal verification Rating system
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review, also indicating good applicability. However, in the 

outcome domain, 3 studies (16, 18, 19) did not report specific 

definitions of the outcomes, resulting in poor applicability. For 

details, please refer to Table 6.

3.6 Key risk prediction models

In the field of clinical research, to more accurately grasp 

disease risks and improve diagnosis and treatment outcomes, it 

is crucial to sort out and evaluate various clinical risk prediction 

models. We first select the optimal model from each study by 

synthesizing factors such as predictive performance, stability, 

and applicability, and then screen out the most common models 

based on the frequency of occurrence of model construction 

methods. This initiative aims to promote direct comparison 

between different models, provide them with high-quality 

objects and a clear scope, so as to eliminate interference, 

enhance the reliability of results, and facilitate clinical decision- 

making and the development of the field. Details are shown in 

Table 7.

4 Discussion

4.1 Existing prediction models have clinical 
significance

Patients with ACS face a relatively high risk of in-hospital 

death. Constructing an accurate and effective risk prediction 

system and formulating intervention strategies in advance are 

of great significance for improving patient prognosis. 

In-hospital death risk prediction models can identify high- 

risk populations at an early stage, thus gaining time for 

clinical intervention. This review included 44 prediction 

models from 18 studies for analysis. The results showed that 

their AUC or C-index ranged from 0.79 to 0.96, indicating 

good discriminative ability and prediction accuracy, which 

enables accurate identification of patients at high risk of in- 

hospital death. Moreover, most models are presented in the 

form of scoring systems, which are easy to operate, 

understand, and use, meeting the needs of efficient clinical 

decision-making.

Age, systolic blood pressure, Killip classification, heart rate, 

and creatinine are frequently included predictors. Multiple 

studies (28–33) have confirmed that these factors are strongly 

associated with in-hospital death, serving as the core basis for 

risk modeling. It is worth noting that the RURUS 

SURYAWAN score proposed by scholars such as Suryawan IG 

(34) is designed for patients with acute myocardial infarction 

undergoing primary percutaneous coronary intervention. By 

quantifying clinical indicators to construct a scoring system, it 

achieves the stratification of 30-day death risk. From a 

practical perspective, it confirms the feasibility of the model 

construction path of “screening key factors—quantifying and 

assigning values—risk stratification” and also provides a 

reference for subgroup scenarios in the overall risk prediction 

of ACS.

In summary, in clinical practice, it is necessary to rely on 

existing prediction models, pay attention to the risk factors of 

in-hospital death, combine model scores with patients’ 

individual clinical characteristics, conduct dynamic assessments, 

and intervene in a timely manner to ensure patients’ in- 

hospital safety.

TABLE 6 Risk of bias and applicability evaluation of included studies.

Include studies Risk of bias Applicability risk Overall risk

Research  
object

Predictive  
factors

Final 
result

Analysis Research 
object

Predictive 
factors

Final 
result

Risk 
of 

bias

Applicability

Jun Ke (10)/2022 - + + - + + + - +

Rong Li (11)/2023 - + + - + + + - +

Ashraf Abugroun (12)/2020 - - - - + + + - +

Bai Li (13)/2023 - + + - + + + - +

Sazzli Kasim (14)/2022 - - - + + + + - +

Claudio Parco (15)/2021 - + + - + + + - +

Konrad Pieszko (16)/2018 - + ? - + + - - -

Raposeiras-Roubin S (17)/2012 - + + - + + + - +

Raymond Bernardus (18)/2023 - + + - + + - - -

Qiang Chen (19)/2022 - - - - + + - - -

Rui Fu (20)/2018 - - - - + + + - +

Rohan Khera (21)/2021 - - - - + + + - +

Joon-Myoung Kwon (22)/2019 - - - - + + + - +

He Lin (23)/2024 - + ? - + + + - +

Konrad Pieszko (24)/2019 - + + - + + + - +

Chenxi Song (25)/2018 - - - - + + + - +

Jingang Yang (26)/2024 - - - - + + + - +

Peng Ran (27)/2021 - - - - + + + - +

+: Low risk of bias/high applicability; -: High risk of bias/low applicability; ?: unclear.
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4.2 Data collection and processing impact 
prediction model performance

In this review, the in-hospital mortality rate of patients with 

ACS showed a significant variation (1.88%–12.3%), which is 

closely associated with inconsistent definitions of outcome 

indicators: 88% of the studies used “all-cause in-hospital 

mortality”, while 12% adopted “postoperative in-hospital 

mortality”. Such inconsistency severely impairs the cross-study 

comparability of models, leading to a lack of unified reference 

for prediction results and making it difficult to screen superior 

models. From the perspective of disease characteristics, ACS- 

related death is affected by multiple factors; focusing only on 

“postoperative in-hospital mortality” will miss non-surgical fatal 

events and fail to re?ect the real risk. From the clinical practice 

perspective, it is unfavorable for evaluating the efficacy of 

conservative drug treatment and conducting objective 

comparisons of different treatment strategies. From the research 

value perspective, “all-cause in-hospital mortality” is more 

conducive to the promotion of research findings in different 

medical settings. Therefore, it is recommended that future 

studies on ACS in-hospital mortality prediction models 

TABLE 7 Summary of key risk prediction models.

Author/ 
year

Method/ 
name

Key predictors (Top 3) Key validation set AUC 
(95% CI)

Calibration metrics (brief)

Rong Li (11)/ 

2023

XGBoost HR, Age, MB 0.913 (0.910–0.916) Calibration slope, calibration intercept, 

and Brier score

Bai Li (13)/ 

2023

GRACE Age, SBP, HR 0.926 (0.911–0.940) Graphical analysis of risk model 

calibration/goodness-of-fit, HL

Raposeiras- 

Roubin S (17)/ 

2012

GRACE Age, HR, SBP 0.907 (0.889–0.924) HL

Qiang Chen 

(19)/2022

GRACE + SHR No importance analysis performed 0.814 (0.781–0.844) Calibration curve, calibration slope, 

calibration intercept, Brier score

Rohan Khera 

(21)/2021

XGBoost No importance analysis performed 0.898 (0.894–0.902) Calibration slope, Brier score, shift 

table

Konrad 

Pieszko (24)/ 

2019

XGBoost No importance analysis performed 0.89 (not provided) None

Jingang Yang 

(26)/2024

XGBoost Age, LVEF, Killip 0.896 (0.884–0.909) Calibration plot, HL

Author/ 
year

External 
validation 
performed

Clinical application scenarios Advantages Limitations

Rong Li (11)/ 

2023

No Risk stratification for in-hospital death in 

ACS patients from 24 hours after admission 

to before discharge, especially suitable for 

assessment scenarios requiring combination 

of dynamic biomarkers and cardiac 

structural indicators.

XGBoost performance is significantly better 

than traditional models; incorporates 

dynamically changing indicators; excellent 

calibration effect; identifies new predictors

Single-center study; excludes patients 

with early death; low importance of ST- 

segment related indicators; lacks long- 

term prognosis assessment

Bai Li (13)/ 

2023

Yes All ACS patients (especially when 

comprehensive risk stratification is needed), 

recommended as the preferred model, 

suitable for assessment throughout 

hospitalization

Optimal comprehensive performance; 

applicable to all ACS subtypes; 

recommended by guidelines in multiple 

countries; high clinical recognition

Low proportion of Asians in the 

original development population; 

calculation requires laboratory data, 

slightly complex

Raposeiras- 

Roubin S (17)/ 

2012

No Early risk stratification of ACS patients after 

admission

High discrimination and high calibration; 

applicable to multiple populations; high 

clinical practicability; extremely high 

negative predictive value

High false positive rate in high-risk 

patients; does not include angiographic 

parameters

Qiang Chen 

(19)/2022

No Suitable for risk stratification of in-hospital 

mortality in AMI patients

Has independent predictive value; good 

incremental predictive ability; clinical 

applicability of the combined model is 

higher than GRACE score alone; applicable 

to diabetic patients

Small sample size; retrospective cohort 

study; lack of external validation

Rohan Khera 

(21)/2021

No Suitable for refined risk stratification of AMI 

patients after admission

Excellent calibration performance; strong 

risk reclassification ability; wide 

applicability in subgroups; no additional 

data required

Limited improvement in discriminative 

ability; uneven model performance; 

lack of external validation; variable 

limitations; lack of clinical tools

Konrad 

Pieszko (24)/ 

2019

No Applicable to in-hospital and long-term 

prediction of ACS patients

More accurate long-term prediction; relies 

on easily accessible indicators; integrates 

in?ammatory mechanisms; easy for system 

integration

Slightly inferior in short-term 

prediction; small sample size; does not 

include clinical features; lack of 

external validation; single outcome

Jingang Yang 

(26)/2024

Yes Suitable for early risk stratification of in- 

hospital mortality in STEMI patients after 

admission

Excellent prediction accuracy; strong 

interpretability; high ?exibility; incorporates 

new key variables

Population limitations; variable 

restrictions; insufficient subgroup data
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uniformly take “all-cause in-hospital mortality” as the 

standardized outcome indicator, so as to facilitate global sharing 

of medical achievements and promote the advancement of ACS 

diagnosis and treatment.

All studies included in this review were retrospective cohort 

studies, involving extensive data collection and long-term 

follow-up. Such studies inherently face challenges with missing 

data, contributing to information bias. Additionally, the 

multicenter nature of the data sources led to inconsistent 

definitions and measurement standards for predictive factors, 

further increasing the risk of bias.

During the development of prediction models, the selection of 

predictive factors might not always be comprehensive, leading to 

potential information bias. For example, Konrad Pieszko and 

colleagues (24) utilized hospital electronic medical records for 

data collection and found that the data in medical records were 

often incomplete, complex, and disorganized. This introduced 

potential bias when extracting information for predictive factors. 

Particularly concerning was the presence of unstructured data 

stored in physicians’ notes, highlighting the importance of the 

expertise of the personnel designated to assess predictive factors. 

The performance of a model could vary significantly depending 

on whether experienced experts or inexperienced researchers 

handled this task.

Regarding sample size estimation, six studies (10, 11, 16, 19, 

23, 24) did not meet the event per variable (EPV) principle, 

potentially leading to an overfitting risk in the models. 

Researchers must ensure a sufficient sample size to maintain 

model performance while recognizing that an excessively large 

sample size does not necessarily enhance model accuracy.

In terms of data preprocessing, 7 studies (12, 17, 19, 22, 25, 27) 

directly excluded missing data. This approach may bias the 

association between predictors and study outcomes, thereby 

constructing a biased model. Even if no bias occurs, it will still 

reduce the sample size and compromise information integrity, 

further decreasing the model’s predictive accuracy. In the 

clinical data of ACS patients, variables such as laboratory 

indicators and comorbidities often have certain missing values. 

Simple exclusion or mean imputation can also lead to reduced 

sample size or data distortion, while multiple imputation can 

effectively retain sample information and reduce bias. To 

minimize the loss of valuable information during model 

development and evaluation, we should consider adopting 

advanced imputation techniques (e.g., multiple imputation) to 

appropriately account for the uncertainty of missing data, 

reduce bias, and improve model performance.

4.3 Variable selection affects prediction 
model performance

During the selection of predictive factors, 10 studies (10–12, 

16, 19, 20, 23–25, 27) in this review used univariate analysis as 

the basis for variable selection. This approach might lead to 

improper selection of predictive factors because it overlooks 

interactions between variables and potential collinearity issues. 

When univariate modeling results in the omission of relevant 

variables, it introduces bias, causing overfitting and reducing the 

predictive accuracy of the model. Therefore, optimization during 

model development is crucial.

For instance, in the study by Jun Ke et al. (10), researchers 

initially performed univariate analysis to select the most 

appropriate variables for model development. To avoid 

overfitting and enhance model accuracy, they split the training 

dataset into a cross-validation scheme and adjusted the 

hyperparameters of each machine learning model to optimize 

cross-validation performance. The final model was then 

developed using the best hyperparameters to fit all training data.

Additionally, when selecting variables, it is essential not only 

to rely on statistical significance but also to consider potential 

confounding factors and other independent variables 

comprehensively. Ashraf Abugoun et al. (12) illustrated this 

approach while optimizing the modified CHA2DS2-VASc score. 

In their exploratory study, they found that hypertension and 

vascular disease had minimal impact on predicting mortality in 

ACS patients without a history of stroke. Conversely, low blood 

pressure and shock were associated with the highest mortality, 

while female gender contributed insignificantly to the model. As 

a result, they replaced hypertension with low blood pressure and 

shock, reduced the score for a history of stroke to 1 point, and 

removed the female gender variable.

Notably, contemporary model development needs to enhance 

the scientific rigor and transparency of feature selection. Among 

relevant approaches, penalized regression, cross-validation, 

and feature selection algorithms represent the best practices for 

screening predictive variables. High-dimensional data easily 

leads to model overfitting. LASSO compresses the coefficients 

of redundant features through L1 regularization, enabling 

simultaneous modeling and feature screening. Cross-validation 

dynamically tests the generalization ability of the model, 

avoiding evaluation bias caused by a single data partition. 

Feature selection algorithms reduce dimensionality and 

computational consumption in advance, and can also 

complement and optimize LASSO. These three approaches form 

a modeling loop, balancing accuracy, generalization, and 

interpretability, and serve as the key to addressing complex data. 

Therefore, we should adopt advanced techniques such as 

penalized regression methods and automatic feature selection 

with cross-validation. When screening predictors, we need to 

balance the correlation of variables and the generalization 

ability of the model, avoid model bias caused by the limitations 

of univariate analysis, reduce the risk of overfitting 

through technical approaches, and improve the rigor of 

model construction.

In summary, although existing prediction models are clinically 

instructive, whether for the development and validation of existing 

models or the reconstruction of new models, the data sources 

and the selection methods of predictors should be considered 

before construction. For example, prospective cohort studies 

with good data representativeness can be used, and predictors 

can be screened through literature review combined with 

multivariate analysis.
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4.4 Application of artificial intelligence in 
in-hospital mortality risk prediction models 
for acute coronary syndrome

Currently, the construction methods for in-hospital death risk 

prediction models in ACS are relatively singular. Most studies 

adopt Logistic regression for modeling, while some studies 

attempt to break through traditional limitations through 

machine learning and deep learning technologies. For example, 

the team of Rong Li (11) applied the XGBoost algorithm, which 

showed higher accuracy than traditional logistic regression in 

identifying the risk of in-hospital death in ACS patients. Studies 

have demonstrated that machine learning is efficient and highly 

adaptive in processing large volumes of data, discovering 

complex patterns, and achieving accurate predictions (35); on 

this basis, deep learning can further automatically extract 

features, solve more complex problems, and realize high- 

precision prediction and classification (36). After comparing 

multiple methods, Sazzli Kasim et al. (14) confirmed that the 

deep learning model (SVM selected var) is more effective in 

predicting in-hospital mortality of ACS. These achievements 

fully confirm the great potential of AI technology in the field of 

risk prediction. However, from the perspective of clinical 

practice, traditional scoring systems are still applied more 

frequently in real-world settings.

In this review, multiple studies (13, 16, 17, 19, 25, 27) indicate 

that the GRACE model still performs excellently in various 

aspects. It remains a reliable tool for ACS risk prediction in the 

foreseeable future and is currently the most suitable model for 

routine clinical use. This score was developed based on large- 

scale, unbiased multicenter registry data and validated by 

external datasets, thus showing excellent performance when 

applied to the general population. However, its prediction 

accuracy for patients undergoing PCI is suboptimal. Therefore, 

there is a need for updated risk scores adapted to current 

clinical practices to supplement the application of existing 

scoring systems.

Among the 8 studies (10, 11, 14, 16, 21, 22, 24, 26) included in 

this review, machine learning and deep learning technologies were 

applied either independently or in combination, and the 

constructed models showed excellent performance in predictive 

ability. Among them, only the model constructed by scholars 

such as Sazzli Kasim (14) has been integrated into routine 

clinical diagnosis and treatment processes. This model has been 

deployed on a risk calculator within the hospital’s internal 

network, but the network is not open to the public as the 

research is still in the testing phase. Other machine learning- 

based methods have not yet been fully validated in clinical 

integration, and most remain in the stage of research and small- 

scale validation. The core obstacles lie in the universality of 

validation, interpretability, and compatibility with clinical 

work?ows. For interpretability assessment, only 3 studies (11, 

14, 26) employed the SHAP value method. The remaining 

studies merely reported model performance without clarifying 

the logic underlying predictive outcomes. Clinicians, however, 

need to understand this logic to trust the model; unexplainable 

“black-box models” may cause confusion in clinical decision- 

making, highlighting a severe lack of interpretability. In terms of 

reproducibility, only 3 studies (14, 24, 26) made model codes or 

detailed parameter settings publicly available. For the rest, 

incomplete methodological reporting rendered the model 

construction process irreproducible. In contrast, regression- 

based models exhibit significantly higher reproducibility due to 

their transparent parameters and simple calculation. Regarding 

clinical integration, only 1 study (14) conducted clinical 

applicability testing; the remaining studies only achieved 

performance validation at the data level. Clinical decision- 

making for ACS requires models to be “fast and convenient,” 

yet most current AI models fail to meet practical clinical needs, 

as they are time-consuming for computation and require 

professional software support. It is thus evident that compared 

with regression-based models, current AI models in the ACS 

field have obvious disadvantages in “interpretability, 

reproducibility, and clinical integration.” The translation of AI 

technology from research to clinical application still requires 

addressing key issues.

Firstly, the adaptability to clinical scenarios needs to be clarified. 

Traditional scoring systems, due to their simplicity of operation and 

mature clinical application, still have advantages in primary medical 

institutions or rapid emergency assessment. Although AI models 

have higher prediction accuracy, their operational complexity and 

the difficulty in interpreting results may affect clinical acceptance. 

The SPADAFORA L team (37) included 23,270 ACS patients and 

found that the impact of in-hospital bleeding (IHB) on 1-year 

prognosis varies among subgroups such as age, gender, and 

treatment pathways. This suggests that different models need 

further comparison in specific scenarios. For example, regarding 

the precise stratification of complex cases, whether the 

performance advantages of AI models can cover their application 

costs still requires more practical verification.

Secondly, the value of clinical intervention needs to be 

deepened. The SPADAFORA L team (37) also revealed that 

IHB, as one of the markers of the severity of ACS patients’ 

condition, suggests that risk prediction models should expand 

their dimensions, not limited to identifying death risks, but also 

include indicators such as bleeding risk and prognostic changes 

after intervention. However, existing AI models mostly remain 

in the stage of risk stratification and have not fully explored 

their guiding role in clinical decision-making. For example, 

whether dynamic risk assessment can be used to adjust the 

intensity of antithrombotic therapy, optimize monitoring 

frequency, and whether they can more effectively reduce the 

incidence of adverse events and improve patients’ long-term 

prognosis compared with traditional models, these still need in- 

depth research combined with clinical practice.

In general, artificial intelligence technology has provided new 

tools for ACS risk prediction and shown great potential. However, 

the full realization of its clinical value needs to focus on the 

verification of scenario adaptability and the exploration of 

intervention pathways, focusing on the closed-loop verification 

of “model-clinical scenario-patient outcome”. Through more 

real-world studies, the technology can be promoted from 
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“accurate prediction” to “clinical practicality”, ultimately achieving 

effective supplementation and optimization of traditional models.

4.5 The applicability of prediction models 
requires further validation

Model validation is a critical step in assessing the performance 

and generalizability of prediction models, involving both internal 

and external validation. Internal validation estimates model 

performance by training and evaluating the model on the same 

dataset, which helps identify whether the model is overfitting or 

underfitting. In contrast, external validation evaluates the model 

on an independent dataset to assess its generalizability and 

extrapolation capability.

In this review, 13 studies (10, 11, 14, 16, 17–22, 24, 25, 27) 

conducted only internal validation, while 2 study (13, 15) 

performed external validation exclusively. Therefore, 72% of 

ACS in-hospital mortality prediction models may be overfitted 

due to the lack of external validation, resulting in insufficient 

clinical generalization. Unless a model undergoes external 

validation across multiple centers and diverse populations (e.g., 

cross-regional and cross-ethnic cohorts), it is not recommended 

for direct use in clinical decision-making; further validation is 

still required to support its clinical application. Many 

researchers acknowledged the limitation of lacking external 

validation and expressed concerns about the model’s 

applicability to different regional populations.

For example, in the study by Peng Ran et al. (27), although the 

model was developed using a large dataset, it was limited to 

Chinese patients. The authors highlighted the need for further 

research to verify the model’s performance in other populations 

and emphasized the necessity of external validation before 

widespread clinical adoption.

Overall, most studies on in-hospital mortality risk prediction 

models for ACS are single-center studies, lacking consideration 

for differences in applicability across diverse cultural and 

geographical environments.

Therefore, when constructing in-hospital mortality risk 

prediction models for acute coronary syndrome, researchers 

should integrate both internal and external validation. 

Techniques such as cross-validation, bootstrap resampling, and 

the “internal-external” approach can be employed for internal 

validation, while temporal validation, spatial validation, and 

domain validation methods can be utilized for external 

validation. Additionally, conducting multi-center studies can 

significantly enhance the generalizability of the prediction models.

4.6 The presentation and reporting of 
prediction models need further 
standardization

The reporting of prediction model results should adhere to 

the Transparent Reporting of a Multivariate Prediction Model 

for Individual Prognosis or Diagnosis (TRIPOD) statement, 

ensuring that the report includes a complete model equation to 

enable reproducibility and independent external validation 

studies. Unfortunately, all studies included in this review lack 

transparency in their construction processes, with information 

gaps that affect the quality assessment of the literature. When 

evaluating prediction models, model calibration is a core 

indicator for measuring model reliability, whose importance is 

equivalent to or even greater than discriminative ability in 

clinical practice. Therefore, in addition to these two core 

indicators, comprehensive evaluation should be conducted from 

multiple aspects such as overall performance, reclassification, 

and clinical utility to improve the assessment of model 

performance. For example, consideration should be given to 

indicators including the model’s sensitivity, specificity, accuracy, 

as well as the Hosmer-Leme show test and calibration curve that 

directly re?ect calibration performance, while combining metrics 

like Decision Curve Analysis (DCA) and clinical impact curve. 

Notably, although DCA is highly valuable for evaluating the 

clinical utility of clinical prediction models, its adoption in 

practical research remains low. Three reasons account for this: 

first, traditional studies focus more on model predictive accuracy 

and insufficiently emphasize “clinical utility,” with inertial 

thinking leading to DCA being overlooked; second, DCA is not 

a universal indicator—it only applies to models for which 

“interventions are needed after outcome prediction,” resulting in 

limited application scope; third, compared with easily calculable 

indicators such as AUC and calibration curves, DCA is more 

complex to operate, requiring higher data standards and relying 

on professional programming software, which raises the 

threshold for researchers to use it.

Furthermore, there are challenges in applying machine 

learning and deep learning to model construction while 

adhering to TRIPOD. Since machine learning and deep learning 

models are often regarded as “black boxes,” their internal 

decision-making processes and interpretability of feature impacts 

are poor, which contradicts the transparency required by the 

TRIPOD statement. The TRIPOD statement does not provide 

detailed reporting guidelines for feature selection of input 

variables and feature engineering that improves and transforms 

raw data, leading to deficiencies in reporting—particularly the 

potential neglect of systematic assessment and reporting of 

calibration, which is a critical prerequisite for the application of 

models in clinical decision-making. When applying machine 

learning or deep learning algorithms, researchers should select 

appropriate visualization and interpretation tools to demonstrate 

the impact of each variable on outcomes, while ensuring the 

practical significance of model-predicted probabilities through 

rigorous calibration validation. For instance, when constructing 

a deep learning model, Rui Fu (20) and colleagues, despite being 

able to fit the model through individual weights, still found it 

difficult to interpret the deep learning model using methods 

such as variable importance or risk score-based decision- 

making. This highlights the need for further exploration in the 

field of interpretable deep learning, with optimization and 

validation of calibration as one of its core objectives. When 

using machine learning models, Jingang Yang (26) and 
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colleagues utilized SHAP (SHapley Additive exPlanations) to 

explain how the predicted risk for individual patients is 

determined, revealed the complex relationships between 

predictors and outcomes embedded in the XGBoost model, and 

combined this with calibration assessment—greatly enhancing 

the clinical credibility of the model.

Therefore, when constructing risk prediction models, scholars 

should strictly follow the requirements of the TRIPOD document, 

attach importance to and standardize the assessment and 

reporting of model calibration, comprehensively improve the 

transparency of the construction process, and further optimize 

the application of artificial intelligence technology in prediction 

model construction.

5 Limitations of the study

This systematic review has several limitations: (1) The review 

included only Chinese and English literature and searched only 

five databases, potentially leading to literature omissions. (2) 

The included studies were predominantly conducted in Chinese 

regions, which may limit the generalizability of the findings to 

Western countries and other diverse populations. (3) This study 

only included Chinese and English literature, which may 

introduce language bias. Additionally, 50% of the study 

populations were Chinese, leading to an overrepresentation of 

models developed for the Chinese population and insufficient 

coverage of models for other regions. Consequently, the 

conclusions have low applicability to non-Chinese populations.

6 Conclusion

The construction of in-hospital mortality risk prediction 

models for acute coronary syndrome (ACS) is currently in a 

phase of rapid development. While many models demonstrate 

good predictive ability, there remain significant gaps in data 

analysis and processing methods. Many studies did not adhere 

to the TRIPOD reporting guidelines, lacked external validation, 

and were predominantly single-center studies, resulting in a 

high overall risk of bias and limited generalizability.

Looking forward, the development of ACS in-hospital 

mortality risk prediction models should follow the PROBAST 

standards to create models with strong predictive performance 

and broad applicability. Rigorous adherence to reporting and 

validation protocols will enhance the clinical utility and 

reliability of these models.
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