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The “"angiogenesis-plaque
stability paradox” in
atherosclerosis pathogenesis

Fei Yan, Si-yang Sun and Hong Wu*

The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China

Intraplaque angiogenesis, a critical mechanism in the pathological progression
of atherosclerosis (AS), exhibits a paradoxical role by providing nutrients and
repair support for plaques while simultaneously contributing to plaque
instability and rupture. Current research on intraplaque angiogenesis primarily
focuses on molecular mechanisms, cellular interactions, and metabolic
regulation; however, its dual effects on plaque stability remain underexplored.
This review elucidates the mechanisms underlying the angiogenesis-plaque
stability paradox, including the glycolysis-lactate-lactylation modification axis,
mast cell-mediated inflammatory responses, and angiogenic maturation and
stabilization mechanisms, and discusses their roles and associated regulatory
pathways in AS pathogenesis. These insights aim to potentiate atherosclerotic
plaque  stabilization and refine predictive accuracy for acute
cardiovascular events.
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1 Introduction

Atherosclerosis (AS) is a critical pathological foundation for cardiovascular
diseases. Its primary characteristic is the subendothelial deposition of lipids,
leading to the formation of atherosclerotic plaques. Plaque stability directly
dictates the risk of acute cardiovascular events, with intraplaque angiogenesis
exerting a paradoxical dual regulatory role. Hypoxia-driven neovascularization
enhances plaque stability through improved oxygen perfusion and facilitated
macrophage migration to the necrotic core, potentiating clearance of lipids and
necrotic debris (1). Conversely, structurally compromised neovessels exhibit
impaired integrity and heightened permeability, enabling erythrocyte extravasation
and inflammatory cell infiltration that escalate risks of intraplaque hemorrhage
and rupture (2). Structurally compromised neovessels result in impaired vascular
integrity and heightened permeability, facilitating erythrocyte extravasation and
inflammatory cell infiltration that substantially elevate risks of intraplaque
hemorrhage and rupture. Consequently, this precarious equilibrium between
pathological injury and compensatory repair governs the phenotypic destiny of
atherosclerotic plaques.

Intraplaque angiogenesis in AS represents a complex pathophysiological process
involving multifaceted cellular and mechanistic interactions. During early
atherogenesis, angiogenesis functions as a compensatory response to intraplaque
hypoxia and heightened metabolic demands. Glycolysis not only furnishes essential
energy for this process but also directly potentiates endothelial cells proliferation and
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migration,  thereby vascular

Simultaneously, mast cells engage in microvascular network

inducing sprouting  (3).
assembly through endothelial crosstalk, releasing pro-angiogenic
factors including vascular endothelial growth factor (VEGEF);
mast cells-derived inflammatory cytokines further amplify VEGF
expression, provisionally maintaining plaque structural integrity
(4, 5). Vascular smooth muscle cells (VSMCs) augment VEGF
secretion via erythrophagocytosis (6) and interact with pericytes
through phenotypic switching (7), synergistically driving
neovessel maturation. This integrated machinery orchestrates
intraplaque angiogenesis. Paradoxically, such compensatory
neovascularization may transform into a pivotal pathological
of atherosclerotic
exhibit
predisposing to hemorrhage-prone plaque transformation (8).

driver progression.  Structurally aberrant

neovessels heightened fragility and permeability,
Extravasated erythrocytes and blood components exacerbate local
inflammation, establishing a vicious cycle wherein inflammatory
stimuli fuel pathological angiogenesis, which in turn recruits
additional inflammatory infiltrates. Clinically, this angiogenic-
inflammatory synergy manifests most detrimentally in high-risk
cohorts, where it critically compromises the fibrous cap integrity
(9). Consequently, while angiogenesis plays a crucial protective
role in early plaque remodeling, persistent dysregulated
neovascularization ultimately exacerbates plaque vulnerability and
rupture risk.

Precision modulation of angiogenesis to stabilize
atherosclerotic plaques represents a pivotal frontier in current
research. Clinical interventions face intrinsic therapeutic
limitations: while high-intensity statin therapy remains the
cornerstone of AS treatment, it only incompletely attenuates
VEGF-mediated pathological Antiplatelet

agents reduce platelet-derived exosome release by blocking the

neovascularization.

P2Y12 receptor, yet they fail to repair the already established
leaky vascular networks. Consequently, elucidating the dualistic
nature, protective yet disruptive, of intraplaque angiogenesis will
establish the mechanistic foundation for developing both plaque
vulnerability prediction models and targeted disease-modifying
therapeutics, which will ultimately stabilize vulnerable plaques.

2 As angiogenesis-plaque stability
paradox

Angiogenesis, the formation of new blood vessels from
pre-existing vasculature, constitutes an essential process for
Within AS plaques,
a therapeutic tool

tissue development and repair (2).
angiogenesis can serve as
endothelial

conversely representing a critical pathological process that drives

promoting

layer repair and plaque stabilization, while

plaque progression, induces intraplaque hemorrhage, and
triggers plaque rupture (10). These functionally divergent plaque
exhibit shaped by
biomechanical forces, where positional architecture dictates
plaque fate. This

opposing outcomes establishes the “angiogenesis-plaque stability

neovessels spatial heterogeneity local
dual-capacity to generate diametrically

paradox” concept in AS.
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2.1 Angiogenesis stabilizes and repairs
plaques

Angiogenesis plays a critical role in the metabolic activity of
plaques. In AS, arterial wall thickening and inflammatory
responses mutually reinforce each other, collectively driving
plaque formation. Plaque accumulation reduces oxygen supply,
while inflammation increases oxygen consumption, creating a
within the plaque (10). The
formation of new blood vessels mitigates the imbalance between

hypoxic microenvironment

oxygen supply and demand, enhancing the survival and
metabolic activity of cells within plaques. Hypoxia and increased
metabolic demand within plaques drive new vessel formation,
which underscores the critical role of angiogenesis in supplying
both oxygen and nutrients (9, 11). Meanwhile, neovessels also
facilitate the transport of low-density lipoprotein (LDL) and the
clearance of harmful substances (12), ameliorate lipid retention
and inflammatory burden to decelerate plaque pathogenesis.
This underscores the proactive role of angiogenesis in preserving
plaque homeostasis and facilitating repair processes. However,
the inherent fragility of intraplaque neovessels predisposes them
exacerbated

to disruption, triggering hemorrhage and

inflammation that ultimately compromise plaque stability.

2.2 Vulnerability of angiogenesis and its
impact on plaque rupture

Neovascular fragility constitutes the core pathological basis for

plaque rupture. Compared to physiological vessels, the
pathological neovascularization within the plaques exhibits
disordered branching patterns, aberrant luminal dilation, and
deficiency in endothelial junctional proteins. These structural
defects heighten vascular permeability, creating pathological
conduits for lipid infiltration, erythrocyte extravasation, and
inflammatory cell migration into the plaque core (9). Infiltrating
immune cells subsequently amplify local inflammation and
oxidative stress, driving necrotic core expansion and escalating
rupture risk. Concurrently, insufficient pericyte or VSMCs
stability,

neovessels to disruptive hemorrhage. Intraplaque hemorrhage

coverage compromises mechanical predisposing
not only perpetuates the inflammatory vicious cycle but also
induces atypical ferroptosis (13, 14), further destabilizing plaque
structural integrity. Therefore, mechanistic dissection of the
“angiogenesis-plaque stability paradox” (Figure 1) will inform
therapeutic strategies targeting neovascular stabilization to

disrupt this self-amplifying pathological cascade.

3 The related mechanisms of the
angiogenesis-plaque stability paradox

The angiogenesis-plaque stability paradox involves intricate

mechanisms encompassing  metabolic reprogramming,
inflammatory dysregulation, impaired vascular maturation, and

interpathway cross-talk. These regulatory networks differentially
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FIGURE 1
The related mechanisms of "angiogenesis-plaque stability paradox”.

determine neovessel structure and function, thereby directly
the
stabilization and rupture predisposition (Table 1).

modulating dynamic  equilibrium  between plaque

3.1 The glycolysis-lactate-lactylation
modification axis

3.1.1 Regulatory mechanisms of glycolytic
metabolism in plaque cells

Glycolysis serves as the primary energy source for vascular cells
within AS plaques. Its unique dual-mode regulation—balancing
oxygen AS
progression and plaque destabilization by mediating endothelial

dependence with hypoxia adaptation—drives
dysfunction, synthetic phenotype switching in VSMCs, and
inflammatory polarization of macrophages. In endothelial cells,
glycolysis rapidly generates energy to accommodate environmental
fluctuations, while its metabolic byproduct lactate concurrently
influences cellular survival. However, hyperactivated glycolysis
induces aberrant endothelial proliferation, thereby accelerating
atherosclerotic ~ progression and  intraplaque  pathological
angiogenesis (3, 15). The proliferation, migration, and senescence

of VSMCs are critical drivers in the development of AS, with
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glycolytic reprogramming constituting the core driver. Glycolysis is
amplified via KLF4-driven post-translational modifications of
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3)
and pyruvate kinase M2 isoform (PKM2). This metabolic shift
drives VSMCs transition to a synthetic phenotype, exacerbating
thereby
promoting vascular remodeling and plaque destabilization (16-19).

proliferation, migration, and senescence processes,

Among macrophages, enhanced glycolysis represents a critical
metabolic signature of M1 polarization, enabling adaptation to
while
Studies demonstrate that bacillus

hypoxic inflammatory —microenvironments
immune functionality (20).
calmette guerin stimulation potentiates glycolytic flux via the novel

sustaining

macrophage activation-associated protein 1, thereby driving
macrophage polarization toward the M1 phenotype through
amplified lactate production (21).

Operating as the master metabolic regulator of plaque
vulnerability, glycolytic rewiring destabilizes atherosclerotic
lesions via three synergistic axes: Pathological angiogenesis
by fibrous

disintegration via VSMC synthetic switching-mediated matrix

driven aberrant EC  hyperproliferation, cap

degradation, and inflammasome propagation fueled by Ml
macrophage polarization (22). This tri-directional disruption of
vascular, stromal, and

inflammatory integrity designates
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TABLE 1 Summary of studies on atherosclerosis plaque stability and angiogenesis paradox.

Mechanism of acti Experimental model Central finding Reference

Inhibition of endothelial glycolysis ApoE™'~ PFKFB3 ECKO Increasing M2 macrophage polarization (3)

Upregulating PKM2-dependent ox-LDL-treated VSMCs Upregulating PKM2-dependent glycolysis (16)

glycolysis

TRAP1 increases aerobic glycolysis ApoE™~ KO Trapl SMCKO Increasing lactate-dependent H4K12la via HDAC3 (17)

PKM2 K305 crotonylation facilitates PDGF-BB-induced synthetic VSMCs Enhancing PKM2 dimeric form (18)

glycolysis

KLF4 enhances glycolysis SMCs stimulated with TMAO or PDGF-BB | Upregulating PFKFB3 expression (19)

NMAAPI promotes glycolysis and NMAAP1-CKO Promoting M1 macrophage polarization (21)

lactate release

Upregulated glycolysis promotes H3K9 | VEGF-stimulated endothelial cells Regulating angiogenesis through a feedback loop between H3K9la (24)

lactylation and HDAC2

Vascular remodelling Sirt2 knockout mice SIRT2 as a potential target for vascular rejuvenation (27)

Glycolysis-mediated macrophage ox-LDL-induced RAW 264.7 macrophages | Upregulation of KLF2 alleviates atherosclerosis (30)

polarization

Inhibition of inducible glycolysis PFK158-treated Ldlr™'~ mice Inhibition of PFKFB3 stabilizes plaques (31)

reduces inflammation

Mast cells activation Acalabrutinib-treated Ldlr™~ mice Inhibiting IgE-mediated mast cell activation by Acalabrutinib (34)

Mast cells activation ApoE’/’ mice Reducing mast cell number and activation (35)

Mast cells release pro-inflammatory Ldlr™~ mice Mast cell stabilization leading to reduced inflammation (36)

mediators

Mast cells activation AGE-LDL-stimulated mast cells Inhibition of ERK1/2 and NF-kB pathways (39)

Mast cells activation MC-specific inducible Srf knockout mice Recruitment via PDGFB-PDGFRB signaling signaling (45)

Phenotypic switching of SMCs SMC-lineage tracing mice Blocking transition to SEM cells, reducing atherosclerotic burden, (46)
and stabilizing fibrous cap

Macrophage-like VSMCs STATS3 conditional knockout in VSMCs Inducing macrophage-like phenotype via STAT3f (48)

sPDGFRp maintains pericyte Acute hypoxia model Dysregulated PDGFRP leading to pericyte defects (49)

quiescence

Inhibits SMC-to-macrophage transition | ANGPTL4-injected Apoe™'~ mice Reducing plaque size and inflammation by ANGPTL4 (52)

Pericyte contraction Transient middle cerebral artery occlusion | Reducing pericyte contraction through inhibition of RHOA/ (53)

(tMCAO) model ROCK1

Maturation of nascent vessels Hypercholesterolaemic ApoE3*Leiden mice | Controlling neovessel maturation and inhibiting intraplaque (54)
hemorrhage

Maturation of nascent vessels LPS-treated RAW264.7 macrophages Suppressing M1 polarization through the TLR4-NFxB/MAPK (55)
pathway

Neovessel maturation ApoE3*Leiden mice with vein graft Inhibiting plaque formation by increasing neovessel maturation via (56)
PCmADb

Neovessel maturation ApoE_/_ mice Restraint of VEGF/VEGFR-2 signaling (57)

Vascular mature and homeostasis High glucose-induced pericyte injury Reducing pericyte injury through circ_0001186 knockdown (58)

Pericyte dysfunction ox-LDL-induced pericyte dysfunction Improvement of plaque stability through TGF-B1/Smad2/3 (60)
signaling

HIF-1a-Apelin/AP] and Ang-1/Tie ApoE™'~ mice Reduction of plaque area, suppression of neovascularization, and (63)

signal pathways promotion of maturation by SMYA

Apelin/APJ regulates EPC proliferation | Hypoxia treatment of EPCs Role in EPC proliferation regulation (64)

Apelin/AP] mediates monocyte CRISPR-mediated sec62-KO in ECs Regulating monocyte adhesion to endothelial cells (67)

adhesion

Apelin induces SMC phenotypic Apelin-induced SMC transition model Apelin-mediated phenotypic transition in intimal smooth muscle (68)

transition cells

glycolytic metabolism as a clinically actionable target with
compelling translational tractability.

3.1.2 Lactate and lactylation-mediated
modulation of angiogenesis

Lactate, the terminal metabolite of glycolysis, orchestrates
angiogenesis through integrated metabolic control and
Metabolically,
(HIF-10)

transcriptional activity, thereby inducing expression of pro-

epigenetic lactylation (23). lactate stabilizes

hypoxia-inducible  factor-la to potentiate its

angiogenic genes including VEGF (24). Concurrently, it drives
macrophage polarization toward the M2 phenotype via the
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signal transducer and activator of transcription6 (STAT6)/
peroxisome proliferator-activated receptor y (PPARy) signaling
axis, enhancing secretion of pro-angiogenic factors IL-10 and
TGE-B (25). In the field of epigenetics, lactate-derived lysine
lactylation regulates chromatin openness and activates pro-
angiogenic gene transcription by targeting histone H3 at lysine
18 (H3K18la) (26). Further mechanistic studies reveal that
lactate finely regulates the spatiotemporal activation patterns of
angiogenesis-related signaling pathways via a Sirtuin2 (SIRT2)-
mediated lactylation-deacetylation dynamic equilibrium network
(27, 28). These findings break the traditional view of lactate as
merely a metabolic waste product, revealing its dual roles as a
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signaling molecule and an epigenetic substrate (29). By
intervening in the transcription and expression of angiogenesis-
related genes, this paradigm provides novel strategies for
vascular-targeted therapies within AS plaques and regenerative
approaches for ischemic tissues. However, translating lactate-
targeting basic research into clinical applications remains
challenged by formidable translational barriers, where
inadequate targeting precision and rapid systemic clearance
constitute primary roadblocks. To overcome these hurdles,
future efforts should pioneer advanced nano-delivery platforms
—exemplified by acid

catalase-loaded porous polylactic

biomimetic nanoparticles—leveraging single-cell sequencing-
guided membrane engineering for surface functionalization. This
dual-targeting, multi-mechanism synergetic strategy aims to
reprogram the vascular niche microenvironment, concurrently
dual

maturation in ischemic tissues and precision interception of

achieving therapeutic ~ objectives:  revascularization

pathological neovascularization in atherosclerotic plaques.

3.1.3 Targeting the lactate-histone lactylation axis
in AS

The aberrant activation of the glycolytic pathway is closely
linked to lactate metabolic dysregulation, and their interplay
plays a pivotal role in the pathogenesis of AS. Targeted
inhibition of glycolysis significantly reduces intraplaque cellular
proliferative activity and pro-inflammatory cytokine release.
Glycolysis  inhibitors  effectively ~ suppress = macrophage
thereby

delaying the initiation and progression of AS plaques (30, 31).

polarization toward pro-inflammatory phenotypes,
Beyond its role in energy metabolism, lactate has emerged as a
pivotal signaling molecule, particularly through lactylation-
mediated epigenetic regulation, thereby unveiling novel
dimensions in angiogenesis research. Experimental evidence (32,
33) confirms that modulating lactate dehydrogenase activity
reshapes the expression profile of key angiogenic factors within
that

neovascularization constitutes a shared hallmark of AS and

tumor  microenvironments.  Given pathological

oncogenesis, this discovery provides critical mechanistic parallels
for targeting aberrant vascular proliferation within AS plaques.
Building upon these insights, current research prioritizes
developing small-molecule compounds dually targeting lactate
transporters and lactylation-modifying enzymes. This dual-
pronged aims to metabolic lactate

strategy co-regulate

homeostasis modification networks,
thereby

vascular remodeling,

and post-translational
engineering precision
thus
metabolic interventions from bench to bedside.

therapeutic approaches for

accelerating the translation of

3.2 Mast cell-mediated inflammatory
response

3.2.1 Mechanisms underlying mast cell

accumulation and activation in as plaques
Mast

pathogenic axis in AS progression and plaque rupture, a process

cell-mediated inflammation represents a critical
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initiated by their site-specific accumulation and activation within
lesions. Bone marrow-derived mast cell precursors are recruited
and mobilized to plaque microenvironments via inflammatory
including MCP-1, interleukin-8 (IL-8),
necrosis factor-o. (TNF-a), and interferon-y (IFN-y), where they

mediators, tumor
differentiate into mature subsets (34). Under the synergistic
control of HIF-1a and local inflammatory signals, mature mast
cells exhibit enhanced chemotactic activity, leading to their
selective enrichment in plaque shoulders and necrotic cores (5).
Upon activation, mast cells orchestrate complex inflammatory
cascades through degranulation: Histamine increases vascular
permeability via H1 receptor-mediated endothelial gap formation,
facilitating monocyte/macrophage infiltration; proteases (tryptase/
(ECM)
components and activate matrix metalloproteinases (MMPs), thus

chymase) directly degrade extracellular —matrix
destabilizing fibrous cap integrity; IL-6 and TNF-o drive
phenotypic switching of VSMCs toward the matrix-degrading
cells fuel late-stage

vulnerability through paracrine release of VEGF and fibroblast

syntheses. Furthermore, mast plaque
growth factor-2 (FGF-2), stimulating pathological intraplaque
neovascularization that precipitates intraplaque hemorrhage and
rupture (35). This cascade highlights the therapeutic nodes
targeting mast cell infiltration, activation, and mediator release as
decelerate AS  progression and

promising  strategies to

stabilize plaques.

3.2.2 Mast cell-mediated pro-angiogenic
mechanisms

In AS plaques, mast cells drive pathological angiogenesis and
plaque destabilization through a dual mechanism. Firstly, upon
activation, mast cell-derived MMP-9 degrades type IV collagen
and gelatin in the ECM, thereby compromising the structural
integrity of the vascular basement membrane. This degradation
process creates spatial conditions conducive to endothelial cell
migration and subsequent lumen formation. Moreover, mast
cell-derived chymase potently activates the pro-MMP-9 zymogen
into its catalytically active form and cleaves angiotensin I to
generate angiotensin II, amplifying vascular permeability and
inflammatory infiltration. In LDLR™’~ mouse models, mast cell
activation markedly exacerbates aortic lesion area, and promotes
intraplaque angiogenesis, concomitant with upregulated MMP-9
levels (36-38). Furthermore, mast cells establish chemokine
gradients that recruit monocytes and T lymphocytes into
plaques. These infiltrating immune cells subsequently release
pro-angiogenic factors such as VEGF-A and FGF-2. Collectively
these mechanisms indicate that mast cell stabilizers reduce
plaque MMP-9 activity while suppressing VEGF receptor
which  will inhibit
pathological angiogenesis.

phosphorylation, unveil targets to

3.2.3 Mast cells and plaque instability

Mast cells not only promote intraplaque angiogenesis but also
critically contribute to plaque destabilization. Although they may
exert their
hyperactivation ultimately leads to destructive consequences.

immune surveillance functions in early AS,

Research demonstrates (39) that mast cell-specific secretion of
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matrix metalloproteinases (MMP-9, MMP-2) and pro-inflammatory
cytokines (TNF-a, IL-6) degrades ECM components, compromising
fibrous cap integrity. Simultaneously, these inflammatory mediators
synergistically induce VSMCs apoptosis, leading to impaired fibrous
cap repair capacity. This matrix metabolic imbalance and cellular
dynamic dysregulation significantly increase the risk of plaque
rupture, serving as the initiating trigger for acute coronary
syndrome (ACS). Single-cell RNA sequencing detects mast cells in
vulnerable plaques of ACS, with a significantly positive correlation
observed between mast cells infiltration and MMP-9 expression
levels within these plaques (40). Additionally, mast cell-derived
mediators (e.g., histamine, tryptase) promote platelet aggregation
and fibrin deposition by activating protease-activated receptor 2
on endothelial cells and upregulating P-selectin expression on
platelets, thereby establishing a pro-thrombotic microenvironment.
Both animal experiments and clinical pathological studies have
confirmed that mast cell infiltration is significantly correlated
with plaque rupture and subsequent thrombus formation (34,
41, 42). Future research should focus on: Decoding dynamic
evolution of mast cell functional subsets in patient biopsies,
constructing phase-specific maps correlating subsets with clinical
stages of AS, providing frameworks for developing stage-specific
precision therapies.

3.3 Neovascular maturation and
stabilization

3.3.1 VSMCs recruitment and vascular wall
remodeling

VSMCs maintain vascular wall homeostasis by orchestrating
vascular  development, homeostasis  maintenance, and
pathological remodeling. In AS, VSMCs undergo phenotypic
switching and migrate to the intima, forming a fibrous cap
enriched with a-smooth muscle actin (0-SMA) and ECM. The
secretion of collagens I/III and elastin significantly enhances
plaque mechanical strength. Molecular mechanism studies
demonstrate that VSMCs the Smad2/3

pathway by releasing TGF-f, which upregulates tissue inhibitors

activate signaling
of metalloproteinases expression, thereby suppressing AS plaque
matrix degradation (43). Moreover, VSMC-endothelial cell
crosstalk underpins vascular maturation and stability (44). These
cells form a functional unit where endothelial-derived platelet-
derived growth factor BB (PDGF-BB) VSMCs
proliferation through the phosphatidylinositol 3-kinase (PI3K)/
B (AKT) VSMC-secreted
hepatocyte growth factor enhances endothelial barrier function

induces

protein kinase pathway, while
via the mesenchymal-epithelial transition factor receptor (45).
This bidirectional paracrine regulatory network plays a pivotal
role in vascular injury repair. However, under pathological
VSMCs can
participating in vascular inflammation and upregulating
adhesion molecules (e.g., ICAM-1, VCAM-1). This increases

vascular permeability, recruiting inflammatory cells and lipids to

stimuli, adopt macrophage-like phenotypes,

expand the necrotic core (46-48). In summary, VSMCs sustain
vascular stability through structural support, matrix remodeling,
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and cellular interactions. Yet their pathological transformation
drives plaque destabilization. Identifying key molecular targets
to steer VSMCs toward beneficial phenotypes represents a
critical frontier for future AS therapeutics.

3.3.2 Pericyte—ECM interplay in vascular
remodeling

Pericytes and ECM components constitute a core functional
unit maintaining vascular homeostasis through structure-
function coupling. Their synergistic interactions operate at three
hierarchical levels: Structural-signaling coordination for barrier
integrity, pericytes specifically express platelet-derived growth
factor receptor B (PDGFRP) (49), which senses and responds to
PDGF-BB within  the

enhancing endothelial tight junction protein expression to

signals matrix-microenvironment,
reinforce vascular barrier function (50). Furthermore, pericytes
actively anchor to collagen IV and laminin networks via integrin
a6Pl receptors. This engagement activates the focal adhesion
kinase (FAK)/PI3K signaling pathway, converting mechanical
support into anti-apoptotic chemical signals that collectively
preserve microvascular integrity (51). Bidirectional regulation
with VSMCs for structural stability, pericyte-derived TGF-P1
induces contractile phenotypes differentiation in VSMCs via
Smad2/3 phosphorylation, while VSMC-secreted angiopoietin-
like 4 reciprocally regulates pericyte migration (52). This
dynamic crosstalk critically depends on a healthy matrix
microenvironment, with its disruption being pivotal during
atherosclerotic plaque progression. Pericyte depletion and matrix
disruption driving plaque destabilization, pericyte loss elevates
MMP-2/MMP-9 activity in the fibrous cap, triggering matrix
degradation (53, 54). Degraded elastin fragments shift from
stabilizing elements to pathogenic signals, activating macrophage
Toll-like (TLR4)/myeloid
differentiation factor 83 (MyD88) pathway and exacerbating

inflammasomes  via receptor 4
local inflammation (55). In ApoE3*Leiden mouse models (56),
pericyte coverage positively correlates with matrix stability,
highlighting their synergistic significance and potential as plaque

stability biomarkers. orchestrates

synergy
transduction, and immunomodulation. Targeting this integrated

The pericyte-matrix axis

functional across mechanical  support, signal
system will open new avenues for vascular microenvironment

remodeling therapies.

3.3.3 Failed neovessel maturation induces plaque
destabilization

Impaired neovessel maturation constitutes a pivotal
mechanism driving the formation of pathologically fragile
vasculature, thereby disrupting plaque stability (57, 58). This
process involves multicellular dysregulation: Disrupted pericyte-
endothelial cell communication, disruption of the PDGF-BB/
PDGERB

coupling, leading to inadequate pericyte coverage and defective

signaling axis compromises pericyte-endothelial
basement membrane development in neovessels (59). Studies
confirm that AS plaque neovessels exhibit pathologically reduced
pericyte coverage index, which demonstrates a significant inverse

correlation with intraplaque hemorrhage (60). VSMC-driven
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ECM homeostatic imbalance, aberrant VSMC phenotypic switching
induces critical downregulation of a-SMA expression, resulting in
compromised vascular wall tension. Concurrently, suppression of
the TGF-p/Smad signaling axis drives stoichiometric collapse of
collagen/elastin homeostasis (61). Inflammatory cascades drive
ECM hyper-catabolism, monocyte recruited into plaques and
polarized into proinflammatory M1-like macrophages, establishing
a self-sustaining inflammatory niche. This microenvironment
activates the nuclear factor-kB (NF-kB) pathway, inducing
pathological overexpression of matrix metalloproteinases (MMP-2,
MMP-9). These

components (collagen type IV, laminin), ultimately increasing

proteases degrade basement membrane
vascular permeability (62). These mechanisms collectively cause
vascular structural defects, triggering erythrocyte extravasation.
breakdown

macrophages via CD163 receptors, establishing a self-perpetuating

Hemoglobin products  subsequently activate
pro-inflammatory/pro-angiogenic cycle (56). Notably, HIF-la-
driven pathological angiogenesis exacerbates vascular leakage
through VEGF/Notch signaling imbalance, whereas blockade of
Delta-like ligand 4 (DLL4) enhances neovessel maturation.
pericyte
enhancement, ECM metabolism modulation, and suppression of

Therapeutic  interventions  targeting recruitment
inflammation-hypoxia synergy demonstrate significant potential

for stabilizing vulnerable plaques.

4 Regulatory mechanisms of
intraplaque angiogenesis signaling
networks

4.1 HIF-1a and angiopoietin-like protein
(Apelin)/APJ signaling pathways

The HIF-1o/Apelin/APJ signaling axis exerts dualistic roles in
AS, functioning as both a protective mediator and pathological
driver. As the master transcriptional regulator of hypoxia-
HIF-1a
intraplaque hypoxia and oxidative stress, driving transcriptional

responsive genes, stabilizes and activates under
upregulation of Apelin and its G protein-coupled receptor APJ
(63). Activated Apelin/AP] signaling promotes endothelial cell
proliferation, migration, and neovascularization through the
PI3K/AKT/mTORCI1 axis to alleviate tissue hypoxia (64, 65),
while concurrently activating Nrf2 through the CaMKK/AMPK/
GSK3p pathway, thereby upregulating antioxidant enzymes (e.g.,
SOD, HO-1) to protect endothelium from oxidative damage (65,
66). Paradoxically, this axis accelerates AS progression by:
Inducing NF-«kB/JNK-mediated inflammation, upregulating
ICAM-1, VCAM-1, and MCP-1 to exacerbate endothelial
inflammation/permeability (67). Triggering nuclear translocation
of calcium-binding protein A4, which induces
in VSMCs,

advancement (68). This functional duality implies that systemic

synthetic

phenotype transition directly fueling plaque

pathway inhibition may compromise physiological repair

mechanisms, necessitating future cell-type-specific therapeutic
strategies. Precision approaches should combine microvascular
ultrasonography  with  biomarker

profiling for patient
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stratification,  establishing  distinct therapeutic =~ windows,
including pro-angiogenic intervention for hypoxia-dominant
phases and anti-inflammatory targeting for inflammation-

dominant stages.

4.2 The angiopoietinl/2 (Angl/Ang2) and
tie receptor signaling axis

The Ang-Tie signaling axis functions as a master regulatory
hub for endothelial homeostasis by orchestrating: Vascular
quiescence  status, microvascular  permeability,  barrier
stabilization, and controlled angiogenic progression (69). Angl
and Ang2 act as agonistic and antagonistic ligands, respectively,
for the endothelial tyrosine kinase receptor Tie-2. Angl
promotes vascular structural stabilization, while Ang2 disrupts
junctional integrity between endothelial cells and pericytes,
increases vascular permeability, and antagonizes Angl-mediated
stabilization. Within AS plaques, Angl remodels neovasculature
to reduce permeability, maintaining vascular maturation
and stability.

Conversely, Ang2 orchestrates basement membrane remodeling
and drives endothelial cell migration via MMP-2 proteolytic
activation, culminating in pathological angiogenesis in the AS
niche. In vulnerable plaques, Angl and Ang2 expression exhibits
a pronounced imbalance dominated by Ang2. This pathological
imbalance directly instigates microvascular fragility and
potentiates plaque rupture vulnerability (70). Furthermore, Ang-2
modulates vascular growth, maturation and regression in tumors
and vasculopathies through synergistic cooperation with pro-
angiogenic factors including VEGF. Hence, elucidating the Angl/
Ang2 interplay with Tie receptors and their spatiotemporal
dynamics within AS microenvironments establishes a framework
for targeted intraplaque angiogenesis control and innovative

therapeutic translation.

4.3 Mitogen-activated protein kinase kinase
(MEK)/extracellular regulated protein
kinases (ERK) and PI3K/AKT

The MEK/ERK and PI3K/AKT signaling pathways constitute
dual regulatory axes governing AS plaque evolution, orchestrating
the maintenance and destabilization of plaque phenotype
through divergent yet complementary mechanisms. Activation of
the MEK/ERK signaling pathway primarily orchestrates the
proliferation of VSMCs and the propagation of inflammatory
responses (71). MEK inhibitors demonstrate significant plaque
volume reduction coupled with amelioration of inflammatory
burden (72), underscoring the pivotal role of MEK/ERK pathway
inhibition in plaque stabilization. In stark contrast, the PI3K/AKT
pathway potentiates pathological angiogenesis by enhancing
endothelial cell survival and migratory capacity. This process is
further orchestrated through HIF-lo-mediated transcriptional
control, resulting in aberrant microvascular networks at the base
of AS plaques. These fragile neovessels serve as primary triggers
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for intraplaque hemorrhage and rupture (73). Critically, complex
crosstalk exists between the MEK/ERK and PI3K/AKT pathways.
Upon MEK/ERK inhibition, compensatory PI3K/AKT activation
occurs via signaling nodes such as mTORC2. Conversely,
PI3K/AKT  blockade  potentiates  feedback-driven = ERK
hyperphosphorylation. Crucially, this reciprocal escape circuitry
substantially compromises monotherapeutic efficacy. From a
systems biology perspective, dual-targeting strategies, which

coordinately suppress the “proliferation-inflammation-
angiogenesis” pathological triad while blocking compensatory
escape routes, establishing a transformative paradigm to overcome

current therapeutic bottlenecks in AS.

5 Conclusion

The “Angiogenesis-Plaque Stability Paradox” illuminates the
intricate relationship between intraplaque angiogenesis and
plaque stability, a seemingly contradictory yet profoundly
While
predominantly emphasize the destabilizing role of angiogenesis

interconnected  dynamic. conventional perspectives
in AS pathogenesis and progression, they often overlook its
reparative function in maintaining plaque integrity. Modern
their

interdependence. The glycolysis-lactate-lactylation axis and mast

research, however, reveals deep pathophysiological
cell-mediated inflammatory cascades provide novel insights into
metabolic reprogramming within the plaque microenvironment.
stabilization mechanisms of

Crucially, the maturity and

neovessels demonstrate that vascular quality, not merely
quantity, serves as the key determinant of its functional
These

multidimensional mechanistic framework for the paradox, while

consequences. advances  collectively ~construct a
the regulatory circuitry governing plaque angiogenesis presents
actionable therapeutic targets to resolve this duality.

In summary, by investigating shared pathological mechanisms
and regulatory signaling circuits linking intraplaque angiogenesis
to plaque stability, we reveal a complex paradox: Angiogenesis
exerts beneficial effects in physiological repair contexts yet
accelerates plaque destabilization under pathological conditions.
The prevention and treatment research for AS and plaque
rupture  should prioritize precision discrimination and
targeted modulation of pathological vs. protective intraplaque
angiogenesis, mandating integrated consideration of critical
determinants including therapeutic timing and drug specificity.
Future advancements could leverage deep learning algorithms
constructed upon optical coherence tomography angiography
(OCTA) features to dynamically assess plaque stability through
quantification  of neovascular  morphological  parameters
(including vessel density, branching complexity, and mural
integrity) alongside spatial distribution patterns. Furthermore,
wearable biosensors enabling real-time monitoring of angiogenic
signatures may be developed, integrated with machine learning
frameworks to establish alert systems with high predictive efficacy.
Therapeutically, nanotechnology-based delivery platforms for
multicomponent botanical formulations can be engineered to

achieve multidimensional modulation of the atherosclerotic
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plaque microenvironment; this strategy integrates the inherent
multicomponent synergy of Traditional Chinese Medicine with
the spatiotemporal targeting advantages of nanomedicine, thereby
concurrently regulating pathological angiogenesis while preserving
essential  reparative  neovascularization to  resolve the
“angiogenesis-plaque  stability paradox”.

convergence of artificial intelligence-aided vascular imaging

Consequently, the

analytics and multitargeted precision control of the plaque
microenvironment will furnish innovative solutions for enhancing
plaque stabilization, simultaneously pioneering novel pathways
within

integrative Chinese-Western medical paradigms for

atherosclerosis management.
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