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Acute myocardial infarction (AMI) remains a major cause of cardiovascular
mortality worldwide. The inflammatory immune response after AMI plays a
dual role: it facilitates the clearance of necrotic tissue but can also exacerbate
injury, significantly affecting patient outcomes. Conventional anti-
inflammatory therapies are often limited by systemic toxicity and insufficient
targeting, highlighting the need for more refined approaches. This review
systematically examines the interplay between AMI's key inflammatory
immune mechanisms—including neutrophil N1/N2 phenotypic switching,
macrophage M1/M2 polarization, and Treg/Thl7 lymphocyte balance—and
advancements in nanoparticle-based drug delivery systems (NP-NDDSs)
designed to target these mechanisms. NP-NDDSs utilize properties such as
size-dependent accumulation, surface functionalization, and stimuli-
responsive release (e.g., to pH, ROS, or enzymes) to improve spatiotemporal
control over drug delivery. Various nanocarriers, including organic (e.g.,
liposomes, polymers), inorganic (e.g., gold, silica), and biomimetic (e.g., cell
membrane- or exosome-based) systems, have shown potential in influencing
neutrophil extracellular trap formation, macrophage phenotype, and
lymphocyte activity. These developments suggest that NP-NDDSs could help
control excessive inflammation, support tissue repair, and limit adverse
remodeling. Nevertheless, challenges in targeting precision, manufacturing
scalability, and long-term biosafety remain to be addressed. By summarizing
current advances and identifying future needs, this review aims to provide a
basis for developing targeted therapies against immune-mediated injury in AMI.

KEYWORDS

acute myocardial infarction, inflammatory immune mechanisms, nanoparticle-based
drug delivery systems, neutrophils, macrophages

1 Introduction

The widespread adoption of coronary revascularization and guideline-directed
medical therapies has contributed to a progressive decline in age-standardized
mortality after acute myocardial infarction (AMI) (1, 2). Nevertheless, the incidence of
recurrent adverse events, such as heart failure-related hospitalizations and death,
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remains substantial following MI (3-5). After AMI, cardiomyocyte
necrosis leads to the release of damage-associated molecular
patterns (DAMPs), which initiate an inflammatory cascade. This
response has a dual role (6) in the early phase, it supports the
clearance of necrotic tissue and promotes repair; however,
excessive or prolonged infiltration of neutrophils and monocytes
may aggravate myocardial injury (7) and contribute to adverse
ventricular remodeling and heart failure (8, 9). Thus, careful
modulation of the inflammatory response is considered
important for improving outcomes after AMI (10).

Current treatment strategies for MI are limited by the systemic
side effects and poor targeting of conventional anti-inflammatory
agents. Although drugs such as IL-1f inhibitors, colchicine, and
corticosteroids can reduce inflammation, their systemic use is
often associated with undesirable effects. Moreover, the complex
myocardial microenvironment limits efficient drug delivery,
compromising therapeutic efficacy (11, 12).

To address these limitations, nanoparticle-based drug delivery
systems (NP-NDDSs) have attracted growing interest. Engineered
nanoparticles (NPs) provide a versatile platform due to their
tunable physicochemical properties, which can enhance stability
and biocompatibility. By optimizing the NP core material, these
systems improve drug encapsulation and enable sustained release,
reducing premature degradation in vivo (13, 14). Additionally,
surface modification with targeting ligands (e.g., antibodies or
peptides) promotes accumulation within diseased tissues,
increasing therapeutic specificity and limiting off-target effects (15).

In cardiovascular applications, NP-NDDSs may help reduce
systemic side effects through targeted delivery designs (16) and
extend the therapeutic window by controlling drug release
kinetics (17). These systems have also been shown to deliver
anti-inflammatory agents to neutrophils, curbing excessive
inflammation and ameliorating myocardial injury (18, 19).
Similarly, NP-NDDSs can modulate macrophage phenotype and
function, which may improve cardiac recovery after AMI (19, 20).

Although clinical translation remains challenging—particularly
in optimizing targeting efficiency and scaling up manufacturing
(21)—continuing advances in NP engineering may help address
some limitations of conventional drug delivery. NP-NDDSs
represent a promising strategy for precision medicine (22) and
could play a role in regulating inflammatory and immune
processes in AMI. This review systematically outlines recent
advances in NP-NDDSs for managing post-AMI inflammatory
injury and supporting myocardial repair, with a focus on
targeting strategies, mechanisms of action, and translational
challenges. The aim is to offer a reasoned foundation for
developing effective and safe NP-based therapies for AMI.

2 Pathomechanisms of inflammation
and immunity in AMI

Extensive cardiomyocyte death, activation of the innate
immune system, and widespread inflammation are common
pathological features of acute myocardial infarction (AMI). The
acute inflammatory response is a key determinant of final infarct
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size and the development of adverse ventricular remodeling,
highlighting its modulation as an important cardioprotective
(23). Post-AMI
progresses through three distinct phases: the alarm phase, the

goal inflammation in the myocardium
leukocyte mobilization phase, and the resolution phase (24).
During the alarm phase, dying cardiomyocytes and other cells
release signaling molecules known as DAMPs such as high-
mobility group box 1 protein (HMGB1) (25), heat shock
proteins (HSPs) (26), and fibronectin (27). DAMPs bind to
(PRRs)

receptors (TLRs), nucleotide-binding oligomerization domain

pattern recognition receptors —including Toll-like
(NOD)-like receptors, and the receptor for advanced glycation
end products (RAGE) —thereby initiating innate immune
(28).

activated in innate immune cells include the NOD-like receptor

pathways Key pro-inflammatory signaling pathways
family pyrin domain-containing 3/interleukin-1 beta (NLRP3/
IL-1B) pathway (29), the Toll-like receptor 4/nuclear factor
kappa-light-chain-enhancer of activated B cells (TLR-4/NF-xB)
pathway (30) and the Janus kinase-signal transducer and
activator of transcription (JAK-STAT) signaling pathway (31).
As summarized in Figure 1, the dynamic interplay among these
immune cells—from the initial neutrophil infiltration to the
subsequent activation of macrophages, dendritic cells, and
lymphocyte subsets—critically shapes the inflammatory landscape
and repair processes following AMI. Within the first 30 min to
3h after AMI, monocytes and neutrophils migrate into the
infarct zone under the influence of DAMPs and chemokines (32).
Infiltrating ~ monocytes  differentiate  into  macrophages,
(33).

However, activation of granulocytes, monocytes, and macrophages

progressively replacing resident cardiac macrophages
—along with the release of pro-inflammatory cytokines, bioactive
substances, and neutrophil extracellular traps (NETs)—can also
induce additional myocardial damage (34).

In the resolution phase, NETSs released by neutrophils activate
the NLRP3 (7). As

inflammatory processes subside, macrophages shift toward an anti-

inflammasome in macrophages pro-
inflammatory, pro-resolving M2 phenotype, a transition in which
neutrophils play an important role (35). Macrophage function then
changes from phagocytosis and extracellular matrix degradation to
angiogenesis and granulation tissue formation (36), which may
help limit adverse outcomes after AMI (37). Accordingly, a
prolonged inflammatory phase can exacerbate myocardial injury,
leading to infarct expansion and adverse remodeling (38).

Dendritic cells (DCs), as efficient antigen-presenting cells, help
bridge innate and adaptive immunity. Tolerogenic dendritic cells
(tDCs), a specific DC subtype, promote systemic activation of
regulatory T cells (Tregs) after AMI (39). Activated Tregs
participate in modulating myocardial inflammation and facilitate
the shift of macrophages from the M1 to the M2 phenotype,
thereby supporting favorable ventricular remodeling. Depletion of
Tregs impairs resolution-phase functions, resulting in persistent
M1 macrophage activity and delayed tissue repair (40).

The adaptive immune system, involving T and B lymphocytes,
also contributes to the regulation of post-AMI inflammation.
Intramyocardial T-cell recruitment peaks 5-7 days after AMI
(41). CD8+ T cells may exacerbate inflammation by promoting
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FIGURE 1
Immune cells in the cardiovascular system. Following acute myocardial infarction (AMI), pro-inflammatory cytokines induce neutrophil infiltration.
Neutrophils exacerbate and sustain the inflammatory response by releasing reactive oxygen species (ROS) via neutrophil NETosis and secreting
inflammatory cytokines. Monocytes are recruited into cardiac tissue and differentiate into M1 and M2 macrophages. M1 macrophages promote
vascular inflammation through the release of damage-associated molecular patterns (DAMPs), while M2 macrophages facilitate repair of
damaged tissue via the production of factors such as vascular endothelial growth factor (VEGF). Dendritic cells (DCs) induce myocardial
hypertrophy and improve ventricular remodeling by mediating increased regulatory T cell (Treg) activity. Natural killer T (NKT) cells secrete
cytokines (e.g., *IL-10%), contributing to the attenuation of inflammation and modulation of ventricular remodeling. Among T cells, Thl cells
reduce fibrotic responses, whereas Th2 and Thl7 cells promote fibrosis. Thl7 cells additionally drive inflammation and extracellular matrix
remodeling, while Treg cells attenuate inflammatory responses.

cardiomyocyte  apoptosis and  activating  inflammatory
macrophages, though they also appear to influence fibrosis and
remodeling (42, 43). Among CD4+ T cells, Thl and Treg subsets
are predominant: Thl cells help maintain a balance between
inflammation and repair via secretion of interferon-y (IFN-y),
interleukin-6 (IL-6), and tumor necrosis factor (TNF) (44), while
Tregs exert protective effects by suppressing cardiomyocyte
apoptosis and excessive fibrosis (45). Notably, a systemic
imbalance between T helper 17 (Th17) and Tregs may exacerbate

the inflammatory responses (37).

2.1 Role of neutrophils in inflammation-
injury and repair

Neutrophils are the first innate immune cells to infiltrate

ischemic tissue within hours following AMI. The dual role of
neutrophils, encompassing both detrimental effects (e.g., ROS
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release, NETosis) and beneficial contributions, is schematically
illustrated in Figure 2. Shortly after AMI onset (within hours),
neutrophils rapidly transmigrate across the endothelium via
interactions between surface integrins and endothelial adhesion
molecules. Their infiltration into the ischemic myocardium is
orchestrated by DAMPs and alarmins (46-49). This recruitment
is driven by a dual
cardiomyocyte-derived DAMPs are sensed by PRRs on resident

signaling mechanism: necrotic
macrophages and endothelial cells, which in turn release
chemokines that establish a gradient guiding neutrophils to the
infarct zone (48, 50). Although neutrophils contribute to
clearing necrotic debris, they also induce secondary myocardial
injury through the release of reactive oxygen species (ROS),
proteolytic enzymes, and inflammatory mediators, reflecting
their dual role (51).

At the molecular level, neutrophil-derived ROS generated via
NADPH oxidase pathways contribute to structural damage by
oxidizing cellular components such as proteins and lipids
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FIGURE 2
Detrimental and beneficial roles of neutrophils in myocardial infarction (MI) wound healing. Neutrophils are known to exacerbate myocardial injury
by releasing reactive oxygen species (ROS), granular components, and pro-inflammatory mediators. Furthermore, neutrophils can form neutrophil
extracellular traps (NETs), thereby promoting thrombosis and cardiac damage. Additionally, neutrophils enhance granulopoiesis, establishing a
positive feedback loop that amplifies neutrophil production and acute inflammation. Conversely, neutrophils contribute to inflammation
resolution, angiogenesis, and scar formation by producing various pro-repair factors, such as Annexin Al (AnxAl).

(52, 53), and further amplify local inflammation by promoting
pro-inflammatory cytokine secretion (e.g., IL-6, IL-1B) (54).
Concurrently, degranulation products-including myeloperoxidase
(MPO), (MMPs)-
aggravate cardiomyocyte

elastase, and matrix metalloproteinases

cardiac remodeling by inducing
apoptosis, degrading extracellular matrix (ECM), and triggering
the release of additional cytokines and chemokines (e.g., TNF-a,
IL-1B, CXCL-1-8) (49, 55). These factors may also impair
cardiomyocyte contractility through disruption of calcium
homeostasis (56), collectively sustaining acute phase injury (7).
Activated NETs,

decondensed chromatin and granular proteins, which contribute

neutrophils  release composed  of
to AMI pathophysiology through multiple pathways: (1)
Promoting microvascular thrombosis (57, 58); (2) Activates the
Toll-like receptor 4 (TLR4)/NLRP3/IL-1B signaling axis to
stimulate hematopoietic stem/progenitor cells, leading to
increased neutrophil production (7, 59); and (3) mediating
further neutrophil recruitment via IL-1R, forming a self-
amplifying inflammatory circuit that exacerbates myocardial
edema and fibrosis (60, 61).

As the pathology evolves (days 1-7 post-AMI), neutrophils
undergo phenotypic switching (N1 to N2), which is implicated in

repair regulation. In the acute phase (days 1-3), N1 neutrophils
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promote MI macrophage polarization via IL-1p and TNF-a
secretion. During the repair phase (days 4-7), N2 neutrophils
support M2 macrophage polarization through upregulation of
CD206, TGF-B, and IL-10 (62, 63). This transition involves
Annexin Al, which, upon activation, interacts with formyl
peptide receptors (FPRs) to suppress excessive inflammation and
thereby
additionally

promote a pro-angiogenic macrophage
(64-67).
modulates neutrophil activity through anti-inflammatory, pro-

phenotype,
facilitating tissue repair Annexin Al
apoptotic, and pro-resolving mechanisms (68, 69).
Notably, S1I00A8/A9—primarily released from NETs—further
modulates inflammatory and reparative processes post-MI. It
activates the TLR4/NLRP3/IL-1B signaling axis, stimulating
hematopoietic stem/progenitor cells to amplify neutrophil
production (7, 59). Moreover, SI00A9 exerts a unique time-
dependent bidirectional regulatory effect: short-term inhibition
(within 3 days) attenuates inflammation and improves outcomes
(70), whereas long-term blockade (up to 21 days) impairs the
efferocytic of Ly6CloMerTKhi

macrophages via the Nur77 signaling pathway, ultimately

generation and function

worsening cardiac injury (71). This temporal specificity aligns

with  pathological findings from neutrophil depletion

experiments (72), highlighting the need for spatiotemporally
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precise therapeutic strategies that target neutrophil-mediated
responses—such as suppressing excessive acute-phase activation
while promoting phenotypic switching during repair—to balance
injury containment and tissue regeneration. Thus, targeting
S100A8/A9 represents a promising therapeutic approach under
active investigation.

2.2 Role of monocytes/macrophages in
inflammation-injury and repair

The monocyte-macrophage system, part of the myeloid
lineage, exhibits spatiotemporal dynamics in composition and
Monocytes from bone marrow and
extramedullary  hematopoietic (e.g., spleen). After
they enter the bloodstream and migrate to

function. originate
sites
maturation,
peripheral tissues, where they differentiate into macrophages or
dendritic cells and participate in immune defense, inflammation
regulation, and tissue repair (73). In ischemic heart disease,
macrophages play a dual role: they can exacerbate injury
through pro-inflammatory responses while also promoting
repair via anti-inflammatory mechanisms (74-76), as illustrated

in Figure 3 (74-76).

10.3389/fcvm.2025.1657300

Following AMI, the of cardiac-resident

macrophages declines sharply, while circulating monocytes are

population

extensively recruited to the infarct zone (77). These recruited
monocytes originate not only from the spleen but also from
extramedullary sources under the regulation of IL-1B (78).
Within 24h post-AMI,
infiltrate the infarct area. Driven by cytokines such as TNF-o

classical monocytes preferentially
and IFN-y released from injured cardiomyocytes and immune
cells, they polarize predominantly toward the classically
activated (M1) phenotype in the early phase (78-80). Ml
macrophages highly express pro-inflammatory cytokines (e.g.,
TNF-a, IL-6), cytotoxic mediators (e.g, NO, ROS), and
phagocytosis-associated proteins (81). Although they help clear
necrotic debris and degrade extracellular matrix, excessive M1
activation may exacerbate the inflammatory microenvironment.
In addition, pro-inflammatory exosomes (e.g., containing miR-
155) released by M1 macrophages can inhibit angiogenesis,
injury (19, 82).
receptor-associated kinase-M

contributing to secondary myocardial
Upregulation of interleukin-1
(IRAK-M) in the infarct microenvironment has been shown to
suppress M1 macrophage overactivation, thereby attenuating
adverse cardiac remodeling (81).

As the pathology progresses (approximately days 3-7), a

phenotypic shift occurs from pro-inflammatory M1 to anti-

cpso “P%

M1

CD163

Monocytes

FIGURE 3
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~< (TLR4
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Monocyte differentiation following AMI. Bone marrow-derived monocytes are recruited to the damaged myocardial tissue and subsequently
differentiate into M1 and M2 macrophages. M1 macrophages express markers such as TLR-2, TLR-4, CD80, and CD86, and produce pro-
inflammatory cytokines including IL-1p, TNF-a, and CCL5. M2 macrophages express markers such as CD163, CD206, and CD209, and produce
anti-inflammatory cytokines including IL-10, TGF-B, and VEGF, which induce tissue repair.
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inflammatory M2 macrophages, which begin to dominate and help
protect the heart from adverse outcomes (83). M2 macrophages
secrete mediators such as IL-10, CCL17, VEGF, and TGEF-f,
which fibroblast
synthesis, and angiogenesis, thereby promoting tissue repair (84,
85). This
mechanisms, including efferocytosis, cell-cell contact signals, anti-

stimulate activation, extracellular matrix

polarization process is influenced by several
inflammatory factors released by neutrophils (e.g., NGAL) (80),
and extracellular vesicles carrying anti-inflammatory miRNAs. M2
macrophages specifically express the Mer tyrosine kinase (MerTK)
which

cardiomyocytes through recognition of phosphatidylserine on

receptor, enables efficient clearance of necrotic
apoptotic cells. Loss of MerTK disrupts phagocytic function and
impedes repair (86). Importantly, the balance between M1 and
M2 macrophages is essential for myocardial healing-persistent M1
activation can prolong inflammation, while impaired M2 function
may suppress fibrosis resolution and angiogenesis, ultimately
worsening cardiac function (87).

Macrophage origin, abundance, and phenotypic heterogeneity
further influence the course of post-AMI injury and repair (83).
Based on CCR2 expression, cardiac macrophages are classified into
two main subsets: CCR2+ macrophages, which are derived from
circulating monocytes and recruited to the infarct via the
MyD88-dependent pathway. They exhibit M1-like characteristics,
express pro-inflammatory cytokines such as CCL2, drive sustained
monocyte infiltration, and promote adverse remodeling (88, 89). In
contrast, CCR2—macrophages are primarily cardiac-resident cells
of embryonic origin, maintained by self-proliferation. They help
(90),

development, and facilitate cardiac regeneration (91).

suppress monocyte  recruitment support  coronary

Different macrophage subpopulations cooperate during cardiac
injury and repair. Recent studies reveal that small extracellular
vesicles derived from M2 macrophages can reduce CCR2"
macrophage abundance, limit monocyte recruitment to the
infarct, and promote M1-to-M2 phenotypic conversion, thereby
enhancing angiogenesis and improving myocardial repair (81).
These findings suggest that targeting of macrophage function and
phenotypic switching may hold potential for reducing adverse

remodeling and supporting cardiac repair after AMI (92).

2.3 Role of lymphocytes and dendritic cells
in inflammation-injury and repair

T cells play a dual role in the post-AMI inflammatory
response, involving a dynamic balance between pro- and anti-
inflammatory mechanisms. During ischemia-reperfusion injury,
CD4" T cells-particularly the Thl subset-can influence infarct
size by releasing IFN-y and IL-17, cytokines associated with
cardiomyocyte death and fibroblast proliferation (93, 94). CD8"
T cells show a more complex role: although impaired CD8"
T cell function has been linked to better initial cardiac recovery,
their absence delays necrotic tissue clearance, impairing scar
formation and increasing the risk of cardiac rupture (95).

Regulatory T cells (Tregs) generally support cardiac repair (45,
96). They help modulate the post-AMI immune environment by

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1657300

suppressing CD8" T cell activity (97) and influencing monocyte/
macrophage differentiation (96). Studies in animal models
indicate that increasing Treg numbers through exogenous
administration survival, cardiac

improves  cardiomyocyte

function, and repair outcomes, partly by reducing pro-

inflammatory monocytes/macrophages and encouraging a
reparative macrophage phenotype (98).

Dendritic cells (DCs), as key antigen-presenting cells, also
contribute to immune regulation and repair after AMIL
Tolerogenic DCs (tDCs), a specific subset, help activate Tregs
and modulate macrophage polarization. In DC-depleted mice,
post-infarction ventricular remodeling is more severe, with
increased inflammatory monocytes, macrophages, and cytokines,
as well as higher rupture risk, supporting a protective role for
DCs (40, 99, 100). By promoting Treg activation, tDCs facilitate
a shift from MI1 to M2 macrophages, thereby improving
cardiacfunction (101). In mouse models, tDC administration
after AMI reduces infarct size, improves systolic function, and
enhances survival. Imaging and molecular analyses show that
tDC treatment promotes Treg infiltration, elevates anti-
inflammatory cytokines (e.g., IL-4, IL-10) and VEGF, and
accelerates the MI-to-M2 transition, contributing to reduced
inflammation and better tissue repair (40, 102, 103). Overall,
tDCs help attenuate inflammation, support tissue repair, and
improve cardiac outcomes after AMI through Treg activation,
macrophage polarization, and stimulation of angiogenesis. These
findings indicate that targeting DC subsets may offer therapeutic
potential in myocardial infarction and heart failure.

B lymphocytes contribute to immune responses through
cytokine
secretion. Certain B cell subsets expand in pericardial adipose

antibody production, antigen presentation, and
tissue and accumulate in the infarcted heart after AMI, where
they may exert anti-inflammatory effects via IL-10, potentially
helping to resolve inflammation (104). In a clinical study of 14
MI patients, higher B cell levels after PCI correlated with
improved LVEF. further that
empagliflozin enhanced cardiac repair by restoring naive B cell

Mouse studies showed
number and function, and infusion of B cells improved cardiac
function and reduced infarct size, supporting a protective role
(105). However, the exact mechanisms by which B cells regulate

post-AMI immunity require further investigation.

3 Therapeutic advantages of
R?Anloparticle-based drug delivery in

A central challenge in current cardiovascular disease therapy is
the targeted delivery of therapeutics to specific pathological sites—
such as areas of inflammation, thrombosis, or abnormal cell
proliferation—while minimizing effects on healthy tissues.

In recent years, nanoscale materials, particularly NPs, with
dimensions on the nanometer scale, have become important tools
in modern medicine. Among these, the types most commonly
used in the field of cardiovascular medicine are shown in Figure 4.
Their applications range from targeted gene delivery to contrast
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enhancement in medical imaging (106, 107). NPs utilize their
distinct size, tunable physicochemical properties, and chemical
composition to facilitate transport through tissues and the
bloodstream for drug delivery. They also exhibit increased
and Dbiodistribution

chemical reactivity,

capabilities (108). This rapidly evolving field provides new

energy absorption,

therapeutic opportunities for a variety of diseases (109) (Figure 4).

The medical utility of NPs is mainly reflected in three areas:
extending the drug half-life and reducing systemic toxicity to
optimize the therapeutic window; enhancing targeting specificity
by modifying physicochemical properties such as surface charge
to limit off-target effects; and improving drug accumulation at
disease sites through combined active and passive targeting
strategies (110). In the treatment of coronary heart disease,
delivery systems based on biodegradable organic carriers—such
as liposomes, micelles, and polymeric NPs, often functionalized
with targeting ligands (e.g., antibodies, peptides) or functional
polymers—have shown improved therapeutic efficacy (111-113).

NPs facilitate drug delivery through several advantageous
mechanisms: sustaining drug release to prolong in vivo
residence time; providing controlled release kinetics that help
reduce side effects such as abnormal vascular growth or vascular
leakage; and enabling precise delivery to specific sites such as
ischemic regions, thereby improving treatment outcomes (114).

Frontiers in Cardiovascular Medicine

This targeting ability partly arises from the capacity of NPs to

exploit pathological microenvironment features—such as

ischemia-induced ~ vascular ~ permeability—for  enhanced
accumulation in target tissues like the ischemic myocardium
(115). Moreover, the inherent stimulus-responsiveness of NPs
(to temperature, pH, or external stimuli such as ultrasound)

allows spatiotemporally controlled drug release (116, 117).

3.1 Advanced NP-NDDSs for myocardial
infarction therapy

A variety of nanoparticle (NP) classes, including organic
systems such as liposomes, micelles, dendrimers, and polymeric
NPs, as well as inorganic carriers like gold and silica NPs,
provide various approaches for targeted drug and gene delivery
to the heart. To visually organize the diverse array of NPs
discussed in this section, Figure 5 provides a schematic overview
of the major NP classes (organic, inorganic, biomimetic) and
their
immune cells in MI. Emerging biomimetic nanoplatforms are

immunomodulatory mechanisms targeting different

further expanding possibilities in this area.
which
dendrimers, generally exhibit tunable biocompatibility, reduced

Organic  NPs, include liposomes, micelles, and

07 frontiersin.org
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FIGURE 5

Mechanisms of nanomaterial-mediated immunomodulation for myocardial infarction intervention. This figure illustrates the targeting of distinct
pathways in neutrophils, macrophages, and lymphocytes for treating myocardial infarction.

toxicity, and through

adjustment of their chemical and structural properties (118).

improved drug delivery efficiency

Their nanoscale size (1-100 nm) allows size-dependent effects
and customizable surface chemistry, enabling advances in gene
delivery, medical imaging, and targeted drug transport (106, 119).

Research on organic NP-based drug delivery systems has
largely centered on liposomes, micelles, polymeric NPs, and
dendrimers (113). Micelles are colloidal particles formed by the
self-assembly of amphiphilic molecules, with a hydrophobic core
that encapsulates poorly soluble drugs and a hydrophilic shell
that improves solubility. Their small size (typically under
80 nm) promotes better penetration into ischemic myocardial
tissue compared to larger NPs (120). By incorporating targeting
groups such as antibodies or ROS-sensitive peptides, micelles
can be engineered to recognize specific components in
atherosclerotic plaques, improving targeting accuracy (121).
Preclinical studies suggest that targeted micelles carrying anti-
inflammatory or anti-angiogenic drugs can extend circulation
half-life, lower pro-inflammatory cytokine levels, and reduce
plaque area (120, 122).

Polymers are widely used as NP materials due to their low
toxicity and versatility for chemical modification (123). Both

natural polymers (e.g., starch, cellulose) and synthetic ones such

Frontiers in Cardiovascular Medicine

as PLA, PGA, and PLGA have been utilized (124). PLGA, in
particular, is known for its controllable degradation and is often
used for sustained drug release. For example, PLGA NPs
prepared by emulsion solvent diffusion have been used to deliver
glutathione or heparin to the heart within 2h in models of
myocardial ischemia-reperfusion injury (MIRI) (125, 126).
Dendrimers are highly branched, well-defined macromolecules
whose size can be controlled by the number of synthetic
generations. Their multifunctional surfaces allow efficient loading
of drugs, imaging agents, and targeting molecules such as folic
acid or antibodies (127). With optimized conjugation methods,
potentially  useful
cardiovascular disease diagnosis and targeted treatment (128).

dendrimers  represent platforms  for

Liposomes are self-assembled phospholipid bilayer vesicles
that mimic cell membranes and can carry both hydrophilic and
hydrophobic drugs. They are especially useful for co-delivering
genes and drugs, and they offer prospects for scalable
production (129). However, issues such as drug leakage and
particle aggregation may affect release kinetics, indicating a need
for further formulation improvement (130).

Inorganic nanocarriers, including silica-, carbon-, and metal-
based NPs (e.g., AuNPs), often show high physicochemical

stability and strong drug-loading capacity, supporting precise

frontiersin.org



Li et al.

delivery (131, 132). Gold NPs (AuNPs) are easily synthesized,
exhibit low toxicity and minimal immunogenicity, and have
been used to deliver cardioprotective drugs such as Simdax. In
heart failure models, AuNP-conjugated Simdax showed better
efficacy than the free drug, likely due to improved tissue
targeting (133). Silica NPs provide high surface area and a
mesoporous structure that can be functionalized for efficient
drug or gene delivery, as seen in adenosine delivery to MIRI-
(134).
biodegradability of inorganic NPs compared to organic ones has

affected heart tissue However, the relatively low
raised concerns about long-term accumulation and potential
toxicity. Complicated surface modification processes also present
challenges, highlighting the importance of developing controlled
degradation and functionalization methods to improve biosafety
and efficacy (131, 135).

Although traditional nanocarriers are widely used, emerging
biomimetic nano-delivery systems combine nanotechnology with
biomimetic principles to provide alternative strategies for
treating AMI and MIRI (136-138). These systems employ
nanoscale carriers (1-1,000 nm) designed to imitate biological
structures.  Examples  include  cell = membrane-coated
nanoparticles, nano-sized extracellular vesicles such as exosomes,
and nanozymes—nanomaterials that mimic the catalytic activity
of natural enzymes.

Biomimetic systems allow efficient encapsulation and targeted
delivery of therapeutics while leveraging natural biological
mechanisms to avoid immune clearance, extend circulation time,
and increase accumulation in ischemic heart tissue (139, 140)
For instance, nanoparticles coated with autologous cell
membranes or exosome-like vesicles inherit the targeting ability
and biocompatibility of the source cells, functioning similarly to
liposomes but with enhanced bio-specificity (141). Biomimetic
nanozymes can reduce oxidative stress by scavenging excess
ROS (142, 143). In comparison with conventional nanocarriers,
biomimetic systems often improve the solubility and stability of
poorly soluble drugs and allow stimuli-responsive release in
response to microenvironmental signals such as pH changes or
enzyme activity in ischemic regions. This can help minimize oft-
target effects and related side effects (144-146). One example is
a neutrophil membrane-camouflaged delivery system loaded
with siRNA. Modified with integrins to improve targeting and
hemagglutinin to promote endosomal escape, this system
enhanced siRNA delivery in MIRI models, reduced neutrophil
infiltration and microthrombus formation, limited infarct size,

and improved cardiac function (147).

3.2 Neutrophil-targeting nanoparticle-
based drug delivery systems

Emerging evidence indicates that the initial response to
myocardial tissue damage triggers intense neutrophil-dominated
inflammation, exacerbating injury and potentiating ventricular
remodeling. Recent advances leverage nanomedicine to precisely
modulate neutrophil functions, offering cardioprotective effects
through extended drug efficacy and enhanced targeting.
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3.2.1 Therapeutic targeting of S100a8/A9 in
neutrophil-driven inflammation

As primary early responders in inflammation, neutrophils
secrete the alarmin S100A8/A9, which promotes the infiltration
of innate immune cells such as macrophages and drives their
polarization toward the pro-inflammatory M1 phenotype.
inhibiting the S100A8/A9
emerged as a common therapeutic strategy. Beyond multi-

Therefore, signaling axis has
enzyme-mimetic nanocatalysts, multifunctional nanocomplexes
have been developed to produce synergistic effects. For
example, dual-function nanocomplexes combining CuxO
nanoparticles—which quench ROS through multi-enzyme
mimicry—and the S100A8/A9 inhibitor ABR-25757 can
synergistically block the S100A8/A9-NLRP3-IL-1B pathway,
contributing to a reduction in infarct size (148). Further
advances include targeted pathway inhibition and gene
silencing strategies. Based on the concept of S100A8/A9
pathway blockade, receptor-mediated siRNA delivery systems
have been designed to disrupt neutrophil-driven inflammation
with greater precision. One such system uses SI00A9-siRNA
nanoparticles coated with engineered macrophage membranes
functionalized with RAGE (receptor for advanced glycation
end products) and hemagglutinin (HA). These particles achieve
dual targeting: RAGE facilitates binding to S100A9, which is
highly expressed in the infarcted myocardium, while HA
promotes endosomal escape for efficient cytosolic siRNA
release. This approach leads to SI00A9 gene silencing,
inhibition of the S100A8/A9-TLR4 axis, and a subsequent

decrease in neutrophil recruitment (20).

3.2.2 Neutrophil membrane biomimetic
nanocarriers for modulating the immune
microenvironment

Neutrophil which

leverage inherent long circulation and inflammatory homing

membrane-biomimetic nanocarriers,
capabilities, have shown promise as tools for regulating the
immune microenvironment after AMI.

(1) Delivering Immunomodulatory Factors: In one study,
neutrophil membrane-camouflaged NPs with a PLGA core
were loaded with IL-5. After reaching inflammatory sites,
these

promoting eosinophil recruitment and M2 macrophage

carriers reduced neutrophil infiltration while
accumulation. They also enhanced angiogenesis through
increased AKT and ERKI1/2 phosphorylation, leading to
improved ventricular remodeling (18).

(2) Adsorbing

platforms such as neutrophil membrane-cloaked liposomal

Pro-inflammatory ~ Mediators:  Biomimetic
NPs (Neu-LPs) can adsorb pro-inflammatory cytokines
(TNF-a, IL-1B, IL-6) and CXCL-2 in the infarcted heart.
This action dampens neutrophil infiltration and accelerates
M2 macrophage polarization within 3 days post-AMI,
which helps attenuate apoptosis and fibrosis (149).

(3) Co-delivering Therapeutic Nucleic Acids: More advanced
systems combine cytokine neutralization with regenerative
therapy. For instance, silica NPs cloaked with neutrophil
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membranes and loaded with miR-10b (NM@miR) can
deliver this microRNA to cardiomyocytes, where it
suppresses the Hippo pathway to promote proliferation
and regeneration (141).

3.2.3 Synergistic delivery and multifunctional
nanoplatforms

NPs can be
immunomodulation through synergistic delivery strategies.

designed to achieve multifunctional

(1) Drug-siRNA Synergistic Delivery: Mengying Hou et al
endothelial
nanocomplex (NCs). Its core contains PLGA NPs loaded

developed an cell-targeted, ROS-sensitive

with the anti-inflammatory drug dexamethasone (DXM).

The surface is electrostatically coated with cRGD-PEG-bis

(diselenide)-crosslinked polyethylenimine (RPPT)

complexed with VCAM-1 siRNA (siVCAM-1). In a MIRI

model, cRGD mediates targeting to inflamed endothelium.

Local high ROS levels trigger degradation of RPPT,

leading to release of siVCAM-1 and silencing of VCAM-1

expression. This effect works together with DXM to

inhibit neutrophil chemotaxis and adhesion, thereby

alleviating myocardial inflammation and improving
cardiac function. This design addresses challenges related
to siRNA encapsulation, release, and efficiency-toxicity
balance (150).

(2) Membrane Camouflage with Functional Modification for
siRNA Delivery: Yaohui Jiang et al. constructed an
engineered neutrophil membrane-camouflaged
nanodelivery system (MNM/siRNA NPs) modified with
integrins and hyaluronic acid (HA) and loaded with
siRNA targeting integrin a9. HA facilitates endosomal
escape, while integrin a9/B1 enables targeting via binding
to endothelial VCAM-1. In a MIRI model, silencing

NET

formation, and microthrombosis, resulting in smaller

integrin 09 reduced neutrophil infiltration,

infarct size and improved cardiac function (147).

3.2.4 Mimicking natural biomolecules to regulate
leukocyte function

Another strategy involves mimicking natural biomolecules to
regulate leukocyte function. Researchers have developed NPs (n-
apo AI) composed of human apolipoprotein AI (Apo AI)
complexed with soybean phosphatidylcholine, which mimic the
(HDL). When
administered intravenously after reperfusion, n-apo Al targets

structure  of  high-density lipoprotein
neutrophils, reduces surface expression of the integrin CDI11b,
decreases leukocyte infiltration into the infarct zone, and
promotes monocyte polarization toward the anti-inflammatory
Ly6Clow phenotype. This supports inflammation resolution
and tissue repair. Notably, this approach also showed potential
in reducing circulating leukocyte activity in patients with type
2 diabetes, suggesting a possible new direction for managing
inflammation after AMI (151) (Table 1).
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3.3 Macrophage-targeting nanoparticle-
based drug delivery systems

3.3.1 Targeting monocyte/macrophage
recruitment and initial inflammation

Following AMI or MIRI, damaged cardiomyocytes release
DAMPs. The recognition of DAMPs by TLR4 on innate
immune cells initiates a robust inflammatory response, leading
to the recruitment of neutrophils and monocytes/macrophages
to the heart. To target this initial trigger, PLGA NPs delivering
the TLR4 inhibitor TAK-242 were shown to suppress monocyte/
TLR4/NF-«B which  reduced the
infiltration of Ly6Chigh monocytes and the release of pro-

macrophage signaling,
inflammatory cytokines such as IL-6 and CCL-2, thereby
attenuating acute myocardial inflammation (152).

After AMI, monocytes are recruited to the infarct area mainly
through CCR2 binding to its ligand CCL-2. In one approach, anti-
CCR2 antibody-modified PEG-DSPE micelles (21-35 nm) were
used to deliver a CCR2 antagonist specifically to monocytes.
This intervention blocked CCR2/CCL-2 signaling, significantly
reduced the migration of spleen-derived monocytes to the heart,
and resulted in smaller infarct size and improved cardiac
function (153).

The in vivo delivery efficiency of NPs is often limited by clearance
from the mononuclear phagocyte system. Qiang Long et al. proposed
an innovative strategy by targeting the spleen as a key organ for
regulating myocardial inflammation. Their work showed that
monocytes recruited during acute myocardial reperfusion injury
originate from the spleen, and that early expression of Interferon
Regulatory Factor 7 (IRF7) in the spleen influences cardiac
macrophage function. By developing spleen-targeting biomimetic
NPs (RP182-STEER) loaded with HS38, they inhibited early IRF7
expression specifically in the spleen. This approach blocked the
egress of pro-inflammatory monocytes to the heart without
interfering with IRF7 function during the repair phase, leading to
improved acute and chronic outcomes (154).

3.3.2 Modulating macrophage polarization state
The inflammatory outcome after injury is strongly influenced
by macrophage phenotype. Promoting a shift from pro-
inflammatory (M1) to a reparative (M2) state is considered
important for resolution of inflammation and tissue repair.
Peroxisome proliferator-activated receptor-y (PPARy), a nuclear
receptor, can inhibit NF-kB expression in macrophages and
encourage transition to an M2 phenotype. In one study, PLGA
NPs delivering the PPARy agonist pioglitazone promoted M2
polarization, which was associated with reduced inflammation
and fibrosis, and improved cardiac function after MIRI (146).
Macrophage polarization can also be influenced by directly
targeting intracellular signaling pathways. For example, Laura
NPs (NL10)
functionalized with an IL-10 receptor-targeting peptide (1T9302)
via PEGylated phospholipids. These NIL10 NPs promoted
STAT3 activation and inhibited NF-«kB nuclear translocation in
their  shift
This shift was

Tesoro et al. developed lipid membrane

macrophages, accelerating toward an anti-

inflammatory phenotype. accompanied by
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increased expression of anti-inflammatory cytokines including IL-
4, IL-10, and IL-13, which ultimately contributed to reduced
fibrosis and improved cardiac function (155).

Another innovative strategy involves clearing stress-induced
senescent cells (SISCs) that arise after injury. Researchers used
biodegradable PLGA NPs loaded with the senolytic drug ABT263
(ABT263-PLGA), administered via local injection. These NPs
facilitated the clearance of SISCs through macrophage phagocytosis,
which led to reduced levels of inflammatory mediators and fibrosis,
promoted M2 polarization, and supported functional recovery,
while avoiding systemic toxicity (156).

3.3.3 Biomimetic nanocarriers for enhanced
targeting and delivery

Biomimetic nanodrug delivery systems are considered
their
biocompatibility and targeting capabilities. For instance, platelet
membrane-coated NPs (CsA@PPTK) have been used to deliver
Cyclosporine A (CsA) to ischemic myocardium. This approach
inhibited the

(mPTP), scavenged ROS, promoted M2 macrophage and Tregs,

promising for myocardial injury therapy due to

mitochondrial permeability transition pore
and provided long-term functional benefits through combined
antioxidant, anti-inflammatory, and anti-apoptotic effects (157).

Apoptotic cell membranes also represent useful biomimetic
materials. Lili Bao et al. developed neutrophil apoptotic body
membrane-coated mesoporous silica NPs loaded with hexyl-
5-aminolevulinate hydrochloride (HAL). By mimicking natural
apoptosis, this system utilizes adhesion molecules on the apoptotic
membrane to target inflammatory sites for specific uptake by
macrophages. An esterase-responsive polymer cap then opens,
releasing HAL to initiate the heme metabolism pathway and
generate bilirubin, an anti-inflammatory metabolite. This process
can enhance macrophage polarization toward an anti-inflammatory
phenotype,

regeneration (158). Extracellular vesicles (EVs) also serve as

supporting inflammation resolution and tissue
promising natural drug carriers. One example is monocyte
membrane-modified extracellular vesicles (TB4-MmEVs), which
leverage CCR2/CCL-2 targeting and CD47-mediated evasion of
clearance to deliver thymosin f4 (TB4) and promote angiogenesis

and repair (159).

3.3.4 Synergistic strategies: targeting cellular
injury, oxidative stress, and inflammation

In addition to modulating cellular migration, synergistic
that (e.g.
mitochondrial dysfunction) and inflammation have shown
promise. PLGA NPs co-delivering the mPTP inhibitor CsA
(targeting CypD) and the CCR2 antagonist pitavastatin were

interventions address early cellular injury

shown to attenuate mitochondrial damage—thereby inhibiting
NLRP3 inflammasome activation—and reduce monocyte-driven
inflammation, resulting in cardioprotective effects (160).
Excessive ROS production and subsequent oxidative stress play
a key role in exacerbating MIRI. Advanced bimetallic nanozyme
strategies, such as Cu-TCPP-Mn, incorporate manganese (Mn)
and copper (Cu) within Tetrakis(4-carboxyphenyl)porphyrin
(TCPP) ligands to form a metal-organic framework (MOF). This
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nanozyme mimics the cascade activity of superoxide dismutase
(SOD) and catalase (CAT) to scavenge ROS. In MI and MIRI
administered Cu-TCPP-Mn (20 nm)
accumulated in ischemic myocardium, suppressed IL-1B and
TNF-a
infiltration, and increased anti-inflammatory IL-10 levels (161).

models, intravenously

expression, reduced neutrophil and macrophage
Similarly, a polyglucose-sorbitol carboxymethylether (PSC)-coated
Prussian blue nanozyme (PBNz@PSC) exhibited biocompatibility
and targeted damaged myocardium. PBNz@PSC scavenged ROS
SOD/CAT-like activity, promoted M2
modulated AMPK/NF-«B

vasodilation, and improved cardiac function (142). In a combined

via macrophage

polarization, signaling, enhanced
antioxidant and gene therapy approach, cationic cerium dioxide
(CeO,) NPs delivered an Nrf2 plasmid to macrophages. Using
monocyte transport for infarct accumulation, this system activated
the Nrf2/ARE antioxidant pathway and suppressed inflammation,

leading to functional improvement and reduced damage (162).

3.3.5 Nanocarrier delivery of herbal-derived
monomers

Targeted delivery strategies continue to improve treatment
precision. For example, CD11b antibody-modified mesoporous
silica NPs (MSN-NGRI1-CD11b) were used to deliver the
traditional Chinese medicine monomer notoginsenoside RI
(NGR1) to CD11b" leukocytes in the infarct zone. This method
was associated with improved cardiac function, promoted
angiogenesis, reduced apoptosis, and polarized macrophages
toward the M2 phenotype (163). In another study, platelet
membrane-coated PLGA NPs (BBR@PLGA@PLT NPs) delivered
berberine (BBR) to the infarcted myocardium. The platelet
membrane improved targeting specificity and reduced liver uptake.
This system increased the number of reparative macrophages,
decreased inflammatory macrophages and apoptotic cells, and
improved cardiac function while reducing fibrosis and promoting

angiogenesis, with reported good biosafety (164) (Table 2).

3.4 Tergs-targeting nanoparticle-based
drug delivery systems

Tregs within ischemic myocardial tissue can exert protective

effects, including anti-apoptotic, and

antioxidant actions, which may help reduce left ventricular

anti-inflammatory,

remodeling (45). The accumulation of Tregs in the ischemic heart
is considered an important factor for supporting cardiac repair.
Systemic delivery of exogenous Tregs to increase their circulating
levels after AMI has been associated with improved cardiomyocyte
survival, cardiac function, and overall repair outcomes (98).

In addition to direct Treg infusion, some strategies aim to
expand Treg populations locally. Fangyuan Li et al. developed
(CsA@PPTK) that
ischemic myocardium. CsA@PPTK can scavenge ROS and

platelet membrane-coated NPs target
increase the Treg population and the M2/M1 macrophage ratio.
In high-ROS environments, the PTK component degrades to
release CsA, which inhibits mPTP over-opening and may help

reduce cardiomyocyte apoptosis, inflammation, and fibrosis (157).
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In another approach, Kwon et al. designed liposomal NPs
(L-Ag/R)
antigens and rapamycin. After intravenous administration and

co-loaded with myocardial infarction-associated
uptake by DCs, L-Ag/R can induce tolerogenic dendritic cells and
promote the generation of antigen-specific Tregs. These Tregs
migrate to the infarcted myocardium, potentially enabling more
targeted immune tolerance with reduced risk of non-specific
systemic immunosuppression compared to polyclonal Tregs. They
appear to suppress pro-inflammatory M1 macrophage activity
and promote M2 macrophage polarization, which may help
mitigate local inflammation, reduce cardiomyocyte apoptosis, and
limit fibrosis (165).

Current research in this area often focuses on engineered cell
CAR-Tregs, or
immunomodulators like rapamycin, which can directly expand or

therapies, such as small-molecule
activate Tregs (96). In contrast, nanoparticle-mediated targeting
of Tregs remains less explored. This may be due to challenges in
achieving specificity, as Tregs share surface markers with effector
T cells (e.g., CD25, CTLA-4), combined with the generally low
infiltration of Tregs into inflammatory MI zones. These factors
can limit efficient nanoparticle targeting and accumulation,
indicating a need for further investigation (97) (Table 3).

CAR-Treg-NP therapy is being explored for application in
cardiovascular diseases. In the context of cardiac fibrosis, lipid
NPs encapsulating mRNA encoding FAP-targeting chimeric
antigen receptors have been employed to generate transient
CAR-T cells in vivo through a single intravenous injection.
These cells selectively clear activated cardiac fibroblasts, which
has been shown to reduce fibrosis and improve cardiac function
in mouse models (166). This CAR-Treg-NP strategy represents a
potential direction for the precise modulation of immune-
mediated cardiovascular pathologies.

3.5 Comparative overview of major
nanoparticle-based drug delivery systems
for AMI therapy

NP-NDDSs represent a promising approach for targeted
therapy in AML of NPs
advantages and limitations. Organic NPs, such as liposomes,

Different classes offer distinct

TABLE 3 Tergs-targeting nanoparticle-based drug delivery systems.

Reference  Nanoparticle Targeting

mechanism

Efficacy

endpoints

10.3389/fcvm.2025.1657300

polymeric NPs (e.g., PLGA), and micelles, generally exhibit high
biocompatibility, tunable drug release profiles, and ease of
surface functionalization. However, they may present challenges
related to stability, potential drug leakage, and local acidification
caused by degradation products (121, 122, 126, 127, 129, 130).
Inorganic NPs, including gold (AuNPs) and silica nanoparticles,
often provide high physicochemical stability and substantial
drug-loading capacity. A potential limitation is their relatively
limited biodegradability, which raises considerations about long-
term accumulation and possible toxicity (134, 135, 143, 144).
Biomimetic NPs, such as cell membrane-coated or exosome-
based systems, offer advantages in immune evasion, targeting
ability, and biocompatibility. Their development, however, can
face challenges related to scalable production and batch-to-batch
consistency (18, 20, 142, 148). Overall, organic and biomimetic
NPs may have their
biodegradable whereas
inorganic NPs may require further development to address

greater clinical potential due to

nature and bioinspired properties,
safety profiles. A systematic comparison of key parameters—
including drug loading capacity, biocompatibility, targeting
accuracy, and translational feasibility—is provided in Table 4 to
aid in the rational selection of NP-NDDSs for AMI therapy.

4 Challenges facing nanoparticle drug
delivery systems for myocardial
infarction therapy

4.1 Challenges In clinical translation

Most nanotherapeutics for MI remain at the preclinical stage,
having been tested primarily in small animal models such as mice
and rats. Among the studies reviewed here, only one included a
small-scale clinical trial (151), while all others are still in the
preclinical phase. This heavy reliance on animal models
represents a major limitation in the development of NP-NDDS
for AML

Although clinical research on NP-NDDS for AMI is limited,
some studies in broader cardiovascular fields have begun to
explore clinical applications. For example, Lu Yang et al.
conducted a randomized controlled trial using a liposomal NP-

Administration ' Year

Administration
route

Therapeutic

Platelet Membrane-
Biomimetic NPs

(157) Scavenges ROS; increases
Tregs generation;
modulates M2/M1
macrophage ratio;
inhibits mPTP over-

opening

size by 8.5%,

by 25%

(165) Liposomal NPs Induces tDCs; increases

antigen-specific Tregs size by 18%,
recruitment; suppresses
M1 and promotes M2

macrophages to reduce

by 13%

inflammation

Frontiers in Cardiovascular Medicine

Reduced infarct

increased LVEF

Reduced infarct

increased LVEF

agent

Cyclosporine A Intravenous 5 min before 2022
reperfusion
MI tissue lysates Intravenous 24 h post-AMI 2021

(antigen) + Rapamycin
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NDDS to co-deliver low-dose clopidogrel and aspirin. The study
involved 270 patients with coronary artery disease and reported
that the liposomal formulation reduced the incidence of major
adverse cardiovascular events with a favorable safety profile
compared to conventional dual antiplatelet therapy (169).
However, not all clinical trials have yielded positive outcomes.
In a study by Fleur M. van der Valk et al., 30 patients with
atherosclerosis received liposomal prednisolone. Although the
nanoparticles reached macrophages within atherosclerotic
plaques, no significant anti-inflammatory effect was observed—
possibly due to insufficient drug dosage or the small sample size
(170). Another planned trial led by Yan Fang et al. aims to
enroll 200 participants to evaluate a self-assembling nanoprobe
for detecting fibroblast growth factors (FGFs) for cardiovascular
disease screening and treatment assessment
(ChiCTR2400089047). Despite considerable preclinical progress,
the translation of NP-NDDS into clinical practice remains limited.
The challenges in clinical translation are partly attributable to
anatomical, physiological, and pathological differences between
species. For instance, the heart rate of mice (500-700 bpm) is
much higher than that of humans (60-100 bpm), which affects
hemodynamic shear stress and may alter NP circulation time,
protein  corona  formation, and targeting efficiency.
Pathologically, post-AMI inflammation in rodents is relatively
with fibrotic

remodeling often complete within a week. In humans, however,

short, typically resolving within 3-7 days,
the inflammatory phase can persist for 2-4 weeks, and fibrotic
remodeling is more prolonged and complex.

Heavy reliance on small animal models means that key
parameters such as targeting efficiency and safety observed in
rodents may not reliably predict outcomes in humans.
Additionally, clinical patients often exhibit significant individual
variability—unlike standardized animal models. Factors such as
immune status, age, and comorbidities can further influence NP
efficacy and targeting. Therefore, the use of large animal models
such as porcine MI models, which more closely mimic human
physiology and pathology, is essential. These models allow for
better evaluation of NP targeting efficiency, long-term safety
(e.g. >6 months),

immunogenicity (e.g., anti-NP antibody generation), thereby

tracking cardiac function over and
improving predictive validity.

Another challenge lies in the choice of administration route
and the dynamic nature of the inflammatory response following
AMI

accumulation in the infarcted area, as well as the duration of

The administration method significantly affects NP

therapeutic action and overall safety. Direct intramyocardial
injection can achieve high local drug concentrations but may
cause mechanical injury to vulnerable cardiac tissue and
increase the risk of myocardial rupture. Intravenous injection is
less invasive but often results in rapid systemic clearance and
delayed delivery to the target site. As shown in the study by van
der Valk et al, even when NPs reach the lesion, treatment
effects may be limited by factors such as insufficient dosing (151).

Moreover, the post-AMI inflammatory response evolves
dynamically over time, involving phenotypic shifts in immune
cells such as N1/N2 neutrophils and M1/M2 macrophages. This
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the NP of
spatiotemporally controlled drug release. Future research could

underscores need for systems  capable
focus on developing “phase-specific” NPs that adapt to the
changing inflammatory microenvironment—from acute injury to
repair phases. Strategies may include dual-targeting ligands that
respond to both microenvironmental cues and specific cell
phenotypes, or biomimetic approaches that leverage the homing
behavior of immune cells, such as neutrophil- or macrophage-
mimetic NPs.

With
intelligence (Al)-assisted design has emerged as a potential tool

advances in computational methods, artificial
for developing NPs with spatiotemporally controlled release
properties. Machine learning (ML) models can analyze high-
throughput experimental and computational data to predict NP
behavior in complex inflammatory microenvironments,
supporting more rational NP design (171). For example, ML can
help predict protein corona composition based on protein
sequences and NP physicochemical properties (172, 173), which
may guide the design of surface ligands to enhance targeting
toward specific cell phenotypes (e.g., MI1/M2 macrophages)
while reducing non-specific uptake. In ligand optimization, AI
may aid in identifying dual- or multi-targeting ligands that
respond to microenvironmental signals (e.g., pH, ROS) and cell
surface receptors, enabling NPs to adapt to stage-specific
inflammatory cues. ML models may also analyze relationships
between immune cell homing behavior and membrane protein
expression, informing the design of biomimetic nanocarriers
(174). By integrating multi-omics data with computational
modeling, Al-assisted approaches could help design NPs that
dynamically adjust their function during disease progression,

improve targeting accuracy, and reduce off-target effects.

4.2 Regulatory and manufacturing hurdles

While nanoparticles offer potential advantages in medical
applications, they also present considerable immunogenic risks.
their
nanoparticles can activate the immune system, potentially

Owing to surface properties and foreign nature,

triggering hypersensitivity or inflammatory responses. For
instance, gold nanoparticles (AuNPs) used in diagnostic imaging
have been associated with allergic reactions such as rashes,
swelling, and respiratory distress in some patients (175).
Dendrimers and polymeric nanoparticles may activate immune
cells while enhancing drug delivery, which could lead to
(176). typically
biocompatible carriers such as liposomes have been reported to

inflammation or allergic reactions Even
induce immune responses under high-dose or long-term
administration (177, 178). These observations highlight the
importance of prioritizing endogenous degradable materials
(e.g., hyaluronic acid, chitosan) or biomimetic materials (e.g.,
exosomes, cell membrane vesicles) to help minimize long-term
toxicity risks. It is also considered essential to expand long-term
safety assessments to include large animal models.

The metabolic pathways, accumulation effects, and potential

chronic health impacts of nanoparticles in humans remain
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inadequately understood, partly due to a lack of large-scale clinical
studies (179). Although two clinical studies in cardiovascular
disease using lipid nanoparticles reported no major safety
concerns, their sample sizes were limited (169, 170). Animal
studies have indicated that certain inorganic nanoparticles can
accumulate in organs such as the liver, lungs, and kidneys,
where they may induce oxidative stress, inflammation, or other
adverse effects (180). Additionally, the environmental behavior
of nanoparticles warrants attention: they may enter soil and
water systems through medical waste or emissions, with the
potential to bioaccumulate and move through the food chain,
posing possible risks to ecosystems and public health (179, 181).
of biodegradable
nanomaterials and strengthening regulatory oversight of NPs

Therefore, advancing the development
production and use are important priorities.
These further
regulatory evaluation of nanomedicine products. Regulatory
agencies such as the U.S. FDA and the European EMA

currently rely largely on frameworks designed for conventional

scientific uncertainties complicate the

drugs, which may not fully address the specific complexities of
batch-to-batch
bioequivalence assessment, and dynamic release behaviors

nanomaterials, including variability,
(182-184). The manufacturing of nanomedicines requires
precise control over critical parameters such as particle size
distribution, surface charge, drug encapsulation efficiency, and
release kinetics, which can vary between batches and pose
challenges to product consistency and quality (185). Adherence
to Good Manufacturing Practice (GMP) and the establishment
of a comprehensive quality control system—covering raw
production processes, and final
essential to ensure reproducible quality during scale-up from

materials, products—are
laboratory research to commercial production (185). Some

nanomedicines, including Doxil and Abraxane, have
encountered delays or obstacles in approval related to stability,
toxicity, or manufacturing consistency issues (184). Moreover,
the absence of harmonized international regulatory standards
may limit the global accessibility and equitable distribution of
(186, 187). To

development of nanomedicine, there is a need to establish

nanomedicines support the responsible
transnational collaborative mechanisms and develop unified
global evaluation standards specifically addressing the safety,

efficacy, and environmental impact of nanomaterials.

5 Conclusion

NP-NDDSs may offer potential benefits for advancing the
of AMI
inflammatory immune response. As discussed, these systems

treatment through targeted modulation of the
have been shown in preclinical studies to enhance the precision

of therapeutic delivery to pivotal immune cells, suggesting

potential for reducing tissue damage and supporting
repair processes.

The path to clinical application, however, involves
considerable challenges. A central issue is the evolving

inflammatory landscape after AMI, which requires drug delivery

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1657300

systems that can adapt over time. Future efforts should focus on
creating versatile platforms that can sequentially modulate
of the
biomimetic designs, such as cell membrane coatings, may

different phases immune response. Incorporating
improve targeting specificity, while artificial intelligence could
aid in optimizing nanoparticle properties for desired in vivo
performance. Additionally, robust validation in physiologically
relevant large animal models is essential to reliably assess
therapeutic benefits and safety profiles. Translational progress
will also depend on overcoming hurdles in manufacturing
consistency, long-term biosafety, and navigating evolving
regulatory frameworks.

In conclusion, while NP-NDDSs represent a promising
approach to AMI therapy, their successful translation will
depend on these

addressing interrelated biological and

technical challenges.
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