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Acute myocardial infarction (AMI) remains a major cause of cardiovascular 
mortality worldwide. The inflammatory immune response after AMI plays a 
dual role: it facilitates the clearance of necrotic tissue but can also exacerbate 
injury, significantly affecting patient outcomes. Conventional anti- 
inflammatory therapies are often limited by systemic toxicity and insufficient 
targeting, highlighting the need for more refined approaches. This review 
systematically examines the interplay between AMI’s key inflammatory 
immune mechanisms—including neutrophil N1/N2 phenotypic switching, 
macrophage M1/M2 polarization, and Treg/Th17 lymphocyte balance—and 
advancements in nanoparticle-based drug delivery systems (NP-NDDSs) 
designed to target these mechanisms. NP-NDDSs utilize properties such as 
size-dependent accumulation, surface functionalization, and stimuli- 
responsive release (e.g., to pH, ROS, or enzymes) to improve spatiotemporal 
control over drug delivery. Various nanocarriers, including organic (e.g., 
liposomes, polymers), inorganic (e.g., gold, silica), and biomimetic (e.g., cell 
membrane- or exosome-based) systems, have shown potential in influencing 
neutrophil extracellular trap formation, macrophage phenotype, and 
lymphocyte activity. These developments suggest that NP-NDDSs could help 
control excessive inflammation, support tissue repair, and limit adverse 
remodeling. Nevertheless, challenges in targeting precision, manufacturing 
scalability, and long-term biosafety remain to be addressed. By summarizing 
current advances and identifying future needs, this review aims to provide a 
basis for developing targeted therapies against immune-mediated injury in AMI.
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1 Introduction

The widespread adoption of coronary revascularization and guideline-directed 

medical therapies has contributed to a progressive decline in age-standardized 

mortality after acute myocardial infarction (AMI) (1, 2). Nevertheless, the incidence of 

recurrent adverse events, such as heart failure-related hospitalizations and death, 
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remains substantial following MI (3–5). After AMI, cardiomyocyte 

necrosis leads to the release of damage-associated molecular 

patterns (DAMPs), which initiate an in)ammatory cascade. This 

response has a dual role (6) in the early phase, it supports the 

clearance of necrotic tissue and promotes repair; however, 

excessive or prolonged infiltration of neutrophils and monocytes 

may aggravate myocardial injury (7) and contribute to adverse 

ventricular remodeling and heart failure (8, 9). Thus, careful 

modulation of the in)ammatory response is considered 

important for improving outcomes after AMI (10).

Current treatment strategies for MI are limited by the systemic 

side effects and poor targeting of conventional anti-in)ammatory 

agents. Although drugs such as IL-1β inhibitors, colchicine, and 

corticosteroids can reduce in)ammation, their systemic use is 

often associated with undesirable effects. Moreover, the complex 

myocardial microenvironment limits efficient drug delivery, 

compromising therapeutic efficacy (11, 12).

To address these limitations, nanoparticle-based drug delivery 

systems (NP-NDDSs) have attracted growing interest. Engineered 

nanoparticles (NPs) provide a versatile platform due to their 

tunable physicochemical properties, which can enhance stability 

and biocompatibility. By optimizing the NP core material, these 

systems improve drug encapsulation and enable sustained release, 

reducing premature degradation in vivo (13, 14). Additionally, 

surface modification with targeting ligands (e.g., antibodies or 

peptides) promotes accumulation within diseased tissues, 

increasing therapeutic specificity and limiting off-target effects (15).

In cardiovascular applications, NP-NDDSs may help reduce 

systemic side effects through targeted delivery designs (16) and 

extend the therapeutic window by controlling drug release 

kinetics (17). These systems have also been shown to deliver 

anti-in)ammatory agents to neutrophils, curbing excessive 

in)ammation and ameliorating myocardial injury (18, 19). 

Similarly, NP-NDDSs can modulate macrophage phenotype and 

function, which may improve cardiac recovery after AMI (19, 20).

Although clinical translation remains challenging—particularly 

in optimizing targeting efficiency and scaling up manufacturing 

(21)—continuing advances in NP engineering may help address 

some limitations of conventional drug delivery. NP-NDDSs 

represent a promising strategy for precision medicine (22) and 

could play a role in regulating in)ammatory and immune 

processes in AMI. This review systematically outlines recent 

advances in NP-NDDSs for managing post-AMI in)ammatory 

injury and supporting myocardial repair, with a focus on 

targeting strategies, mechanisms of action, and translational 

challenges. The aim is to offer a reasoned foundation for 

developing effective and safe NP-based therapies for AMI.

2 Pathomechanisms of inflammation 
and immunity in AMI

Extensive cardiomyocyte death, activation of the innate 

immune system, and widespread in)ammation are common 

pathological features of acute myocardial infarction (AMI). The 

acute in)ammatory response is a key determinant of final infarct 

size and the development of adverse ventricular remodeling, 

highlighting its modulation as an important cardioprotective 

goal (23). Post-AMI in)ammation in the myocardium 

progresses through three distinct phases: the alarm phase, the 

leukocyte mobilization phase, and the resolution phase (24). 

During the alarm phase, dying cardiomyocytes and other cells 

release signaling molecules known as DAMPs such as high- 

mobility group box 1 protein (HMGB1) (25), heat shock 

proteins (HSPs) (26), and fibronectin (27). DAMPs bind to 

pattern recognition receptors (PRRs) —including Toll-like 

receptors (TLRs), nucleotide-binding oligomerization domain 

(NOD)-like receptors, and the receptor for advanced glycation 

end products (RAGE) —thereby initiating innate immune 

pathways (28). Key pro-in)ammatory signaling pathways 

activated in innate immune cells include the NOD-like receptor 

family pyrin domain-containing 3/interleukin-1 beta (NLRP3/ 

IL-1β) pathway (29), the Toll-like receptor 4/nuclear factor 

kappa-light-chain-enhancer of activated B cells (TLR-4/NF-κB) 

pathway (30) and the Janus kinase-signal transducer and 

activator of transcription (JAK-STAT) signaling pathway (31).

As summarized in Figure 1, the dynamic interplay among these 

immune cells—from the initial neutrophil infiltration to the 

subsequent activation of macrophages, dendritic cells, and 

lymphocyte subsets—critically shapes the in)ammatory landscape 

and repair processes following AMI. Within the first 30 min to 

3 h after AMI, monocytes and neutrophils migrate into the 

infarct zone under the in)uence of DAMPs and chemokines (32). 

Infiltrating monocytes differentiate into macrophages, 

progressively replacing resident cardiac macrophages (33). 

However, activation of granulocytes, monocytes, and macrophages 

—along with the release of pro-in)ammatory cytokines, bioactive 

substances, and neutrophil extracellular traps (NETs)—can also 

induce additional myocardial damage (34).

In the resolution phase, NETs released by neutrophils activate 

the NLRP3 in)ammasome in macrophages (7). As pro- 

in)ammatory processes subside, macrophages shift toward an anti- 

in)ammatory, pro-resolving M2 phenotype, a transition in which 

neutrophils play an important role (35). Macrophage function then 

changes from phagocytosis and extracellular matrix degradation to 

angiogenesis and granulation tissue formation (36), which may 

help limit adverse outcomes after AMI (37). Accordingly, a 

prolonged in)ammatory phase can exacerbate myocardial injury, 

leading to infarct expansion and adverse remodeling (38).

Dendritic cells (DCs), as efficient antigen-presenting cells, help 

bridge innate and adaptive immunity. Tolerogenic dendritic cells 

(tDCs), a specific DC subtype, promote systemic activation of 

regulatory T cells (Tregs) after AMI (39). Activated Tregs 

participate in modulating myocardial in)ammation and facilitate 

the shift of macrophages from the M1 to the M2 phenotype, 

thereby supporting favorable ventricular remodeling. Depletion of 

Tregs impairs resolution-phase functions, resulting in persistent 

M1 macrophage activity and delayed tissue repair (40).

The adaptive immune system, involving T and B lymphocytes, 

also contributes to the regulation of post-AMI in)ammation. 

Intramyocardial T-cell recruitment peaks 5–7 days after AMI 

(41). CD8+ T cells may exacerbate in)ammation by promoting 
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cardiomyocyte apoptosis and activating in)ammatory 

macrophages, though they also appear to in)uence fibrosis and 

remodeling (42, 43). Among CD4+ T cells, Th1 and Treg subsets 

are predominant: Th1 cells help maintain a balance between 

in)ammation and repair via secretion of interferon-γ (IFN-γ), 

interleukin-6 (IL-6), and tumor necrosis factor (TNF) (44), while 

Tregs exert protective effects by suppressing cardiomyocyte 

apoptosis and excessive fibrosis (45). Notably, a systemic 

imbalance between T helper 17 (Th17) and Tregs may exacerbate 

the in)ammatory responses (37).

2.1 Role of neutrophils in inflammation- 
injury and repair

Neutrophils are the first innate immune cells to infiltrate 

ischemic tissue within hours following AMI. The dual role of 

neutrophils, encompassing both detrimental effects (e.g., ROS 

release, NETosis) and beneficial contributions, is schematically 

illustrated in Figure 2. Shortly after AMI onset (within hours), 

neutrophils rapidly transmigrate across the endothelium via 

interactions between surface integrins and endothelial adhesion 

molecules. Their infiltration into the ischemic myocardium is 

orchestrated by DAMPs and alarmins (46–49). This recruitment 

is driven by a dual signaling mechanism: necrotic 

cardiomyocyte-derived DAMPs are sensed by PRRs on resident 

macrophages and endothelial cells, which in turn release 

chemokines that establish a gradient guiding neutrophils to the 

infarct zone (48, 50). Although neutrophils contribute to 

clearing necrotic debris, they also induce secondary myocardial 

injury through the release of reactive oxygen species (ROS), 

proteolytic enzymes, and in)ammatory mediators, re)ecting 

their dual role (51).

At the molecular level, neutrophil-derived ROS generated via 

NADPH oxidase pathways contribute to structural damage by 

oxidizing cellular components such as proteins and lipids 

FIGURE 1 

Immune cells in the cardiovascular system. Following acute myocardial infarction (AMI), pro-inflammatory cytokines induce neutrophil infiltration. 
Neutrophils exacerbate and sustain the inflammatory response by releasing reactive oxygen species (ROS) via neutrophil NETosis and secreting 
inflammatory cytokines. Monocytes are recruited into cardiac tissue and differentiate into M1 and M2 macrophages. M1 macrophages promote 
vascular inflammation through the release of damage-associated molecular patterns (DAMPs), while M2 macrophages facilitate repair of 
damaged tissue via the production of factors such as vascular endothelial growth factor (VEGF). Dendritic cells (DCs) induce myocardial 
hypertrophy and improve ventricular remodeling by mediating increased regulatory T cell (Treg) activity. Natural killer T (NKT) cells secrete 
cytokines (e.g., *IL-10*), contributing to the attenuation of inflammation and modulation of ventricular remodeling. Among T cells, Th1 cells 
reduce fibrotic responses, whereas Th2 and Th17 cells promote fibrosis. Th17 cells additionally drive inflammation and extracellular matrix 
remodeling, while Treg cells attenuate inflammatory responses.
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(52, 53), and further amplify local in)ammation by promoting 

pro-in)ammatory cytokine secretion (e.g., IL-6, IL-1β) (54). 

Concurrently, degranulation products-including myeloperoxidase 

(MPO), elastase, and matrix metalloproteinases (MMPs)- 

aggravate cardiac remodeling by inducing cardiomyocyte 

apoptosis, degrading extracellular matrix (ECM), and triggering 

the release of additional cytokines and chemokines (e.g., TNF-α, 

IL-1β, CXCL-1-8) (49, 55). These factors may also impair 

cardiomyocyte contractility through disruption of calcium 

homeostasis (56), collectively sustaining acute phase injury (7).

Activated neutrophils release NETs, composed of 

decondensed chromatin and granular proteins, which contribute 

to AMI pathophysiology through multiple pathways: (1) 

Promoting microvascular thrombosis (57, 58); (2) Activates the 

Toll-like receptor 4 (TLR4)/NLRP3/IL-1β signaling axis to 

stimulate hematopoietic stem/progenitor cells, leading to 

increased neutrophil production (7, 59); and (3) mediating 

further neutrophil recruitment via IL-1R, forming a self- 

amplifying in)ammatory circuit that exacerbates myocardial 

edema and fibrosis (60, 61).

As the pathology evolves (days 1–7 post-AMI), neutrophils 

undergo phenotypic switching (N1 to N2), which is implicated in 

repair regulation. In the acute phase (days 1–3), N1 neutrophils 

promote M1 macrophage polarization via IL-1β and TNF-α 
secretion. During the repair phase (days 4–7), N2 neutrophils 

support M2 macrophage polarization through upregulation of 

CD206, TGF-β, and IL-10 (62, 63). This transition involves 

Annexin A1, which, upon activation, interacts with formyl 

peptide receptors (FPRs) to suppress excessive in)ammation and 

promote a pro-angiogenic macrophage phenotype, thereby 

facilitating tissue repair (64–67). Annexin A1 additionally 

modulates neutrophil activity through anti-in)ammatory, pro- 

apoptotic, and pro-resolving mechanisms (68, 69).

Notably, S100A8/A9—primarily released from NETs—further 

modulates in)ammatory and reparative processes post-MI. It 

activates the TLR4/NLRP3/IL-1β signaling axis, stimulating 

hematopoietic stem/progenitor cells to amplify neutrophil 

production (7, 59). Moreover, S100A9 exerts a unique time- 

dependent bidirectional regulatory effect: short-term inhibition 

(within 3 days) attenuates in)ammation and improves outcomes 

(70), whereas long-term blockade (up to 21 days) impairs the 

generation and efferocytic function of Ly6CloMerTKhi 

macrophages via the Nur77 signaling pathway, ultimately 

worsening cardiac injury (71). This temporal specificity aligns 

with pathological findings from neutrophil depletion 

experiments (72), highlighting the need for spatiotemporally 

FIGURE 2 

Detrimental and beneficial roles of neutrophils in myocardial infarction (MI) wound healing. Neutrophils are known to exacerbate myocardial injury 
by releasing reactive oxygen species (ROS), granular components, and pro-inflammatory mediators. Furthermore, neutrophils can form neutrophil 
extracellular traps (NETs), thereby promoting thrombosis and cardiac damage. Additionally, neutrophils enhance granulopoiesis, establishing a 
positive feedback loop that amplifies neutrophil production and acute inflammation. Conversely, neutrophils contribute to inflammation 
resolution, angiogenesis, and scar formation by producing various pro-repair factors, such as Annexin A1 (AnxA1).
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precise therapeutic strategies that target neutrophil-mediated 

responses—such as suppressing excessive acute-phase activation 

while promoting phenotypic switching during repair—to balance 

injury containment and tissue regeneration. Thus, targeting 

S100A8/A9 represents a promising therapeutic approach under 

active investigation.

2.2 Role of monocytes/macrophages in 
inflammation-injury and repair

The monocyte-macrophage system, part of the myeloid 

lineage, exhibits spatiotemporal dynamics in composition and 

function. Monocytes originate from bone marrow and 

extramedullary hematopoietic sites (e.g., spleen). After 

maturation, they enter the bloodstream and migrate to 

peripheral tissues, where they differentiate into macrophages or 

dendritic cells and participate in immune defense, in)ammation 

regulation, and tissue repair (73). In ischemic heart disease, 

macrophages play a dual role: they can exacerbate injury 

through pro-in)ammatory responses while also promoting 

repair via anti-in)ammatory mechanisms (74–76), as illustrated 

in Figure 3 (74–76).

Following AMI, the population of cardiac-resident 

macrophages declines sharply, while circulating monocytes are 

extensively recruited to the infarct zone (77). These recruited 

monocytes originate not only from the spleen but also from 

extramedullary sources under the regulation of IL-1β (78). 

Within 24 h post-AMI, classical monocytes preferentially 

infiltrate the infarct area. Driven by cytokines such as TNF-α 
and IFN-γ released from injured cardiomyocytes and immune 

cells, they polarize predominantly toward the classically 

activated (M1) phenotype in the early phase (78–80). M1 

macrophages highly express pro-in)ammatory cytokines (e.g., 

TNF-α, IL-6), cytotoxic mediators (e.g., NO, ROS), and 

phagocytosis-associated proteins (81). Although they help clear 

necrotic debris and degrade extracellular matrix, excessive M1 

activation may exacerbate the in)ammatory microenvironment. 

In addition, pro-in)ammatory exosomes (e.g., containing miR- 

155) released by M1 macrophages can inhibit angiogenesis, 

contributing to secondary myocardial injury (19, 82). 

Upregulation of interleukin-1 receptor-associated kinase-M 

(IRAK-M) in the infarct microenvironment has been shown to 

suppress M1 macrophage overactivation, thereby attenuating 

adverse cardiac remodeling (81).

As the pathology progresses (approximately days 3–7), a 

phenotypic shift occurs from pro-in)ammatory M1 to anti- 

FIGURE 3 

Monocyte differentiation following AMI. Bone marrow-derived monocytes are recruited to the damaged myocardial tissue and subsequently 
differentiate into M1 and M2 macrophages. M1 macrophages express markers such as TLR-2, TLR-4, CD80, and CD86, and produce pro- 
inflammatory cytokines including IL-1β, TNF-α, and CCL5. M2 macrophages express markers such as CD163, CD206, and CD209, and produce 
anti-inflammatory cytokines including IL-10, TGF-β, and VEGF, which induce tissue repair.
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in)ammatory M2 macrophages, which begin to dominate and help 

protect the heart from adverse outcomes (83). M2 macrophages 

secrete mediators such as IL-10, CCL17, VEGF, and TGF-β, 

which stimulate fibroblast activation, extracellular matrix 

synthesis, and angiogenesis, thereby promoting tissue repair (84, 

85). This polarization process is in)uenced by several 

mechanisms, including efferocytosis, cell-cell contact signals, anti- 

in)ammatory factors released by neutrophils (e.g., NGAL) (80), 

and extracellular vesicles carrying anti-in)ammatory miRNAs. M2 

macrophages specifically express the Mer tyrosine kinase (MerTK) 

receptor, which enables efficient clearance of necrotic 

cardiomyocytes through recognition of phosphatidylserine on 

apoptotic cells. Loss of MerTK disrupts phagocytic function and 

impedes repair (86). Importantly, the balance between M1 and 

M2 macrophages is essential for myocardial healing-persistent M1 

activation can prolong in)ammation, while impaired M2 function 

may suppress fibrosis resolution and angiogenesis, ultimately 

worsening cardiac function (87).

Macrophage origin, abundance, and phenotypic heterogeneity 

further in)uence the course of post-AMI injury and repair (83). 

Based on CCR2 expression, cardiac macrophages are classified into 

two main subsets: CCR2+ macrophages, which are derived from 

circulating monocytes and recruited to the infarct via the 

MyD88-dependent pathway. They exhibit M1-like characteristics, 

express pro-in)ammatory cytokines such as CCL2, drive sustained 

monocyte infiltration, and promote adverse remodeling (88, 89). In 

contrast, CCR2−macrophages are primarily cardiac-resident cells 

of embryonic origin, maintained by self-proliferation. They help 

suppress monocyte recruitment (90), support coronary 

development, and facilitate cardiac regeneration (91).

Different macrophage subpopulations cooperate during cardiac 

injury and repair. Recent studies reveal that small extracellular 

vesicles derived from M2 macrophages can reduce CCR2+ 

macrophage abundance, limit monocyte recruitment to the 

infarct, and promote M1-to-M2 phenotypic conversion, thereby 

enhancing angiogenesis and improving myocardial repair (81). 

These findings suggest that targeting of macrophage function and 

phenotypic switching may hold potential for reducing adverse 

remodeling and supporting cardiac repair after AMI (92).

2.3 Role of lymphocytes and dendritic cells 
in inflammation-injury and repair

T cells play a dual role in the post-AMI in)ammatory 

response, involving a dynamic balance between pro- and anti- 

in)ammatory mechanisms. During ischemia-reperfusion injury, 

CD4+ T cells-particularly the Th1 subset-can in)uence infarct 

size by releasing IFN-γ and IL-17, cytokines associated with 

cardiomyocyte death and fibroblast proliferation (93, 94). CD8+ 

T cells show a more complex role: although impaired CD8+ 

T cell function has been linked to better initial cardiac recovery, 

their absence delays necrotic tissue clearance, impairing scar 

formation and increasing the risk of cardiac rupture (95).

Regulatory T cells (Tregs) generally support cardiac repair (45, 

96). They help modulate the post-AMI immune environment by 

suppressing CD8+ T cell activity (97) and in)uencing monocyte/ 

macrophage differentiation (96). Studies in animal models 

indicate that increasing Treg numbers through exogenous 

administration improves cardiomyocyte survival, cardiac 

function, and repair outcomes, partly by reducing pro- 

in)ammatory monocytes/macrophages and encouraging a 

reparative macrophage phenotype (98).

Dendritic cells (DCs), as key antigen-presenting cells, also 

contribute to immune regulation and repair after AMI. 

Tolerogenic DCs (tDCs), a specific subset, help activate Tregs 

and modulate macrophage polarization. In DC-depleted mice, 

post-infarction ventricular remodeling is more severe, with 

increased in)ammatory monocytes, macrophages, and cytokines, 

as well as higher rupture risk, supporting a protective role for 

DCs (40, 99, 100). By promoting Treg activation, tDCs facilitate 

a shift from M1 to M2 macrophages, thereby improving 

cardiacfunction (101). In mouse models, tDC administration 

after AMI reduces infarct size, improves systolic function, and 

enhances survival. Imaging and molecular analyses show that 

tDC treatment promotes Treg infiltration, elevates anti- 

in)ammatory cytokines (e.g., IL-4, IL-10) and VEGF, and 

accelerates the M1-to-M2 transition, contributing to reduced 

in)ammation and better tissue repair (40, 102, 103). Overall, 

tDCs help attenuate in)ammation, support tissue repair, and 

improve cardiac outcomes after AMI through Treg activation, 

macrophage polarization, and stimulation of angiogenesis. These 

findings indicate that targeting DC subsets may offer therapeutic 

potential in myocardial infarction and heart failure.

B lymphocytes contribute to immune responses through 

antibody production, antigen presentation, and cytokine 

secretion. Certain B cell subsets expand in pericardial adipose 

tissue and accumulate in the infarcted heart after AMI, where 

they may exert anti-in)ammatory effects via IL-10, potentially 

helping to resolve in)ammation (104). In a clinical study of 14 

MI patients, higher B cell levels after PCI correlated with 

improved LVEF. Mouse studies further showed that 

empagli)ozin enhanced cardiac repair by restoring naïve B cell 

number and function, and infusion of B cells improved cardiac 

function and reduced infarct size, supporting a protective role 

(105). However, the exact mechanisms by which B cells regulate 

post-AMI immunity require further investigation.

3 Therapeutic advantages of 
nanoparticle-based drug delivery in 
AMI

A central challenge in current cardiovascular disease therapy is 

the targeted delivery of therapeutics to specific pathological sites— 

such as areas of in)ammation, thrombosis, or abnormal cell 

proliferation—while minimizing effects on healthy tissues.

In recent years, nanoscale materials, particularly NPs, with 

dimensions on the nanometer scale, have become important tools 

in modern medicine. Among these, the types most commonly 

used in the field of cardiovascular medicine are shown in Figure 4. 

Their applications range from targeted gene delivery to contrast 
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enhancement in medical imaging (106, 107). NPs utilize their 

distinct size, tunable physicochemical properties, and chemical 

composition to facilitate transport through tissues and the 

bloodstream for drug delivery. They also exhibit increased 

chemical reactivity, energy absorption, and biodistribution 

capabilities (108). This rapidly evolving field provides new 

therapeutic opportunities for a variety of diseases (109) (Figure 4).

The medical utility of NPs is mainly re)ected in three areas: 

extending the drug half-life and reducing systemic toxicity to 

optimize the therapeutic window; enhancing targeting specificity 

by modifying physicochemical properties such as surface charge 

to limit off-target effects; and improving drug accumulation at 

disease sites through combined active and passive targeting 

strategies (110). In the treatment of coronary heart disease, 

delivery systems based on biodegradable organic carriers—such 

as liposomes, micelles, and polymeric NPs, often functionalized 

with targeting ligands (e.g., antibodies, peptides) or functional 

polymers—have shown improved therapeutic efficacy (111–113).

NPs facilitate drug delivery through several advantageous 

mechanisms: sustaining drug release to prolong in vivo 

residence time; providing controlled release kinetics that help 

reduce side effects such as abnormal vascular growth or vascular 

leakage; and enabling precise delivery to specific sites such as 

ischemic regions, thereby improving treatment outcomes (114). 

This targeting ability partly arises from the capacity of NPs to 

exploit pathological microenvironment features—such as 

ischemia-induced vascular permeability—for enhanced 

accumulation in target tissues like the ischemic myocardium 

(115). Moreover, the inherent stimulus-responsiveness of NPs 

(to temperature, pH, or external stimuli such as ultrasound) 

allows spatiotemporally controlled drug release (116, 117).

3.1 Advanced NP-NDDSs for myocardial 
infarction therapy

A variety of nanoparticle (NP) classes, including organic 

systems such as liposomes, micelles, dendrimers, and polymeric 

NPs, as well as inorganic carriers like gold and silica NPs, 

provide various approaches for targeted drug and gene delivery 

to the heart. To visually organize the diverse array of NPs 

discussed in this section, Figure 5 provides a schematic overview 

of the major NP classes (organic, inorganic, biomimetic) and 

their immunomodulatory mechanisms targeting different 

immune cells in MI. Emerging biomimetic nanoplatforms are 

further expanding possibilities in this area.

Organic NPs, which include liposomes, micelles, and 

dendrimers, generally exhibit tunable biocompatibility, reduced 

FIGURE 4 

Diverse nanoparticles (NPs) employed for treating cardiovascular diseases. NPs, including Organic Nanomaterials (e.g., Micelles, Liposomes, 
Polymers, Dendrimers), Inorganic Nanoparticles (e.g., Iron/Silica, Gold, Mesoporous Silica, Carbohydrate-based NPs), and Biomimetic 
Nanomaterials (e.g., Exosomes, Protein/peptide-based NPs, Antibody-conjugated NPs, Cell Membrane-coated NPs), are widely employed in the 
treatment of myocardial ischemic diseases.
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toxicity, and improved drug delivery efficiency through 

adjustment of their chemical and structural properties (118). 

Their nanoscale size (1–100 nm) allows size-dependent effects 

and customizable surface chemistry, enabling advances in gene 

delivery, medical imaging, and targeted drug transport (106, 119).

Research on organic NP-based drug delivery systems has 

largely centered on liposomes, micelles, polymeric NPs, and 

dendrimers (113). Micelles are colloidal particles formed by the 

self-assembly of amphiphilic molecules, with a hydrophobic core 

that encapsulates poorly soluble drugs and a hydrophilic shell 

that improves solubility. Their small size (typically under 

80 nm) promotes better penetration into ischemic myocardial 

tissue compared to larger NPs (120). By incorporating targeting 

groups such as antibodies or ROS-sensitive peptides, micelles 

can be engineered to recognize specific components in 

atherosclerotic plaques, improving targeting accuracy (121). 

Preclinical studies suggest that targeted micelles carrying anti- 

in)ammatory or anti-angiogenic drugs can extend circulation 

half-life, lower pro-in)ammatory cytokine levels, and reduce 

plaque area (120, 122).

Polymers are widely used as NP materials due to their low 

toxicity and versatility for chemical modification (123). Both 

natural polymers (e.g., starch, cellulose) and synthetic ones such 

as PLA, PGA, and PLGA have been utilized (124). PLGA, in 

particular, is known for its controllable degradation and is often 

used for sustained drug release. For example, PLGA NPs 

prepared by emulsion solvent diffusion have been used to deliver 

glutathione or heparin to the heart within 2 h in models of 

myocardial ischemia-reperfusion injury (MIRI) (125, 126).

Dendrimers are highly branched, well-defined macromolecules 

whose size can be controlled by the number of synthetic 

generations. Their multifunctional surfaces allow efficient loading 

of drugs, imaging agents, and targeting molecules such as folic 

acid or antibodies (127). With optimized conjugation methods, 

dendrimers represent potentially useful platforms for 

cardiovascular disease diagnosis and targeted treatment (128).

Liposomes are self-assembled phospholipid bilayer vesicles 

that mimic cell membranes and can carry both hydrophilic and 

hydrophobic drugs. They are especially useful for co-delivering 

genes and drugs, and they offer prospects for scalable 

production (129). However, issues such as drug leakage and 

particle aggregation may affect release kinetics, indicating a need 

for further formulation improvement (130).

Inorganic nanocarriers, including silica-, carbon-, and metal- 

based NPs (e.g., AuNPs), often show high physicochemical 

stability and strong drug-loading capacity, supporting precise 

FIGURE 5 

Mechanisms of nanomaterial-mediated immunomodulation for myocardial infarction intervention. This figure illustrates the targeting of distinct 
pathways in neutrophils, macrophages, and lymphocytes for treating myocardial infarction.
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delivery (131, 132). Gold NPs (AuNPs) are easily synthesized, 

exhibit low toxicity and minimal immunogenicity, and have 

been used to deliver cardioprotective drugs such as Simdax. In 

heart failure models, AuNP-conjugated Simdax showed better 

efficacy than the free drug, likely due to improved tissue 

targeting (133). Silica NPs provide high surface area and a 

mesoporous structure that can be functionalized for efficient 

drug or gene delivery, as seen in adenosine delivery to MIRI- 

affected heart tissue (134). However, the relatively low 

biodegradability of inorganic NPs compared to organic ones has 

raised concerns about long-term accumulation and potential 

toxicity. Complicated surface modification processes also present 

challenges, highlighting the importance of developing controlled 

degradation and functionalization methods to improve biosafety 

and efficacy (131, 135).

Although traditional nanocarriers are widely used, emerging 

biomimetic nano-delivery systems combine nanotechnology with 

biomimetic principles to provide alternative strategies for 

treating AMI and MIRI (136–138). These systems employ 

nanoscale carriers (1–1,000 nm) designed to imitate biological 

structures. Examples include cell membrane-coated 

nanoparticles, nano-sized extracellular vesicles such as exosomes, 

and nanozymes—nanomaterials that mimic the catalytic activity 

of natural enzymes.

Biomimetic systems allow efficient encapsulation and targeted 

delivery of therapeutics while leveraging natural biological 

mechanisms to avoid immune clearance, extend circulation time, 

and increase accumulation in ischemic heart tissue (139, 140) 

For instance, nanoparticles coated with autologous cell 

membranes or exosome-like vesicles inherit the targeting ability 

and biocompatibility of the source cells, functioning similarly to 

liposomes but with enhanced bio-specificity (141). Biomimetic 

nanozymes can reduce oxidative stress by scavenging excess 

ROS (142, 143). In comparison with conventional nanocarriers, 

biomimetic systems often improve the solubility and stability of 

poorly soluble drugs and allow stimuli-responsive release in 

response to microenvironmental signals such as pH changes or 

enzyme activity in ischemic regions. This can help minimize off- 

target effects and related side effects (144–146). One example is 

a neutrophil membrane-camou)aged delivery system loaded 

with siRNA. Modified with integrins to improve targeting and 

hemagglutinin to promote endosomal escape, this system 

enhanced siRNA delivery in MIRI models, reduced neutrophil 

infiltration and microthrombus formation, limited infarct size, 

and improved cardiac function (147).

3.2 Neutrophil-targeting nanoparticle- 
based drug delivery systems

Emerging evidence indicates that the initial response to 

myocardial tissue damage triggers intense neutrophil-dominated 

in)ammation, exacerbating injury and potentiating ventricular 

remodeling. Recent advances leverage nanomedicine to precisely 

modulate neutrophil functions, offering cardioprotective effects 

through extended drug efficacy and enhanced targeting.

3.2.1 Therapeutic targeting of S100a8/A9 in 

neutrophil-driven inflammation
As primary early responders in in)ammation, neutrophils 

secrete the alarmin S100A8/A9, which promotes the infiltration 

of innate immune cells such as macrophages and drives their 

polarization toward the pro-in)ammatory M1 phenotype. 

Therefore, inhibiting the S100A8/A9 signaling axis has 

emerged as a common therapeutic strategy. Beyond multi- 

enzyme-mimetic nanocatalysts, multifunctional nanocomplexes 

have been developed to produce synergistic effects. For 

example, dual-function nanocomplexes combining CuxO 

nanoparticles—which quench ROS through multi-enzyme 

mimicry—and the S100A8/A9 inhibitor ABR-25757 can 

synergistically block the S100A8/A9-NLRP3-IL-1β pathway, 

contributing to a reduction in infarct size (148). Further 

advances include targeted pathway inhibition and gene 

silencing strategies. Based on the concept of S100A8/A9 

pathway blockade, receptor-mediated siRNA delivery systems 

have been designed to disrupt neutrophil-driven in)ammation 

with greater precision. One such system uses S100A9-siRNA 

nanoparticles coated with engineered macrophage membranes 

functionalized with RAGE (receptor for advanced glycation 

end products) and hemagglutinin (HA). These particles achieve 

dual targeting: RAGE facilitates binding to S100A9, which is 

highly expressed in the infarcted myocardium, while HA 

promotes endosomal escape for efficient cytosolic siRNA 

release. This approach leads to S100A9 gene silencing, 

inhibition of the S100A8/A9-TLR4 axis, and a subsequent 

decrease in neutrophil recruitment (20).

3.2.2 Neutrophil membrane biomimetic 

nanocarriers for modulating the immune 
microenvironment

Neutrophil membrane-biomimetic nanocarriers, which 

leverage inherent long circulation and in)ammatory homing 

capabilities, have shown promise as tools for regulating the 

immune microenvironment after AMI. 

(1) Delivering Immunomodulatory Factors: In one study, 

neutrophil membrane-camou)aged NPs with a PLGA core 

were loaded with IL-5. After reaching in)ammatory sites, 

these carriers reduced neutrophil infiltration while 

promoting eosinophil recruitment and M2 macrophage 

accumulation. They also enhanced angiogenesis through 

increased AKT and ERK1/2 phosphorylation, leading to 

improved ventricular remodeling (18).

(2) Adsorbing Pro-in)ammatory Mediators: Biomimetic 

platforms such as neutrophil membrane-cloaked liposomal 

NPs (Neu-LPs) can adsorb pro-in)ammatory cytokines 

(TNF-α, IL-1β, IL-6) and CXCL-2 in the infarcted heart. 

This action dampens neutrophil infiltration and accelerates 

M2 macrophage polarization within 3 days post-AMI, 

which helps attenuate apoptosis and fibrosis (149).

(3) Co-delivering Therapeutic Nucleic Acids: More advanced 

systems combine cytokine neutralization with regenerative 

therapy. For instance, silica NPs cloaked with neutrophil 
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membranes and loaded with miR-10b (NM@miR) can 

deliver this microRNA to cardiomyocytes, where it 

suppresses the Hippo pathway to promote proliferation 

and regeneration (141).

3.2.3 Synergistic delivery and multifunctional 

nanoplatforms
NPs can be designed to achieve multifunctional 

immunomodulation through synergistic delivery strategies. 

(1) Drug-siRNA Synergistic Delivery: Mengying Hou et al. 

developed an endothelial cell-targeted, ROS-sensitive 

nanocomplex (NCs). Its core contains PLGA NPs loaded 

with the anti-in)ammatory drug dexamethasone (DXM). 

The surface is electrostatically coated with cRGD-PEG-bis 

(diselenide)-crosslinked polyethylenimine (RPPT) 

complexed with VCAM-1 siRNA (siVCAM-1). In a MIRI 

model, cRGD mediates targeting to in)amed endothelium. 

Local high ROS levels trigger degradation of RPPT, 

leading to release of siVCAM-1 and silencing of VCAM-1 

expression. This effect works together with DXM to 

inhibit neutrophil chemotaxis and adhesion, thereby 

alleviating myocardial in)ammation and improving 

cardiac function. This design addresses challenges related 

to siRNA encapsulation, release, and efficiency-toxicity 

balance (150).

(2) Membrane Camou)age with Functional Modification for 

siRNA Delivery: Yaohui Jiang et al. constructed an 

engineered neutrophil membrane-camou)aged 

nanodelivery system (MNM/siRNA NPs) modified with 

integrins and hyaluronic acid (HA) and loaded with 

siRNA targeting integrin α9. HA facilitates endosomal 

escape, while integrin α9/β1 enables targeting via binding 

to endothelial VCAM-1. In a MIRI model, silencing 

integrin α9 reduced neutrophil infiltration, NET 

formation, and microthrombosis, resulting in smaller 

infarct size and improved cardiac function (147).

3.2.4 Mimicking natural biomolecules to regulate 

leukocyte function
Another strategy involves mimicking natural biomolecules to 

regulate leukocyte function. Researchers have developed NPs (n- 

apo AI) composed of human apolipoprotein AI (Apo AI) 

complexed with soybean phosphatidylcholine, which mimic the 

structure of high-density lipoprotein (HDL). When 

administered intravenously after reperfusion, n-apo AI targets 

neutrophils, reduces surface expression of the integrin CD11b, 

decreases leukocyte infiltration into the infarct zone, and 

promotes monocyte polarization toward the anti-in)ammatory 

Ly6Clow phenotype. This supports in)ammation resolution 

and tissue repair. Notably, this approach also showed potential 

in reducing circulating leukocyte activity in patients with type 

2 diabetes, suggesting a possible new direction for managing 

in)ammation after AMI (151) (Table 1).

3.3 Macrophage-targeting nanoparticle- 
based drug delivery systems

3.3.1 Targeting monocyte/macrophage 

recruitment and initial inflammation
Following AMI or MIRI, damaged cardiomyocytes release 

DAMPs. The recognition of DAMPs by TLR4 on innate 

immune cells initiates a robust in)ammatory response, leading 

to the recruitment of neutrophils and monocytes/macrophages 

to the heart. To target this initial trigger, PLGA NPs delivering 

the TLR4 inhibitor TAK-242 were shown to suppress monocyte/ 

macrophage TLR4/NF-κB signaling, which reduced the 

infiltration of Ly6Chigh monocytes and the release of pro- 

in)ammatory cytokines such as IL-6 and CCL-2, thereby 

attenuating acute myocardial in)ammation (152).

After AMI, monocytes are recruited to the infarct area mainly 

through CCR2 binding to its ligand CCL-2. In one approach, anti- 

CCR2 antibody-modified PEG-DSPE micelles (21–35 nm) were 

used to deliver a CCR2 antagonist specifically to monocytes. 

This intervention blocked CCR2/CCL-2 signaling, significantly 

reduced the migration of spleen-derived monocytes to the heart, 

and resulted in smaller infarct size and improved cardiac 

function (153).

The in vivo delivery efficiency of NPs is often limited by clearance 

from the mononuclear phagocyte system. Qiang Long et al. proposed 

an innovative strategy by targeting the spleen as a key organ for 

regulating myocardial in)ammation. Their work showed that 

monocytes recruited during acute myocardial reperfusion injury 

originate from the spleen, and that early expression of Interferon 

Regulatory Factor 7 (IRF7) in the spleen in)uences cardiac 

macrophage function. By developing spleen-targeting biomimetic 

NPs (RP182-STEER) loaded with HS38, they inhibited early IRF7 

expression specifically in the spleen. This approach blocked the 

egress of pro-in)ammatory monocytes to the heart without 

interfering with IRF7 function during the repair phase, leading to 

improved acute and chronic outcomes (154).

3.3.2 Modulating macrophage polarization state
The in)ammatory outcome after injury is strongly in)uenced 

by macrophage phenotype. Promoting a shift from pro- 

in)ammatory (M1) to a reparative (M2) state is considered 

important for resolution of in)ammation and tissue repair. 

Peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear 

receptor, can inhibit NF-κB expression in macrophages and 

encourage transition to an M2 phenotype. In one study, PLGA 

NPs delivering the PPARγ agonist pioglitazone promoted M2 

polarization, which was associated with reduced in)ammation 

and fibrosis, and improved cardiac function after MIRI (146).

Macrophage polarization can also be in)uenced by directly 

targeting intracellular signaling pathways. For example, Laura 

Tesoro et al. developed lipid membrane NPs (NL10) 

functionalized with an IL-10 receptor-targeting peptide (IT9302) 

via PEGylated phospholipids. These NIL10 NPs promoted 

STAT3 activation and inhibited NF-κB nuclear translocation in 

macrophages, accelerating their shift toward an anti- 

in)ammatory phenotype. This shift was accompanied by 
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increased expression of anti-in)ammatory cytokines including IL- 

4, IL-10, and IL-13, which ultimately contributed to reduced 

fibrosis and improved cardiac function (155).

Another innovative strategy involves clearing stress-induced 

senescent cells (SISCs) that arise after injury. Researchers used 

biodegradable PLGA NPs loaded with the senolytic drug ABT263 

(ABT263-PLGA), administered via local injection. These NPs 

facilitated the clearance of SISCs through macrophage phagocytosis, 

which led to reduced levels of in)ammatory mediators and fibrosis, 

promoted M2 polarization, and supported functional recovery, 

while avoiding systemic toxicity (156).

3.3.3 Biomimetic nanocarriers for enhanced 
targeting and delivery

Biomimetic nanodrug delivery systems are considered 

promising for myocardial injury therapy due to their 

biocompatibility and targeting capabilities. For instance, platelet 

membrane-coated NPs (CsA@PPTK) have been used to deliver 

Cyclosporine A (CsA) to ischemic myocardium. This approach 

inhibited the mitochondrial permeability transition pore 

(mPTP), scavenged ROS, promoted M2 macrophage and Tregs, 

and provided long-term functional benefits through combined 

antioxidant, anti-in)ammatory, and anti-apoptotic effects (157).

Apoptotic cell membranes also represent useful biomimetic 

materials. Lili Bao et al. developed neutrophil apoptotic body 

membrane-coated mesoporous silica NPs loaded with hexyl- 

5-aminolevulinate hydrochloride (HAL). By mimicking natural 

apoptosis, this system utilizes adhesion molecules on the apoptotic 

membrane to target in)ammatory sites for specific uptake by 

macrophages. An esterase-responsive polymer cap then opens, 

releasing HAL to initiate the heme metabolism pathway and 

generate bilirubin, an anti-in)ammatory metabolite. This process 

can enhance macrophage polarization toward an anti-in)ammatory 

phenotype, supporting in)ammation resolution and tissue 

regeneration (158). Extracellular vesicles (EVs) also serve as 

promising natural drug carriers. One example is monocyte 

membrane-modified extracellular vesicles (Tβ4-MmEVs), which 

leverage CCR2/CCL-2 targeting and CD47-mediated evasion of 

clearance to deliver thymosin β4 (Tβ4) and promote angiogenesis 

and repair (159).

3.3.4 Synergistic strategies: targeting cellular 
injury, oxidative stress, and inflammation

In addition to modulating cellular migration, synergistic 

interventions that address early cellular injury (e.g., 

mitochondrial dysfunction) and in)ammation have shown 

promise. PLGA NPs co-delivering the mPTP inhibitor CsA 

(targeting CypD) and the CCR2 antagonist pitavastatin were 

shown to attenuate mitochondrial damage—thereby inhibiting 

NLRP3 in)ammasome activation—and reduce monocyte-driven 

in)ammation, resulting in cardioprotective effects (160).

Excessive ROS production and subsequent oxidative stress play 

a key role in exacerbating MIRI. Advanced bimetallic nanozyme 

strategies, such as Cu-TCPP-Mn, incorporate manganese (Mn) 

and copper (Cu) within Tetrakis(4-carboxyphenyl)porphyrin 

(TCPP) ligands to form a metal-organic framework (MOF). This 

nanozyme mimics the cascade activity of superoxide dismutase 

(SOD) and catalase (CAT) to scavenge ROS. In MI and MIRI 

models, intravenously administered Cu-TCPP-Mn (20 nm) 

accumulated in ischemic myocardium, suppressed IL-1β and 

TNF-α expression, reduced neutrophil and macrophage 

infiltration, and increased anti-in)ammatory IL-10 levels (161). 

Similarly, a polyglucose-sorbitol carboxymethylether (PSC)-coated 

Prussian blue nanozyme (PBNz@PSC) exhibited biocompatibility 

and targeted damaged myocardium. PBNz@PSC scavenged ROS 

via SOD/CAT-like activity, promoted M2 macrophage 

polarization, modulated AMPK/NF-κB signaling, enhanced 

vasodilation, and improved cardiac function (142). In a combined 

antioxidant and gene therapy approach, cationic cerium dioxide 

(CeO2) NPs delivered an Nrf2 plasmid to macrophages. Using 

monocyte transport for infarct accumulation, this system activated 

the Nrf2/ARE antioxidant pathway and suppressed in)ammation, 

leading to functional improvement and reduced damage (162).

3.3.5 Nanocarrier delivery of herbal-derived 
monomers

Targeted delivery strategies continue to improve treatment 

precision. For example, CD11b antibody-modified mesoporous 

silica NPs (MSN-NGR1-CD11b) were used to deliver the 

traditional Chinese medicine monomer notoginsenoside R1 

(NGR1) to CD11b+ leukocytes in the infarct zone. This method 

was associated with improved cardiac function, promoted 

angiogenesis, reduced apoptosis, and polarized macrophages 

toward the M2 phenotype (163). In another study, platelet 

membrane-coated PLGA NPs (BBR@PLGA@PLT NPs) delivered 

berberine (BBR) to the infarcted myocardium. The platelet 

membrane improved targeting specificity and reduced liver uptake. 

This system increased the number of reparative macrophages, 

decreased in)ammatory macrophages and apoptotic cells, and 

improved cardiac function while reducing fibrosis and promoting 

angiogenesis, with reported good biosafety (164) (Table 2).

3.4 Tergs-targeting nanoparticle-based 
drug delivery systems

Tregs within ischemic myocardial tissue can exert protective 

effects, including anti-apoptotic, anti-in)ammatory, and 

antioxidant actions, which may help reduce left ventricular 

remodeling (45). The accumulation of Tregs in the ischemic heart 

is considered an important factor for supporting cardiac repair. 

Systemic delivery of exogenous Tregs to increase their circulating 

levels after AMI has been associated with improved cardiomyocyte 

survival, cardiac function, and overall repair outcomes (98).

In addition to direct Treg infusion, some strategies aim to 

expand Treg populations locally. Fangyuan Li et al. developed 

platelet membrane-coated NPs (CsA@PPTK) that target 

ischemic myocardium. CsA@PPTK can scavenge ROS and 

increase the Treg population and the M2/M1 macrophage ratio. 

In high-ROS environments, the PTK component degrades to 

release CsA, which inhibits mPTP over-opening and may help 

reduce cardiomyocyte apoptosis, in)ammation, and fibrosis (157).
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In another approach, Kwon et al. designed liposomal NPs 

(L-Ag/R) co-loaded with myocardial infarction-associated 

antigens and rapamycin. After intravenous administration and 

uptake by DCs, L-Ag/R can induce tolerogenic dendritic cells and 

promote the generation of antigen-specific Tregs. These Tregs 

migrate to the infarcted myocardium, potentially enabling more 

targeted immune tolerance with reduced risk of non-specific 

systemic immunosuppression compared to polyclonal Tregs. They 

appear to suppress pro-in)ammatory M1 macrophage activity 

and promote M2 macrophage polarization, which may help 

mitigate local in)ammation, reduce cardiomyocyte apoptosis, and 

limit fibrosis (165).

Current research in this area often focuses on engineered cell 

therapies, such as CAR-Tregs, or small-molecule 

immunomodulators like rapamycin, which can directly expand or 

activate Tregs (96). In contrast, nanoparticle-mediated targeting 

of Tregs remains less explored. This may be due to challenges in 

achieving specificity, as Tregs share surface markers with effector 

T cells (e.g., CD25, CTLA-4), combined with the generally low 

infiltration of Tregs into in)ammatory MI zones. These factors 

can limit efficient nanoparticle targeting and accumulation, 

indicating a need for further investigation (97) (Table 3).

CAR-Treg-NP therapy is being explored for application in 

cardiovascular diseases. In the context of cardiac fibrosis, lipid 

NPs encapsulating mRNA encoding FAP-targeting chimeric 

antigen receptors have been employed to generate transient 

CAR-T cells in vivo through a single intravenous injection. 

These cells selectively clear activated cardiac fibroblasts, which 

has been shown to reduce fibrosis and improve cardiac function 

in mouse models (166). This CAR-Treg-NP strategy represents a 

potential direction for the precise modulation of immune- 

mediated cardiovascular pathologies.

3.5 Comparative overview of major 
nanoparticle-based drug delivery systems 
for AMI therapy

NP-NDDSs represent a promising approach for targeted 

therapy in AMI. Different classes of NPs offer distinct 

advantages and limitations. Organic NPs, such as liposomes, 

polymeric NPs (e.g., PLGA), and micelles, generally exhibit high 

biocompatibility, tunable drug release profiles, and ease of 

surface functionalization. However, they may present challenges 

related to stability, potential drug leakage, and local acidification 

caused by degradation products (121, 122, 126, 127, 129, 130). 

Inorganic NPs, including gold (AuNPs) and silica nanoparticles, 

often provide high physicochemical stability and substantial 

drug-loading capacity. A potential limitation is their relatively 

limited biodegradability, which raises considerations about long- 

term accumulation and possible toxicity (134, 135, 143, 144). 

Biomimetic NPs, such as cell membrane-coated or exosome- 

based systems, offer advantages in immune evasion, targeting 

ability, and biocompatibility. Their development, however, can 

face challenges related to scalable production and batch-to-batch 

consistency (18, 20, 142, 148). Overall, organic and biomimetic 

NPs may have greater clinical potential due to their 

biodegradable nature and bioinspired properties, whereas 

inorganic NPs may require further development to address 

safety profiles. A systematic comparison of key parameters— 

including drug loading capacity, biocompatibility, targeting 

accuracy, and translational feasibility—is provided in Table 4 to 

aid in the rational selection of NP-NDDSs for AMI therapy.

4 Challenges facing nanoparticle drug 
delivery systems for myocardial 
infarction therapy

4.1 Challenges In clinical translation

Most nanotherapeutics for MI remain at the preclinical stage, 

having been tested primarily in small animal models such as mice 

and rats. Among the studies reviewed here, only one included a 

small-scale clinical trial (151), while all others are still in the 

preclinical phase. This heavy reliance on animal models 

represents a major limitation in the development of NP-NDDS 

for AMI.

Although clinical research on NP-NDDS for AMI is limited, 

some studies in broader cardiovascular fields have begun to 

explore clinical applications. For example, Lu Yang et al. 

conducted a randomized controlled trial using a liposomal NP- 

TABLE 3 Tergs-targeting nanoparticle-based drug delivery systems.

Reference Nanoparticle 
type

Targeting 
mechanism

Efficacy 
endpoints

Therapeutic 
agent

Administration 
route

Administration 
time

Year

(157) Platelet Membrane- 

Biomimetic NPs

Scavenges ROS; increases 

Tregs generation; 

modulates M2/M1 

macrophage ratio; 

inhibits mPTP over- 

opening

Reduced infarct 

size by 8.5%, 

increased LVEF 

by 25%

Cyclosporine A Intravenous 5 min before 

reperfusion

2022

(165) Liposomal NPs Induces tDCs; increases 

antigen-specific Tregs 

recruitment; suppresses 

M1 and promotes M2 

macrophages to reduce 

in)ammation

Reduced infarct 

size by 18%, 

increased LVEF 

by 13%

MI tissue lysates 

(antigen) + Rapamycin

Intravenous 24 h post-AMI 2021

Li et al.                                                                                                                                                                  10.3389/fcvm.2025.1657300 

Frontiers in Cardiovascular Medicine 14 frontiersin.org



T
A

B
L

E
 4

 
C

o
m

p
a

ra
ti

v
e

 s
u

m
m

a
ry

 o
f 

n
a

n
o

p
a

rt
ic

le
-b

a
se

d
 d

ru
g

 d
e

li
v

e
ry

 s
y

st
e

m
s 

fo
r 

A
M

I 
th

e
ra

p
y

.

C
a

te
g

o
ry

S
tr

u
c

tu
re

/c
o

m
p

o
si

ti
o

n
K

e
y
 a

d
v
a

n
ta

g
e

s
K

e
y
 l

im
it

a
ti

o
n

s
A

p
p

li
c

a
ti

o
n

s/
d

ru
g

 t
y
p

e
s 

fo
r 

A
M

I
C

li
n

ic
a

l 
tr

a
n

sl
a

ti
o

n
 

p
o

te
n

ti
a

l/
st

a
tu

s
R

e
fe

re
n

c
e

L
ip

os
om

es
P

ho
sp

ho
lip

id
 b

ila
ye

r 
ve

si
cl

e,
 

am
ph

ip
hi

lic

H
ig

h 
bi

oc
om

pa
ti

bi
lit

y;
 C

o-
de

liv
er

y 
of

 

hy
dr

op
hi

lic
/h

yd
ro

ph
ob

ic
 d

ru
gs

; 

C
lin

ic
al

ly
 v

al
id

at
ed

St
ab

ili
ty

 i
ss

ue
s 

(l
ea

ka
ge

, 

ag
gr

eg
at

io
n

);
 R

ap
id

 c
le

ar
an

ce
 

by
 M

P
S

G
en

e/
dr

ug
 c

o-
de

liv
er

y 
(1

29
);

 A
n

ti
- 

in
)a

m
m

at
or

ie
s;

 N
uc

le
ic

 a
ci

ds
 (

si
R

N
A

, 

m
iR

N
A

)

H
ig

h
. 

M
ul

ti
pl

e 
FD

A
-a

pp
ro

ve
d 

pr
od

uc
ts

 (
e.

g.
, D

ox
il

).
 N

o 
A

M
I-

sp
ec

ifi
c 

ap
pr

ov
al

 y
et

.

(1
29

, 
13

0,
 1

65
)

P
ol

ym
er

ic
 N

P
s 

(e
.g

., 

P
L

G
A

)

B
io

de
gr

ad
ab

le
 p

ol
ym

er
s 

(e
.g

., 

P
L

A
, 

P
G

A
, 

P
L

G
A

)

C
on

tr
ol

la
bl

e 
de

gr
ad

at
io

n
 &

 r
el

ea
se

; 

T
un

ab
le

 p
ro

pe
rt

ie
s;

 E
xc

el
le

n
t 

bi
oc

om
pa

ti
bi

lit
y

A
ci

di
c 

de
gr

ad
at

io
n

 p
ro

du
ct

s 

m
ay

 c
au

se
 l

oc
al

 a
ci

di
fi

ca
ti

on

W
id

el
y 

U
se

d.
 T

L
R

4 
in

h
ib

it
or

s 
(1

52
),

 P
P

A
R

γ 
ag

on
is

ts
 (

14
6)

, 
Se

n
ol

yt
ic

s 
(1

56
),

 s
te

ro
id

s 

( 1
50

),
 s

ta
ti

n
s 

(1
60

).

H
ig

h
. 

P
L

G
A

 i
s 

FD
A

-a
pp

ro
ve

d 
(e

.g
., 

L
up

ro
n

 D
ep

ot
).

 L
ea

di
n

g 
ca

n
di

da
te

 f
or

 

A
M

I.

(1
25

, 
12

6,
 1

46
, 

15
2,

 

15
6,

 1
60

)

M
ic

el
le

s
Se

lf
-a

ss
em

bl
ed

 a
m

ph
ip

hi
lic

 

m
ol

ec
ul

es
, 

hy
dr

op
hi

lic
 s

he
ll/

 

hy
dr

op
ho

bi
c 

co
re

Sm
al

l 
si

ze
 (

<
80

 n
m

) 
fo

r 
pe

n
et

ra
ti

on
; 

H
ig

h 
hy

dr
op

ho
bi

c 
dr

ug
 l

oa
di

n
g

L
ow

 s
ta

bi
lit

y 
up

on
 d

ilu
ti

on
; 

P
re

m
at

ur
e 

dr
ug

 r
el

ea
se

C
C

R
2 

an
ta

go
n

is
ts

 (
15

3)
; 

H
yd

ro
ph

ob
ic

 a
n

ti
- 

in
)a

m
m

at
or

y 
ag

en
ts

M
od

er
at

e.
 A

pp
ro

ve
d 

fo
r 

ca
n

ce
r 

(e
.g

., 

G
en

ex
ol

-P
M

).
 S

ta
bi

lit
y 

n
ee

ds
 

im
pr

ov
em

en
t 

fo
r 

A
M

I.

(1
20

, 1
21

, 1
53

, 1
55

)

D
en

dr
im

er
s

H
ig

hl
y 

br
an

ch
ed

, 
sy

m
m

et
ri

c 

m
ac

ro
m

ol
ec

ul
es

M
ul

ti
va

le
n

t 
su

rf
ac

e;
 W

el
l-

de
fi

n
ed

 s
iz

e 

an
d 

st
ru

ct
ur

e

P
ot

en
ti

al
 t

ox
ic

it
y;

 C
om

pl
ex

 

sy
n

th
es

is

T
ar

ge
te

d 
de

liv
er

y 
of

 i
m

ag
in

g 
ag

en
ts

 a
n

d 

dr
ug

s

L
ow

 t
o 

m
od

er
at

e.
 T

ox
ic

it
y 

an
d 

m
an

uf
ac

tu
ri

n
g 

ch
al

le
n

ge
s.

 M
os

tl
y 

pr
ec

lin
ic

al
.

(1
28

)

G
ol

d 
N

P
s 

(A
uN

P
s)

M
et

al
lic

 g
ol

d 
co

re
, 

va
ri

ou
s 

sh
ap

es
/s

iz
es

Fa
ci

le
 s

yn
th

es
is

; 
T

un
ab

le
 o

pt
ic

s;
 L

ow
 

to
xi

ci
ty

; 
B

io
co

m
pa

ti
bi

lit
y

N
on

-b
io

de
gr

ad
ab

le
; 

L
on

g-
 

te
rm

 a
cc

um
ul

at
io

n
 c

on
ce

rn
s 

(1
67

, 
16

8)
.

C
ar

di
op

ro
te

ct
iv

e 
dr

ug
s 

(1
33

);
 P

h
ot

ot
h

er
m

al
 

th
er

ap
y;

 I
m

ag
in

g

M
od

er
at

e 
(f

or
 t

h
er

ap
y)

. F
D

A
-a

pp
ro

ve
d 

fo
r 

ph
ot

ot
h

er
m

al
 t

h
er

ap
y.

 L
on

g-
te

rm
 

sa
fe

ty
 u

n
ce

rt
ai

n
.

(1
31

, 
13

3)

Si
lic

a 
N

P
s 

(M
es

op
or

ou
s)

Si
lic

a 
fr

am
ew

or
k 

w
it

h 
po

ro
us

 

st
ru

ct
ur

e

H
ig

h 
su

rf
ac

e 
ar

ea
; H

ig
h 

dr
ug

 lo
ad

in
g;

 

E
as

ily
 f

un
ct

io
n

al
iz

ed

Sl
ow

 b
io

de
gr

ad
at

io
n

; 
L

on
g-

 

te
rm

 s
af

et
y 

n
ot

 e
st

ab
lis

he
d 

( 1
35

, 
16

8)

A
de

n
os

in
e 

(1
34

);
 T

C
M

 m
on

om
er

s 
(1

63
);

 

N
uc

le
ic

 a
ci

ds
; 

P
ro

te
in

s.

L
ow

 t
o 

m
od

er
at

e.
 N

o 
FD

A
-a

pp
ro

ve
d 

dr
ug

 c
ar

ri
er

s.
 R

eg
ul

at
or

y 
h

ur
dl

es
 d

ue
 

to
 b

io
de

gr
ad

ab
ili

ty
.

(1
34

, 
16

3)

N
an

oz
ym

es
 (

e.
g.

, 

P
ru

ss
ia

n
 B

lu
e,

 C
eO

2
)

In
or

ga
n

ic
 c

ry
st

al
s 

w
it

h 
en

zy
m

e-
 

lik
e 

ac
ti

vi
ty

R
O

S 
sc

av
en

gi
n

g;
 M

ul
ti

fu
n

ct
io

n
al

; 

H
ig

h 
st

ab
ili

ty

L
on

g-
te

rm
 b

io
di

st
ri

bu
ti

on
/ 

cl
ea

ra
n

ce
 u

n
cl

ea
r

A
n

ti
ox

id
an

t 
th

er
ap

y 
to

 m
it

ig
at

e 
ox

id
at

iv
e 

st
re

ss
 (

14
2,

 1
62

).

E
m

er
gi

n
g/

L
ow

. 
C

on
si

de
re

d 
n

ew
 

ch
em

ic
al

 e
n

ti
ti

es
 (

N
C

E
s)

. 
E

n
ti

re
ly

 

pr
ec

lin
ic

al
 f

or
 A

M
I.

(1
42

, 1
43

, 1
61

, 1
62

)

C
el

l 
M

em
br

an
e-

 

C
oa

te
d 

N
P

s

Sy
n

th
et

ic
 N

P
 c

or
e 

co
at

ed
 w

it
h 

n
at

ur
al

 c
el

l 
m

em
br

an
e

Im
m

un
e 

ev
as

io
n

; 
In

)a
m

m
at

or
y 

ta
rg

et
in

g;
 B

io
co

m
pa

ti
bi

lit
y

C
om

pl
ex

 m
an

uf
ac

tu
ri

n
g;

 

B
at

ch
 v

ar
ia

bi
lit

y;
 S

ca
la

bi
lit

y 

is
su

es

si
R

N
A

 (
20

, 
14

7)
, 

cy
to

ki
n

es
 (

18
),

 m
ic

ro
R

N
A

 

( 1
41

),
 s

m
al

l 
m

ol
ec

ul
e 

dr
ug

s 
(1

57
).

H
ig

h
 (

fu
tu

re
 p

ot
en

ti
al

).
 P

ro
m

is
in

g 

pr
ec

lin
ic

al
 r

es
ul

ts
. 

N
o 

cl
in

ic
al

 t
ri

al
s 

fo
r 

A
M

I 
ye

t.

(1
8,

 2
0,

 1
41

, 
14

7,
 

15
7,

 1
58

, 
16

4)

E
xt

ra
ce

llu
la

r 
V

es
ic

le
s/

 

E
xo

so
m

es

N
at

ur
al

 l
ip

id
 b

ila
ye

r 
ve

si
cl

es
 w

it
h 

pr
ot

ei
n

s/
n

uc
le

ic
 a

ci
ds

N
at

ur
al

 t
ar

ge
ti

n
g;

 L
ow

 

im
m

un
og

en
ic

it
y;

 C
ro

ss
 b

io
lo

gi
ca

l 

ba
rr

ie
rs

L
ow

 y
ie

ld
; 

H
et

er
og

en
ei

ty
; 

D
if

fi
cu

lt
 d

ru
g 

lo
ad

in
g/

 

st
an

da
rd

iz
at

io
n

N
at

ur
al

 c
ar

go
 (

m
iR

N
A

s,
 p

ro
te

in
s)

; 

E
n

gi
n

ee
re

d 
dr

ug
s/

n
uc

le
ic

 a
ci

ds
.

M
od

er
at

e/
H

ig
h

 (
as

 b
io

lo
gi

cs
).

 M
an

y 

cl
in

ic
al

 t
ri

al
s 

on
go

in
g.

 M
an

uf
ac

tu
ri

n
g 

is
 a

 m
aj

or
 h

ur
dl

e.

(1
59

)

A
po

lip
op

ro
te

in
-b

as
ed

 

N
P

s

A
po

lip
op

ro
te

in
-p

ho
sp

ho
lip

id
 

co
m

pl
ex

es
 m

im
ic

ki
n

g 
H

D
L

In
n

at
e 

re
ce

pt
or

 t
ar

ge
ti

n
g;

 C
ho

le
st

er
ol

 

ef
)u

x;
 A

n
ti

-i
n

)a
m

m
at

or
y

L
im

it
ed

 l
oa

di
n

g 
fo

r 
n

on
- 

lip
op

hi
lic

 d
ru

gs
; 

C
om

pl
ex

 

co
m

po
si

ti
on

Im
m

un
om

od
ul

at
io

n
 o

f 
n

eu
tr

op
h

ils
/ 

m
on

oc
yt

es
 (

15
1)

.

L
ow

 (
as

 d
ru

g 
ca

rr
ie

r)
. C

lin
ic

al
 t

ri
al

s 
fo

r 

lip
id

 m
an

ag
em

en
t 

(e
.g

., 
C

E
R

-0
01

),
 n

ot
 

A
M

I 
dr

ug
 d

el
iv

er
y.

(1
51

)

Li et al.                                                                                                                                                                  10.3389/fcvm.2025.1657300 

Frontiers in Cardiovascular Medicine 15 frontiersin.org



NDDS to co-deliver low-dose clopidogrel and aspirin. The study 

involved 270 patients with coronary artery disease and reported 

that the liposomal formulation reduced the incidence of major 

adverse cardiovascular events with a favorable safety profile 

compared to conventional dual antiplatelet therapy (169).

However, not all clinical trials have yielded positive outcomes. 

In a study by Fleur M. van der Valk et al., 30 patients with 

atherosclerosis received liposomal prednisolone. Although the 

nanoparticles reached macrophages within atherosclerotic 

plaques, no significant anti-in)ammatory effect was observed— 

possibly due to insufficient drug dosage or the small sample size 

(170). Another planned trial led by Yan Fang et al. aims to 

enroll 200 participants to evaluate a self-assembling nanoprobe 

for detecting fibroblast growth factors (FGFs) for cardiovascular 

disease screening and treatment assessment 

(ChiCTR2400089047). Despite considerable preclinical progress, 

the translation of NP-NDDS into clinical practice remains limited.

The challenges in clinical translation are partly attributable to 

anatomical, physiological, and pathological differences between 

species. For instance, the heart rate of mice (500–700 bpm) is 

much higher than that of humans (60–100 bpm), which affects 

hemodynamic shear stress and may alter NP circulation time, 

protein corona formation, and targeting efficiency. 

Pathologically, post-AMI in)ammation in rodents is relatively 

short, typically resolving within 3–7 days, with fibrotic 

remodeling often complete within a week. In humans, however, 

the in)ammatory phase can persist for 2–4 weeks, and fibrotic 

remodeling is more prolonged and complex.

Heavy reliance on small animal models means that key 

parameters such as targeting efficiency and safety observed in 

rodents may not reliably predict outcomes in humans. 

Additionally, clinical patients often exhibit significant individual 

variability—unlike standardized animal models. Factors such as 

immune status, age, and comorbidities can further in)uence NP 

efficacy and targeting. Therefore, the use of large animal models 

such as porcine MI models, which more closely mimic human 

physiology and pathology, is essential. These models allow for 

better evaluation of NP targeting efficiency, long-term safety 

(e.g., tracking cardiac function over ≥6 months), and 

immunogenicity (e.g., anti-NP antibody generation), thereby 

improving predictive validity.

Another challenge lies in the choice of administration route 

and the dynamic nature of the in)ammatory response following 

AMI. The administration method significantly affects NP 

accumulation in the infarcted area, as well as the duration of 

therapeutic action and overall safety. Direct intramyocardial 

injection can achieve high local drug concentrations but may 

cause mechanical injury to vulnerable cardiac tissue and 

increase the risk of myocardial rupture. Intravenous injection is 

less invasive but often results in rapid systemic clearance and 

delayed delivery to the target site. As shown in the study by van 

der Valk et al., even when NPs reach the lesion, treatment 

effects may be limited by factors such as insufficient dosing (151).

Moreover, the post-AMI in)ammatory response evolves 

dynamically over time, involving phenotypic shifts in immune 

cells such as N1/N2 neutrophils and M1/M2 macrophages. This 

underscores the need for NP systems capable of 

spatiotemporally controlled drug release. Future research could 

focus on developing “phase-specific” NPs that adapt to the 

changing in)ammatory microenvironment—from acute injury to 

repair phases. Strategies may include dual-targeting ligands that 

respond to both microenvironmental cues and specific cell 

phenotypes, or biomimetic approaches that leverage the homing 

behavior of immune cells, such as neutrophil- or macrophage- 

mimetic NPs.

With advances in computational methods, artificial 

intelligence (AI)-assisted design has emerged as a potential tool 

for developing NPs with spatiotemporally controlled release 

properties. Machine learning (ML) models can analyze high- 

throughput experimental and computational data to predict NP 

behavior in complex in)ammatory microenvironments, 

supporting more rational NP design (171). For example, ML can 

help predict protein corona composition based on protein 

sequences and NP physicochemical properties (172, 173), which 

may guide the design of surface ligands to enhance targeting 

toward specific cell phenotypes (e.g., M1/M2 macrophages) 

while reducing non-specific uptake. In ligand optimization, AI 

may aid in identifying dual- or multi-targeting ligands that 

respond to microenvironmental signals (e.g., pH, ROS) and cell 

surface receptors, enabling NPs to adapt to stage-specific 

in)ammatory cues. ML models may also analyze relationships 

between immune cell homing behavior and membrane protein 

expression, informing the design of biomimetic nanocarriers 

(174). By integrating multi-omics data with computational 

modeling, AI-assisted approaches could help design NPs that 

dynamically adjust their function during disease progression, 

improve targeting accuracy, and reduce off-target effects.

4.2 Regulatory and manufacturing hurdles

While nanoparticles offer potential advantages in medical 

applications, they also present considerable immunogenic risks. 

Owing to their surface properties and foreign nature, 

nanoparticles can activate the immune system, potentially 

triggering hypersensitivity or in)ammatory responses. For 

instance, gold nanoparticles (AuNPs) used in diagnostic imaging 

have been associated with allergic reactions such as rashes, 

swelling, and respiratory distress in some patients (175). 

Dendrimers and polymeric nanoparticles may activate immune 

cells while enhancing drug delivery, which could lead to 

in)ammation or allergic reactions (176). Even typically 

biocompatible carriers such as liposomes have been reported to 

induce immune responses under high-dose or long-term 

administration (177, 178). These observations highlight the 

importance of prioritizing endogenous degradable materials 

(e.g., hyaluronic acid, chitosan) or biomimetic materials (e.g., 

exosomes, cell membrane vesicles) to help minimize long-term 

toxicity risks. It is also considered essential to expand long-term 

safety assessments to include large animal models.

The metabolic pathways, accumulation effects, and potential 

chronic health impacts of nanoparticles in humans remain 
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inadequately understood, partly due to a lack of large-scale clinical 

studies (179). Although two clinical studies in cardiovascular 

disease using lipid nanoparticles reported no major safety 

concerns, their sample sizes were limited (169, 170). Animal 

studies have indicated that certain inorganic nanoparticles can 

accumulate in organs such as the liver, lungs, and kidneys, 

where they may induce oxidative stress, in)ammation, or other 

adverse effects (180). Additionally, the environmental behavior 

of nanoparticles warrants attention: they may enter soil and 

water systems through medical waste or emissions, with the 

potential to bioaccumulate and move through the food chain, 

posing possible risks to ecosystems and public health (179, 181). 

Therefore, advancing the development of biodegradable 

nanomaterials and strengthening regulatory oversight of NPs 

production and use are important priorities.

These scientific uncertainties further complicate the 

regulatory evaluation of nanomedicine products. Regulatory 

agencies such as the U.S. FDA and the European EMA 

currently rely largely on frameworks designed for conventional 

drugs, which may not fully address the specific complexities of 

nanomaterials, including batch-to-batch variability, 

bioequivalence assessment, and dynamic release behaviors 

(182–184). The manufacturing of nanomedicines requires 

precise control over critical parameters such as particle size 

distribution, surface charge, drug encapsulation efficiency, and 

release kinetics, which can vary between batches and pose 

challenges to product consistency and quality (185). Adherence 

to Good Manufacturing Practice (GMP) and the establishment 

of a comprehensive quality control system—covering raw 

materials, production processes, and final products—are 

essential to ensure reproducible quality during scale-up from 

laboratory research to commercial production (185). Some 

nanomedicines, including Doxil and Abraxane, have 

encountered delays or obstacles in approval related to stability, 

toxicity, or manufacturing consistency issues (184). Moreover, 

the absence of harmonized international regulatory standards 

may limit the global accessibility and equitable distribution of 

nanomedicines (186, 187). To support the responsible 

development of nanomedicine, there is a need to establish 

transnational collaborative mechanisms and develop unified 

global evaluation standards specifically addressing the safety, 

efficacy, and environmental impact of nanomaterials.

5 Conclusion

NP-NDDSs may offer potential benefits for advancing the 

treatment of AMI through targeted modulation of the 

in)ammatory immune response. As discussed, these systems 

have been shown in preclinical studies to enhance the precision 

of therapeutic delivery to pivotal immune cells, suggesting 

potential for reducing tissue damage and supporting 

repair processes.

The path to clinical application, however, involves 

considerable challenges. A central issue is the evolving 

in)ammatory landscape after AMI, which requires drug delivery 

systems that can adapt over time. Future efforts should focus on 

creating versatile platforms that can sequentially modulate 

different phases of the immune response. Incorporating 

biomimetic designs, such as cell membrane coatings, may 

improve targeting specificity, while artificial intelligence could 

aid in optimizing nanoparticle properties for desired in vivo 

performance. Additionally, robust validation in physiologically 

relevant large animal models is essential to reliably assess 

therapeutic benefits and safety profiles. Translational progress 

will also depend on overcoming hurdles in manufacturing 

consistency, long-term biosafety, and navigating evolving 

regulatory frameworks.

In conclusion, while NP-NDDSs represent a promising 

approach to AMI therapy, their successful translation will 

depend on addressing these interrelated biological and 

technical challenges.
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