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Cardiometabolic diseases—including type 2 diabetes, cardiovascular disease, 

and metabolic dysfunction–associated steatotic liver disease—are increasingly 

driven by near-continuous after-meal exposure to glucose and lipid surges 

that traditional fasting tests often miss. This review prioritizes human studies 

from 2020 to 2025 and uses earlier work only as foundational anchors; non- 

English reports were excluded and preclinical findings are cited solely for 

mechanistic context. Evidence converges on six processes that amplify risk 

within hours after eating: impaired insulin signaling, delayed clearance of 

dietary lipids, mitochondrial and oxidative stress, loss of endothelial nitric 

oxide, inflammasome-mediated inflammation, and microbiome–hormone 

interactions. Dynamic, after-meal markers and simple composites such as the 

triglyceride–glucose index outperform fasting measures for identifying risk 

and guiding care. Practical strategies to shorten the “damage window” include 

Mediterranean-style meals with low glycemic index swaps and unsaturated 

fats, earlier distribution of daily energy and early time-restricted eating, a 

small pre-meal protein portion, and brief post-meal walking. Fast-acting 

medicines—glucagon-like peptide 1 and glucose-dependent insulinotropic 

polypeptide receptor agonists, rapid-acting insulin analogues, sodium– 

glucose cotransporter 2 inhibitors taken before meals, and proprotein 

convertase subtilisin/kexin type 9 inhibitors—further blunt peaks, while 

continuous glucose monitoring with algorithmic feedback enables timing- 

aware, person-specific adjustments. A tiered workflow—screen, stratify, and 

personalize—reframes prevention and treatment around after-meal 

physiology, with particular relevance to settings where resources are limited.
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1 Introduction

Chronic noncommunicable diseases (CNCDs) now account 
for 41 million deaths each year, roughly 71 percent of all global 

mortality—and have overtaken infectious illnesses as the leading 
public-health threat (1). Within that broad category, 

cardiometabolic conditions—type 2 diabetes (T2D), 
cardiovascular disease (CVD) and metabolic-dysfunction- 

associated steatotic liver disease (MASLD, formerly NAFLD)— 
are rising fastest (2). T2D prevalence in sub-Saharan Africa has 

jumped from four million cases in 1980 to 23.6 million in 2021 
and is projected to exceed 54 million by 2045 (3). MASLD 

affects roughly one adult in four worldwide (4, 5), while CVD 
alone claims 17.9 million lives annually, most of them in low- 
and middle-income regions (6).

Decades of epidemiology and mechanistic work converge on a 
common upstream driver: modern eating patterns characterized 

by frequent snacking on energy-dense, highly refined foods. This 
dietary behavior shortens fasting intervals and maintains most 

individuals in a near-continuous postprandial state—typically 
involving four to ten eating occasions per day with minimal 

overnight respite (7). These repeated surges of glucose and 
triglyceride-rich lipoproteins (TRLs) disrupt circadian clocks, 

overload mitochondrial redox systems, and activate innate- 
immune pathways, thereby accelerating atherogenesis, β-cell 

failure and hepatic steatosis (8, 9). Critically, this shift represents 
a departure from evolutionary eating patterns, where extended 

fasting periods allowed metabolic recovery and cellular repair 
processes that are now chronically interrupted.

The postprandial window now stretches well beyond half of 
every 24 h cycle; in many individuals it exceeds sixteen hours 

(10). Prolonged exposure to elevated glucose and lipid 
concentrations fuels low-grade systemic in<ammation, a process 

termed “meta<ammation”, which is central to the pathogenesis 
of T2D, CVD and MASLD (11, 12). The term postprandial 

dysmetabolism denotes the triad of hyperglycemia, 
hypertriglyceridemia, and hyperinsulinemia that follows each 

meal in susceptible individuals (13). When that triad is 
amplified by poor diet quality and increased meal frequency, 

oxidative stress, endothelial dysfunction and chronic 
in<ammation ensue (14–16). Importantly, these metabolic 

perturbations can occur while fasting markers remain normal, 
highlighting a critical blind spot in current diagnostic approaches.

Prospective cohort studies demonstrate that the height and 
duration of post-meal glucose and triglyceride peaks predict 

carotid-intima thickening and future cardiovascular events even 
when fasting markers remain within normal ranges (17, 18). 
This finding challenges the traditional paradigm of metabolic 

assessment and underscores the clinical relevance of 
postprandial monitoring. Because the gut, liver, muscle, adipose 

tissue and pancreas coordinate postprandial homeostasis 
through complex inter-organ crosstalk, disturbances in any 

single organ rapidly propagate across the entire metabolic 
network (10, 17, 18). Despite this evidence, preventive care 

continues to rely predominantly on fasting glucose or low- 
density-lipoprotein cholesterol (LDL-C) measurements, leaving a 

substantial portion of cardiometabolic risk undetected and 
unaddressed—particularly in resource-limited settings where 

pharmacotherapy access is constrained and health-system 
capacity is limited (19–23).

This review applies a contemporary lens (2020–2025) 
re<ecting methodological and clinical in<ection points— 

widespread continuous glucose monitoring (CGM), standardized 
assays for TRL, multi-omics work<ows, and the clinical 

introduction of glucagon-like peptide-1/glucose-dependent 
insulinotropic polypeptide (GLP-1/GIP) co-agonists—while 

selectively incorporating pre-2020 “foundational” contributions 
limited to seminal meta-analyses, consensus statements, pivotal 
randomized trials, or first-in-field mechanistic studies. Primary 

evidence prioritizes human adult studies indexed in Scopus 
(randomized controlled trials, controlled feeding/postprandial 

challenge studies over 0–6 h, and prospective cohorts), with 
inclusion contingent on clear test-meal composition, defined 

sampling windows, and assay standardization. Preclinical studies 
(animal or cell preparations) are cited only for mechanistic 

context, to probe causal links impractical or unethical to test in 
humans, and to nominate druggable targets relevant to the 

postprandial state [e.g., NADPH-oxidase (NOX)–endothelial 
nitric oxide synthase (eNOS) coupling, Yes-associated protein/ 

TEA domain transcription factor (YAP/TEAD) signaling, 
calciprotein particle–driven pathways]. Such findings are not 

used to claim clinical efficacy, estimate effect sizes, or define 
clinical endpoints and are explicitly <agged in-text as 

“preclinical”, with model (mouse/rat) and exposure type 
(dietary, genetic, pharmacological) specified. We excluded non- 

English publications and did not treat narrative reviews as 
primary evidence; when cited, such reviews provided historical 

framing or methodological context only. Foundational citations 
are <agged in-text and collated in Supplementary Table S1

with rationale and study type (meta-analysis, pivotal RCT, 
first-in-field).

The aim of this narrative review is to move the spotlight from 
static fasting metrics to the dynamic metabolic stresses that arise 

after every meal, offering clinicians, researchers, and 
policymakers a practical roadmap for earlier detection, tailored 

intervention, and, ultimately, more effective prevention of 
CNCD-related morbidity and mortality.

This review synthesizes evidence on five inter-related domains 
of postprandial dysmetabolism: (i) the molecular and 

physiological pathways that precipitate metabolic dysfunction 
following nutrient intake; (ii) fasting-state surrogates and 
dynamic biomarkers that reveal these otherwise occult 

perturbations; (iii) dietary, behavioral, and pharmacological 
interventions that can mitigate postprandial stress; (iv) emerging 

technologies for real-time monitoring and personalized 
therapeutic targeting; and (v) implementation strategies for 

translating these advances into clinical practice, particularly in 
diverse populations and resource-variable settings.
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2 Mechanistic drivers of postprandial 
dysmetabolism

2.1 Conceptual framework and temporal 
dynamics

Postprandial dysmetabolism is a time-dependent systems 

disturbance with min-to-hours <uctuations in glucose and lipids 
and hours-to-days adaptations in redox/circadian and gut– 

hormone axes. It re<ects the convergence of nutrient overload, 
redox imbalance, and circadian misalignment across six 

interconnected nodes—from rapid glucose handling (min) to 
lipid clearance (peaks approximately 4–6 h) and microbiome– 

endocrine shifts (hours–days). Epidemiologic and clinical 
evidence links this state to endothelial injury and higher 

cardiovascular risk in people with and without T2D, supporting 
assay/intervention timing by temporal bands (operational 

definitions in Supplementary Table S1) (24, 25).

2.2 Substrate-specific metabolic overload 
(0–2 h post-meal)

Excess glucose engages canonical insulin signaling [insulin 

receptor substrate (IRS)—phosphoinositide 3-kinase (PI3K)— 
protein kinase B (Akt)] to drive glucose transporter type 4 

(GLUT4) translocation in skeletal muscle and adipose tissue; 
impaired signaling delays vesicle delivery and prolongs 

hyperglycemia (26). Preclinical data indicate that SHIP2 (“SKIP” 
in rodents) limits phosphatidylinositol-3,4,5-trisphosphate 

(PIP3)/Akt signaling and that glucolipotoxic stress induces IRS-1 
serine phosphorylation, dampening PI3K/Akt activity and 

GLUT4 trafficking (27–29). In parallel, intestinal chylomicron 
export can exceed lipoprotein lipase (LPL) capacity, leaving 

triglyceride-rich remnants that typically peak approximately 4– 
6 h (and may persist longer) after a mixed meal (30). The 

combined substrate surplus elevates mitochondrial reactive 
oxygen species (ROS) [reverse electron transport (RET) at 

Complex I; high potential at Complex III] within approximately 
60–180 min, taxing antioxidant defenses (mechanistic/ 

preclinical) (31, 32).

2.3 Vascular and inflammatory cascade 
(1–6 h post-meal)

The oxidative burst plus remnant lipoproteins activates the 

endothelium, lowers bioavailable nitric oxide (NO) (eNOS 
uncoupling; NOX/xanthine oxidase), and upregulates 

intercellular adhesion molecule 1/vascular cell adhesion 
molecule-1 (ICAM-1/VCAM-1). Innate sensors (Toll-like and 

NOD-like receptors) promote NOD-, LRR-, and pyrin-domain– 
containing protein 3 (NLRP3) in<ammasome assembly, raising 

interleukin 1β (IL-1β) and interleukin 6 (IL-6); obesity amplifies 

these inputs via adipose-derived cytokines and lipotoxic 
mediators, reinforcing a feed-forward loop (33–35).

2.4 Microbiome-Endocrine integration 
(hours to days)

Dysbiosis reshapes the bile-acid pool via microbial bile-salt 
hydrolase (BSH) activity, modulating farnesoid X receptor/ 

Takeda G-protein-coupled receptor 5 (FXR/TGR5) signaling 
(preclinical), and microbiota-derived bile acids/short-chain fatty 

acids (SCFAs) can in<uence L-cell GLP-1 secretion, helping 
explain variability in subsequent postprandial responses 

(foundational preclinical listed in Supplementary Table S1; 
contemporary human/preclinical syntheses) (36–38).

2.5 Clinical relevance and paradigm 
implications

Together, these nodes explain why the height and duration of 
post-meal peaks predict carotid-intima thickening and incident 

cardiovascular events independent of fasting markers (39, 40). 
With this theoretical framework, postprandial metabolism can 

be rapidly identified for targeted intervention; Figure 1
represents the interconnected network that links high nutrient 

intake with endothelial damage, insulin insensitivity, and hepatic 
lipid accumulation.

2.6 Glucose metabolism and insulin 
resistance

2.6.1 Normal postprandial insulin signaling
In metabolically healthy adults, a meal elicits insulin secretion 

within 5–10 min. Circulating insulin binds to the insulin receptor 
(IR) in target tissues, resulting in autophosphorylation of the 

receptor as well as phosphorylation of IRS-1/2. IRS-1/2 recruits 
PI3K, generating PIP3 that recruits Akt to the membrane, where 

phosphoinositide-dependent kinase 1 and mammalian target of 
rapamycin Complex 2 (mTORC2) activate Akt (39, 40).

2.6.2 Glucose uptake and metabolic integration
Akt phosphorylation of AS160 relieves Rab-GTPase restraint 

and drives GLUT4 vesicle fusion with the plasma membrane, 
enabling rapid glucose uptake. In parallel, Akt inhibits glycogen- 

synthase-kinase-3β to promote glycogen synthesis and—via 
mTORC1—supports protein synthesis and cell growth. Energy- 

sensing by adenosine monophosphate-activated protein kinase 
(AMPK) complements this program by enhancing GLUT4 

trafficking and fatty-acid oxidation when the adenosine 
monophosphate/adenosine triphosphate (AMP/ATP) ratio rises, 
sustaining postprandial metabolic <exibility (41, 42).
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2.6.3 Temporal dynamics and individual variation

Nonetheless, postprandial glucose clearance varies 
substantially with age, fitness, genetics, and meal timing. In 

PREDICT 1, glycemic responses to identical meals showed large 
between-person differences with strong person-specific 

predictability (r = 0.77) (mixed-risk adults; n ≈ 1,100; 
standardized test meals approximately 500–900 kcal with varied 

macronutrient composition; capillary glucose/CGM sampling 0– 
4 h) (43). Variants at circadian loci (MTNR1B rs10830963, 

CRY2 rs12419690) relate to diurnal glycemic control (UK 

FIGURE 1 

Integrated network of the six primary drivers of postprandial dysmetabolism. The diagram illustrates how (1) impaired insulin–PI3K–Akt signaling, (2) 

delayed clearance of chylomicron-derived remnants, (3) mitochondrial redox overflow, (4) endothelial nitric-oxide depletion, (5) inflammasome- 

driven cytokine release, and (6) microbiota-mediated shifts in bile-acid and short-chain-fatty-acid profiles interact within min after a mixed meal. 

Bidirectional arrows highlight feed-forward loops—ROS amplifying endothelial activation, remnant lipids fueling NLRP3 assembly, and butyrate 

modulating GLP-1—that transform transient surges into chronic cardiometabolic stress. PI3K, phosphoinositide-3-kinase; Akt, protein kinase B; 

ROS, reactive oxygen species; NLRP3, NOD-, LRR-, and pyrin-domain–containing protein 3 (inflammasome); GLP-1, glucagon-like peptide 1; 

SCFA, short-chain fatty acid; NO, nitric oxide.
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Biobank adults; n ≈ 420,000; random serum glucose linked to 
time-of-day; replication Estonian Biobank n approximately 

100,000; 24 h cosinor modeling; not a meal test) (44). This 
heterogeneity underscores limits of one-size-fits-all diagnostics 

and supports personalized postprandial monitoring, including 
CGM-guided dietary interventions that outperform standard 

advice in randomized trials (45, 46).

2.6.4 Inflammatory disruption of insulin sensitivity
Repeated exposure to saturated fats and refined carbohydrates 

activates pro-in<ammatory kinases— IκB kinase beta (IKKβ) and 
c-Jun N-terminal kinase 1 (JNK-1)—that serine-phosphorylate 

IRS-1, impairing tyrosine phosphorylation and PI3K recruitment 
(preclinical) (39, 40). This molecular injury contributes to 

selective insulin resistance, where metabolic signaling decreases 
while in<ammatory/lipogenic pathways remain active.

2.6.5 Tissue-specific insulin resistance

Consequences differ by tissue. Skeletal muscle (approximately 
80 percent of postprandial glucose disposal) develops GLUT4 

translocation defects that limit uptake (47–49); the liver 
maintains gluconeogenesis/glycogenolysis despite 

hyperinsulinemia, sustaining hyperglycemia; and adipose tissue 
insulin resistance augments lipolysis and circulating FFAs, 

further propagating insulin resistance across organs (50).

2.7 Postprandial lipemia, triglyceride 
clearance, and lipotoxicity

2.7.1 Normal postprandial triglyceride processing
After a mixed meal, dietary triglycerides are assembled into 

intestinal chylomicrons (CM) and reach the bloodstream via 
lymph within 30–60 min. Clearance depends on LPL and its 

endothelial anchor GPIHBP1 at capillaries of adipose tissue and 
skeletal muscle, enabling efficient intravascular hydrolysis and 

tissue uptake (7, 9, 51).

2.7.2 Insulin-mediated regulation of lipid 
clearance

Physiologic postprandial insulin acutely increases LPL activity 
(e.g., post-heparin LPL) and promotes LPL trans-endothelial 

positioning via GPIHBP1 (52–56). Structural features of 
GPIHBP1 that accelerate LPL capture and luminal presentation 

have been defined (preclinical/biophysical) (53, 54). In insulin- 
sensitive states, this coordination rapidly hydrolyzes CM 

triglycerides, yielding controlled rises in tissue FFAs and 
minimal TRL remnants, with most clearance completed by 

approximately 2–4 h (55, 56).

2.7.3 Pathological disruption of TRL metabolism

Insulin resistance lowers adipose LPL expression and raises 
endogenous LPL inhibitors— angiopoietin-like protein 3/ 

angiopoietin-like protein 4 (ANGPTL3/ANGPTL4) and 
apolipoprotein C3 (APOC3)—slowing TRL hydrolysis and 
extending the lipemic phase from approximately 4–6 h to 8–12 h 

or longer, thereby sustaining exposure to atherogenic remnant 
particles (57–59).

2.7.4 Vascular consequences of remnant 

accumulation
Small TRL remnants penetrate and are retained within the 

arterial intima (60, 61). They can be taken up by intimal 
macrophages—promoting foam-cell formation—and amplify 

chemokine/cytokine production, leukocyte adhesion, and 
vascular in<ammation. This remnant-driven process contributes 

to residual atherosclerotic cardiovascular disease (ASCVD) risk 
beyond LDL-C lowering (61, 62).

2.7.5 Hepatic lipid overload and MASLD 

progression
Elevated postprandial triglycerides create a “dual-TRL hit” to 

the liver: increased FFA in<ux (from impaired peripheral 
clearance and heightened lipolysis) fosters re-esterification and 

VLDL secretion, while CM remnants add lipid/cholesterol cargo. 
Together these inputs magnify dyslipidemia and drive hepatic 

steatosis and progression toward MASLD (63, 64).

2.7.6 Cellular lipotoxicity and metabolic 

dysfunction
Excess FFAs generate diacylglycerol and ceramides that 

activate novel protein kinase C (PKC) isoforms, disrupt IR/IRS 

phosphorylation, and impair GLUT4 translocation, producing 
metabolic in<exibility with reduced glucose uptake and 

sustained hyperglycemia (65, 66).

2.7.7 Inflammatory amplification and clinical 

biomarkers
Oxidized remnants and FFAs stimulate toll-like receptor 4 

(TLR4), driving nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) signaling, upregulate NOX2/NOX4, 

and elevate IL-6 and tumor necrosis factor-alpha (TNF-α), while 
IL-1β can rise via in<ammasome activation. In population 

settings, triglyceride incremental area under the curve 
(iAUC) > 5 mmol·h·L−1 associates with approximately 25 percent 
higher IL-6 within 4 h, supporting this metric as a prognostic 

marker of lipemic–in<ammatory burden (67, 68). This 
environment decreases the bioavailability of endothelial NO and 

reinforces insulin resistance, closing the pathophysiological 
cycle (66, 69).

2.7.8 Targeted therapeutic approaches
APOC3 antisense/siRNA accelerate CM and VLDL clearance, 

lowering peak postprandial triglycerides by up to approximately 
45 percent in controlled trials (70, 71). ANGPTL3 inhibition 

(and to a lesser extent ANGPTL4) relieves LPL suppression, 
enhancing triglycerides hydrolysis and reducing remnants (72). 

Fibroblast growth factor 21 analogs improve hepatic β-oxidation 
and lower VLDL output, showing promise for MASLD- 
associated dyslipidemia (73).
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2.8 Oxidative and mitochondrial stress in 
the postprandial window

A meal is more than caloric delivery—it is an acute redox 

challenge. Min after absorption, mitochondrial and enzymatic 
sources of ROS stimulate and brie<y overcome endogenous 

antioxidant defenses. In healthy individuals this transient 
“spark” is hormetic, fine-tuning insulin action and vascular 

tone; in insulin-resistant or metabolic-syndrome phenotypes, the 
ROS pulse is higher and longer, synergizing with hyperglycemia 

and chylomicronemia to oxidize lipids/proteins, quench 
endothelial NO, and activate in<ammasome/kinase pathways, 
feeding forward into endothelial dysfunction and insulin 

resistance (74, 75). Clinically, high-fat mixed meals reduce 
brachial-artery <ow-mediated dilation (FMD) by approximately 

1 percentage point at 2–4 h, placing peak vascular impairment 
squarely in the 60–180 min postprandial window (76). A concise 

mapping of sequelae, mechanisms, timing and read-outs is 
provided in Table 1.

Mechanistically, rapid substrate over<ow raises the 
nicotinamide adenine dinucleotide (NADH:NAD+) and <avin 

adenine dinucleotide, reduced: <avin adenine dinucleotide 
(FADH2:FAD) ratios, hyper-reduces CoQ, and favors RET at 

Complex I—an efficient in vivo superoxide source—while 
Complex III contributes under high membrane potential (82, 

83). Parallel nutrient cues (acute hyperglycemia; TRL remnants) 
activate PKC—especially PKC-β—driving p47^phox 

translocation and NOX2/NOX4 activation; tetrahydrobiopterin 
depletion uncouples eNOS, and xanthine oxidase adds to ROS 

supply—together producing a convergent, multi-organ burst that 
typically peaks at 1–3 h (84–87).

In healthy muscle and endothelium, the postprandial ROS 
burst is normally self-limited by nuclear factor erythroid 2– 

related factor 2 (Nrf2)–driven induction of glutathione 
peroxidase, catalase, and heme oxygenase-1 (88–91). In 

metabolic-syndrome/MASLD phenotypes, Nrf2 tone and 
circulating antioxidants (e.g., bilirubin, paraoxonase-1) are 

diminished, shifting the balance toward peroxynitrite formation, 
LDL oxidation, and redox-sensitive in<ammatory signaling 

(92–94). With repeated meals, unresolved redox stress extends 
beyond the 1–3 h window and engages β-cell unfolded-protein- 

response pathways [protein-kinase R–like ER kinase (PERK); 
eukaryotic initiation factor 2α eIF2α]), driving CHOP/caspase-3 

and increasing vulnerability to apoptosis. There is no direct 
plasma marker of β-cell death; in practice, an elevated 
proinsulin:insulin ratio serves as a crude stress proxy (81).

Human translational data strengthen causality: reducing 
mitochondrial oxidants alleviates lipid-induced muscle insulin 

resistance, and postprandial metabolomics consistently show 
acylcarnitine signatures compatible with mitochondrial redox 

pressure and PDH inhibition during mixed-meal challenges (95, 96).

2.8.1 Translational clues from intervention trials
Superoxide reacts with endothelial NO to generate 

peroxynitrite; the associated NO loss aligns with an 

approximately 1 absolute percentage-point decrement in 
brachial-artery FMD at 2–4 h after a single high-fat meal 

(76–78). ROS also signal through IKKβ/JNK to promote NLRP3 
in<ammasome assembly, increasing IL-1β and IL-18 (79, 80). 

– Polyphenols boluses. Acute, meal-time polyphenols attenuate 
oxidative stress and can preserve endothelial function in 

standardized high-fat challenges (97). Examples include: (i) 
grape-seed extract taken 1 h pre-meal lowered oxide LDL and 

glucose exposure without changing insulin (metabolic- 
syndrome adults; n = 12; approximately 670 kcal mixed meal, 

approximately 40 percent fat/ approximately 50 percent 
carbohydrate; sampling 0–5 h) (98); (ii) grape-pomace extract 

co-ingested with a high-fat meal modulated oxidative-stress 
biomarkers with body mass index-stratified effects (healthy 

women; n = 18; 1,131 kcal high-fat meal, 66.7 percent fat; 
sampling 0–6 h) (99); and (iii) a high-<avanol cocoa beverage 

[150 mg (−)-epicatechin] co-ingested with a high-fat load 
preserved FMD during a standardized ischemia–reperfusion 

stress paradigm vs. a low-<avanol control (young healthy 
adults; n = 23; high-fat meal with 56.5 g fat; FMD assessed 

approximately 1.5–3.0 h post-meal) (100).
– Targeting NADPH-oxidases. Setanaxib (a selective NOX1/4 

inhibitor) shows clinical signals in primary biliary 
cholangitis; postprandial vascular-endpoint trials (e.g., FMD, 

carotid-femoral pulse wave velocity) are still needed (primary 
biliary cholangitis; adults; randomized, placebo-controlled 

phase 2; n = 111; no test meal; 24 weeks; primary 
endpoint = %ΔGGT; secondary = ALP, liver stiffness, fatigue; 

vascular endpoints not assessed) (69).
– N-acetylcysteine (NAC). A single-blinded, placebo-controlled 

crossover in hypertensive adults showed that oral NAC 
(600 mg) reduced thiolated albumin (Thio-HSA) by 

approximately 25 percent at 60 min and i.v. NAC lowered it 
by approximately 69 percent at 30 min, with increased 
plasma antioxidant capacity—supporting rapid in vivo 

mercaptoalbumin regeneration relevant to the 0–3 h 
postprandial window (no meal challenge) (hypertensive 

adults; n = 6; oral or i.v. NAC; sampling 0–6 h) (84).
– Mitochondria-targeted antioxidants. During lipid/heparin 

infusion clamps (not a meal), intravenous mitoquinone 
increased insulin-stimulated leg glucose uptake and reduced 

ex vivo mitochondrial H2O2 emission in adult humans, 
directly linking mitochondrial oxidants to insulin resistance 

[adults; n = 10 (mitoquinone arm n = 9); 3 h intravenous lipid 
infusion + hyperinsulinemic–isoglycemic clamp; leg glucose 

uptake and muscle respirometry assessed approximately 30– 
120 min] (96).

Taken together, exaggerated ROS generation paired with an 

insufficient antioxidant response creates a modifiable hinge 
between nutrient overload and downstream vascular–metabolic 

injury. Curbing ROS production (e.g., NADPH-oxidase 
blockade, improved mitochondrial efficiency) or reinforcing 

endogenous defenses (Nrf2 activators, thiol donors, polyphenol- 
rich foods) may help re-establish the brief, adaptive nature of 
the postprandial redox signal (74, 75).
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Note. Dedicated postprandial RCTs with vascular endpoints 

are lacking; current evidence supports a mechanistic, rapid 
thiol-replenishing action of NAC that is plausibly relevant to the 

0–3 h window (84).

2.9 Endothelial activation and vascular 
inflammation

The vascular endothelium is the first interface to encounter 
postprandial blood. Under physiological conditions it releases 

NO, maintains an antithrombotic surface, and regulates nutrient 
delivery. Within min of a mixed meal, concurrent exposure to 

glucose, CM remnants, FFA, gut-derived lipopolysaccharide 
(LPS), and a burst of ROS can shift this interface toward a pro- 

in<ammatory, vasoconstrictive phenotype—a shift amplified in 
obesity, MASLD, and chronic kidney disease (101, 102). 

– Mineral stress and calciprotein particles (CPP). In chronic 

kidney disease, calcium–phosphate nanocrystals coated with 
fetuin-A circulate as CPPs. These colloids bind TLR4 on 

endothelial cells, activate NF-κB, upregulate VCAM-1/ICAM- 

1, and suppress eNOS phosphorylation; intravenous CPPs 

reproduce this injury pattern in ApoE-knockout mice 
(preclinical), underscoring systemic vasculotoxicity (103).

– Canonical cytokine signaling. TNF-α, IL-1β, and IL-6 converge 
on endothelial NOX2/NOX4, raising superoxide and uncoupling 

eNOS, thereby reducing bioavailable NO and impairing 
vasodilation. In meal tests, postprandial FMD falls within 

approximately 2–4 h (magnitude protocol-dependent) (104, 105).
– Renin–angiotensin–YAP/TEAD crosstalk. Angiotensin II 

activates YAP; nuclear YAP partners with TEAD factors to 
drive a VCAM-1 promoter, sustaining leukocyte adhesion. 

Verteporfin (YAP–TEAD disruptor) or endothelial YAP 
knockdown restores FMD and lowers VCAM-1 in mouse 

models (preclinical), highlighting a druggable redox-sensitive 
switch (106).

– Gut–vascular signaling. Metabolic endotoxemia (chronically 
elevated LPS from increased intestinal permeability) engages 

endothelial TLR4, boosts ROS, and further uncouples 
eNOS; TLR4 antagonism or antioxidant therapy rescues 

NO signaling and barrier integrity in cell and animal 
models (preclinical), linking dysbiosis to vascular 

dysfunction (107).

TABLE 1 Oxidative-stress sequelae and clinical read-outs.

Consequence Core mechanistic driver 
(concise)

Peak 
window 

post-meal 
(typical)

Primary read-outs 
(preferred)

Assay notes/standardization

Endothelial dysfunction Superoxide reacts with NO to generate 
peroxynitrite; eNOS uncoupling from 
tetrahydrobiopterin depletion; NOX2/XO- 
derived ROS (77, 78).

1–4 h Brachial-artery FMD (% 
change vs. baseline); plasma 
nitrite/nitrate; sNOX2-dp (if 
available)

Control caffeine/smoking and cuff/ 
segment; adjust for baseline diameter; 
typical FMD drop ≈1 percentage point at 
2–4 h

In<ammasome/innate 
immune activation

ROS activate IKKβ/JNK; these kinases recruit 
and oligomerize the NLRP3, which then 
activates caspase-1 (79, 80).

2–6 h Plasma IL-1β and IL-18 Exclude acute infection; standardize 
timing and pre-analytical handling; 
freeze–thaw affects cytokines

β-cell stress and loss Persistent ROS oxidize ER chaperones, forcing 
prolonged unfolded-protein-response signaling 
through PERK and eIF2α; the downstream rise 
in CHOP and caspase-3 expression accelerates 
pancreatic β-cell apoptosis (81).

Hours–days 
(magnified with 
repeated loads)

Proinsulin-insulin ratio 
(clinical proxy)

No direct plasma marker of β-cell 
apoptosis; interpret with glucose/FFA

NO, nitric oxide; eNOS, endothelial nitric-oxide synthase; NOX, NADPH-oxidase; FMD, <ow-mediated dilation; ROS, reactive oxygen species; IKKβ, inhibitor-of-κB-kinase-β; JNK, c-Jun 
N-terminal kinase; NLRP3, NOD-, LRR- and pyrin-domain–containing protein 3; IL, interleukin; PERK, protein-kinase R–like ER kinase; eIF2α, eukaryotic initiation factor 2α; CHOP, C/ 
EBP homologous protein (pro-apoptotic factor); FFA, free fatty acids.
Standardization details for platforms and pre-analytical handling are summarized in Supplementary Table S1.

TABLE 2 Representative “activity-snack” prescriptions (2020–2025) and acute metabolic effects.

Study/population Prescription—timing and 
structure

Principal acute metabolic effect(s)

Meta-analysis of randomized trials in adults with and without T2D 
(k ≈ 22; standardized mixed meals ≈500–900 kcal; sampling 0–2– 
3–4 h

Standing or light walking for 2–5 min every 
20–30 min during a seated lab protocol (224).

Two-hour glucose iAUC decreased by ≈12% and 
insulin iAUC by ≈20% vs. uninterrupted sitting

Systematic review focused on adults with T2D (breaks during 
desk-type tasks; standardized mixed-meal challenges; sampling 0– 
2–4 h)

At least one brief standing or slow-step break 
about every 20–30 min while seated work 
continued (225).

Postprandial glucose iAUC fell by ≈15% and TAG 
iAUC by ≈10% compared with continuous sitting

Meta-analysis of randomized crossover trials comparing post-meal 
vs. pre-meal walking (adults with overweight/T2D; standardized 
meals ≈500–700 kcal; sampling 0–2 h)

Brisk walking (about 10–20 min) initiated 
within ≈30 min after meals vs. the same dose 
before meals (226).

Greater reduction in postprandial glucose when 
walking is performed after meals; supports timing- 
sensitive placement of short bouts

CGM, continuous-glucose monitoring; iAUC, incremental area under the curve; TAG, triacylglycerol.
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2.9.1 Clinical snapshots

– Obesity: postprandial endothelial impairment is exaggerated; 
miR-485 mimics suppress NOX4, lower VCAM-1, and 

improve FMD in obese mice (preclinical) (108).
– Human NOX2 signal: high-fat meals provoke a rapid 

NOX2-dependent ROS burst; intravenous NOX2 blockade or 
a polyphenol-rich beverage at mealtime preserves endothelial 

function despite lipid load (human/challenge) (78, 104).

Oxidative–in<ammatory endothelial injury sits at the 

crossroads of mineral imbalance, intestinal dysbiosis, systemic 
cytokines, and classic cardiometabolic risk. Limiting ROS 

generation (e.g., NOX inhibitors, improved mitochondrial 
efficiency), disrupting maladaptive transcriptional responses 

(YAP, NF-κB), and reinforcing NO signaling may complement 
lipid- and blood-pressure–lowering strategies in restoring 

vascular health.

2.10 Inflammation and innate-immune 
activation

A mixed meal elicits a rapid innate-immune pulse (0–6 h): 

gut-derived LPS and other danger signals reach the portal 
circulation within 30–60 min, priming monocytes/macrophages. 

In metabolically healthy adults the surge resolves quickly; 
proin<ammatory baseline, genetic liability, or frequent energy- 

dense meals amplify and prolong the response (109, 110). 

– Innate sensors and cytokine kinetics. The NLRP3 

in<ammasome is a key nutrient-danger hub: a phosphate- 
enriched breakfast doubles caspase-1 activity in human 

monocytes and elevates IL-1β/IL-6 with approximately 2 h 
peak that wanes by approximately 6 h (111). TLR4 is 

activated by saturated fatty acids and CM remnants, driving 
dependent upregulation of VCAM-1 and ICAM-1, 

mechanistically linking dyslipidemia to endothelial 
dysfunction (110). Outside the vasculature, a fat bolus 

triggers hypothalamic astrocyte swelling and microglial 
activation by approximately 4 h in mice (preclinical) (112).

– Inter-individual variation. Host phenotype shapes the wave’s 
height/duration: older adults with cardiometabolic risk 

generate approximately 40 percent higher peaks in IL-1β, 
C-reactive protein (CRP), and soluble ICAM-1 than healthy 

peers (113). APOE ϵ4 carriers mount approximately 2× 
postprandial rises in CRP/endothelial-activation markers vs. 

ϵ3/ϵ3 (114). Monocyte-subset dynamics also differ: 
CD14++CD16++; cells persist at 4 h in older adults but 

contract by approximately 50 percent in younger adults— 
evidence of innate-immune “memory” with aging (115).

– Microbiome modulation and trained immunity. Lower 
butyrate output is associated with sharper IL-6 and 

glycosylated acute-phase reactants (GlycA) peaks, an effect 
magnified by variants in sodium-coupled monocarboxylate 

transporter 1 [solute carrier Family 5 Member 8 (SLC5A8) or 
free fatty acid receptors 2 and 3 (FFAR2/3)] (116). Beyond 

innate signals, a single high-fat/high-sugar challenge can 

remodel T-cell chromatin at NF-κB– signal transducer and 
activator of transcription motifs and increase IL-17A for ≥1 

week, consistent with diet-induced trained immunity (117).
– Implications and levers. The amplified cytokine environment 

accelerates vascular injury, upregulates endothelial adhesion 
molecules, and drives insulin resistance. Practical levers 

include boosting butyrate (resistant starch, inulin-type 
fructans), tempering TLR4 signaling (marine omega-3 fatty 

acids), and inhibiting NLRP3/ROS sources (mitochondrial 
antioxidants or NOX2 inhibitors), alongside post-meal 

physical-activity “snacks”.

2.11 Gut microbiota–derived signals in 
post-meal metabolism

During a mixed meal, host nutrients surge systemically while 

unabsorbed carbohydrate/protein reach the colon, where microbes 
generate SCFAs, secondary bile acids, and indoles that enter the 

portal vein near-synchronously with host substrates. Microbiome 
features (α-diversity; Bacteroides/Prevotella/Akkermansia) explain 

substantial between-person variance in postprandial glycemic 
and lipemic responses (systematic review of 36 trials; deep- 

phenotyping cohort n = 1,098) (118, 119). 

– Bile acid–L-cell axis (preclinical—human association). High 

BSH activity rapidly deconjugates meal bile acids, increasing 
ligands for TGR5 on L-cells; in gnotobiotic mice, TGR5 

blockade abrogates the GLP-1 surge and its glycemic benefit 
(preclinical) (120, 121). In humans, intestinal TGR5 

messenger ribonucleic acid together with fecal BSH activity 
correlates with GLP-1 dynamics, explaining a meaningful 

fraction of 2-h GLP-1 iAUC variability (38, 67).
– TRL output and clearance (preclinical with human links). 

Antibiotic-treated mice show a approximately 35 percent fall 
in postprandial CM triglycerides paralleling reduced 

microsomal triglycerides and apoB-48 transcripts; Bacteroides 

thetaiotaomicron recolonization restores both expression and 

lipemia (preclinical). Indole-acetate suppresses ANGPTL4 via 
AhR, relieving the LPL brake and accelerating remnant 

clearance; conversely, microbial stimulation of GLP-2 
upregulates enterocyte MTP/apoB-48, doubling CM output— 

effects blunted by a GLP-2R antagonist (preclinical) (38, 122).
– Endocannabinoid and neuro-immune loops (human/ 

preclinical). In a randomized cross-over study, 2 h rises in 
N-acylethanolamines (e.g., anandamide, oleoylethanolamide) 

varied inversely with Fecalibacterium, with approximately 40 
percent larger surges in metabolic syndrome (human) (123). 

Microbiota enriched in Enterobacteriaceae associate with 
sharper IL-6/IL-1β peaks and greater fullness after a 

Western-style meal, suggesting a gut–brain–immune loop 
(human association) (118). The lipid-lowering effect of 

endogenous GLP-1 depends on intact vagal afferents and is 
attenuated by acute fructose, implying neuroendocrine gating 

of CM handling (preclinical/physiology) (124).
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– Microbiota enriched. In Enterobacteriaceae associate with 
sharper IL-6/IL-1β peaks and greater fullness after a 

Western-style meal, suggesting a gut–brain–immune loop 
(human association) (118). The lipid-lowering effect of 

endogenous GLP-1 depends on intact vagal afferents and is 
attenuated by acute fructose, implying neuroendocrine gating 

of CM handling (preclinical/physiology) (124).

Note. Evidence type for each circuit is indicated above; key 
models/readouts are summarized in Supplementary Table S1

(human vs. preclinical).

2.12 Integrative modulators of postprandial 
metabolism

Post-meal fuel handling emerges from the intersection of 
cellular energy sensors, multi-organ nutrient sensing, the 

microbiome, circadian clocks, and adipose–endocrine–neural 
feedback. These axes determine whether calories are oxidized, 

stored, or routed to gluconeogenesis/lipogenesis—helping 
explain person-to-person heterogeneity in glycemic and lipemic 

excursions. 

1) Cellular energy sensors (AMPK–mTORC1– Sirtuin-1). 

When ATP falls, AMPK restrains mTORC1 and shifts <ux 

toward fatty-acid oxidation/autophagy; higher NAD+/NADH 
activates sirtuin 1 (SIRT1), deacetylating PGC-1α/FOXO to 

support mitochondrial biogenesis and antioxidant defense. 
In the fed state, Akt re-engages mTORC1 to promote 

anabolism. Disrupting this AMPK–mTOR–SIRT1 switch 
accelerates steatosis, endothelial dysfunction, and insulin 

resistance (125, 126).
2) Epithelial/host-context modulation. In the intestinal 

epithelium, selective repression of IRS–PI3K–Akt drives 
FOXO nuclear entry, tightens junctions, lowers paracellular 

permeability, and can lower systemic triglycerides/glucose; 
hyperactivation does the opposite (preclinical) (127). Host 

factors further rewire this axis: SARS-CoV-2 proteins 
perturb IRS adaptors and upregulate suppressor of cytokine 

signaling-3, blunting Akt and contributing to de novo 

insulin resistance (human mechanistic/observational), while 

estrogen receptor-α scaffolds IRS-1 to bolster Akt–mTORC2 
(mechanistic; sex-difference context) (128, 129). With 

chronic hypoinsulinemia (type 1 diabetes), liver IRS-2 falls 
as muscle AMPK/SIRT1 compensates—an adaptive multi- 

omics “rewiring” (130).
3) Multi-organ nutrient sensing (gut–brain–pancreas). 

Hypothalamic glucose-responsive neurons (GLUT2/ATP- 
sensitive potassium channel) and carnitine 

palmitoyltransferase 1C-positive neurons sense sugars and 
long-chain acyl-CoAs; L-cells convert luminal nutrient 

signals (SGLT-1; FFAR1/4; GPR119) into GLP-1/GIP/ 
Peptide YY that reach the brainstem via vagal afferents. 

Vagotomy or acute fructose attenuates GLP-1–mediated 
suppression of CM triglycerides by approximately 35 
percent, illustrating gut–brain control of postprandial 

lipemia (124). Microbial butyrate/indoles further tune this 
pathway (preclinical) (131).

4) Circadian timing. Core clock genes (brain and muscle ARNT- 
Like (BMAL1), circadian locomotor output cycles kaput 

(CLOCK), Period (PER) and cryptochrome (CRY)) gate 
insulin sensitivity and substrate partitioning. Front-loading 

energy at breakfast advances clock phase and blunts glucose/ 
triglycerides excursions, whereas the same load at dinner does 

the opposite; “Big-Breakfast” RCTs show approximately 38 
percent lower post-meal glucose and upregulated leukocyte 

CLOCK/BMAL1 (132–136). Diet-induced thermogenesis is 
higher mid-afternoon than late night (137). Hepatic clock 

disruption increases nocturnal glucose output; intestinal 
clocks modulate CM assembly, explaining higher night- 
lipemia in circadian misalignment; PER2-deficient β-cells lose 

first-phase insulin release (138–140).
5) Adipose buffering and endocrine–neural feedback. In 

insulin-sensitive states, microvascular recruitment + LPL +  
GLUT4 trap dietary fat in adipose triglycerides stores. First- 

degree relatives of patients with T2D show approximately 40 
percent smaller adipose blood-<ow rises and approximately 

35 percent greater non-esterified fatty acids (NEFA) spillover 
during mixed meals (141–143). LDL-receptor/CD36 density, 

visceral fat, and daily moderate to vigorous physical activity 
(MVPA) explain much of the spread in TAG iAUCs (144, 

145). Circadian cues modulate adipose clocks (132, 146). 
Brown adipose tissue (BAT) activation via low-protein 

ketogenic diets or bile-acid signaling <attens triglycerides 
peaks and raises thermogenesis (human/rodent) (147). With 

aging, senescent visceral adipocytes (IL-6/TNF-α) amplify 
hyperglycemia; time-restricted eating or NAD+ boosters can 

blunt this signature (148).
6) Neuro-endocrine crosstalk. Vagal afferents relay luminal 

glucose/lipid/stretch to the nucleus tractus solitarius; 
silencing delays satiation and the return of insulin/GLP-1 to 

baseline, while optogenetic GLP-1 cell activation triggers 
nodose firing within approximately 60 s (149, 150). 

Dopamine released in proportion to dietary glucose 
enhances GLP-1 signaling in adipose, suppressing lipolysis 

and limiting NEFA spillover (151). After bariatric surgery, 
muted glucagon counter-surges can produce late dumping 

hypoglycemia, revealing pancreas–brain vulnerability (152). 
Functional magnetic resonance imaging links 

oxyntomodulin/GIP to reward-circuit activity; their rapid 
post-meal rise tempers this signal—exaggerated by added 

sugars (153, 154). Chemogenetic data suggest the brain sets 
approximately 30 percent of basal glucose turnover, whereas 
the pancreas controls approximately 70 percent of 

postprandial disposal, underscoring gut–brain–pancreas 
control of iAUC spread (155, 156).

Derailments across these axes—AMPK–mTOR imbalance, 
mistimed meals, loss of butyrate-producing microbes, impaired 

adipose perfusion, or a sluggish incretin–vagal relay—tilt 
metabolism toward postprandial hyperglycemia and 

hypertriglyceridemia. Interventions that align feeding with 
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circadian phase, expand SCFA production, activate GLP-1/GIP 
receptors, or deploy very-low-energy ketogenic therapy to boost 

BAT capacity (130, 138, 157) are rational complements to 
calorie restriction and exercise, and fit an endocrine-centric 

MASLD prevention paradigm (138).

3 Biomarkers and clinical assessment 
of postprandial dysmetabolism

A mixed-meal test or CGM best captures postprandial 

physiology but remains resource-intensive. In practice, clinicians 
use fasting surrogates that mirror post-meal dynamics. Among 

them, the triglyceride–glucose (TyG) index stands out for 
consistency, cost, and external validity across settings.

3.1 Traditional markers and TyG index

The TyG index is calculated from early-morning blood drawn 
by multiplying fasting triglycerides (milligrams per deciliter) by 

fasting glucose (milligrams per deciliter), dividing that product 
by two, and then taking the natural logarithm of the result (158). 

– Dynamic signal. Higher fasting TyG predicts steeper 2 h 

glucose and triglyceride rises on standardized meal tests— 
outperforming homeostatic model assessment for insulin 

resistance (HOMA-IR) (159).
– Outcomes. Across large cohorts, elevated TyG associates with 

faster carotid intima-media thickness (IMT) progression, 
higher incident CVD, ischemic stroke, and events in cancer 

survivors; in premature coronary artery disease (CAD), 
TyG ≥ 8.8 <agged approximately 75 percent higher 5-year 
major adverse cardiovascular event (159–163).

– Comparisons and special populations. Case–control work 
shows TyG (AUROC approximately 0.78) beats non-HDL-C 

and TG/HDL-C for angiographic stenosis; for MASLD, 
triglycerides/HDL-C slightly edges TyG (AUROC 0.82 vs. 

0.80) (164, 165). In pediatrics, TyG > 8.2 detected abnormal 
glucose tolerance with approximately 82 percent sensitivity 

(166). Visceral adiposity (not total fat) drives the TyG–post- 
meal triacylglycerol (TAG) link, while ≥150 min/week MVPA 

halves the slope—supporting TyG as a modifiable risk 
indicator. Pairing TyG with meal-challenge or CGM traces 

yields a low-cost, high-yield view of postprandial burden 
(167). Operational details for TyG sampling/units are 

summarized in Supplementary Table S1 (TS1).

3.2 Emerging biomarkers: metabolomic, 
inflammatory & endothelial panels

– Metabolomics (LC–MS). Mixed meals transiently raise 

saturated ceramides (C16:0, C18:0), the C18:0/C24:0 ratio, 
branched-chain α-keto acids, medium-chain acyl-carnitines, 

and indole-3-propionate. Prospective data and meta-reviews 
identify ceramide C18:0/C24:0—especially with TyG—as a 

strong composite predictor of ASCVD events and IR 
conversion. Run times are falling as ion-mobility 

separation and machine learning (ML)–assisted readouts 
shorten gradients and automate pattern recognition, with 

sub-30 min work<ows reported in research settings (168, 
169). Pre-analytical handling and panel composition are 

detailed in TS1.
– In<ammation/innate immunity. GlycA (Nuclear Magnetic 

Resonance) integrates acute-phase glycoproteins; along with 
cluster of differentiation 163 (sCD163) and calprotectin, it 

outperforms high-sensitivity C-reactive protein (hs-CRP) for 
low-grade in<ammation and predicts metabolic syndrome 
and coronary calcification. In severe dysmetabolism, 

neutrophil extracellular traps-derived cell-free DNA and IL-6 
trans-signaling rise and track with carotid remodeling and 

impaired FMD (170, 171). Assay timing and stability notes 
appear in TS1.

– Endothelial activation. Glycocalyx shedding yields soluble 
thrombomodulin (sTM) and von Willebrand factor (vWF); 

endothelial extracellular vesicles (ICAM-1+) and miRNAs 
(miR-126-3p, miR-210) correlate with IMT progression and 

FMD decline, and portend mortality in severe COVID-19, 
underscoring a shared redox–endothelial axis (172, 173).

– Composite scores. Meta-analyses show TyG, TyG/waist, and 
triglycerides/HDL-C outperform LDL-C for detecting 

coronary disease, particularly in obesity/MASLD; adding 
vWF or miR-126 to TyG can push c-statistic > 0.80, rivaling 

costlier omics (174).

3.2.1 Implementation (pragmatic workflow)

• Step 1—Screen with TyG and, where visceral adiposity is 
obvious, the triglyceride-to-HDL-cholesterol ratio.

• Step 2—Stratify intermediate-risk patients with GlycA and 
endothelial-vesicle counts to unmask subclinical in<ammation 

or glycocalyx injury.
• Step 3—Personalize very-high-risk cases with ceramide/ 

oxylipin panels to guide intensified lipid-lowering, 
antioxidant, or anti-in<ammatory therapy (169, 170, 172).

Cutoffs, sample handling, and standardization are 
summarized in TS1.

3.3 Functional tests and dynamic indices 
—“Rate-of-Change” phenotyping

Static fasting values miss how fast systems absorb a meal- 

induced perturbation. Four protocols translate lability into time 
constants or impulse ratios clinicians can interpret: 

• Cardiorespiratory coupling time constant linking heart rate 

to oxygen-consumption kinetics (τ_HR–V˙O2). In a ramp- 
cycle test approximately 45 min post-breakfast, a time 
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constant > approximately 60 s tracks upper-tertile TyG and 
predicts lower aerobic power at 12 months (175).

• Impulse-based Dynamical Strength Index (IB-DSI). A single 
countermovement jumps at approximately 2 h post-meal: 

impulse/maximum voluntary contraction ≤ 0.60 <ags blunted 
neuromuscular recovery and co-segregates with higher 

ceramide C18:0/C24:0 and triglycerides peaks (176).
• Dynamic-Fit Index (DFI). Bayesian state-space fit to dense 

capillary glucose/lipid sampling; lower DFI (more error- 
corrections/min) precedes the first fasting-glucose rise by 

approximately 2 years (177).
• Diaphragm excursion on four-dimensional computed 

tomography (4-D CT). Failure to augment excursion by ≥10 
percent after a meal associates with visceral adiposity, higher 
TyG, and heavier TAG iAUC (178).

3.4 Clinical relevance—why dynamic 
biomarkers matter

Post-meal signals anticipate hard outcomes years before 

fasting markers drift. Microbiome-informed ML models explain 
approximately 40 percent of variance in 2-h glucose iAUC, 

doubling glucose-only models; in PREDICT-1, this approach 
outperformed hemoglobin A1c and TyG for predicting 

conversion to impaired glucose tolerance (156, 157, 179). In 
T2D with CAD, TRL-TAG AUC > 5 mmol·h·L−1 forecasts 

microalbuminuria and hs-IL-6 increases within 12 months. 
Population data show non-fasting TAG 175 mg/dl beats the 

fasting 150 mg/dl cut-off for CVD risk (68, 142, 180–182). 
Palm-oil challenges that elevate ceramide d18:1/24:0 also raise 

VCAM-1 overnight; glycomics identify a fucose-rich, sialic-acid– 
poor N-glycan profile that <ags incident T2D independent of 

glucose or TyG (183–185).
Taken together, postprandial biomarkers —whether they are 

kinetic (τ_HR–V˙O2, IB-DSI, DFI), molecular (ceramides, 

GlycA), or microbial (butyrate-producing taxa)—capture how 

resilient an individual is to a metabolic load. Their predictive 

value supports a tiered clinical strategy: 

• Step 1 Screen with inexpensive composites (TyG, triglyceride- 

to-HDL-cholesterol ratio).
• Step 2 Stratify intermediate-risk patients using GlycA plus a 

simple functional test such as τ_HR–V˙O2.
• Step 3 Personalize (ceramides/microbiome-guided diets). 

Shifting from static concentrations to rates of change enables 
earlier, targeted intervention—before vascular, renal, or β-cell 

damage accrues.

Across large cohorts, highest-vs.-lowest strata of two-hour post- 

meal glucose exposure, triglyceride-rich lipoprotein 
triacylglycerol exposure, the triglyceride–glucose index, the 

plasma ceramide C18:0/C24:0 ratio, and glycoprotein acetylation 
show consistent graded risk. TS1 lists assay methods, cut-offs, 
and timing windows for each biomarker.

4 Nutritional and lifestyle interventions

Restore a brief, adaptive postprandial response by: (i) lowering 

substrate surges (glucose/TRL-TAG), (ii) dampening oxidative– 
in<ammatory signaling, and (iii) aligning timing with circadian 

biology. Dynamic triggers to escalate care are summarized at the 
end (see also Supplementary Table S1).

4.1 Mediterranean-style eating as a 
postprandial buffer

The Mediterranean dietary pattern—extra-virgin olive oil 
(EVOO), vegetables, legumes, whole grains, fish, and modest 

red-wine use—consistently lowers cardiometabolic events (186, 
187) and blunts postprandial “turbulence”. In healthy men, a 

single Mediterranean-type meal preserved endothelial function 
and attenuated triglyceride excursions vs. a high–saturated-fat 

comparator (healthy men; n = 28; randomized crossover; 
Mediterranean-type meal vs. high–saturated-fat meal, 858– 

885 kcal, 51–57 g fat; FMD and lipids 0–4 h) (111). In overweight/ 
obese older adults, a Mediterranean-like meal produced smaller 

TAG rises than a Western high-fat meal while IL-6 increased 
similarly across meals [overweight/obese older adults; n = 60; 

randomized crossover; isoenergetic meals approximately 1,000 kcal 
(approximately 4,200 kJ); sampling 0–5 h] (111).

Fine-tuning within the Mediterranean framework. Small, 
targeted adjustments amplify benefits: 

– Gene–diet interaction. In coronary-artery patients carrying 
the minor G-allele at zinc finger protein 1 (ZPR1) rs964184, 

switching from low-fat to Mediterranean reduced post-meal 
TAG by approximately 0.31 mmol·L−1; non-carriers changed 

little (188).
– Carbohydrate quality. Within an isocaloric Mediterranean day, 

replacing refined starches with low-GI pulses and whole grains 
blunted postprandial glucose/insulin excursions during an 8-h 

mixed-meal tolerance test (high-cardiometabolic-risk adults; 
n = approximately 180; standardized breakfast and lunch; 

sampling 0–8 h) (189). In type 2 diabetes, two isocaloric 
“healthy” patterns (Mediterranean-multifactorial vs. MUFA- 

rich) elicited distinct postprandial lipid and lipoprotein- 
subfraction responses after standardized test meals (T2D 

adults; randomized; serial sampling over several hours) (189).
– Exercise synergy. Adding approximately 150 min/week of 

brisk walking to a Mediterranean prescription improved the 
lipoprotein subclass profile (lower fasting triglycerides and 

small dense LDL, with favorable shifts in VLDL/LDL 
subclasses) (metabolic-syndrome adults; n = 202; energy- 

reduced Mediterranean diet + physical-activity promotion vs. 
energy-unrestricted Mediterranean diet; fasting NMR 

profiling; no standardized test meal) (190).
– Fat-quality swap. Replacing saturated fat with monounsaturated 

fat shifted the postprandial metabolomic profile toward lower 
acylcarnitines and higher antioxidant-related signals compared 

with a saturated-fat pattern; low-fat, high-complex- 
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carbohydrate (LFHCC) arms with/without omega-3 (n-3) 
showed distinct postprandial signatures as well (metabolic 

syndrome; n = 75; randomized, 12-week isoenergetic diets: 
high–saturated fat [HSFA] vs. high–monounsaturated fat 

[HMUFA] vs. LFHCC vs. LFHCC + n-3; standardized high-fat 
challenge; sampling 0–8 h [0, 4, 8 h]) (191).

– Timing matters. Early time-restricted variants (“Mediterranean 
breakfast front-loading”) further dampen TAG/glucose peaks 

and improve adipose clock-gene expression (132, 133).

Across diverse trials, head-to-head crossover work shows a 
Mediterranean day outperforms DASH for 4-h TAG 

(approximately −18 percent) and oxidized-LDL, and a 2024 
meta-analysis of ≥18 randomized controlled trials confirms 

reductions in fasting and postprandial TAG across healthy, pre- 
diabetic, and T2D cohorts (192). Practically, earlier eating with a 

Mediterranean first meal, low-GI pulses in place of refined 
starches, EVOO/marine ω-3 instead of saturates, and daily brisk 

walking magnify innate buffering. Response is not one-size-fits- 
all: ZPR1 rs964184 carriers show larger lipemic drops, whereas 

late chronotypes or habitual breakfast-skippers lose much of the 
gain. A 2024 umbrella review reporting parallel improvements 

in pre-diabetes conversion rates reinforces the pattern as a 
versatile, first-line, timing-aware prescription (193, 194).

4.2 Meal-timing and chrononutrition— 
aligning food with the body clock

Crossover trials, CGM studies, and meta-analyses converge: 

front-loading energy in the morning and tapering evening 
carbohydrates blunts glycemic and lipemic excursions, whereas 
breakfast skipping or late high-GI dinners do the reverse (195). 

– Illustrative signals. Skipping breakfast increases lunchtime 
and dinnertime glycemic excursions in type 2 diabetes, 

accompanied by higher glucagon and lower iGLP-1 despite 
identical subsequent meals (T2D adults; n = 22; randomized 

crossover; breakfast vs. no breakfast with isocaloric lunch/ 
dinner approximately 700 kcal; sampling 0–3 h) (196, 197). 

Shifting the main meal earlier—specifically, an early dinner 
at 18:00 vs. 21:00—lowers 24 h mean glucose and increases 

next-morning fat oxidation at identical energy intake (healthy 
adults; n = 12; randomized crossover; isocaloric day with 

dinner timing 18:00 vs. 21:00; 24 h CGM and next-morning 
indirect calorimetry) (198). Across randomized crossover 

trials, identical carbohydrate loads elicit higher evening than 
morning glycemic responses, with no consistent differences 

in insulinemia (adults with overweight/T2D; n = 8 crossover 
trials; standardized high-GI meals approximately 500– 

700 kcal; postprandial AUCs over approximately 2–3 h) (199).
– Chronotype matters. A randomized crossover stratified by 

chronotype showed that a high-GI dinner produced larger 
2 h glucose excursions in late chronotypes, whereas early 

chronotypes had a comparatively attenuated evening response 
(healthy university students; n = 45; high-GI meal: cereal 
bar + corn<akes + milk + pretzel; breakfast 07:00 vs. dinner 

20:00; CGM 0–3 h) (200). A complementary trial likewise 
found greater postprandial glycemia at dinner than at 

breakfast with identical high- vs. low-GI test meals (healthy 
older adults; n = 34 per protocol; high- or low-GI meals 

served at breakfast vs. dinner; capillary glucose 0–3 h) (201).
– Early time-restricted eating (eTRE). A short early window 

reduced 24 h mean glucose and glycemic variability and 
increased fat utilization without weight loss (overweight 

adults; n = 11; randomized 4-day crossover; eTRE 08:00– 
14:00 vs. 08:00–20:00; all meals provided; 24-h CGM; 

companion respiratory-chamber study) (202, 203). In a 
tightly controlled inpatient protocol, concentrating intake 

early in the day improved glycemic control and reduced 
glycemic variability under standardized conditions (healthy 
adults; n = 16; early vs. extended eating window as above; 

CGM 24 h; mixed-meal test 0–4 h) (203).
– Within-meal sequencing. In T2D, a small whey preload <attens 

early glycemia: 15 g whey taken 10 min before breakfast reduced 
the 0–240 min glucose iAUC and increased insulin/GLP-1 (T2D 

adults; n = 18; randomized crossover; 15 g whey 10 min pre- 
meal; standardized mixed-meal tolerance test; plasma sampling 

0–4 h) (204). Evidence in type 1 diabetes is more 
heterogeneous but generally supports early-phase attenuation 

without worsening late hypoglycemia when modest doses are 
used; small crossover studies report blunted 0–120 min 

excursions with 10–20 g protein given 10–15 min before the 
meal, with dose and insulin strategy determining late effects 

(T1D adults; n approximately 10–30 across studies; 10–20 g 
protein 10–15 min pre-meal; capillary/CGM sampling 0–2– 

4 h) (205, 206). Across controlled-feeding studies, starting the 
meal with protein or fat (“protein-first/fat-first”) consistently 

lowers early postprandial glucose vs. carbohydrate-first, 
without raising triglycerides in the same window (mixed-risk 

adults; multiple small RCTs/crossovers; mixed meals typically 
approximately 500–900 kcal; sampling 0–2–4 h) (207).

4.3 Macronutrient manipulation—quality 
over quantity

Meta-analytic and crossover evidence (2020–2025) highlights 
three levers: 

– Swap refined carbohydrates for Monounsaturated Fatty 

Acids/Polyunsaturated Fatty Acids (MUFA/PUFA). 

Replacing approximately 10 percent of carbohydrate with 

monounsaturated/polyunsaturated fat reduces postprandial 
glucose AUC by approximately 12 percent (adults with 

mixed risk; umbrella meta-analysis of approximately 27 
RCTs; standardized test meals approximately 500–800 kcal; 

sampling 0–2/4 h) (208).
– Protein preload (“micro-pulses”). A small protein dose before 

the meal blunts the early glucose rise; approximately 20 g whey 
taken approximately 15 min pre-meal lowers glucose iAUC by 

approximately 12 percent (T2D/healthy adults; randomized 
crossover; mixed meals approximately 600–700 kcal; sampling 
0–2 h) (209–211).
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– Resistant starch (RS) and fermentable fiber. RS4 
(phosphorylated wheat) acutely lowers incremental insulin 

iAUC and attenuates the second-meal glucose peak, while RS2 
(potato) over weeks reduces fasting glucose and free fatty acids 

with modest, context-dependent postprandial improvements; a 
practical intake range is 15–30 g/day (overweight adults; RS4: 

n = 15; two standardized high-carbohydrate meals ∼600– 
800 kcal; sampling 0–180 min; RS2: n = 19; 12-week 

randomized crossover; standardized mixed-meal test ∼600– 
800 kcal; sampling 0–300 min) (212–214).

Shift refined-starch calories toward EVOO, nuts, and marine ω-3s; 

consider a 10–20 g protein preload before high-carb meals; and 
build RS-rich sides to boost butyrate and curb postprandial 

endotoxemia. Combine with Section 3.2 timing tactics for drug- 
like smoothing without pharmacotherapy.

4.4 Dietary bioactives and polyphenols— 
rapid-response molecules

Plant-derived secondary metabolites can blunt oxidative, 

in<ammatory, and metabolic surges within min; with sustained 
intake they also re-condition endothelial and Nrf2 defenses and 

remodel the microbiome. 

– Catechins + chlorogenic acids (acute, dose–response). In two 
randomized studies in healthy men, co-ingestion of combined 

catechins/chlorogenic acids produced a graded reduction in 
early postprandial glycemia (150 and 300 mg vs. 0 mg), 

supporting a practical pre-meal “rapid-response” strategy 
(healthy men; randomized designs; cookie-/drink-based 

tolerance tests; capillary/plasma sampling up to 
approximately 2 h) (215).

– Anthocyanin-rich red raspberries. In adults with prediabetes/ 
insulin resistance, test meals containing 0, 125, or 250 g red 

raspberries on separate days produced dose-dependent 
metabolite changes with improvements in postprandial 

glucose/insulin dynamics across the day (adults with 
prediabetes/insulin resistance; randomized crossover; three 

meals with 0/125/250 g frozen red raspberries; plasma 
metabolites and glycemia 0–8 h and again at 24 h) (216).

– Epigallocatechin gallate (EGCG) and Nrf2 pathway 

(mechanistic/kinetic support). A physiologically based 

kinetic model integrating human data predicts that colonic 
metabolites of EGCG (e.g., gallic acid, pyrogallol) can reach 

concentrations sufficient to activate Nrf2-regulated gene 
expression in vivo, providing a mechanistic rationale for 

antioxidant “pre-meal” strategies (model-based prediction; 
fasting and non-fasting scenarios evaluated) (217).

– Curcumin (longer-term). Meta-analysis of randomized trials 
shows curcumin supplementation (≈80–1,000 mg/day for ≥4 

weeks) lowers fasting glucose and CRP and improves overall 
glycemic indices—consistent with attenuation of chronic 

postprandial stress across meals (mixed adult populations; 
multiple RCTs; no standardized test meal; outcomes over 
weeks to months) (218).

For acute control, an approximately 150–300 mg catechin/ 
chlorogenic-acid mix taken with or shortly before a 

carbohydrate-rich meal can dampen early glycemic excursions 
(0–2 h). In carbohydrate-heavy contexts, adding anthocyanin- 

rich fruit portions (e.g., red raspberries) to the meal supports 
postprandial glucose handling across the subsequent 8–24 h. For 

sustained conditioning of redox and in<ammatory tone, multi- 
week curcumin courses can complement dietary timing and 

macronutrient strategies (Sections 3.2–3.3) (215).

4.5 surgical nutrition windows—pre- 
operative “Metabolic Priming”

Pre-operative nutritional status predicts wound healing, length 

of stay, and long-term outcomes after bariatric procedures. Two 
elements are consistently actionable: 

– Micronutrient optimization. Many candidates present with 

subclinical iron, vitamin D, or thiamine deficits; routine 
screening and targeted repletion are recommended to 

minimize postoperative deficiency-related morbidity (e.g., 
fatigue, hair loss), although precise effect sizes for symptom 

reduction remain heterogeneous across studies (219, 220).
– Very-low-calorie diet (VLCD) and Enhanced Recovery After 

Surgery bundle. A 2–4-week protein-sparing VLCD reduces 
liver volume by about 16–17 percent and improves operative 

conditions; when embedded within an ERABS pathway, 
programs typically report shorter length of stay (approximately 

1–2 days) and fewer overall complications. (Adults with severe 
obesity; VLCD 2–4 weeks; ERABS multimodal pathways) (221).

Treat the month before metabolic surgery as leverage—screen and 
replete micronutrients, implement a short VLCD to debulk 

hepatic fat while preserving lean mass, and apply ERABS 
protocols to temper in<ammation and accelerate recovery (222, 223).

4.6 Physical-activity “Snacks” & structured 
exercise —turning skeletal muscle into a 
second pancreas

Even brief muscle contractions stimulate GLUT4 translocation 
and LPL activation. Breaking up sitting with 2–5 min bouts of 

standing or light walking every 20–30 min lowers postprandial 
glucose and insulin vs. uninterrupted sitting (adults with and 

without T2D; k approximately 22 randomized trials; standardized 
mixed meals approximately 500–900 kcal; sampling 0–2–3–4 h) 

(224). In people with T2D, desk-work break protocols similarly 
reduce postprandial glycemia and several studies report concurrent 

decreases in postprandial triglycerides during standardized meal 
tests (T2D adults; systematic review of break-frequency 

interventions every approximately 20–30 min during mixed-meal 
challenges; sampling 0–2–4 h) (225). Timing also matters: walking 

performed after meals produces larger reductions in postprandial 
glucose than the same walking done before meals (adults with 
overweight/T2D; meta-analysis of randomized crossover trials; 
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identical standardized meals approximately 500–700 kcal; sampling 
0–2 h) (226, 227). For intensity, high-intensity interval exercise 

reduces postprandial glucose and insulin vs. control and can 
outperform matched-work moderate-intensity exercise (mixed-risk 

adults; multi-study meta-analysis; meal-based and glucose-load 
protocols; outcome windows 0–2–4 h) (228). In practice: (i) stand 

or stroll 2–3 min at least every 30 min; (ii) add a short, well-timed 
bout within the first 2 h after eating (e.g., approximately 10 min of 

moderate walking); and (iii) remember that timing often beats 
duration—activity placed soon after a meal yields a larger 

immediate metabolic payoff than a longer session done late at 
night (implementation guidance from contemporary reviews) 

(229–231). In practice, brief, well-timed bouts yield measurable 
acute benefits across diverse populations; Table 2 summarizes 
representative activity-snack prescriptions (2020–2025) and their 

immediate metabolic effects.

5 Pharmacological and technological 
advances —shrinking the postprandial 
“Damage Window”

Over the last half-decade, the emphasis has shifted from 

fasting targets to how quickly therapies <atten post-meal spikes. 
In parallel, continuous glucose monitoring (CGM) and 
algorithmic feedback allow clinicians to match fast-acting tools 

to the meals that need them most.

5.1 Pharmacological approaches that act 
within two to four hours after a meal

– Enteroendocrine mimetics and co-agonists (human evidence). 

Oral semaglutide lowers postprandial glucose exposure and 
attenuates TRL–TAG responses in phase-III settings (T2D; 

pooled phase-III meal-test substudies/post-hoc; standardized 
mixed meals approximately 500–700 kcal; sampling 0–4 h) 

(232). Tirzepatide (GLP-1/GIP) achieves comparable glucose 
control with additional reductions in TRL measures (T2D; 

SURPASS meal-test substudies/post-hoc; standardized mixed 
meals approximately 500–700 kcal; sampling 0–4 h) (233).

– Adjunct glucose “shuttlers” (human evidence). Faster-aspart 
reaches systemic circulation earlier than conventional rapid 

analogs and improves early post-meal control with less late 
hypoglycemia in CGM cohorts (T1D/T2D; real-world CGM; 

ad-libitum meals; 0–4 h CGM windows) (232). A single pre- 
prandial dose of empagli<ozin reduces the 0–2 h glucose 

excursion in randomized crossover designs (T2D adults; 
randomized crossover; 5–25 mg immediately pre-meal; 

standardized mixed meal approximately 500–700 kcal; 
sampling 0–2–4 h) (234).

– Lipid-centric modulators (human evidence). PCSK9 
inhibition reduces postprandial remnant/TRL exposure when 

added to background statins (T2D or mixed dyslipidemia; 
randomized add-on; standardized fat-tolerance tests; 
sampling 0–4–6 h) (235).

– Bile-acid signaling (preclinical). The dual FXR/TGR5 agonist 
INT-767 lowers postprandial TAG in high-fat-diet models; 

translation to clinical endpoints is ongoing (preclinical; HFD 
mice; oral fat tolerance or mixed lipid challenges; sampling 

approximately 0–4–6 h) (236).
– Gut-facing/dual-action tools (early human). LEAP-2 analogues 

(ghrelin antagonism) show acute appetite suppression with 
blunted glucose peaks in first-in-human testing (early human; 

single/short-course dosing; standardized liquid meal or OGTT; 
sampling approximately 0–2–4 h) (237). Endoscopic duodenal 

devices (e.g., mucosal resurfacing or sleeves) improve 
postprandial glucose/insulin dynamics in early studies (pilot 

human plus DIO-rat support; standardized mixed meal; 
sampling approximately 0–2 h) (238).

Table 3 (unchanged in structure) summarizes acute 
mechanisms, magnitude where reported in your sources, and 

development stage for agents with 0–4 h post-meal impact— 
strictly aligned with refs (232, 234–238).

5.2 Digital therapeutics and AI-assisted 
food coaching

CGM-guided, algorithm-predicted diets reduce time above 
range and blunt 0–2 h glucose rises in primary-care programs 

vs. general advice, with high adherence due to actionable, real- 
time nudges (45, 240). Integrating CGM into inpatient and 

outpatient work<ows reduces glycemic variability and unmasks 
“silent” post-meal excursions that fasting tests miss (241–243). 

Personalized postprandial targeting menus informed by 
individual features (including microbiome signals) outperform 

standard patterns for several glycemic metrics in selected 
cohorts (155, 244).

5.3 Clinical implementation—linking 
postprandial control to liver health

In MASLD, attenuating post-meal glucose/TRL/oxidative 
surges is clinically relevant (245–247). A pragmatic sequence is: 

1) Screen with TyG ± non-fasting TAG or a simple TRL-TAG 

curve;
2) prescribe a Mediterranean template with earlier energy 

distribution plus brief post-meal activity;
3) if high postprandial burden persists, escalate with GLP-1/GIP 

co-agonists or PCSK9 inhibitors;
4) repeat liver enzymes and a post-meal TAG assessment at 

approximately 12 weeks to adjust therapy

6 Conclusions and future directions

Postprandial metabolism is now recognized as a network of 
druggable nodes, extending from the gut lumen to the vascular 
wall. Three key targets are gaining traction: the enterohepatic bile 
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acid loop, intracellular steroid and SUMO switches, and nutrient- 
sensing GPCRs. Promising agents already in development reduce 

mixed-meal triglycerides, reverse insulin resistance, and disrupt 
lipogenesis and late-phase hyperinsulinemia.

Importantly, these post-meal metabolic surges are not only 
cardiometabolic but also oncogenic triggers—fueling 

in<ammation, insulin signaling, and epithelial dysplasia. Early 
shifts in glucose and triglyceride waves, impaired thermogenesis, 

and altered bile acid profiles are strong predictors of diabetes, fatty 
liver, and vascular damage—often before fasting markers change.

Advanced multi-omics, real-time wearables, and AI pipelines 
are transforming these insights into precision care. Emerging 

tools now outperform classical risk scores, identify distinct 
postprandial endotypes, and enable real-time interventions that 
significantly reduce glycemic exposure. As these technologies 

scale, equity-centered frameworks will be essential to ensure 
access, relevance, and impact across diverse populations.
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TABLE 3 Pharmacological agents that flatten the 0- to 4 h post-meal 
window: dominant acute mechanism, key efficacy data and 
development stage.

Class/agent(s) Dominant acute 
post-meal effect

Key efficacy data 
(design & 

population)

Entero-endocrine 
mimetics/co-agonists 
Oral semaglutide 
-Tirzepatide

Semaglutide lowers 4-h 
glucose iAUC and TRL- 
TAG iAUC; tirzepatide 
achieves comparable 
glucose control with 
additional TRL reductions 
(where reported) (233, 
239).

Phase-III T2D programs 
with meal-test substudies/ 
post-hoc analyses; 
standardized mixed meals 
≈500–700 kcal; sampling 
≈0–4 h.

Adjunct glucose 
“shuttlers” 
Faster-aspart— 
Empagli<ozin (pre- 
meal)

Faster-aspart reaches 
systemic circulation 
≈10 min sooner than 
standard rapid analogs 
and reduces late 
hypoglycemia; single pre- 
prandial empagli<ozin 
dose lowers early glucose 
excursion (232, 234).

Real-world CGM cohorts 
(T1D/T2D; ad-libitum 
meals; 0–4 h CGM 
windows) for faster-aspart. 
Randomized crossover 
(T2D adults; 5–25 mg 
immediately pre-meal; 
standardized mixed meal 
≈500–700 kcal; sampling 
≈0–2–4 h) for 
empagli<ozin.

Lipid-centric 
modulators Alirocumab 
(anti-PCSK9) INT-767 
(dual FXR/TGR5)

PCSK9 inhibition reduces 
remnant/TRL exposure 
post-prandially (human); 
INT-767 lowers TAG 
iAUC in HFD mice 
(preclinical) (235, 236).

Alirocumab: randomized 
add-on in T2D/mixed 
dyslipidemia; fat- 
tolerance/mixed-meal 
tests; sampling ≈0–4–6 h. 
INT-767: preclinical HFD 
mouse models; lipid 
challenge tests; sampling 
≈0–4–6 h.

Gut-facing/dual-action 
tools LEAP-2 analog · 
Endoscopic duodenal 
sleeve

LEAP-2 analog blunts 
glucose peaks without 
hypoglycemia (early 
human); duodenal sleeve 
improves 2 h glucose/ 
insulin responses (pilot 
human; DIO-rat support) 
(237, 238).

LEAP-2: first-in-human; 
standardized liquid meal/ 
OGTT; sampling ≈0–2– 
4 h. Sleeve: DIO-rat plus 
pilot human; standardized 
mixed meal; sampling ≈0– 
2 h.

CGM, continuous-glucose monitoring; FIH, first-in-human; FXR, farnesoid X receptor; 
GIP, glucose-dependent insulinotropic polypeptide; HFD, high-fat diet; iAUC, 
incremental area-under-the-curve; PCSK9, pro-protein-convertase-subtilisin/kexin 9; 
TAG, triacylglycerol; TRL, triglyceride-rich lipoprotein; T2D, T2D; TGR5, takeda 
G-protein-coupled receptor 5.
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