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From meal to malfunction:
exploring molecular pathways,
biomarkers and interventions in
postprandial cardiometabolic
health
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Cardiometabolic diseases—including type 2 diabetes, cardiovascular disease,
and metabolic dysfunction—associated steatotic liver disease—are increasingly
driven by near-continuous after-meal exposure to glucose and lipid surges
that traditional fasting tests often miss. This review prioritizes human studies
from 2020 to 2025 and uses earlier work only as foundational anchors; non-
English reports were excluded and preclinical findings are cited solely for
mechanistic context. Evidence converges on six processes that amplify risk
within hours after eating: impaired insulin signaling, delayed clearance of
dietary lipids, mitochondrial and oxidative stress, loss of endothelial nitric
oxide, inflammasome-mediated inflammation, and microbiome—hormone
interactions. Dynamic, after-meal markers and simple composites such as the
triglyceride—glucose index outperform fasting measures for identifying risk
and guiding care. Practical strategies to shorten the “damage window" include
Mediterranean-style meals with low glycemic index swaps and unsaturated
fats, earlier distribution of daily energy and early time-restricted eating, a
small pre-meal protein portion, and brief post-meal walking. Fast-acting
medicines—glucagon-like peptide 1 and glucose-dependent insulinotropic
polypeptide receptor agonists, rapid-acting insulin analogues, sodium-—
glucose cotransporter 2 inhibitors taken before meals, and proprotein
convertase subtilisin/kexin type 9 inhibitors—further blunt peaks, while
continuous glucose monitoring with algorithmic feedback enables timing-
aware, person-specific adjustments. A tiered workflow—screen, stratify, and
personalize—reframes prevention and treatment around after-meal
physiology, with particular relevance to settings where resources are limited.
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1 Introduction

Chronic noncommunicable diseases (CNCDs) now account
for 41 million deaths each year, roughly 71 percent of all global
mortality—and have overtaken infectious illnesses as the leading

public-health  threat (1). Within that broad category,
cardiometabolic conditions—type 2 diabetes (T2D),
cardiovascular disease (CVD) and metabolic-dysfunction-

associated steatotic liver disease (MASLD, formerly NAFLD)—
are rising fastest (2). T2D prevalence in sub-Saharan Africa has
jumped from four million cases in 1980 to 23.6 million in 2021
and is projected to exceed 54 million by 2045 (3). MASLD
affects roughly one adult in four worldwide (4, 5), while CVD
alone claims 17.9 million lives annually, most of them in low-
and middle-income regions (6).

Decades of epidemiology and mechanistic work converge on a
common upstream driver: modern eating patterns characterized
by frequent snacking on energy-dense, highly refined foods. This
dietary behavior shortens fasting intervals and maintains most
individuals in a near-continuous postprandial state—typically
involving four to ten eating occasions per day with minimal
overnight respite (7). These repeated surges of glucose and
triglyceride-rich lipoproteins (TRLs) disrupt circadian clocks,
overload mitochondrial redox systems, and activate innate-
immune pathways, thereby accelerating atherogenesis, P-cell
failure and hepatic steatosis (8, 9). Critically, this shift represents
a departure from evolutionary eating patterns, where extended
fasting periods allowed metabolic recovery and cellular repair
processes that are now chronically interrupted.

The postprandial window now stretches well beyond half of
every 24 h cycle; in many individuals it exceeds sixteen hours
(10). lipid
concentrations fuels low-grade systemic inflammation, a process

Prolonged exposure to elevated glucose and
termed “metaflammation”, which is central to the pathogenesis
of T2D, CVD and MASLD (11, 12). The term postprandial
triad  of
hypertriglyceridemia, and hyperinsulinemia that follows each

dysmetabolism  denotes  the hyperglycemia,
meal in susceptible individuals (13). When that triad is
amplified by poor diet quality and increased meal frequency,
oxidative chronic

stress, endothelial ~ dysfunction and

inflammation ensue (14-16). Importantly, these metabolic
perturbations can occur while fasting markers remain normal,
highlighting a critical blind spot in current diagnostic approaches.

Prospective cohort studies demonstrate that the height and
duration of post-meal glucose and triglyceride peaks predict
carotid-intima thickening and future cardiovascular events even
when fasting markers remain within normal ranges (17, 18).
This finding challenges the traditional paradigm of metabolic
assessment and underscores the clinical relevance of
postprandial monitoring. Because the gut, liver, muscle, adipose
tissue and pancreas coordinate postprandial homeostasis
through complex inter-organ crosstalk, disturbances in any
single organ rapidly propagate across the entire metabolic

network (10, 17, 18). Despite this evidence, preventive care
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continues to rely predominantly on fasting glucose or low-
density-lipoprotein cholesterol (LDL-C) measurements, leaving a
substantial portion of cardiometabolic risk undetected and
unaddressed—particularly in resource-limited settings where
pharmacotherapy access is constrained and health-system
capacity is limited (19-23).

(2020-2025)
inflection points—

This review applies a contemporary lens
reflecting methodological and clinical

widespread continuous glucose monitoring (CGM), standardized

assays for TRL, multi-omics workflows, and the clinical
introduction of glucagon-like peptide-1/glucose-dependent
insulinotropic  polypeptide (GLP-1/GIP) co-agonists—while

selectively incorporating pre-2020 “foundational” contributions
limited to seminal meta-analyses, consensus statements, pivotal
randomized trials, or first-in-field mechanistic studies. Primary
evidence prioritizes human adult studies indexed in Scopus
(randomized controlled trials, controlled feeding/postprandial
challenge studies over 0-6h, and prospective cohorts), with
inclusion contingent on clear test-meal composition, defined
sampling windows, and assay standardization. Preclinical studies
(animal or cell preparations) are cited only for mechanistic
context, to probe causal links impractical or unethical to test in
humans, and to nominate druggable targets relevant to the
postprandial state [e.g, NADPH-oxidase (NOZX)-endothelial
nitric oxide synthase (eNOS) coupling, Yes-associated protein/
TEA domain (YAP/TEAD)
calciprotein particle-driven pathways]. Such findings are not

transcription factor signaling,
used to claim clinical efficacy, estimate effect sizes, or define

clinical endpoints and are explicitly flagged in-text as

“preclinical”, with model (mouse/rat) and exposure type
(dietary, genetic, pharmacological) specified. We excluded non-
English publications and did not treat narrative reviews as
primary evidence; when cited, such reviews provided historical
framing or methodological context only. Foundational citations
are flagged in-text and collated in Supplementary Table S1
with rationale and study type (meta-analysis, pivotal RCT,
first-in-field).

The aim of this narrative review is to move the spotlight from
static fasting metrics to the dynamic metabolic stresses that arise
after every meal, offering clinicians, researchers, and
policymakers a practical roadmap for earlier detection, tailored
intervention, and, ultimately, more effective prevention of
CNCD-related morbidity and mortality.

This review synthesizes evidence on five inter-related domains
of postprandial dysmetabolism: (i) the molecular and
physiological pathways that precipitate metabolic dysfunction
following nutrient intake; (ii) fasting-state surrogates and
that these

perturbations; (iii) dietary, behavioral, and pharmacological

dynamic biomarkers reveal otherwise occult

interventions that can mitigate postprandial stress; (iv) emerging

technologies for real-time monitoring and personalized
therapeutic targeting; and (v) implementation strategies for
translating these advances into clinical practice, particularly in

diverse populations and resource-variable settings.
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2 Mechanistic drivers of postprandial
dysmetabolism

2.1 Conceptual framework and temporal
dynamics

Postprandial dysmetabolism is a time-dependent systems
disturbance with min-to-hours fluctuations in glucose and lipids
and hours-to-days adaptations in redox/circadian and gut-
hormone axes. It reflects the convergence of nutrient overload,
redox imbalance, and circadian misalignment across six
interconnected nodes—from rapid glucose handling (min) to
lipid clearance (peaks approximately 4-6 h) and microbiome-
shifts

evidence links this state to endothelial injury and higher

endocrine (hours-days). Epidemiologic and clinical
cardiovascular risk in people with and without T2D, supporting
assay/intervention timing by temporal bands

definitions in Supplementary Table S1) (24, 25).

(operational

2.2 Substrate-specific metabolic overload
(0—-2 h post-meal)

Excess glucose engages canonical insulin signaling [insulin
receptor substrate (IRS)—phosphoinositide 3-kinase (PI3K)—
protein kinase B (Akt)] to drive glucose transporter type 4
(GLUT4) translocation in skeletal muscle and adipose tissue;
impaired signaling delays vesicle delivery and prolongs
hyperglycemia (26). Preclinical data indicate that SHIP2 (“SKIP”
in rodents) limits phosphatidylinositol-3,4,5-trisphosphate
(PIP3)/Akt signaling and that glucolipotoxic stress induces IRS-1
serine phosphorylation, dampening PI3K/Akt activity and
GLUT4 trafficking (27-29). In parallel, intestinal chylomicron
export can exceed lipoprotein lipase (LPL) capacity, leaving
triglyceride-rich remnants that typically peak approximately 4-
6h (and may persist longer) after a mixed meal (30). The
combined substrate surplus elevates mitochondrial reactive
oxygen species (ROS) [reverse electron transport (RET) at
Complex I; high potential at Complex III] within approximately
60-180 min,  taxing
preclinical) (31, 32).

antioxidant  defenses  (mechanistic/

2.3 Vascular and inflammatory cascade
(1-6 h post-meal)

The oxidative burst plus remnant lipoproteins activates the

endothelium, lowers bioavailable nitric oxide (NO) (eNOS
uncoupling; NOX/xanthine  oxidase), and  upregulates
intercellular adhesion molecule 1/vascular cell adhesion

molecule-1 (ICAM-1/VCAM-1). Innate sensors (Toll-like and
NOD-like receptors) promote NOD-, LRR-, and pyrin-domain-
containing protein 3 (NLRP3) inflammasome assembly, raising
interleukin 1B (IL-1B) and interleukin 6 (IL-6); obesity amplifies
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these
mediators, reinforcing a feed-forward loop (33-35).

inputs via adipose-derived cytokines and lipotoxic

2.4 Microbiome-Endocrine integration
(hours to days)

Dysbiosis reshapes the bile-acid pool via microbial bile-salt
hydrolase (BSH) activity, modulating farnesoid X receptor/
Takeda G-protein-coupled receptor 5 (FXR/TGR5) signaling
(preclinical), and microbiota-derived bile acids/short-chain fatty
acids (SCFAs) can influence L-cell GLP-1 secretion, helping
explain variability in subsequent postprandial responses
(foundational preclinical listed in Supplementary Table SI;

contemporary human/preclinical syntheses) (36-38).

2.5 Clinical relevance and paradigm
implications

Together, these nodes explain why the height and duration of
post-meal peaks predict carotid-intima thickening and incident
cardiovascular events independent of fasting markers (39, 40).
With this theoretical framework, postprandial metabolism can
be rapidly identified for targeted intervention; Figure 1
represents the interconnected network that links high nutrient
intake with endothelial damage, insulin insensitivity, and hepatic

lipid accumulation.

2.6 Glucose metabolism and insulin
resistance

2.6.1 Normal postprandial insulin signaling

In metabolically healthy adults, a meal elicits insulin secretion
within 5-10 min. Circulating insulin binds to the insulin receptor
(IR) in target tissues, resulting in autophosphorylation of the
receptor as well as phosphorylation of IRS-1/2. IRS-1/2 recruits
PI3K, generating PIP3 that recruits Akt to the membrane, where
phosphoinositide-dependent kinase 1 and mammalian target of
rapamycin Complex 2 (mTORC2) activate Akt (39, 40).

2.6.2 Glucose uptake and metabolic integration

Akt phosphorylation of AS160 relieves Rab-GTPase restraint
and drives GLUT4 vesicle fusion with the plasma membrane,
enabling rapid glucose uptake. In parallel, Akt inhibits glycogen-
synthase-kinase-3B to promote glycogen synthesis and—via
mTORCI1—supports protein synthesis and cell growth. Energy-
sensing by adenosine monophosphate-activated protein kinase
(AMPK) complements this program by enhancing GLUT4
trafficking and fatty-acid oxidation when the adenosine
monophosphate/adenosine triphosphate (AMP/ATP) ratio rises,
sustaining postprandial metabolic flexibility (41, 42).
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Insulin—PI3K—-Akt disruption
(0-30 min)

Microbiota-SCFA & bile-acid shifts
(hours-days)

Delayed chylomicron clearance
(2-8 hours)

~~

Mixed meal

1T 21
~ P
~
L/ Mitochondrial redox overflow
(30 min-2 hours)

NLRP3 inflammasome activation \J
(2-6 hours)

Endothelial NO depletion
(1-4 hours)

FIGURE 1

Integrated network of the six primary drivers of postprandial dysmetabolism. The diagram illustrates how (1) impaired insulin—PI3K—Akt signaling, (2)
delayed clearance of chylomicron-derived remnants, (3) mitochondrial redox overflow, (4) endothelial nitric-oxide depletion, (5) inflammasome-
driven cytokine release, and (6) microbiota-mediated shifts in bile-acid and short-chain-fatty-acid profiles interact within min after a mixed meal.
Bidirectional arrows highlight feed-forward loops—ROS amplifying endothelial activation, remnant lipids fueling NLRP3 assembly, and butyrate
modulating GLP-1—that transform transient surges into chronic cardiometabolic stress. PI3K, phosphoinositide-3-kinase; Akt, protein kinase B;
ROS, reactive oxygen species; NLRP3, NOD-, LRR-, and pyrin-domain—containing protein 3 (inflammasome); GLP-1, glucagon-like peptide 1;
SCFA, short-chain fatty acid; NO, nitric oxide.

predictability  (r=0.77) adults; n=1,100;
standardized test meals approximately 500-900 kcal with varied

2.6.3 Temporal dynamics and individual variation (mixed-risk

Nonetheless,  postprandial  glucose  clearance  varies

substantially with age, fitness, genetics, and meal timing. In
PREDICT 1, glycemic responses to identical meals showed large
between-person  differences  with

strong  person-specific
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macronutrient composition; capillary glucose/CGM sampling 0-
4h) (43). Variants at circadian loci (MTNRIB rs10830963,
CRY2 1s512419690) relate to diurnal glycemic control (UK
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Biobank adults; #n & 420,000; random serum glucose linked to
time-of-day; replication Estonian Biobank #» approximately
100,000; 24 h cosinor modeling; not a meal test) (44). This
heterogeneity underscores limits of one-size-fits-all diagnostics
and supports personalized postprandial monitoring, including
CGM-guided dietary interventions that outperform standard
advice in randomized trials (45, 46).

2.6.4 Inflammatory disruption of insulin sensitivity

Repeated exposure to saturated fats and refined carbohydrates
activates pro-inflammatory kinases— IkB kinase beta (IKKp) and
c-Jun N-terminal kinase 1 (JNK-1)—that serine-phosphorylate
IRS-1, impairing tyrosine phosphorylation and PI3K recruitment
(preclinical) (39, 40). This molecular injury contributes to
selective insulin resistance, where metabolic signaling decreases
while inflammatory/lipogenic pathways remain active.

2.6.5 Tissue-specific insulin resistance
Consequences differ by tissue. Skeletal muscle (approximately
80 percent of postprandial glucose disposal) develops GLUT4
translocation defects that limit uptake (47-49);
maintains

the liver
gluconeogenesis/glycogenolysis despite
hyperinsulinemia, sustaining hyperglycemia; and adipose tissue
insulin resistance augments lipolysis and circulating FFAs,

further propagating insulin resistance across organs (50).

2.7 Postprandial lipemia, triglyceride
clearance, and lipotoxicity

2.7.1 Normal postprandial triglyceride processing

After a mixed meal, dietary triglycerides are assembled into
intestinal chylomicrons (CM) and reach the bloodstream via
lymph within 30-60 min. Clearance depends on LPL and its
endothelial anchor GPTHBP1 at capillaries of adipose tissue and
skeletal muscle, enabling efficient intravascular hydrolysis and
tissue uptake (7, 9, 51).

2.7.2 Insulin-mediated regulation of lipid
clearance

Physiologic postprandial insulin acutely increases LPL activity
(e.g., post-heparin LPL) and promotes LPL trans-endothelial
(52-56).
GPIHBPI that accelerate LPL capture and luminal presentation

positioning via GPIHBP1 Structural features of
have been defined (preclinical/biophysical) (53, 54). In insulin-

sensitive states, this coordination rapidly hydrolyzes CM
triglycerides, yielding controlled rises in tissue FFAs and
minimal TRL remnants, with most clearance completed by

approximately 2—-4 h (55, 56).

2.7.3 Pathological disruption of TRL metabolism
Insulin resistance lowers adipose LPL expression and raises

LPL

angiopoietin-like

endogenous inhibitors— angiopoietin-like protein 3/
(ANGPTL3/ANGPTL4) and

apolipoprotein C3 (APOC3)—slowing TRL hydrolysis and

protein 4

extending the lipemic phase from approximately 4-6 h to 8-12 h
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or longer, thereby sustaining exposure to atherogenic remnant
particles (57-59).

2.7.4 Vascular consequences of remnant
accumulation

Small TRL remnants penetrate and are retained within the
arterial intima (60, 61). They can be taken up by intimal
macrophages—promoting foam-cell formation—and amplify
chemokine/cytokine leukocyte
vascular inflammation. This remnant-driven process contributes

production, adhesion, and
to residual atherosclerotic cardiovascular disease (ASCVD) risk
beyond LDL-C lowering (61, 62).

2.7.5 Hepatic lipid overload and MASLD
progression

Elevated postprandial triglycerides create a “dual-TRL hit” to
the liver: increased FFA influx (from impaired peripheral
clearance and heightened lipolysis) fosters re-esterification and
VLDL secretion, while CM remnants add lipid/cholesterol cargo.
Together these inputs magnify dyslipidemia and drive hepatic
steatosis and progression toward MASLD (63, 64).

2.7.6 Cellular lipotoxicity and metabolic
dysfunction

Excess FFAs generate diacylglycerol and ceramides that
activate novel protein kinase C (PKC) isoforms, disrupt IR/IRS
phosphorylation, and impair GLUT4 translocation, producing
inflexibility ~with
sustained hyperglycemia (65, 66).

metabolic reduced glucose uptake and

2.7.7 Inflammatory amplification and clinical
biomarkers

Oxidized remnants and FFAs stimulate toll-like receptor 4
(TLR4), driving nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-xB) signaling, upregulate NOX2/NOX4,
and elevate IL-6 and tumor necrosis factor-alpha (TNF-a), while
IL-1B can rise via inflammasome activation. In population
incremental area under the

settings, curve

(iAUC) > 5 mmol-h-L ™" associates with approximately 25 percent

triglyceride

higher IL-6 within 4 h, supporting this metric as a prognostic
This
environment decreases the bioavailability of endothelial NO and

marker of lipemic-inflammatory burden (67, 68).
reinforces insulin resistance, closing the pathophysiological
cycle (66, 69).

2.7.8 Targeted therapeutic approaches

APOC3 antisense/siRNA accelerate CM and VLDL clearance,
lowering peak postprandial triglycerides by up to approximately
45 percent in controlled trials (70, 71). ANGPTL3 inhibition
(and to a lesser extent ANGPTL4) relieves LPL suppression,
enhancing triglycerides hydrolysis and reducing remnants (72).
Fibroblast growth factor 21 analogs improve hepatic B-oxidation
and lower VLDL output, showing promise for MASLD-
associated dyslipidemia (73).
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2.8 Oxidative and mitochondrial stress in
the postprandial window

A meal is more than caloric delivery—it is an acute redox
challenge. Min after absorption, mitochondrial and enzymatic
sources of ROS stimulate and briefly overcome endogenous
antioxidant defenses. In healthy individuals this transient
“spark” is hormetic, fine-tuning insulin action and vascular
tone; in insulin-resistant or metabolic-syndrome phenotypes, the
ROS pulse is higher and longer, synergizing with hyperglycemia
to oxidize

and chylomicronemia lipids/proteins,

endothelial NO, and activate inflammasome/kinase pathways,

quench

feeding forward into endothelial dysfunction and insulin
resistance (74, 75). Clinically, high-fat mixed meals reduce
brachial-artery flow-mediated dilation (FMD) by approximately
1 percentage point at 2-4 h, placing peak vascular impairment
squarely in the 60-180 min postprandial window (76). A concise
mapping of sequelae, mechanisms, timing and read-outs is
provided in Table 1.

Mechanistically, rapid substrate overflow raises the
nicotinamide adenine dinucleotide (NADH:NAD") and flavin
adenine dinucleotide, reduced: flavin adenine dinucleotide
(FADH:FAD) ratios, hyper-reduces CoQ, and favors RET at
Complex I—an efficient in vivo superoxide source—while
Complex III contributes under high membrane potential (82,
83). Parallel nutrient cues (acute hyperglycemia; TRL remnants)
PKC—especially PKC-B—driving p47/phox
translocation and NOX2/NOX4 activation; tetrahydrobiopterin
depletion uncouples eNOS, and xanthine oxidase adds to ROS

activate

supply—together producing a convergent, multi-organ burst that
typically peaks at 1-3 h (84-87).

In healthy muscle and endothelium, the postprandial ROS
burst is normally self-limited by nuclear factor erythroid 2-
(Nrf2)-driven
catalase,

related factor 2 induction of glutathione
(88-91). In

tone and

peroxidase, and heme oxygenase-1
Nrf2

(e.g., bilirubin, paraoxonase-1) are

metabolic-syndrome/MASLD  phenotypes,
circulating antioxidants
diminished, shifting the balance toward peroxynitrite formation,
LDL oxidation, and redox-sensitive inflammatory signaling
(92-94). With repeated meals, unresolved redox stress extends
beyond the 1-3 h window and engages B-cell unfolded-protein-
response pathways [protein-kinase R-like ER kinase (PERK);
eukaryotic initiation factor 2a eIF2a]), driving CHOP/caspase-3
and increasing vulnerability to apoptosis. There is no direct
plasma marker of B-cell death; in practice, an elevated
proinsulin:insulin ratio serves as a crude stress proxy (81).
Human translational data strengthen causality: reducing
mitochondrial oxidants alleviates lipid-induced muscle insulin
resistance, and postprandial metabolomics consistently show
acylcarnitine signatures compatible with mitochondrial redox
pressure and PDH inhibition during mixed-meal challenges (95, 96).

2.8.1 Translational clues from intervention trials
with endothelial NO to
associated NO loss

Superoxide reacts generate

peroxynitrite; the aligns with an
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approximately 1 absolute decrement in
brachial-artery FMD at 2-4h after a single high-fat meal
(76-78). ROS also signal through IKKB/JNK to promote NLRP3

inflammasome assembly, increasing IL-1p and IL-18 (79, 80).

percentage-point

- Polyphenols boluses. Acute, meal-time polyphenols attenuate
oxidative stress and can preserve endothelial function in
standardized high-fat challenges (97). Examples include: (i)
grape-seed extract taken 1 h pre-meal lowered oxide LDL and
glucose exposure without changing insulin (metabolic-
syndrome adults; n = 12; approximately 670 kcal mixed meal,
approximately 40 percent fat/ approximately 50 percent
carbohydrate; sampling 0-5 h) (98); (ii) grape-pomace extract
co-ingested with a high-fat meal modulated oxidative-stress
biomarkers with body mass index-stratified effects (healthy
women; #=18; 1,131 kcal high-fat meal, 66.7 percent fat;
sampling 0-6 h) (99); and (iii) a high-flavanol cocoa beverage
[150 mg (—)-epicatechin] co-ingested with a high-fat load
preserved FMD during a standardized ischemia-reperfusion
stress paradigm vs. a low-flavanol control (young healthy
adults; n=23; high-fat meal with 56.5 g fat; FMD assessed
approximately 1.5-3.0 h post-meal) (100).

- Targeting NADPH-oxidases. Setanaxib (a selective NOX1/4
inhibitor)
cholangitis; postprandial vascular-endpoint trials (e.g., FMD,

shows clinical signals in primary biliary
carotid-femoral pulse wave velocity) are still needed (primary
biliary cholangitis; adults; randomized, placebo-controlled
24 weeks;

endpoint = %AGGT; secondary = ALP, liver stiffness, fatigue;

phase 2; n=111; no test meal; primary
vascular endpoints not assessed) (69).

- N-acetylcysteine (NAC). A single-blinded, placebo-controlled
crossover in hypertensive adults showed that oral NAC
(600 mg) thiolated (Thio-HSA) by

approximately 25 percent at 60 min and i.v. NAC lowered it

reduced albumin

by approximately 69 percent at 30 min, with increased

in  vivo
0-3h
postprandial window (no meal challenge) (hypertensive
adults; n = 6; oral or i.v. NAC; sampling 0-6 h) (84).

- Mitochondria-targeted antioxidants. During lipid/heparin

plasma antioxidant capacity—supporting rapid

mercaptoalbumin regeneration relevant to the

infusion clamps (not a meal), intravenous mitoquinone
increased insulin-stimulated leg glucose uptake and reduced
ex vivo mitochondrial H,O, emission in adult humans,
directly linking mitochondrial oxidants to insulin resistance
[adults; n =10 (mitoquinone arm n=9); 3 h intravenous lipid
infusion + hyperinsulinemic-isoglycemic clamp; leg glucose
uptake and muscle respirometry assessed approximately 30-
120 min] (96).

Taken together, exaggerated ROS generation paired with an
insufficient antioxidant response creates a modifiable hinge
between nutrient overload and downstream vascular-metabolic
(e.g, NADPH-oxidase
blockade, improved mitochondrial efficiency) or reinforcing

injury. Curbing ROS production
endogenous defenses (Nrf2 activators, thiol donors, polyphenol-

rich foods) may help re-establish the brief, adaptive nature of
the postprandial redox signal (74, 75).
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TABLE 1 Oxidative-stress sequelae and clinical read-outs.

Consequence Core mechanistic driver Peak Primary read-outs | Assay notes/standardization
(concise) window (preferred)
post-meal
(typical)

Endothelial dysfunction | Superoxide reacts with NO to generate 1-4h Brachial-artery FMD (% Control caffeine/smoking and cuff/
peroxynitrite; eNOS uncoupling from change vs. baseline); plasma | segment; adjust for baseline diameter;
tetrahydrobiopterin depletion; NOX2/XO- nitrite/nitrate; sSNOX2-dp (if | typical FMD drop ~1 percentage point at
derived ROS (77, 78). available) 2-4h

Inflammasome/innate | ROS activate IKKB/JNK; these kinases recruit | 2-6 h Plasma IL-1p and IL-18 Exclude acute infection; standardize

immune activation and oligomerize the NLRP3, which then timing and pre-analytical handling;
activates caspase-1 (79, 80). freeze-thaw affects cytokines

B-cell stress and loss Persistent ROS oxidize ER chaperones, forcing | Hours-days Proinsulin-insulin ratio No direct plasma marker of B-cell
prolonged unfolded-protein-response signaling | (magnified with (clinical proxy) apoptosis; interpret with glucose/FFA
through PERK and elF2a; the downstream rise | repeated loads)
in CHOP and caspase-3 expression accelerates
pancreatic B-cell apoptosis (81).

NO, nitric oxide; eNOS, endothelial nitric-oxide synthase; NOX, NADPH-oxidase; FMD, flow-mediated dilation; ROS, reactive oxygen species; IKKp, inhibitor-of-kB-kinase-B; JNK, c-Jun
N-terminal kinase; NLRP3, NOD-, LRR- and pyrin-domain-containing protein 3; IL, interleukin; PERK, protein-kinase R-like ER kinase; eIF2a, eukaryotic initiation factor 20; CHOP, C/
EBP homologous protein (pro-apoptotic factor); FFA, free fatty acids.

Standardization details for platforms and pre-analytical handling are summarized in Supplementary Table S1.

TABLE 2 Representative “activity-snack” prescriptions (2020-2025) and acute metabolic effects.

Study/population Prescription—timing and Principal acute metabolic effect(s)

structure

Meta-analysis of randomized trials in adults with and without T2D | Standing or light walking for 2-5 min every Two-hour glucose iAUC decreased by ~12% and
(k ~ 22; standardized mixed meals ~500-900 kcal; sampling 0-2— | 20-30 min during a seated lab protocol (224). | insulin iAUC by ~20% vs. uninterrupted sitting

3-4h
Systematic review focused on adults with T2D (breaks during At least one brief standing or slow-step break | Postprandial glucose iAUC fell by ~#15% and TAG

desk-type tasks; standardized mixed-meal challenges; sampling 0- | about every 20-30 min while seated work iAUC by ~10% compared with continuous sitting
2-4 h) continued (225).
Meta-analysis of randomized crossover trials comparing post-meal | Brisk walking (about 10-20 min) initiated Greater reduction in postprandial glucose when

vs. pre-meal walking (adults with overweight/T2D; standardized | within ~30 min after meals vs. the same dose | walking is performed after meals; supports timing-
meals ~500-700 kcal; sampling 0-2 h) before meals (226). sensitive placement of short bouts

CGM, continuous-glucose monitoring; iAUC, incremental area under the curve; TAG, triacylglycerol.

Note. Dedicated postprandial RCTs with vascular endpoints 1, and suppress eNOS phosphorylation; intravenous CPPs
are lacking; current evidence supports a mechanistic, rapid reproduce this injury pattern in ApoE-knockout mice
thiol-replenishing action of NAC that is plausibly relevant to the (preclinical), underscoring systemic vasculotoxicity (103).

0-3 h window (84). - Canonical cytokine signaling. TNF-o, IL-1B, and IL-6 converge

on endothelial NOX2/NOX4, raising superoxide and uncoupling

eNOS, thereby reducing bioavailable NO and impairing

2.9 Endothelial activation and vascular vasodilation. In meal tests, postprandial FMD falls within
inflammation approximately 2-4 h (magnitude protocol-dependent) (104, 105).
- Renin-angiotensin-YAP/TEAD crosstalk. Angiotensin II
activates YAP; nuclear YAP partners with TEAD factors to
drive a VCAM-1 promoter, sustaining leukocyte adhesion.
Verteporfin (YAP-TEAD disruptor) or endothelial YAP
knockdown restores FMD and lowers VCAM-1 in mouse
models (preclinical), highlighting a druggable redox-sensitive

The vascular endothelium is the first interface to encounter
postprandial blood. Under physiological conditions it releases
NO, maintains an antithrombotic surface, and regulates nutrient
delivery. Within min of a mixed meal, concurrent exposure to
glucose, CM remnants, FFA, gut-derived lipopolysaccharide
(LPS), and a burst of ROS can shift this interface toward a pro- switch (106).
inflammatory, vasoconstrictive phenotype—a shift amplified in  ~ Gut-vascular signaling. Metabolic endotoxemia (chronically
obesity, MASLD, and chronic kidney disease (101, 102). elevated LPS from increased intestinal permeability) engages

endothelial TLR4, boosts ROS, and further uncouples

- Mineral stress and calciprotein particles (CPP). In chronic
kidney disease, calcium-phosphate nanocrystals coated with
fetuin-A circulate as CPPs. These colloids bind TLR4 on
endothelial cells, activate NF-xB, upregulate VCAM-1/ICAM-
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eNOS; TLR4 antagonism or antioxidant therapy rescues
NO signaling and barrier integrity in cell and animal
models (preclinical), linking dysbiosis to vascular
dysfunction (107).
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2.9.1 Clinical snapshots

Obesity: postprandial endothelial impairment is exaggerated;
miR-485 mimics suppress NOX4, lower VCAM-1, and
improve FMD in obese mice (preclinical) (108).

Human NOX2 signal: high-fat meals provoke a rapid
NOX2-dependent ROS burst; intravenous NOX2 blockade or
a polyphenol-rich beverage at mealtime preserves endothelial

function despite lipid load (human/challenge) (78, 104).

the
crossroads of mineral imbalance, intestinal dysbiosis, systemic

Oxidative-inflammatory endothelial injury sits at
cytokines, and classic cardiometabolic risk. Limiting ROS
NOX
efficiency), disrupting maladaptive transcriptional responses

(YAP, NF-«B), and reinforcing NO signaling may complement

generation (e.g., inhibitors, improved mitochondrial

lipid- and blood-pressure-lowering in

vascular health.

strategies restoring

2.10 Inflammation and innate-immune
activation

A mixed meal elicits a rapid innate-immune pulse (0-6 h):
gut-derived LPS and other danger signals reach the portal
circulation within 30-60 min, priming monocytes/macrophages.
In metabolically healthy adults the surge resolves quickly;
proinflammatory baseline, genetic liability, or frequent energy-
dense meals amplify and prolong the response (109, 110).

Innate kinetics.

sensors and cytokine The NLRP3
inflammasome is a key nutrient-danger hub: a phosphate-
enriched breakfast doubles caspase-1 activity in human
monocytes and elevates IL-1B/IL-6 with approximately 2 h
peak that wanes by approximately 6h (111). TLR4 is
activated by saturated fatty acids and CM remnants, driving
of VCAM-1 ICAM-1,
dyslipidemia endothelial

dysfunction (110). Outside the vasculature, a fat bolus

dependent  upregulation and

mechanistically  linking to
triggers hypothalamic astrocyte swelling and microglial
activation by approximately 4 h in mice (preclinical) (112).

Inter-individual variation. Host phenotype shapes the wave’s
older adults
generate approximately 40 percent higher peaks in IL-1f,
C-reactive protein (CRP), and soluble ICAM-1 than healthy

peers (113). APOE ¢4 carriers mount approximately 2x

height/duration: with cardiometabolic risk

postprandial rises in CRP/endothelial-activation markers vs.
€3/e3  (114). Monocyte-subset dynamics also differ:
CD14™CD16""; cells persist at 4h in older adults but
contract by approximately 50 percent in younger adults—
evidence of innate-immune “memory” with aging (115).

Microbiome modulation and trained immunity. Lower
IL-6 and
glycosylated acute-phase reactants (GlycA) peaks, an effect

butyrate output is associated with sharper
magnified by variants in sodium-coupled monocarboxylate
transporter 1 [solute carrier Family 5 Member 8 (SLC5A8) or
free fatty acid receptors 2 and 3 (FFAR2/3)] (116). Beyond

innate signals, a single high-fat/high-sugar challenge can
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remodel T-cell chromatin at NF-kB- signal transducer and
activator of transcription motifs and increase IL-17A for >1
week, consistent with diet-induced trained immunity (117).

Implications and levers. The amplified cytokine environment
accelerates vascular injury, upregulates endothelial adhesion
molecules, and drives insulin resistance. Practical levers

include boosting butyrate (resistant starch, inulin-type
fructans), tempering TLR4 signaling (marine omega-3 fatty
acids), and inhibiting NLRP3/ROS sources (mitochondrial
NOX2 inhibitors),

physical-activity “snacks”.

antioxidants or alongside post-meal

2.11 Gut microbiota—derived signals in
post-meal metabolism

During a mixed meal, host nutrients surge systemically while
unabsorbed carbohydrate/protein reach the colon, where microbes
generate SCFAs, secondary bile acids, and indoles that enter the
portal vein near-synchronously with host substrates. Microbiome
features (a-diversity; Bacteroides/Prevotella/Akkermansia) explain
substantial between-person variance in postprandial glycemic
and lipemic responses (systematic review of 36 trials; deep-
phenotyping cohort n =1,098) (118, 119).

- Bile acid-L-cell axis (preclinical—human association). High
BSH activity rapidly deconjugates meal bile acids, increasing
ligands for TGR5 on L-cells; in gnotobiotic mice, TGR5
blockade abrogates the GLP-1 surge and its glycemic benefit

(120, 121). TGR5

messenger ribonucleic acid together with fecal BSH activity

(preclinical) In humans, intestinal
correlates with GLP-1 dynamics, explaining a meaningful
fraction of 2-h GLP-1 iAUC variability (38, 67).

TRL output and clearance (preclinical with human links).
Antibiotic-treated mice show a approximately 35 percent fall
CM

microsomal triglycerides and apoB-48 transcripts; Bacteroides

in postprandial triglycerides  paralleling reduced
thetaiotaomicron recolonization restores both expression and
lipemia (preclinical). Indole-acetate suppresses ANGPTL4 via
AhR, relieving the LPL brake and accelerating remnant
stimulation of GLP-2
upregulates enterocyte MTP/apoB-48, doubling CM output—
effects blunted by a GLP-2R antagonist (preclinical) (38, 122).

Endocannabinoid and neuro-immune

clearance; conversely, microbial

loops (human/
preclinical). In a randomized cross-over study, 2 h rises in
N-acylethanolamines (e.g., anandamide, oleoylethanolamide)
varied inversely with Fecalibacterium, with approximately 40
percent larger surges in metabolic syndrome (human) (123).
Microbiota enriched in Enterobacteriaceae associate with
sharper IL-6/IL-18 peaks and greater fullness after a
Western-style meal, suggesting a gut-brain-immune loop
(human association) (118). The lipid-lowering effect of
endogenous GLP-1 depends on intact vagal afferents and is
attenuated by acute fructose, implying neuroendocrine gating
of CM handling (preclinical/physiology) (124).
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- Microbiota enriched. In Enterobacteriaceae associate with
sharper IL-6/IL-1B peaks
Western-style meal, suggesting a gut-brain-immune loop

and greater fullness after a

(human association) (118). The lipid-lowering effect of
endogenous GLP-1 depends on intact vagal afferents and is
attenuated by acute fructose, implying neuroendocrine gating
of CM handling (preclinical/physiology) (124).

Note. Evidence type for each circuit is indicated above; key
models/readouts are summarized in Supplementary Table S1
(human vs. preclinical).

2.12 Integrative modulators of postprandial
metabolism

Post-meal fuel handling emerges from the intersection of
cellular energy sensors, multi-organ nutrient sensing, the
microbiome, circadian clocks, and adipose-endocrine-neural
feedback. These axes determine whether calories are oxidized,
stored, or routed to gluconeogenesis/lipogenesis—helping
explain person-to-person heterogeneity in glycemic and lipemic

excursions.

1) Cellular energy sensors (AMPK-mTORCI- Sirtuin-1).
When ATP falls, AMPK restrains mTORC1 and shifts flux
toward fatty-acid oxidation/autophagy; higher NAD*/NADH
activates sirtuin 1 (SIRT1), deacetylating PGC-1a/FOXO to
support mitochondrial biogenesis and antioxidant defense.
In the fed state, Akt re-engages mTORC1 to promote
anabolism. Disrupting this AMPK-mTOR-SIRT1 switch
accelerates steatosis, endothelial dysfunction, and insulin
resistance (125, 126).

2) Epithelial/host-context
epithelium, selective repression of IRS-PI3K-Akt drives

modulation. In the intestinal
FOXO nuclear entry, tightens junctions, lowers paracellular
permeability, and can lower systemic triglycerides/glucose;
hyperactivation does the opposite (preclinical) (127). Host
SARS-CoV-2 proteins
perturb IRS adaptors and upregulate suppressor of cytokine

factors further rewire this axis:
signaling-3, blunting Akt and contributing to de novo
insulin resistance (human mechanistic/observational), while
estrogen receptor-a scaffolds IRS-1 to bolster Akt-mTORC2
129). With

chronic hypoinsulinemia (type 1 diabetes), liver IRS-2 falls

(mechanistic; sex-difference context) (128,
as muscle AMPK/SIRT1 compensates—an adaptive multi-
omics “rewiring” (130).

3) Multi-organ nutrient sensing (gut-brain-pancreas).

Hypothalamic glucose-responsive neurons (GLUT2/ATP-

sensitive potassium channel) and carnitine

palmitoyltransferase 1C-positive neurons sense sugars and
long-chain acyl-CoAs; L-cells convert luminal nutrient

(SGLT-1; FFARI1/4; GPRI119) into GLP-1/GIP/

Peptide YY that reach the brainstem via vagal afferents.

signals

Vagotomy or acute fructose attenuates GLP-1-mediated
suppression of CM triglycerides by approximately 35
percent,

illustrating gut-brain control of postprandial
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lipemia (124). Microbial butyrate/indoles further tune this
pathway (preclinical) (131).

4) Circadian timing. Core clock genes (brain and muscle ARNT-
Like (BMALI1), circadian locomotor output cycles kaput
(CLOCK), Period (PER) and cryptochrome (CRY)) gate
insulin sensitivity and substrate partitioning. Front-loading
energy at breakfast advances clock phase and blunts glucose/
triglycerides excursions, whereas the same load at dinner does
the opposite; “Big-Breakfast” RCTs show approximately 38
percent lower post-meal glucose and upregulated leukocyte
CLOCK/BMALI (132-136). Diet-induced thermogenesis is
higher mid-afternoon than late night (137). Hepatic clock
disruption increases nocturnal glucose output; intestinal
clocks modulate CM assembly, explaining higher night-
lipemia in circadian misalignment; PER2-deficient B-cells lose
first-phase insulin release (138-140).

5) Adipose buffering and endocrine-neural feedback. In
insulin-sensitive states, microvascular recruitment+ LPL +
GLUTH4 trap dietary fat in adipose triglycerides stores. First-
degree relatives of patients with T2D show approximately 40
percent smaller adipose blood-flow rises and approximately
35 percent greater non-esterified fatty acids (NEFA) spillover
during mixed meals (141-143). LDL-receptor/CD36 density,
visceral fat, and daily moderate to vigorous physical activity
(MVPA) explain much of the spread in TAG iAUCs (144,
145). Circadian cues modulate adipose clocks (132, 146).
Brown adipose tissue (BAT) activation via low-protein
ketogenic diets or bile-acid signaling flattens triglycerides
peaks and raises thermogenesis (human/rodent) (147). With
aging, senescent visceral adipocytes (IL-6/TNF-a) amplify
hyperglycemia; time-restricted eating or NAD™ boosters can
blunt this signature (148).

6) Neuro-endocrine crosstalk. Vagal afferents relay luminal
glucose/lipid/stretch to the nucleus tractus solitarius;

silencing delays satiation and the return of insulin/GLP-1 to

baseline, while optogenetic GLP-1 cell activation triggers

(149, 150).

to dietary glucose

nodose firing within approximately 60 s

Dopamine released in proportion
enhances GLP-1 signaling in adipose, suppressing lipolysis
and limiting NEFA spillover (151). After bariatric surgery,
muted glucagon counter-surges can produce late dumping
hypoglycemia, revealing pancreas-brain vulnerability (152).
links

oxyntomodulin/GIP to reward-circuit activity; their rapid

Functional magnetic resonance imaging
post-meal rise tempers this signal—exaggerated by added
sugars (153, 154). Chemogenetic data suggest the brain sets
approximately 30 percent of basal glucose turnover, whereas
the pancreas controls approximately 70 percent of
postprandial disposal, underscoring gut-brain-pancreas

control of iAUC spread (155, 156).

these axes—AMPK-mTOR
mistimed meals, loss of butyrate-producing microbes, impaired

Derailments across imbalance,

adipose perfusion, or a sluggish incretin-vagal relay—tilt

metabolism  toward  postprandial  hyperglycemia  and

hypertriglyceridemia. Interventions that align feeding with
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circadian phase, expand SCFA production, activate GLP-1/GIP
receptors, or deploy very-low-energy ketogenic therapy to boost
BAT capacity (130, 138, 157) are rational complements to
calorie restriction and exercise, and fit an endocrine-centric
MASLD prevention paradigm (138).

3 Biomarkers and clinical assessment
of postprandial dysmetabolism

A mixed-meal test or CGM best captures postprandial
physiology but remains resource-intensive. In practice, clinicians
use fasting surrogates that mirror post-meal dynamics. Among
them, the triglyceride-glucose (TyG) index stands out for
consistency, cost, and external validity across settings.

3.1 Traditional markers and TyG index

The TyG index is calculated from early-morning blood drawn
by multiplying fasting triglycerides (milligrams per deciliter) by
fasting glucose (milligrams per deciliter), dividing that product
by two, and then taking the natural logarithm of the result (158).

- Dynamic signal. Higher fasting TyG predicts steeper 2h
glucose and triglyceride rises on standardized meal tests—
outperforming homeostatic model assessment for insulin
resistance (HOMA-IR) (159).

Outcomes. Across large cohorts, elevated TyG associates with
faster carotid intima-media thickness (IMT) progression,
higher incident CVD, ischemic stroke, and events in cancer
survivors; in premature coronary artery disease (CAD),
TyG > 8.8 flagged approximately 75 percent higher 5-year
major adverse cardiovascular event (159-163).

Comparisons and special populations. Case-control work
shows TyG (AUROC approximately 0.78) beats non-HDL-C
and TG/HDL-C for angiographic stenosis; for MASLD,
triglyceridess/HDL-C slightly edges TyG (AUROC 0.82 vs.
0.80) (164, 165). In pediatrics, TyG > 8.2 detected abnormal
glucose tolerance with approximately 82 percent sensitivity
(166). Visceral adiposity (not total fat) drives the TyG-post-
meal triacylglycerol (TAG) link, while >150 min/week MVPA
halves the slope—supporting TyG as a modifiable risk
indicator. Pairing TyG with meal-challenge or CGM traces
yields a low-cost, high-yield view of postprandial burden
(167).
summarized in Supplementary Table S1 (TS1).

Operational details for TyG sampling/units are

3.2 Emerging biomarkers: metabolomic,
inflammatory & endothelial panels

- Metabolomics (LC-MS). Mixed meals transiently raise

saturated ceramides (C16:0, C18:0), the C18:0/C24:0 ratio,
branched-chain a-keto acids, medium-chain acyl-carnitines,
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and indole-3-propionate. Prospective data and meta-reviews
identify ceramide C18:0/C24:0—especially with TyG—as a
strong composite predictor of ASCVD events and IR
conversion. Run times are falling as ion-mobility
separation and machine learning (ML)-assisted readouts
shorten gradients and automate pattern recognition, with
sub-30 min workflows reported in research settings (168,
169). Pre-analytical handling and panel composition are
detailed in TS1.

Inflammation/innate immunity. GlycA (Nuclear Magnetic
Resonance) integrates acute-phase glycoproteins; along with
cluster of differentiation 163 (sCD163) and calprotectin, it
outperforms high-sensitivity C-reactive protein (hs-CRP) for
low-grade inflammation and predicts metabolic syndrome
and coronary calcification. In severe dysmetabolism,
neutrophil extracellular traps-derived cell-free DNA and IL-6
trans-signaling rise and track with carotid remodeling and
impaired FMD (170, 171). Assay timing and stability notes
appear in TS1.

Endothelial activation. Glycocalyx shedding yields soluble
thrombomodulin (sTM) and von Willebrand factor (VWEF);
endothelial extracellular vesicles (ICAM-1") and miRNAs
(miR-126-3p, miR-210) correlate with IMT progression and
FMD decline, and portend mortality in severe COVID-19,
underscoring a shared redox-endothelial axis (172, 173).
Composite scores. Meta-analyses show TyG, TyG/waist, and
triglyceridess HDL-C ~ outperform LDL-C

coronary disease, particularly in obesity/MASLD; adding

for detecting
vWF or miR-126 to TyG can push c-statistic > 0.80, rivaling
costlier omics (174).

3.2.1 Implementation (pragmatic workflow)

o Step 1—Screen with TyG and, where visceral adiposity is
obvious, the triglyceride-to-HDL-cholesterol ratio.

o Step 2—Stratify intermediate-risk patients with GlycA and
endothelial-vesicle counts to unmask subclinical inflammation
or glycocalyx injury.

o Step 3—Personalize very-high-risk cases with ceramide/
oxylipin  panels to intensified

guide lipid-lowering,

antioxidant, or anti-inflammatory therapy (169, 170, 172).

Cutoffs, and standardization

summarized in TS1.

sample handling, are

3.3 Functional tests and dynamic indices
—"Rate-of-Change” phenotyping

Static fasting values miss how fast systems absorb a meal-
induced perturbation. Four protocols translate lability into time
constants or impulse ratios clinicians can interpret:

o Cardiorespiratory coupling time constant linking heart rate
to oxygen-consumption kinetics (z_HR-V'O,). In a ramp-

cycle test approximately 45 min post-breakfast, a time
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constant > approximately 60 s tracks upper-tertile TyG and
predicts lower aerobic power at 12 months (175).

o Impulse-based Dynamical Strength Index (IB-DSI). A single
countermovement jumps at approximately 2h post-meal:
impulse/maximum voluntary contraction <0.60 flags blunted
neuromuscular recovery and co-segregates with higher
ceramide C18:0/C24:0 and triglycerides peaks (176).

o Dynamic-Fit Index (DFI). Bayesian state-space fit to dense
capillary glucose/lipid sampling; lower DFI (more error-
corrections/min) precedes the first fasting-glucose rise by
approximately 2 years (177).

o Diaphragm excursion on four-dimensional computed

tomography (4-D CT). Failure to augment excursion by >10

percent after a meal associates with visceral adiposity, higher

TyG, and heavier TAG iAUC (178).

3.4 Clinical relevance—why dynamic
biomarkers matter

Post-meal signals anticipate hard outcomes years before
fasting markers drift. Microbiome-informed ML models explain
approximately 40 percent of variance in 2-h glucose iAUC,
doubling glucose-only models; in PREDICT-1, this approach
and TyG for predicting
conversion to impaired glucose tolerance (156, 157, 179). In
T2D with CAD, TRL-TAG AUC>5mmolhL™
microalbuminuria and hs-IL-6 increases within 12 months.
Population data show non-fasting TAG 175 mg/dl beats the
fasting 150 mg/dl cut-off for CVD risk (68, 142, 180-182).
Palm-oil challenges that elevate ceramide d18:1/24:0 also raise

outperformed hemoglobin Alc

forecasts

VCAMS-1 overnight; glycomics identify a fucose-rich, sialic-acid-
poor N-glycan profile that flags incident T2D independent of
glucose or TyG (183-185).

Taken together, postprandial biomarkers —whether they are
kinetic (t_HR-V'O,, IB-DSI, DFI),
GlycA), or microbial (butyrate-producing taxa)—capture how

molecular (ceramides,
resilient an individual is to a metabolic load. Their predictive
value supports a tiered clinical strategy:

o Step 1 Screen with inexpensive composites (TyG, triglyceride-
to-HDL-cholesterol ratio).

o Step 2 Stratify intermediate-risk patients using GlycA plus a
simple functional test such as 7 HR-V'O,.

o Step 3 Personalize (ceramides/microbiome-guided diets).
Shifting from static concentrations to rates of change enables
earlier, targeted intervention—before vascular, renal, or S-cell
damage accrues.

Across large cohorts, highest-vs.-lowest strata of two-hour post-

meal  glucose  exposure, triglyceride-rich  lipoprotein
triacylglycerol exposure, the triglyceride-glucose index, the
plasma ceramide C18:0/C24:0 ratio, and glycoprotein acetylation
show consistent graded risk. TS1 lists assay methods, cut-offs,

and timing windows for each biomarker.
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4 Nutritional and lifestyle interventions

Restore a brief, adaptive postprandial response by: (i) lowering
substrate surges (glucose/TRL-TAG), (ii) dampening oxidative-
inflammatory signaling, and (iii) aligning timing with circadian
biology. Dynamic triggers to escalate care are summarized at the
end (see also Supplementary Table S1).

4.1 Mediterranean-style eating as a
postprandial buffer

The Mediterranean dietary pattern—extra-virgin olive oil
(EVOO), vegetables, legumes, whole grains, fish, and modest
red-wine use—consistently lowers cardiometabolic events (186,
187) and blunts postprandial “turbulence”. In healthy men, a
single Mediterranean-type meal preserved endothelial function
and attenuated triglyceride excursions vs. a high-saturated-fat
n=28;
Mediterranean-type meal vs. high-saturated-fat meal, 858-
885 keal, 51-57 g fat; FMD and lipids 0-4 h) (111). In overweight/
obese older adults, a Mediterranean-like meal produced smaller
TAG rises than a Western high-fat meal while IL-6 increased
similarly across meals [overweight/obese older adults; n=60;

comparator (healthy men; randomized

Crossover;

randomized crossover; isoenergetic meals approximately 1,000 kcal
(approximately 4,200 kJ); sampling 0-5 h] (111).

Fine-tuning within the Mediterranean framework. Small,
targeted adjustments amplify benefits:

- Gene-diet interaction. In coronary-artery patients carrying
the minor G-allele at zinc finger protein 1 (ZPRI1) rs964184,
switching from low-fat to Mediterranean reduced post-meal
TAG by approximately 0.31 mmol-L™"; non-carriers changed
little (188).

Carbohydrate quality. Within an isocaloric Mediterranean day,
replacing refined starches with low-GI pulses and whole grains
blunted postprandial glucose/insulin excursions during an 8-h
mixed-meal tolerance test (high-cardiometabolic-risk adults;
n =approximately 180; standardized breakfast and lunch;
sampling 0-8h) (189). In type 2 diabetes, two isocaloric
“healthy” patterns (Mediterranean-multifactorial vs. MUFA-
rich) elicited distinct postprandial lipid and lipoprotein-
subfraction responses after standardized test meals (T2D
adults; randomized; serial sampling over several hours) (189).

Exercise synergy. Adding approximately 150 min/week of
brisk walking to a Mediterranean prescription improved the
lipoprotein subclass profile (lower fasting triglycerides and
small dense LDL, with favorable shifts in VLDL/LDL
subclasses) n=202;
reduced Mediterranean diet + physical-activity promotion vs.
diet; fasting NMR
profiling; no standardized test meal) (190).

(metabolic-syndrome adults; energy-

energy-unrestricted Mediterranean

Fat-quality swap. Replacing saturated fat with monounsaturated
fat shifted the postprandial metabolomic profile toward lower
acylcarnitines and higher antioxidant-related signals compared

with a saturated-fat pattern; low-fat, high-complex-
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carbohydrate (LFHCC) arms with/without omega-3 (n-3)
showed distinct postprandial signatures as well (metabolic
syndrome; n=75 randomized, 12-week isoenergetic diets:
high-saturated fat [HSFA] vs. high-monounsaturated fat
[HMUFA] vs. LFHCC vs. LFHCC + n-3; standardized high-fat
challenge; sampling 0-8 h [0, 4, 8 h]) (191).

- Timing matters. Early time-restricted variants (“Mediterranean
breakfast front-loading”) further dampen TAG/glucose peaks
and improve adipose clock-gene expression (132, 133).

Across diverse trials, head-to-head crossover work shows a
day DASH 4h TAG
(approximately —18 percent) and oxidized-LDL, and a 2024

Mediterranean outperforms for
meta-analysis of >18 randomized controlled trials confirms
reductions in fasting and postprandial TAG across healthy, pre-
diabetic, and T2D cohorts (192). Practically, earlier eating with a
Mediterranean first meal, low-GI pulses in place of refined
starches, EVOO/marine ®-3 instead of saturates, and daily brisk
walking magnify innate buffering. Response is not one-size-fits-
all: ZPR1 rs964184 carriers show larger lipemic drops, whereas
late chronotypes or habitual breakfast-skippers lose much of the
gain. A 2024 umbrella review reporting parallel improvements
in pre-diabetes conversion rates reinforces the pattern as a
versatile, first-line, timing-aware prescription (193, 194).

4.2 Meal-timing and chrononutrition—
aligning food with the body clock

Crossover trials, CGM studies, and meta-analyses converge:
front-loading energy in the morning and tapering evening
carbohydrates blunts glycemic and lipemic excursions, whereas
breakfast skipping or late high-GI dinners do the reverse (195).

- Ilustrative signals. Skipping breakfast increases lunchtime
and dinnertime glycemic excursions in type 2 diabetes,
accompanied by higher glucagon and lower iGLP-1 despite
identical subsequent meals (T2D adults; #n =22; randomized
crossover; breakfast vs. no breakfast with isocaloric lunch/
dinner approximately 700 kcal; sampling 0-3 h) (196, 197).
Shifting the main meal earlier—specifically, an early dinner
at 18:00 vs. 21:00—lowers 24 h mean glucose and increases
next-morning fat oxidation at identical energy intake (healthy
adults; »n=12; randomized crossover; isocaloric day with
dinner timing 18:00 vs. 21:00; 24 h CGM and next-morning
indirect calorimetry) (198). Across randomized crossover
trials, identical carbohydrate loads elicit higher evening than
morning glycemic responses, with no consistent differences
in insulinemia (adults with overweight/T2D; n =8 crossover
trials; standardized high-GI meals approximately 500-
700 kcal; postprandial AUCs over approximately 2-3 h) (199).

- Chronotype matters. A randomized crossover stratified by
chronotype showed that a high-GI dinner produced larger
2h glucose excursions in late chronotypes, whereas early
chronotypes had a comparatively attenuated evening response
(healthy university students; n=45; high-GI meal: cereal
bar + cornflakes + milk + pretzel; breakfast 07:00 vs. dinner
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20:00; CGM 0-3h) (200). A complementary trial likewise
found greater postprandial glycemia at dinner than at
breakfast with identical high- vs. low-GI test meals (healthy
older adults; n=34 per protocol; high- or low-GI meals
served at breakfast vs. dinner; capillary glucose 0-3 h) (201).

- Early time-restricted eating (eTRE). A short early window
reduced 24h mean glucose and glycemic variability and
increased fat utilization without weight loss (overweight
adults; n=11; randomized 4-day crossover; eTRE 08:00-
14:00 vs. 08:00-20:00; all meals provided; 24-h CGM;
companion respiratory-chamber study) (202, 203). In a
tightly controlled inpatient protocol, concentrating intake
early in the day improved glycemic control and reduced
glycemic variability under standardized conditions (healthy
adults; n=16; early vs. extended eating window as above;
CGM 24 h; mixed-meal test 0-4 h) (203).

- Within-meal sequencing. In T2D, a small whey preload flattens
early glycemia: 15 g whey taken 10 min before breakfast reduced
the 0-240 min glucose iAUC and increased insulin/GLP-1 (T2D
adults; #n =18; randomized crossover; 15 g whey 10 min pre-
meal; standardized mixed-meal tolerance test; plasma sampling
0-4h) (204). in type 1 diabetes
heterogeneous but generally supports early-phase attenuation

Evidence is more
without worsening late hypoglycemia when modest doses are
used; small crossover studies report blunted 0-120 min
excursions with 10-20 g protein given 10-15 min before the
meal, with dose and insulin strategy determining late effects
(T1D adults; n approximately 10-30 across studies; 10-20 g
protein 10-15 min pre-meal; capillary/CGM sampling 0-2-
4h) (205, 206). Across controlled-feeding studies, starting the
meal with protein or fat (“protein-first/fat-first”) consistently
lowers early postprandial glucose vs. carbohydrate-first,
without raising triglycerides in the same window (mixed-risk
adults; multiple small RCTs/crossovers; mixed meals typically

approximately 500-900 kcal; sampling 0-2-4 h) (207).

4.3 Macronutrient manipulation—quality
over quantity

Meta-analytic and crossover evidence (2020-2025) highlights
three levers:

- Swap refined carbohydrates for Monounsaturated Fatty
Fatty Acids (MUFA/PUFA).
Replacing approximately 10 percent of carbohydrate with

Acids/Polyunsaturated

monounsaturated/polyunsaturated fat reduces postprandial
glucose AUC by approximately 12 percent (adults with
mixed risk; umbrella meta-analysis of approximately 27
RCTs; standardized test meals approximately 500-800 kcal;
sampling 0-2/4 h) (208).

- Protein preload (“micro-pulses”). A small protein dose before
the meal blunts the early glucose rise; approximately 20 g whey
taken approximately 15 min pre-meal lowers glucose iAUC by
approximately 12 percent (T2D/healthy adults; randomized
crossover; mixed meals approximately 600-700 kcal; sampling
0-2 h) (209-211).
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Resistant  starch and fermentable

(RS) fiber. RS4
(phosphorylated wheat) acutely lowers incremental insulin
iAUC and attenuates the second-meal glucose peak, while RS2
(potato) over weeks reduces fasting glucose and free fatty acids
with modest, context-dependent postprandial improvements; a
practical intake range is 15-30 g/day (overweight adults; RS4:
n=15; two standardized high-carbohydrate meals ~600-
800 kcal; RS2: n=19; 12-week
randomized crossover; standardized mixed-meal test ~600-
800 kcal; sampling 0-300 min) (212-214).

sampling  0-180 min;

Shift refined-starch calories toward EVOO, nuts, and marine ©-3s;
consider a 10-20 g protein preload before high-carb meals; and
build RS-rich sides to boost butyrate and curb postprandial
endotoxemia. Combine with Section 3.2 timing tactics for drug-
like smoothing without pharmacotherapy.

4.4 Dietary bioactives and polyphenols—
rapid-response molecules

Plant-derived secondary metabolites can blunt oxidative,
inflammatory, and metabolic surges within min; with sustained
intake they also re-condition endothelial and Nrf2 defenses and
remodel the microbiome.

- Catechins + chlorogenic acids (acute, dose-response). In two
randomized studies in healthy men, co-ingestion of combined
catechins/chlorogenic acids produced a graded reduction in
early postprandial glycemia (150 and 300 mg vs. 0 mg),
supporting a practical pre-meal “rapid-response” strategy

(healthy men; cookie-/drink-based

up

randomized designs;

tolerance  tests;  capillary/plasma to

approximately 2 h) (215).

sampling

Anthocyanin-rich red raspberries. In adults with prediabetes/
insulin resistance, test meals containing 0, 125, or 250 g red
raspberries on separate days produced dose-dependent
metabolite changes with improvements in postprandial
the (adults with

prediabetes/insulin resistance; randomized crossover; three

glucose/insulin  dynamics across day
meals with 0/125/250 g frozen red raspberries; plasma
metabolites and glycemia 0-8 h and again at 24 h) (216).

(EGCG)
support).
kinetic model integrating human data predicts that colonic

Epigallocatechin gallate and Nrf2 pathway

(mechanistic/kinetic A physiologically based
metabolites of EGCG (e.g., gallic acid, pyrogallol) can reach
concentrations sufficient to activate Nrf2-regulated gene
expression in vivo, providing a mechanistic rationale for
antioxidant “pre-meal” strategies (model-based prediction;
fasting and non-fasting scenarios evaluated) (217).

Curcumin (longer-term). Meta-analysis of randomized trials
shows curcumin supplementation (~80-1,000 mg/day for >4
weeks) lowers fasting glucose and CRP and improves overall
glycemic indices—consistent with attenuation of chronic
postprandial stress across meals (mixed adult populations;
multiple RCTs; no standardized test meal; outcomes over
weeks to months) (218).
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For acute control, an approximately 150-300 mg catechin/
with
carbohydrate-rich meal can dampen early glycemic excursions

chlorogenic-acid mix taken or shortly before a
(0-2h). In carbohydrate-heavy contexts, adding anthocyanin-
rich fruit portions (e.g., red raspberries) to the meal supports
postprandial glucose handling across the subsequent 8-24 h. For
sustained conditioning of redox and inflammatory tone, multi-
week curcumin courses can complement dietary timing and

macronutrient strategies (Sections 3.2-3.3) (215).

4.5 surgical nutrition windows—pre-
operative “Metabolic Priming”

Pre-operative nutritional status predicts wound healing, length
of stay, and long-term outcomes after bariatric procedures. Two
elements are consistently actionable:

Micronutrient optimization. Many candidates present with
subclinical iron, vitamin D, or thiamine deficits; routine
screening and targeted repletion are recommended to
minimize postoperative deficiency-related morbidity (e.g.,
fatigue, hair loss), although precise effect sizes for symptom
reduction remain heterogeneous across studies (219, 220).

Very-low-calorie diet (VLCD) and Enhanced Recovery After
Surgery bundle. A 2-4-week protein-sparing VLCD reduces
liver volume by about 16-17 percent and improves operative
conditions; when embedded within an ERABS pathway,
programs typically report shorter length of stay (approximately
1-2 days) and fewer overall complications. (Adults with severe
obesity; VLCD 2-4 weeks; ERABS multimodal pathways) (221).

Treat the month before metabolic surgery as leverage—screen and
replete micronutrients, implement a short VLCD to debulk
hepatic fat while preserving lean mass, and apply ERABS
protocols to temper inflammation and accelerate recovery (222, 223).

4.6 Physical-activity “Snacks” & structured
exercise —turning skeletal muscle into a
second pancreas

Even brief muscle contractions stimulate GLUT4 translocation
and LPL activation. Breaking up sitting with 2-5 min bouts of
standing or light walking every 20-30 min lowers postprandial
glucose and insulin vs. uninterrupted sitting (adults with and
without T2D; k approximately 22 randomized trials; standardized
mixed meals approximately 500-900 kcal; sampling 0-2-3-4 h)
(224). In people with T2D, desk-work break protocols similarly
reduce postprandial glycemia and several studies report concurrent
decreases in postprandial triglycerides during standardized meal
(T2D  adults;
interventions every approximately 20-30 min during mixed-meal

tests systematic review of break-frequency
challenges; sampling 0-2-4 h) (225). Timing also matters: walking
performed after meals produces larger reductions in postprandial
glucose than the same walking done before meals (adults with

overweight/T2D; meta-analysis of randomized crossover trials;
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identical standardized meals approximately 500-700 kcal; sampling
0-2h) (226, 227). For intensity, high-intensity interval exercise
reduces postprandial glucose and insulin vs. control and can
outperform matched-work moderate-intensity exercise (mixed-risk
adults; multi-study meta-analysis; meal-based and glucose-load
protocols; outcome windows 0-2-4 h) (228). In practice: (i) stand
or stroll 2-3 min at least every 30 min; (ii) add a short, well-timed
bout within the first 2 h after eating (e.g., approximately 10 min of
moderate walking); and (iii) remember that timing often beats
duration—activity placed soon after a meal yields a larger
immediate metabolic payoff than a longer session done late at
night (implementation guidance from contemporary reviews)
(229-231). In practice, brief, well-timed bouts yield measurable
acute benefits across diverse populations; Table 2 summarizes
representative activity-snack prescriptions (2020-2025) and their
immediate metabolic effects.

5 Pharmacological and technological
advances —shrinking the postprandial
“Damage Window”

Over the last half-decade, the emphasis has shifted from
fasting targets to how quickly therapies flatten post-meal spikes.
monitoring (CGM) and
algorithmic feedback allow clinicians to match fast-acting tools

In parallel, continuous glucose

to the meals that need them most.

5.1 Pharmacological approaches that act
within two to four hours after a meal

- Enteroendocrine mimetics and co-agonists (human evidence).
Oral semaglutide lowers postprandial glucose exposure and
attenuates TRL-TAG responses in phase-III settings (T2D;
pooled phase-III meal-test substudies/post-hoc; standardized
mixed meals approximately 500-700 kcal; sampling 0-4 h)
(232). Tirzepatide (GLP-1/GIP) achieves comparable glucose
control with additional reductions in TRL measures (T2D;
SURPASS meal-test substudies/post-hoc; standardized mixed
meals approximately 500-700 kcal; sampling 0-4 h) (233).

- Adjunct glucose “shuttlers” (human evidence). Faster-aspart
reaches systemic circulation earlier than conventional rapid
analogs and improves early post-meal control with less late
hypoglycemia in CGM cohorts (T1D/T2D; real-world CGM,;
ad-libitum meals; 0-4 h CGM windows) (232). A single pre-
prandial dose of empagliflozin reduces the 0-2h glucose
excursion in randomized crossover designs (T2D adults;

5-25mg
standardized mixed meal
sampling 0-2-4 h) (234).

- Lipid-centric

randomized crossover; immediately pre-meal;

approximately ~ 500-700 kcal;

PCSK9
inhibition reduces postprandial remnant/TRL exposure when

modulators (human evidence).

added to background statins (T2D or mixed dyslipidemia;

randomized add-on; standardized fat-tolerance

sampling 0-4-6 h) (235).

tests;
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- Bile-acid signaling (preclinical). The dual FXR/TGR5 agonist
INT-767 lowers postprandial TAG in high-fat-diet models;
translation to clinical endpoints is ongoing (preclinical; HFD
mice; oral fat tolerance or mixed lipid challenges; sampling
approximately 0-4-6 h) (236).

- Gut-facing/dual-action tools (early human). LEAP-2 analogues
(ghrelin antagonism) show acute appetite suppression with
blunted glucose peaks in first-in-human testing (early human;
single/short-course dosing; standardized liquid meal or OGTT;
sampling approximately 0-2-4 h) (237). Endoscopic duodenal

(e.g.

postprandial glucose/insulin dynamics in early studies (pilot

devices mucosal resurfacing or sleeves) improve
human plus DIO-rat support; standardized mixed meal;

sampling approximately 0-2 h) (238).

Table 3
mechanisms, magnitude where reported in your sources, and

(unchanged in structure) summarizes acute
development stage for agents with 0-4h post-meal impact—

strictly aligned with refs (232, 234-238).

5.2 Digital therapeutics and Al-assisted
food coaching

CGM-guided, algorithm-predicted diets reduce time above
range and blunt 0-2h glucose rises in primary-care programs
vs. general advice, with high adherence due to actionable, real-
time nudges (45, 240). Integrating CGM into inpatient and
outpatient workflows reduces glycemic variability and unmasks
“silent” post-meal excursions that fasting tests miss (241-243).
Personalized postprandial targeting menus informed by
individual features (including microbiome signals) outperform
standard patterns for several glycemic metrics in selected

cohorts (155, 244).

5.3 Clinical implementation—linking
postprandial control to liver health

In MASLD, attenuating post-meal glucose/TRL/oxidative
surges is clinically relevant (245-247). A pragmatic sequence is:

1) Screen with TyG + non-fasting TAG or a simple TRL-TAG
curve;

2) prescribe a Mediterranean template with earlier energy
distribution plus brief post-meal activity;

3) if high postprandial burden persists, escalate with GLP-1/GIP
co-agonists or PCSK9 inhibitors;

4) repeat liver enzymes and a post-meal TAG assessment at
approximately 12 weeks to adjust therapy

6 Conclusions and future directions

Postprandial metabolism is now recognized as a network of
druggable nodes, extending from the gut lumen to the vascular
wall. Three key targets are gaining traction: the enterohepatic bile
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TABLE 3 Pharmacological agents that flatten the 0- to 4 h post-meal

window: dominant
development stage.

Class/agent(s)

Entero-endocrine
mimetics/co-agonists
Oral semaglutide
-Tirzepatide

Adjunct glucose
“shuttlers”
Faster-aspart—
Empagliflozin (pre-
meal)

Lipid-centric
modulators Alirocumab
(anti-PCSK9) INT-767
(dual FXR/TGR5)

Gut-facing/dual-action
tools LEAP-2 analog -
Endoscopic duodenal

sleeve

acute

mechanism,

Dominant acute
post-meal effect

Semaglutide lowers 4-h
glucose iAUC and TRL-
TAG iAUG; tirzepatide
achieves comparable
glucose control with
additional TRL reductions
(where reported) (233,
239).

Faster-aspart reaches
systemic circulation

~10 min sooner than
standard rapid analogs
and reduces late
hypoglycemia; single pre-
prandial empagliflozin
dose lowers early glucose
excursion (232, 234).

PCSK9 inhibition reduces
remnant/TRL exposure
post-prandially (human);
INT-767 lowers TAG
iAUC in HFD mice
(preclinical) (235, 236).

LEAP-2 analog blunts
glucose peaks without
hypoglycemia (early
human); duodenal sleeve
improves 2 h glucose/
insulin responses (pilot
human; DIO-rat support)
(237, 238).

key

efficacy data and

Key efficacy data
(design &
population)
Phase-III T2D programs
with meal-test substudies/

post-hoc analyses;
standardized mixed meals
~500-700 kcal; sampling
~0-4 h.

Real-world CGM cohorts
(T1D/T2D; ad-libitum
meals; 0-4 h CGM
windows) for faster-aspart.
Randomized crossover
(T2D adults; 5-25 mg
immediately pre-meal;
standardized mixed meal
~500-700 kcal; sampling
~0-2-4 h) for
empagliflozin.
Alirocumab: randomized
add-on in T2D/mixed
dyslipidemia; fat-
tolerance/mixed-meal
tests; sampling ~0-4-6 h.
INT-767: preclinical HFD
mouse models; lipid
challenge tests; sampling
~0-4-6 h.

LEAP-2: first-in-human;
standardized liquid meal/
OGTT; sampling ~0-2-

4 h. Sleeve: DIO-rat plus
pilot human; standardized
mixed meal; sampling ~0-
2h.

CGM, continuous-glucose monitoring; FIH, first-in-human; FXR, farnesoid X receptor;
polypeptide; HEFD, high-fat diet; iAUC,
incremental area-under-the-curve; PCSK9, pro-protein-convertase-subtilisin/kexin  9;
TAG, triacylglycerol; TRL, triglyceride-rich lipoprotein; T2D, T2D; TGRS, takeda
G-protein-coupled receptor 5.

GIP, glucose-dependent insulinotropic

acid loop, intracellular steroid and SUMO switches, and nutrient-
sensing GPCRs. Promising agents already in development reduce
mixed-meal triglycerides, reverse insulin resistance, and disrupt
lipogenesis and late-phase hyperinsulinemia.

Importantly, these post-meal metabolic surges are not only
but
inflammation, insulin signaling, and epithelial dysplasia. Early

cardiometabolic also  oncogenic  triggers—fueling
shifts in glucose and triglyceride waves, impaired thermogenesis,
and altered bile acid profiles are strong predictors of diabetes, fatty
liver, and vascular damage—often before fasting markers change.
Advanced multi-omics, real-time wearables, and Al pipelines
are transforming these insights into precision care. Emerging
tools now outperform classical risk scores, identify distinct
postprandial endotypes, and enable real-time interventions that

significantly reduce glycemic exposure. As these technologies
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scale, equity-centered frameworks will be essential to ensure
access, relevance, and impact across diverse populations.
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