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Background: Early-stage calcific aortic valve disease (CAVD) has been 

characterized by the infiltration of immune cells, reorganization of the 

extracellular matrix, and the deposition and oxidation of low-density 

lipoproteins (oxLDL). Worldwide studies have revealed that aortic valve 

disease accounts for up to 43% of patients exhibiting heart disease.

Methods: We utilized a CAVD-on-a-chip platform of the aortic valve fibrosa to 

assess the hypothesis that culture calcification will increase with endothelial cell 

presence, increased oxLDL concentration (25 μg/ml or 50 μg/ml), and shear 

stress (20 dyne/cm2). CAVD chips consisted of collagen I hydrogels with 

porcine aortic valve interstitial cells embedded and porcine aortic valve 

endothelial cells seeded on top of the matrix for up to two days.

Results: Here, we demonstrate that the presence of endothelial cells and shear 

stress drives alkaline phosphatase activity, sulfated glycosaminoglycan 

production, and the formation of mono-, di-, and octa- calcium phosphates, 

and hydroxyapatites. Two-day dynamic cultures showed 3D cell-oxLDL 

interactions, leading to extracellular matrix remodeling and endothelial 

dysfunction.

Discussion: Given that CAVD has no targeted intervention, continued evolution 

of this CAVD-on-a-chip model sheds light on mechanisms in disease onset and 

can lead to significant contributions in preclinical drug development.
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1 Introduction

Calcific aortic valve disease (CAVD) is the third most common heart disease in the 

Western world, following coronary heart disease and hypertension (1). CAVD is an active 

pathobiological process ranging from mild valve thickening (aortic sclerosis) to severe 

lea"et calcification (aortic stenosis) (2–4). Valve degradation begins with extracellular 

matrix (ECM) degradation when collagen and proteoglycans accumulate, and elastic 

fibers fragment and misalign. This fibrosis then causes the valve tissue to stiffen and 

eventually leads to restricted blood "ow (5, 6). The stiffening of the lea"ets is caused 

by the buildup of calcific nodules that form in the fibrosa layer and progress 

throughout (1). In vitro, CAVD has been described as a two-stage process: early-stage 
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and late-stage. Early CAVD has been characterized by the 

infiltration of immune cells, reorganization of the ECM, and the 

deposition of oxidized low-density lipoproteins (oxLDL) (6).

Given that there is no targeted therapy for CAVD on the 

market, researchers are investigating disease mechanisms in both 

onset and progression to develop new drug interventions. 

Clinical factors associated with CAVD include age, male gender, 

serum lipoprotein(a) and low-density lipoprotein levels, height, 

hypertension, metabolic syndrome, and smoking (4). The 

deposition and oxidation of lipoproteins have been 

characteristically used to define early-stage CAVD disease 

progression (7). Specifically, early calcium deposition is found 

adjacent to lipoproteins in deep regions of the fibrosa (8). 

Valvular lipid studies have focused on several types of 

lipoproteins found in disease progression: lipoprotein(a) (9, 10), 

lipopolysaccharides (LPS) (11, 12), lysophosphatidylcholine 

(LPC) (13, 14), and oxLDL (11, 12, 15). Examination of diseased 

pig valves in vivo suggests that glycosaminoglycans (GAG) 

enrichment and oxLDL deposition occur prior to immune cell 

infiltration, giving rise to valve pathological events (6). Further, 

Nadlonek et al. identified that oxLDLs stimulate toll-like 

receptors (TLRs)-2 and -4 and promote aortic valve calcification 

in human aortic valve interstitial cells (VICs) in vitro (11). Zeng 

et al. treated human VICs with LPS, oxLDL, or LPS and oxLDL 

for 48 h, and found that the LPS-oxLDL combined treatment 

increased bone morphogenetic protein-2 (BMP-2) and alkaline 

phosphatase (ALP) activity; thereby, demonstrating that 

lipoproteins augment the osteogenic responses through 

modulation of Notch1 and NFκB activation (12). Yu et al. also 

identified that a 48 h exposure of 50 μg/ml lipoprotein(a) to 

human aortic VICs resulted in increased cell proliferation and 

increased ALP activity, while three-week exposure significantly 

increased calcium deposition (9). Yamashita et al. reported that 

oxLDLs further increased calcium phosphate sediments in the 

formation of ectopic calcification (15). Bouchareb et al. studied 

the effect of autotaxin, which is transported by lipoprotein(a), 

and LPC on mineralization by stimulating the NFκB/ 

Interleukin-6(IL-6)/BMP pathway in VICs (13). Further, 

comparison of proteomic analysis of lipoprotein(a) proteome 

from aortic stenosis patients and transcriptomic analysis of 

explanted calcified valves identified the most enriched pathways 

involved cellular aging, chondrocyte development, and 

in"ammation (10). Wiltz et al. examined the effect of LPC, a 

bioactive lysophospholipid commonly found in low-density 

lipoproteins, on valvular cell mineralization, highlighting that 

aortic valvular cultures treated with LPC had increased 

phosphate mineralization, ALP activity, calcium content, and 

apoptosis (14).

Additionally, CAVD pathogenesis can induce abnormal 

hemodynamic forces and ECM remodeling, alter cell 

proliferation and morphology, and initiate apoptosis (1, 16–21). 

Early disease progression markers focus on ECM remodeling, 

specifically increased cell proliferation, and detection and 

accumulation of proteins (ex. BMP-2, ALP, and GAGs) (9, 12, 

22–27). ALP activity promotes calcification and mineralization 

by reducing pyrophosphate and osteopontin via hydrolysis (20, 

21, 28). For example, Rajamannan et al. demonstrated that an 

increase in ALP protein contributed to CAVD in human 

calcified tissues (25). Detection of proteoglycans rich in acidic, 

sulfated, and extracellular GAGs has been reported in 

cardiovascular calcifications, using histochemical reagents such 

as Alcian Blue (AB), Cuprolinic blue, and/or Cupromeronic blue 

(23). Porras et al. demonstrated that lipoprotein deposition 

increased VIC deposition of GAGs quantified via an AB assay, 

leading to in"ammatory activity and disease progression (6). 

Further, Dahal et al. and Bramsen et al. showed an increase in 

GAG and collagen-I production by mesenchymally-transformed 

endothelial cells (24, 26).

Here, we utilized a 3D micro"uidic platform of the aortic valve 

fibrosa layer to study the early onset of CAVD in two-day cultures. 

We assessed the hypothesis that culture calcification will increase 

with endothelial cell presence, increased oxLDL concentration, 

and shear stress. This hypothesis was tested by comparing static 

(no shear) and dynamic (20 dyne/cm2 shear stress) 3D hydrogel 

cultures via (1) quantitative analysis of ALP activity and GAG 

production normalized to protein content, (2) scanning electron 

microscopy with energy dispersive x-ray spectroscopy analysis 

(SEM/EDX), and (3) "uorescent microscopy.

2 Materials and methods

Fabricated as previously described in Mendoza et al., the 

CAVD-on-a-chip devices utilized soft lithography and plasma 

bonding, and contained an internal 3D hydrogel matrix (19). 

Disease progression was assessed using a colorimetric ALP 

assay, detection of sulfated GAG production via an AB assay, 

and SEM/EDX. oxLDL-cell interactions were examined with 

confocal microscopy. The following sections provide detailed 

materials and methods.

2.1 Device design and fabrication

Fabrication methods (19) and device design (29) have been 

previously described and characterized. Brie"y, the "ow channel 
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CAVD, calcific aortic valve disease; oxLDL, oxidized low-density lipoproteins; 
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was created using a fabricated silicon wafer mold by 

photolithography with HARESQ-50 (KemLab) negative 

photoresist. After which, 9:1 polydimethylsiloxane (PDMS) 

(Sylgard-184, Dow Corning) was used to cast against the silicon 

wafer mold to create the "ow channel and hydrogel chamber 

layers of the device. A corona discharge device was then used to 

permanently bond the PDMS layers with a "at glass substrate 

(Figure 1). Internal device surfaces were prepared using 50 μg/ 

ml poly-D-lysine (PDL) and 50 μg/ml Cell-TAKTM treatments 

prior to the introduction of biologics.

2.2 Primary cell culture

Models utilized porcine aortic valve interstitial cells (PAVIC) 

and/or porcine aortic valve endothelial cells (PAVEC) isolated 

from tissues obtained at local abattoirs, as previously described 

in the literature (30). PAVIC (passage 3–4) were grown in 

Dulbecco’s Modified Eagle medium (DMEM) (Gibco Life Tech) 

supplemented with 10% fetal bovine serum (FBS) (VWR) and 

1% penicillin-streptomycin (Gibco Life Tech). PAVEC (passages 

4–5) were grown in a 50 μg/ml collagen-I (COL-I)-coated "asks 

(Corning) in DMEM supplemented with 10% FBS, 1% 

penicillin-streptomycin, and 50 U/ml heparin sulfate (Sigma- 

Aldrich) prior to seeding experiments.

2.3 oxLDL integration

Fluorescent oxLDLs (Dil-oxLDL, ThermoFisher) were used to 

visualize cell-oxLDL interactions, and non-"uorescent oxLDLs 

(ThermoFisher) were used for non-imaging purposes at several 

concentrations. For static and dynamic experiments, COL-I was 

treated with 25 μg/ml, 50 μg/ml and 200 μg/ml Dil-oxLDL or 

non-"uorescent oxLDL (ThermoFisher) for two days prior to 

hydrogel fabrication and experimental set-up. Following oxLDL 

treatment of COL-I, hydrogels were fabricated with valve cells 

and incubated at 37 °C and 5% CO2 for up to 2 days. Hydrogels 

were washed 3 times with 1X phosphate-buffered saline (PBS), 

fixed with 4% paraformaldehyde (PFA) overnight, and washed 

again 3 times with 1XPBS. Samples were then permeabilized 

using 0.2% TritonX-100 (Sigma Aldrich) solution for 10 min, 

washed 3 times with 1XPBS, and stained with CellMaskTM Deep 

Red Plasma membrane stain (1:1,000 dilution) (ThermoFisher) 

and Hoechst 33432 DNA stain (5 μg/ml dilution) 

(ThermoFisher) for 1 h with gentle agitation. The staining 

mixture was removed and the gels were rinsed once with non- 

sterile 18 MΩ water prior to imaging. Hydrogels were imaged 

utilizing confocal laser scanning microscopy with a 40X water 

immersion lens (LSM 880, Zeiss).

2.4 Hydrogel fabrication

The 3D ECM was made by mixing a PAVIC pellet at 

1 × 106 cells/ml with sterile 3XDMEM, 18 MΩ water, FBS, 0.1 M 

sodium hydroxide (Sigma-Aldrich), and rat-tail COL-I 

(Corning) on ice, in corresponding order. Hydrogels consisted 

of 1.5 mg/ml COL-I-only healthy controls or 1.5 mg/ml COL-I 

with either 25 μg/ml or 50 μg/ml oxLDL concentration 

(ThermoFisher). Both static and dynamic conditions were used 

and were placed at 37 °C and 5% CO2 for up to two days. In 

static conditions, PAVIC-embedded 300 μl hydrogels were 

seeded into 50 μg/ml Cell-TAKTM pre-treated (Corning) 24-well 

plates (Corning). After one hour, PAVEC were seeded onto the 

matrix at 95,000 cells/cm2 in 400 μl PAVIC medium. In 

dynamic conditions, the PAVIC-embedded (1 × 106 cells/ml) 

hydrogel was injected into the pre-treated PDMS middle layer 

FIGURE 1 

Experimental methods of static and dynamic aortic valve fibrosa model.
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utilizing a 23G sterile needle (BD) and allowed to crosslink for one 

hour. PAVEC (95,000 cells/cm2) were introduced onto the matrix 

via microchannel inlet and allowed to attach for 4 h prior to the 

"ow initiation. Each device was then connected to a peristaltic 

pump (205S, Watson Marlow) using 0.51 mm inner diameter 

tubing (Cole-Palmer) and 0.79 mm inner diameter connector 

tubing (Cole-Palmer). Steady shear stress of 20 dynes/cm2 was 

applied to the top of the matrix by controlling the "ow rate. 

A recirculating 500 μl reservoir of PAVIC medium was used to 

maintain dynamic cultures.

2.5 ALP activity assay

Early disease progression markers were assessed using ALP 

activity assay after two-day static and dynamic cultures. Hydrogels 

were washed three times with 1XPBS and individually digested in 

400 μl of collagenase solution at 37 °C and 5% CO2. Collagenase 

solution was prepared sterilely using collagenase type II 

(Worthington Biochem) at 600 units/ml in DMEM (Gibco). Once 

fully digested, samples were microcentrifuged at 106 × g for 5 min, 

the supernatant was removed, and the pellet was resuspended in 

1XPBS and microcentrifuged at 106 × g for 5 min again. 

Subsequently, 1XPBS supernatant was removed and samples were 

resuspended in 100 μl of sterile 18 MΩ water. Samples were 

subjected to bath sonication at 4 °C for 15 min, during which a p- 

Nitrophenyl Phosphate (pNPP) solution was made utilizing one 

pNPP tablet (Sigma-Aldrich) and one Tris buffer tablet (Sigma- 

Aldrich) dissolved in 5 ml of 18 MΩ water. A standard calibration 

curve was made using a serial dilution of 10 mg/ml p-nitrophenol 

(4-nitrophenol, Sigma-Aldrich) solution in 18 MΩ water into 

pNPP solution. Using a 96-well plate, 85 μl of pNPP solution was 

added to each well, and 25 μl of each standard solution in 

triplicate or sonicated sample lysate was added to each well. The 

microwell plate was incubated at room temperature for one hour, 

after which colorimetric detection of p-nitrophenol was assessed 

using a plate reader at 405 nm in Gen5TM (Synergy 2, BioTek). 

The standard curve was further utilized to detect mg/ml of p- 

nitrophenol in samples and normalized to the Bradford assay to 

obtain mg of p-nitrophenol per mg of cell protein.

2.6 Bradford assay

A Bradford assay was performed to determine the 

concentration of cell protein in each sample, and to normalize 

ALP activity and AB results. Negative controls were assessed, 

where static COL-I control hydrogels were 300 μl in a 24-well 

plate and dynamic COL-I control hydrogels were 100 μl in a 

96-well plate without cells and with varying concentrations of 

oxLDLs (0 μg/ml, 25 μg/ml, 50 μg/ml). Remaining sample lysate 

from the ALP procedure was sonicated for an additional 15 min 

at 4 °C for the detection of protein. A standard calibration curve 

was made using a serial dilution of 1 mg/ml bovine serum 

albumin (VWR) in 18 MΩ water into Bradford reagent (Sigma- 

Aldrich). Using a 96-well plate, 250 μl of Bradford reagent was 

added to each well, and 5 μl of each standard solution in 

triplicate or sonicated sample lysate (30 min total) was added to 

each well. The microwell plate was incubated at room 

temperature for 15 min, after which colorimetric detection of 

protein was assessed using a plate reader at 595 nm. The standard 

curve was then utilized to detect mg/ml of cell protein in samples.

2.7 AB quantification assay

Early disease progression markers were assessed using an AB 

assay for the detection of sulfated glycosaminoglycan production 

in culture medium (6, 31). Following the two-day cultures, static 

culture medium and dynamic culture medium were collected 

from the well plate or the recirculating reservoir, respectively. A 

10 mg/ml AB (8GX, Alfa Aesar) solution was prepared using a 1/ 

100 dilution of AB into 3% acetic acid (Amresco). The pH was 

adjusted to 2.5, and a fresh working solution was made for every 

assay: 10% of the stock solution with 0.25% of TritonX-100 

(Sigma Aldrich). Medium samples were stained with 100 μl of 

working solution and microcentrifuged for 10 min at 20,800 × g 

and 4 °C. After aspirating the supernatant, the pellet was 

dissolved in 500 μl of 5 M hydrochloric acid for 10 min at room 

temperature. The pellets were then subjected to resuspension 

using pipetting and vortex, and again microcentrifuged for three 

minutes at 20,800 × g and 4 °C. A standard calibration curve was 

made using a serial dilution of 10 mg/ml AB in 3% acetic acid. 

Using a 96-well plate, 150 μl of each standard in triplicate and 

150 μl of sample supernatant was added to each well. 

Colorimetric detection of AB was assessed using a plate reader at 

600 nm. The standard curve was then utilized to detect mg/ml of 

AB in samples and normalized to the Bradford assay to obtain 

mg of AB per mg of protein.

2.8 SEM/EDX

As previously described in Mendoza et al. (19), disease 

progression was also assessed with SEM/EDX, an imaging and 

spectroscopy technique used to analyze microstructure and 

elemental composition (19, 32–35). Following two days of 

experimentation, static and dynamic hydrogels were washed three 

times with 1XPBS, fixed with 4% PFA overnight, and washed again 

3 times with 1XPBS. Samples were subjected to ethanol (Koptec) 

dehydration for 20 min from 50% ethanol in 18 MΩ water to 100% 

ethanol. Samples were then subjected to Hexamethyldisilazane 

(HMDS) (Sigma-Aldrich) dehydration for 20 min in each 

concentration (1:2 HMDS:100% ethanol, 2:1 HMDS:100% ethanol, 

100% HMDS) prior to final 100% HMDS immersion and were left 

overnight until the sample dried out in the fume hood. Samples 

were mounted onto aluminum sample holders with carbon tape 

(Electron Microscopy Sciences) and prepared with at least 15 nm of 

fresh carbon sputter (Cressington 208C, Ted Pella). Samples were 

imaged under SEM (FE-SEM Supra-55 VP, Zeiss) with the 

following parameters: 3–5 kV, 6–8 mm working distance, and the 

In-Lens detector. Images were obtained of calcified nodules, as well 
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as of endothelial cells, to study the effect of oxLDLs on endothelial 

dysfunction of the cell membrane (2, 36–39). Images of individual 

cells (n ≥ 3) were used to further analyze membrane pore frequency, 

percent area of pores compared to the entire cell area, and 

individual pore areas with ImageJ Particle Analysis tool (40). EDX 

(Octane Elect Super C5) analyses were performed with the 

following SEM and software (EDAX APEX Advanced, Ametek) 

parameters: 15 kV, 15 mm working distance, and 10%–40% dead 

time. Data represented as n ≥ 17 measurements per condition in 

atomic percent (At%) and calculations of At% Ca/P were used to 

quantify calcium phosphate mineralization.

2.9 Fluorescent staining and imaging

Following two-day experimentation with 25 μg/ml or 50 μg/ 

ml Dil-oxLDL, hydrogels were washed three times with 1XPBS, 

fixed with 4% paraformaldehyde (PFA) overnight, and washed 

again three times with 1XPBS. Samples were then permeabilized 

using 0.2% TritonX-100 (Sigma Aldrich) solution for 10 min, 

washed three times with 1XPBS, and all cells (PAVIC-only and 

PAVIC + PAVEC) were stained with CellMaskTM Deep Red 

Plasma membrane stain (1:1,000 dilution) (ThermoFisher) and 

Hoechst 33432 DNA stain (5 μg/ml dilution) (ThermoFisher) 

for one hour with gentle agitation. Staining mixture was 

removed and gels were rinsed once with 18 MΩ water prior to 

imaging. Hydrogels were imaged utilizing confocal laser 

scanning microscopy with a 40X water immersion lens (LSM 

880, Zeiss). Z-stacks were used to demonstrate orthogonal cross- 

sections of oxLDL uptake by valvular cells.

2.10 Statistical analysis

All data was presented as mean ± standard error of the mean 

(SEM), unless otherwise specified. Due to the small sample sizes 

and the use of ratios, Mann–Whitney tests were used to compare 

the rankings of ALP activity or GAG production relative to protein 

content control between static and dynamic conditions in varying 

experimental conditions. Kruskal–Wallis tests with Dunn’s 

Multiple Comparisons post-hoc tests were used to compare Ca/P 

ratios and the characteristics of endothelial pores across multiple 

experimental conditions. A *p < 0.05 was considered statistically 

significant. Sample size for each experimental condition was 

specified in the methods and figure legends. Analyses were 

conducted in GraphPad Prism 8 (GraphPad).

3 Results

3.1 Shear stress drives ALP activity and 
sulfated GAG production

Early disease progression markers, such as ALP activity 

detection and sulfated GAGs released into the media via AB 

detection, were assessed after two days in static and dynamic 

(20 dyne/cm2) samples. Increased ALP activity was detected at 

20 dyne/cm2 compared to static controls, specifically in the 

presence of endothelial cells. However, the increase of oxLDL 

concentration inhibited ALP activity relative to protein content 

(Figures 2A–F). Similarly, sulfated GAG production relative to 

protein content detected in the medium increased in the 

presence of shear and endothelial cells but decreased as oxLDL 

concentration increased, except in the presence of 50 µg/ml 

oxLDL. The reduction in relative GAG production as oxLDL 

concentration increased was most pronounced in dynamic 

conditions (Figures 2G–L). Both ALP activity and GAG 

production were normalized to protein content controls 

containing the corresponding lipoprotein content, collagen 

hydrogel volume, and dynamic conditions; Supplementary 

Figure S1 demonstrates protein quantification via the Bradford 

assay, confirming increased protein concentration with 

increasing lipoprotein concentration in dynamic cultures.

3.2 SEM/EDX reveals hydroxyapatite 
formation in two-day dynamic cultures

SEM/EDX was utilized to characterize culture calcification via 

calcium and phosphorous At%. SEM demonstrated that nodule 

microstructures were found embedded within the fibrous 

collagen matrix and localized around fiber bundles (Figure 3A). 

Qualitatively, increased calcified nodule formation was found in 

PAVIC + PAVEC cultures compared to PAVIC-only cultures, 

and with increasing oxLDL concentration. Supplementary 

Figure S2 demonstrates EDX analysis of dynamic conditions 

with and without endothelial cells and increasing oxLDL 

concentration. Spectra revealed the presence of several elements: 

carbon, silicon, aluminum, nitrogen, oxygen, calcium, 

phosphorous, and sulfur. Measurements indicated that the 

combination of 50 µg/ml oxLDL and shear in co-culture models 

resulted in significantly higher calcium and phosphorous 

content than in any other experimental condition (Figures 3B, 

C). Supplementary Figure S3 demonstrates elemental 

percentages of calcium and phosphorous for each condition, 

highlighting the compounding effect of oxLDL integration and 

the presence of shear stress. Ca/P ratios of EDX At% were 

calculated and plotted against a variety of well-studied 

pathological calcium phosphates leading to hydroxyapatite (Ca/ 

P = 1.67) formation (Figures 3D,E). As previously described, Ca/ 

P ratios were composed of a variety of calcium phosphates. In 

PAVIC-only cultures, static Ca/P ratios aligned with 

monocalcium phosphates (Ca/P = 0.5) and steadily increasing 

mineralization with increased oxLDL concentration. Dynamic 

Ca/P ratios aligned with dicalcium phosphates (Ca/P = 1.0) 

and octacalcium phosphates (Ca/P = 1.33): Ca/P = 0.879 ± 0.043 

for control, Ca/P = 1.116 ± 0.054 at 25 µg/ml oxLDL, and 

Ca/P = 1.119 ± 0.073 at 50 µg/ml oxLDL (Figure 3D). In 

PAVIC + PAVEC cultures, static Ca/P ratios similarly aligned 

with monocalcium phosphates. Dynamic Ca/P ratios aligned 

with dicalcium phosphates, octacalcium phosphates, and 

hydroxyapatite increasing Ca/P with increasing oxLDL 
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concentration: Ca/P = 0.811 ± 0.051 for control, Ca/ 

P = 1.445 ± 0.050 at 25 µg/ml oxLDL, and Ca/P = 1.689 ± 0.026 at 

50 µg/ml oxLDL (Figure 3E).

3.3 Fluorescent imaging demonstrates 
porcine cell-oxLDL interactions

Dil-conjugated oxLDLS were used to visualize oxLDL 

interactions with PAVIC-only and PAVIC + PAVEC co-cultures. 

Supplementary Figure S4 demonstrates that preliminary confocal 

imaging of co-cultured valve cells with a 200 µg/ml oxLDL 

concentration oversaturated porcine cell cultures, leaving 25 µg/ 

ml and 50 µg/ml as experimental conditions. Further, 

Supplementary Figure S4B shows preliminary findings indicating 

that porcine cells remained viable in the high experimental 

conditions (50 µg/ml) in both static and dynamic co-cultures as 

shown by no cytotoxic effects in a Live/Dead assay. 

Qualitatively, "uorescent imaging demonstrated that when 

oxLDLs are cultured either with PAVIC alone or in 

PAVIC + PAVEC co-cultures, cells within the 3D matrix uptake 

these oxLDLs over two days in both static and dynamic systems 

(Figure. 4).

3.4 oxLDL treatment leads to endothelial 
dysfunction

SEM images were obtained of endothelial cells from 

PAVIC + PAVEC co-cultures in both static and 20 dyne/cm2. 

Qualitatively, images indicated an increase in the presence of 

pores, or small holes in the plasma membrane, as a result of 

increasing oxLDL concentration (Figure 5A). Quantitatively, 

ImageJ was used to count the frequency of pores, the total 

average percent area of pores compared to the total area of each 

cell, and the area of each individual pore. In both static and 

dynamic conditions, endothelial pores were found to be more 

frequent, increased in size, and take up higher % of cell area, as 

oxLDL concentration increased. Overall, in the presence of shear 

and increased oxLDL concentration, pores were more frequent 

and larger in size (Figures 5B–D).

4 Discussion

This study builds upon foundational work previously 

published in Mendoza et al. (19), involving the implementation 

of the CAVD-on-a-chip model to study cellular interactions 

FIGURE 2 

Early disease progression markers after 2 days in culture: static and dynamic collagen hydrogels with PAVIC and PAVIC/PAVEC co- culture. (A–F). 

Alkaline phosphatase activity normalized to protein content via Bradford assay (G–L). Sulfated glycosaminoglycan production and release into 

culture medium detected with Alcian Blue and normalized to protein content via Bradford assay. Data shown as mean ± SEM, where static (n ≥ 5 

samples) and dynamic (n = 3 samples), and statistical significance shown according to two-sided Mann–Whitney test, *p < 0.05. (PAVIC, porcine 

aortic valve interstitial cells, PAVEC, porcine aortic valve endothelial cells, oxLDL, oxidative low-density lipoproteins).
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FIGURE 3 

Hydroxyapatite formation qualification and quantification in both static and microfluidic cultures after 2 days, PAVIC-only and when co-cultured with 

PAVEC. (A). Scanning electron microscopy (SEM) qualitative images with arrows indicating the presence of smaller nodules (scale = 500 nm). Energy 

dispersive x-ray spectroscopy (EDX) calcium and phosphorus elemental atomic percentages (At%) for (B). PAVIC-only and (C). PAVIC + PAVIC co- 

cultures, where Mean ± SEM, n ≥ 18 measurements per sample, and statistical significance shown in Supplementary Figure S3. Calcium phosphate 

mineralization based on EDX At% (D). PAVIC-only and (E). PAVIC + PAVEC co- cultures, where monocalcium phosphate calcium to phosphate 

ratio (Ca/P) = 0.5, dicalcium phosphate Ca/P = 1.0, octacalcium phosphate Ca/P = 1.33, and hydroxyapatite Ca/P = 1.67, Mean ± SEM, n ≥ 18 

calculations per sample, and statistical significance shown according to Kruskal–Wallis with Dunn’s multiple comparisons post-hoc test, 

*p < 0.05. (PAVIC, Porcine aortic valve interstitial cells; PAVEC, Porcine aortic valve endothelial cells; oxLDL25, 25 µg/ml oxidative low-density 

lipoproteins; oxLDL50, 50 µg/ml oxidative low-density lipoproteins; Ca/P, calcium to phosphorous ratio).
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with lipoprotein deposition leading to potential disease 

progression. Here, we demonstrated that 50 µg/ml oxLDL 

treatment, 20 dyne/cm2 shear, and endothelial cell presence over 

two days resulted in hydroxyapatite formation within the model.

Lipoprotein deposition and oxidation are characteristic early 

predictors for CAVD onset (6). Several lipoproteins studied in 

valvular disease progression are lipoprotein(a), LPS, LPC, and 

oxLDL (9–15). As described in this study, we sought to identify 

the effect of oxLDL deposition on the development of 

calcification seen in vitro in early CAVD. Porras et al. (in vitro 

and in vivo mice), Nadlonek et al. (in vitro human), Yamashita 

et al. (ex vivo bovine), Cote et al. (in vivo human), and 

Syvaranta et al. (ex vivo human) utilized human-derived or 

recirculating oxLDL to understand the development valvular 

pathological events (6, 11, 15, 41, 42). Interestingly, Zeng et al. 

demonstrated that a combination treatment of oxLDL with LPS 

increased BMP, Notch1, and NFκB activation, and increased 

ALP activity in human VICs (12). LPC is formed during 

lipoprotein oxidation and constitutes up to 40% of the lipid 

content found in oxLDL (43). Bouchareb et al. (13), Wiltz et al. 

(14), and Wilson et al. (44) revealed that this bioactive molecule 

is capable of driving mineralization through increased 

deposition of calcium, increased ALP activity, and increased 

apoptosis in VIC cultures (16, 17, 45). Yu et al. studied the 

effects of lipoprotein(a) deposition on human VICs, showing 

similar increased ALP activity in vitro (9). In this model, we saw 

that ALP activity normalized to protein content decreased with 

increasing concentrations of oxLDL content in both static and 

dynamic cultures. We believe this is because the upregulation of 

osteogenic factors, such as ALP, is linked to the onset and 

progression of CAVD (9, 12, 14, 25, 45, 46) rather than 

mineralization, which was evident in our model. Mathieu et al. 

FIGURE 4 

Static and dynamic oxLDL-cell interactions after 2 days in culture with PAVIC and PAVIC + PAVEC co-culture. Key: Plasma membrane 

(CellMask = Red), DNA (Hoechst = Blue), oxLDL (Dil-oxLDL = Yellow). (scale = 50 µm, highlighted box then zoomed into show individual cells 

orthogonally). (COL-I, Collagen-I; PAVIC, porcine aortic valve interstitial cells; PAVEC, porcine aortic valve endothelial cells; oxLDL, oxidative low- 

density lipoproteins).
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supplemented cells from isolated ex vivo human calcified tissue 

with organic phosphates and induced calcification (46); this 

study further identified a strong correlation between 

mineralization and ALP activity. Alternative ALP detection 

methods can also be explored, given that the enzymatic activity 

assay described here resulted in minimal detection: immuno- 

gold labelling followed by SEM imaging (25), a Alkphase-B 

assay kit for electrophoresis (45), colorimetric assay kit for 

detection of ALP in the medium (9), cytochemical staining (12), 

or a "uorometric assay kit such as SensoLyte® (14).

ECM production was also probed as an early disease 

progression marker. Yu et al. demonstrated that 48 h lipoprotein 

(a) treatment of human aortic VICs increased cell proliferation, 

intracellular and extracellular ALP activity, and ECM production 

(9). Specifically, GAG enrichment is an early hallmark for aortic 

valve disease (6, 22, 47). Porras et al. found the presence of 

significant lea"et thickening caused extensive ECM remodeling 

(ex. collagen disorganization, proteoglycan enrichment, and 

elastin fragmentation), lipid oxidation, and macrophage 

infiltration in ex vivo swine aortic valve tissue with familial 

hypercholesterolemia (22). Furthermore, another study by Porras 

et al. identified a positive feedback loop driving further GAG 

enrichment both in an in"ammatory response and in VIC 

activation (6). Similar to that of ALP activity in this model, 

sulfated GAG production normalized to protein content 

decreased with increasing oxLDL content in both static and 

dynamic cultures, indicating a link between GAG deposition 

and early formation of mineralization.

Preliminary static work required the understanding of 

lipoprotein integration into the in vitro COL-I hydrogel 

platform: concentration-dependence (25, 50, or 200 µg/ml 

oxLDL), pre-treatment (48 h treatment of collagen prior to 

fabrication of hydrogels) vs. same day integration (introduction 

during hydrogel fabrication), spatial heterogeneity of 

lipoproteins, and method of in vitro oxidation. Studies have 

investigated oxLDL binding affinity to several ECM proteins, 

such as varying collagen types, laminin, fibronectin, and PDL. 

Jimi et al. described that copper-oxidized low-density 

lipoproteins (LDLs) had a higher binding affinity to individual 

matrix proteins compared to human native LDL (non-oxidized); 

this study also characterized that oxLDL binds more to type I 

(52%) and type III (48%) collagens when compared to type IV 

(35%) and V (13%) in two days (48). Greilberger et al. and Jimi 

et al. suggested that the negative charge of oxLDL allows it to 

bind to positively-charged regions of collagen (48, 49). Kalant 

et al. further indicated that LDL-collagen binding is 

FIGURE 5 

Endothelial dysfunction in static and dynamic PAVIC + PAVEC co-culture with oxLDL after 2 days. (A). Scanning electron microscopy (SEM) qualitative 

images with arrows indicating the presence of smaller nodules (scale = 1 µm). Quantification of endothelial dysfunction as shown by (B). Frequency 

of endothelial pores, (C). Average percent area of pores compared to total cell area, and (C). Area (µm2) of individual pores measured (n ≥ 400 

measurements), where Mean ± SEM, n ≥ 3 images of cells analyzed, and statistical significance shown according to Kruskal–Wallis with Dunn’s 

multiple comparisons post-hoc test, *p < 0.05. (PAVIC, Porcine aortic valve interstitial cells; PAVEC, Porcine aortic valve endothelial cells; 

oxLDL25, 25 µg/ml oxidative low-density lipoproteins; oxLDL50, 50 µg/ml oxidative low-density lipoproteins).
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considerably decreased when cultured with DMEM due to the 

presence of histidine in the medium (50). This could definitely 

explain why pre-treatment (48 h) of rat-tail COL-I prior to 

fabrication of hydrogels has higher binding affinity compared to 

direct integration into hydrogel matrix, which contains a 3X 

DMEM solution. Moreover, the oxLDLs used in this study were 

commercially available oxLDLs (ThermoFisher) isolated from 

human plasma and experimentally oxidized using a copper- 

mediated process. Although copper-oxidation is most widely 

used, Horl et al. alternatively explored a novel ozone-oxidation 

method (51). Further, oxidative modification of LDL can also be 

generated using different metal ions, reactive oxygen species 

(ROS), lipoxygenase, and myeloperoxidase (52). Future 

implementation of isolated lipoprotein could explore such 

methods for oxidation prior to incorporation in the model. As 

such, there are several considerations necessary for lipoprotein 

integration, binding affinity, and oxidation methods for in vitro 

oxLDL studies.

Within the CAVD-on-a-chip models, this study identified the 

formation of hydroxyapatite mineralization. As previously 

described, hydroxyapatites are common mineralization found in 

the pathological deposition of minerals and organic compounds 

of diseases and have a Ca/P of 1.67 (19, 35, 53, 54). 

Examination of ex vivo human calcified aortic valve tissue 

revealed that calcifications are composed of a variety of calcium 

phosphates: monocalcium phosphates (Ca/P = 0.5), dicalcium 

phosphates (Ca/P = 1), and octacalcium phosphates (Ca/ 

P = 1.33), leading to hydroxyapatite formation (33, 55, 56). 

Mendoza et al. explored the use of the CAVD-on-a-chip 

platform to drive calcification in vitro, where hydroxyapatite 

mineralization was not found regardless of culture time. 

However, here, the introduction of oxLDLs was capable of 

leading to hydroxyapatite creation in just two days without the 

need for in"ammatory cytokines (ex. TGFβ or TNFα), and/or 

osteogenic medium (3, 6, 17, 29, 34, 57). Still, a combination 

approach using chondroitin sulfate, as studied previously, and 

oxLDL, as studied here, could be further investigated (24, 26). 

Additionally, this study analyzed culture changes in only 2 days; 

future work can look to extend culture time and further drive 

disease progression.

Our previous study indicated that 20 dyne/cm2 shear could 

induce high mineralization content (19); therefore, further 

analysis was performed to compare static to shear. Aortic valve 

endothelial cell layers are responsible for providing mechanical 

strength, elasticity, and structural integrity to withstand 

hemodynamic forces (39, 58). Models of arterial LDL 

accumulation demonstrated that endothelial permeability to LDL 

uptake is proportional to the LDL surface concentration and 

magnitude of shear stress, suggesting that shear stress-induced 

biological changes can affect LDL accumulation in vitro (59, 60). 

Specifically, shear related-endothelial to mesenchymal 

transformation (EndMT) has been seen in oxLDL-induced 

disease models. Kim et al. found that human aortic endothelial 

cells and atherosclerotic-prone apolipoprotein E-deficient mice 

tissues underwent radiation-induced induced EndMT that was 

then further accelerated by the deposition of oxLDL (61). 

Additionally, Yang et al. demonstrated that conditioned medium 

with cytokines released from oxLDL-treated M1 macrophages 

drove EndMT in human aortic atherosclerotic plaques and 

increased endothelial permeability (62). Although not studied 

here, previous in vitro (19, 24, 26) and computational (27) 

studies demonstrated that EndMT results in activated 

myofibroblastic phenotypes that remodel the ECM, causing 

fibrosis and calcification to occur closer to the endothelial cell 

layer. This model demonstrates early detection of shear related- 

EndMT as a potential mechanism driving endothelial 

permeability and matrix remodeling.

Furthermore, we also demonstrated evidence of endothelial 

dysfunction in cultures exposed to oxLDL treatment and in the 

presence of shear stress (20 dyne/cm2). Both qualitatively and 

quantitatively in SEM micrographs, we found evidence of 

endothelial injury characterized by fenestrations in their cell 

membranes. In a liver cell study with oxLDL treatment, Zhang 

et al. characterized how oxLDL similarly induced endothelial 

membrane injury through ROS formation and NFκB activation 

(36). Mundi et al. published a comprehensive review on the 

interaction between LDL and the endothelium, and driving 

cardiovascular disease (37). In vivo, lipoprotein trans-endothelial 

passage is identified by the glycocalyx, a dense matrix layer of 

glycoproteins, proteoglycans, and GAGs on the endothelial 

surface, and LDL then crosses the endothelium through 

vesicular transcytosis (37). In vivo studies in rats indicated that 

LDL also crosses the endothelium through “leaky junctions,” an 

inter-junctional space, associated with dying and dividing cells, 

and contributing to aortic endothelial permeability found in 

atherosclerosis (37, 63). Although most studies related to 

endothelial dysfunction focus on atherosclerosis, few studies 

look to explore endothelial stability, integrity, and function in 

CAVD (2, 39, 64). Poggianti et al. carried out a clinical 

systematic study indicating a strong correlation between aortic 

sclerosis and systemic endothelial dysfunction via endothelium- 

dependent, "ow-mediated dilation of the brachial artery (65). 

The analysis of explanted human calcified aortic valves 

performed by Matsumoto et al. revealed a pathological link 

for the destruction of VECs with decreased levels of endothelial 

progenitor cells and an increase in senescence-associated 

β-galactosidase activity (64). Similarly, immunohistology or 

immunocytochemistry could be used to study changes in a 

disrupted endothelial layer (64). Tompkins et al. demonstrated 

that LDL and albumin molecular transport in aortic valves (in 

vivo rabbits and monkeys) is mediated by trans-endothelial 

permeability (38). Yang et al. tested endothelial dysfunction by 

culturing an endothelial monolayer with "uorescent dextran and 

analyzed permeability using "uorescent plate reading (62). 

Likewise, future work could benefit from further characterization 

of the PAVEC monolayer permeability as related to oxLDL 

treatment and spatial deposition of calcification.

Additionally, increased oxidative stress has been identified as a 

cardiovascular risk factor affecting endothelial permeability. 

Oxidative stress, caused by the imbalance of ROS production 

and antioxidants in vivo, has led to the initiation of 

atherosclerotic plaque formation (52). As described in the 
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results, in both static and dynamic models, an increased 

concentration of oxLDLs present in the culture increased the 

endothelial cell pore frequency and size. Similarly, studies have 

reported the expression of osteogenic differentiation markers 

when VICs were treated with lipoproteins causing ROS-mediated 

calcification and demonstrating that ROS plays a vital role in the 

initiation and propagation of CAVD (66). Valente et al. 

concluded that oxLDL and LPC further enhanced the generation 

of superoxides in endothelial cells (43). Additionally, Dandapat 

et al. found that oxLDL integration increased the expression of 

NADPH oxidase and intracellular ROS generation in human 

coronary artery endothelial cells (67). Branchetti et al. artificially 

exposed human VICs to hydrogen peroxide, reporting that ROS 

resulted in the expression of RUNX2, an osteogenic signaling 

molecule, and DNA damage (68). Similarly, Salemizadehparizi 

et al. reported that co-cultured VICs and VECs exposed to ROS 

increased calcium concentration suggesting VEC-VIC crosstalk 

in"uences nodule maturation (69). Our study establishes a 

preliminary connection between endothelial presence and 

permeability, and oxidative stress in vitro. Additional studies are 

required to explore the interaction between lipoprotein deposition 

and oxidation, oxidative stress, and early CAVD.

This micro"uidic platform is capable of withstanding high 

shear (20 dyne/cm2) and integrating oxLDL into the COL-I 

matrix. Building upon previously published work, this model 

found that oxLDL accumulation drives excess deposition of 

calcium and phosphate and thereby generating hydroxyapatite 

formation. The key takeaways of this study are: (1) oxLDL 

integration into a 3D micro"uidic CAVD modeling platform, 

(2) generation of human-like calcification varying in calcium 

phosphate mineralization, including hydroxyapatites in 2 days 

under shear conditions, (3) porcine cells were able to uptake 

oxLDL in vitro, (4) the model showed evidence of dynamic 

endothelial dysfunction. Given that CAVD has no targeted 

therapeutic intervention, continued evolution of this model can 

lead to significant contributions in preclinical drug development.
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