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Background: To explore new therapeutic targets and strategies for atrial 

fibrillation (AF) by analyzing gene expression profiles of AF patients using 

machine learning techniques combined with transcriptomic data, and to 

uncover the potential molecular mechanisms underlying AF.

Methods: Transcriptomic datasets associated with AF were obtained from the GEO 

database. After batch effect removal and normalization, differential gene 

expression analysis was performed to identify differentially expressed genes 

(DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 

(KEGG), and Disease Ontology (DO) enrichment analyses were conducted to 

explore the functions and pathways of these DEGs. Three machine learning 

algorithms, Least Absolute Shrinkage and Selection Operator (LASSO), Support 

Vector Machine—Recursive Feature Elimination (SVM-RFE), and random forest 

(RF), were applied to screen key genes related to AF. A nomogram model was 

developed based on the identified key genes, and its diagnostic performance 

was evaluated. Single-cell transcriptome analysis was performed to investigate 

the cell-type-specific expression patterns of these key genes. Finally, Real-time 

PCR (RT-qPCR) and western blot (WB) analyses was performed on right auricular 

tissue from patients with atrial fibrillation and control samples.

Results: A total of 64 DEGs were identified, including 27 upregulated and 37 

downregulated genes. Enrichment analyses revealed that these genes were 

involved in biological processes such as positive regulation of muscular systemic 

processes, immune responses, and calcium signaling pathways. Three machine 

learning algorithms identified six key genes for AF. The nomogram model based 

on these six genes demonstrated excellent diagnostic performance with an AUC 

of 0.97. Single-cell transcriptome analysis showed specific expression patterns of 

these key genes in different cell types. Additionally, immune infiltration analysis 

indicated changes in the immune microenvironment in AF patients. qPCR and 

WB analyses also indicated that the differences in mRNA and protein expression 

levels of these six molecules between the control group and the atrial fibrillation 

group were consistent with the results of transcriptome analysis.
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Conclusion: This study provides new insights into the molecular mechanisms of AF 

and offers potential non-invasive biomarkers for AF diagnosis. The identified key 

genes and constructed model may facilitate the development of targeted 

therapies for AF.

KEYWORDS

atrial fibrillation, machine learning, single-cell, bulk transcriptomes, therapeutic targets, 

network physiology

Introduction

Atrial fibrillation is one of the most common sustained 

arrhythmias in clinical practice, with its prevalence showing a 

steady upward trend (1, 2). AF not only significantly impairs 

patients’ quality of life but also markedly increases the risk of severe 

complications such as stroke and heart failure, imposing a 

substantial economic burden on patients, families, and society (3).

The pathophysiology of AF involves multiple processes, including 

cardiac electrophysiological remodeling, structural remodeling, 

aberrant neural regulation, and in%ammatory responses (4, 5). 

Interactions among ion channel dysfunction in atrial myocytes, 

alterations in intercellular connexins, progression of myocardial 

fibrosis, and autonomic nervous system imbalance collectively 

contribute to the initiation and maintenance of AF (6). However, 

the understanding of these mechanisms remains incomplete, which 

limits the development of targeted therapeutic strategies (7).

Current treatment options for AF primarily include 

pharmacological therapy, catheter ablation, and surgical 

intervention (8, 9). While pharmacological therapy is effective in 

controlling ventricular rate and preventing thromboembolism, 

long-term use is often associated with adverse effects, and some 

patients exhibit poor responsiveness to medication (10). 

Catheter ablation, as a curative approach, has limited success 

rates and carries a risk of recurrence. Surgical treatment, being 

highly invasive, is applicable only to specific patient populations 

(11). Overall, existing therapies fail to fully meet the clinical 

needs of AF patients, highlighting the urgent need to explore 

novel therapeutic targets and strategies (12).

The rapid advancement of high-throughput omics 

technologies has enabled comprehensive systemic analysis of 

biological samples, thereby uncovering disease-related molecular 

signatures and potential mechanisms (13, 14). Transcriptomics, 

in particular, plays a critical role in elucidating the relationship 

between gene expression changes and disease progression, 

providing a rich resource for cardiovascular research (15, 16).

Continuous progress in machine learning and bioinformatics has 

provided effective tools for processing and interpreting large-scale 

omics datasets (13, 17–19). Machine learning algorithms can 

identify patterns, select key features, and construct predictive 

models from complex datasets, facilitating the discovery of 

potential biomarkers and therapeutic targets (20–22).

Furthermore, our study aligns with the emerging framework of 

Network Physiology, which emphasizes the integration of multi- 

level biological networks to understand complex physiological 

systems and disease states. In the context of atrial fibrillation, we 

explore not only gene-level interactions through protein-protein 

interaction networks but also cell-type-specific expression patterns 

and immune microenvironment crosstalk, thereby uncovering the 

network-based mechanisms underlying AF pathogenesis. The 

application of machine learning further enables the identification of 

key network hubs that drive AF progression, highlighting the 

central role of network analysis in bridging molecular features with 

clinical phenotypes.

This study aims to systematically analyze the gene expression 

profiles of AF patients using transcriptomic data and machine 

learning techniques, with the goal of identifying key genes closely 

associated with AF pathogenesis and therapeutic responses. 

Through in-depth investigation of these genes, we aim to uncover 

the potential molecular mechanisms underlying AF.

Materials and methods

Data acquisition

Transcriptomic datasets associated with atrial fibrillation were 

obtained from the Gene Expression Omnibus (GEO) database. For 

the discovery phase, we selected three datasets (GSE41177, 

GSE115574, and GSE79768) based on the following criteria: (1) 

sample type consisted of human atrial tissue, which is directly 

relevant to AF pathophysiology; (2) each dataset contained a 

sufficient number of both AF and control samples to ensure 

analytical robustness; (3) they were generated using comparable 

high-throughput platforms (Affymetrix or Illumina) to minimize 

technical batch effects. Other AF-related datasets in GEO were 

excluded if they had a small sample size (n < 5 per group), were 

derived from non-cardiac tissues for the discovery analysis, or lacked 

clear phenotyping. The dataset GSE2240, which is an independent 

atrial tissue dataset not used in the discovery process, was utilized for 

external validation of the machine-learning-identified feature genes. 

Furthermore, the dataset GSE255612, which contains right auricular 

tissue samples from 18 AF patients and 16 non-AF individuals, 

was downloaded for subsequent single-cell transcriptomic analysis 

to explore cell-type-specific expression patterns. The specific 

distribution of sample sizes for each dataset is shown in Table 1.

Batch effect removal

Before performing the difference analysis, we merged the 

three AF datasets (GSE41177, GSE115574, GSE79768). We then 
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corrected for batch effects using the “sva” package of the 

R language. To assess the effectiveness of this correction, we 

compared data quality before and after batch removal using 

principal component analysis (PCA).

Differential expression analysis

Differential gene expression analysis of the sequencing data was 

performed using the “limmaa” package in R software to compare 

samples from the control and experimental groups, thereby 

identifying DEGs. The criteria for screening DEGs were set as | 

log2FC| > 0.5 and a P-value < 0.05. The results of the differential 

analysis were visualized using the “ggplot2” package to generate 

volcano plots and heatmaps. The volcano plot clearly illustrates the 

distribution of DEGs, including upregulated genes, downregulated 

genes, and genes with no significant difference in expression.

GO and KEGG enrichment analysis

GO annotation from the org.Hs.eg.db package (version 3.1.0) in 

R software was used as the background. Genes were mapped to this 

background, and GO analysis was subsequently performed using 

the clusterProfiler package (version 3.14.3). The GO analysis 

covered three aspects: biological processes (BP), molecular 

functions (MF), and cellular components (CC), aiming to detect 

enriched pathways and thereby reveal the cellular functions, 

signaling pathways, and disease-related differentially expressed 

gene pathways primarily affected by the candidate target genes. 

KEGG was used to annotate gene pathways. Enrichment was 

considered statistically significant when P < 0.05.

DO enrichment analysis

DO enrichment analysis was performed using the org.Hs.eg.db 

R package (version 3.1.0) to obtain gene annotation information 

for the gene set. These genes were linked to the DO background 

dataset to ensure each gene was associated with disease 

classifications in the DO system. This approach aimed to identify 

disease processes related to atrial fibrillation treatment responses.

Machine learning algorithm applications

LASSO regression was employed to identify key genes 

associated with atrial fibrillation. After preprocessing the 

candidate differentially expressed genes, LASSO regression was 

implemented using the glmnet function, treating the data as a 

binary classification problem. The response variable was 

extracted from sample names using regular expressions. The 

model was evaluated by plotting the model object and 

performing cross-validation via cv.glmnet to determine the 

optimal lambda value. Finally, genes with non-zero coefficients 

corresponding to the optimal lambda value were identified as 

key genes related to the disease status of atrial fibrillation and 

were output. SVM-RFE analysis was conducted using the 

“e1071”, “kernlab” and “caret” packages in R. The number of 

genes corresponding to the minimized cross-validation error in 

the analysis results was used to determine the count of potential 

biomarkers identified by SVM-RFE machine learning. Genes 

with average rankings corresponding to the SVM-RFE analysis 

were selected as potential biomarkers for AF. Random forest 

analysis was performed using the “randomForest” package in 

R. The importance scores of differentially expressed genes were 

obtained at the point of minimized error on the cross-validation 

curve. Genes with importance scores exceeding 1 were selected 

as potential biomarkers for AF. A venn diagram was used to 

identify the intersection of genes obtained from LASSO, SVM- 

RFE, and Random Forest analyses. The final set of potential AF 

biomarkers was derived from the overlapping genes identified by 

these three machine learning methods.

Construction of protein-protein interaction 
(PPI) networks

Protein-protein interaction (PPI) networks were constructed 

using the GeneMANIA database (http://www.string-db.org/) to 

explore the regulatory interactions between genes and predict 

potential regulatory factors. This approach facilitated a deeper 

understanding of gene relationships and their regulatory 

mechanisms in the context of atrial fibrillation.

Development and validation of nomogram

The integrated dataset from GSE41177, GSE115574, and 

GSE79768 (after batch effect correction) was used as the training 

set to construct the diagnostic model. To ensure a rigorous 

evaluation and avoid data leakage, the validation process was 

strictly separated. In this study, the “rms” package in R software 

was employed to develop a nomogram model for identifying 

diagnostic genes in AF. Each candidate gene was assigned a specific 

score, with the total score being the sum of these individual gene 

TABLE 1 Distribution of sample sizes in each dataset.

Dataset Platform Country Tissue origin Anatomical location AF (n) Control (n)

GSE41177 GPL570 Taiwan left atrial appendage LA free wall 32 6

GSE115574 GPL570 Turkey left/right atrial appendage LA/RA free wall 15 15

GSE79768 GPL570 Taiwan right atrial appendage LA/RA free wall 13 13

GSE2240 GPL96 Germany left/right atrial appendage LA/RA free wall 20 10
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scores. The model’s performance was first evaluated internally on the 

training set. To evaluate the model’s accuracy, calibration curves were 

plotted to assess the consistency between predicted probabilities and 

actual outcomes. Furthermore, decision curve analysis (DCA) was 

conducted to evaluate the clinical utility of the model. The 

diagnostic efficacy of six key genes was assessed through receiver 

operating characteristic (ROC) curve analysis. Finally, the 

robustness of the model was validated using the independent 

external validation set (GSE2240), which was not involved in any 

prior steps of differential expression analysis or machine learning 

feature selection.

Single-cell transcriptome analysis

In the single-cell RNA-sequencing (scRNA-seq) analysis pipeline, 

data normalization is first carried out via the LogNormalize method 

to guarantee the comparability of gene expression levels across 

different cells. Then, the FindVariableFeatures method is employed 

to select highly variable genes (top 2,000). To further eliminate 

batch effects, the Harmony algorithm is applied for batch 

correction, enhancing the comparability of data from different 

experimental batches. Subsequently, dimensionality reduction is 

performed using principal component analysis (PCA). For cell 

clustering, the non-linear dimensionality reduction method of 

t-distributed stochastic neighbor embedding (t-SNE) is utilized for 

analysis. Cell grouping is conducted using the FindClusters 

function, and the clustering results are optimized by adjusting 

different resolution parameters. The entire quality control work%ow 

comprises steps such as normalization, batch correction, and 

dimensionality reduction to ensure the accuracy and reliability of 

data analysis. With the thresholds of P < 0.05 and log2FC > 0.25, 

“FindAllMarkers” is used to identify differentially expressed genes 

in each cluster. Based on the unique marker genes in the study, the 

expression of these marker genes in different clusters is analyzed to 

annotate the cells.

Quantitative Rt-PCR analysis

Total RNA was extracted from cardiac tissue using TRIzol 

Reagent (Invitrogen, CA, USA), and reverse-transcribed into 

cDNA via the Novo Protein Reverse Transcription Kit (Suzhou, 

China). Real-time PCR was performed on a Roche LightCycler® 

480 Real-Time PCR Apparatus (Bio-Rad, Basel, Switzerland) to 

detect the expression of C1orf105, DHRS9, CHGB, PDE8B, CSRP3, 

TABLE 2 The sequences of the primers for qPCR.

Gene symbol Species Forward primer Reverse primer

C1orf105 Human ATTCACTACAGACTGCCCATTCT CGTTGTCTTGCCTATTGGTTCC

DHRS9 Human GGCTTTGGAAACTTGGCAGC TCGGTCACATCCAGAAGCAC

CHGB Human GCCAGATCGGAAACACATGC CGTCGTTTGTCCACCTCAGA

PDE8B Human CAAACTCAGAACTTCGATGCAGA CTTCATGGTCATCCGATACTCG

CSRP3 Human GTGCTATGGGCGCAGATATGG CTCGGACTCTCCAAACTTCGC

FCER1G Human CTCCAGCCCAAGATGATTCCA CTTTCGCACTTGGATCTTCAGTC

FIGURE 1 

PCA of three original AF datasets prior to batch effect correction and PCA of integrated AF dataset after batch effect correction.
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FCER1G, and β-actin (as a normalization control). The relative 

expression levels of these hub genes were calculated using the 2 

−ΔΔCT method. Statistical analysis was conducted with GraphPad 

Prism, and t-tests were applied for two groups of data following a 

normal distribution. A significance level of P < 0.05 was adopted. 

The primer sequences for C1orf105, DHRS9, CHGB, PDE8B, 

CSRP3, and FCER1G are listed in Table 2.

Western blot analysis

Total protein was extracted from right auricular tissues of AF 

patients and non-AF controls using RIPA lysis buffer containing 

protease and phosphatase inhibitors. Protein concentrations 

were determined using a BCA Protein Assay Kit (Beyotime, 

China). Equal amounts of protein (20 μg per lane) were 

separated by 10% SDS-PAGE and transferred onto PVDF 

membranes (MeilunBio, China). After blocking with 5% non-fat 

milk for 1 h at room temperature, the membranes were 

incubated overnight at 4°C with primary antibodies against 

C1orf105 (1:2,000, Abmart, PH13497), DHRS9 (1:2,000, 

immunoway, YN0639), CHGB (1:2,000, immunoway, YT6192), 

PDE8B (1:2,000, Proteintech, 30708-1-AP), CSRP3 (1:2,000, 

immunoway, YN6528), FCER1G (1:2,000, Abmart, TD13263), 

and β-actin (1:10,000, immunoway, YM8343) as a loading 

control. After washing, the membranes were incubated with 

HRP-conjugated secondary antibodies (1:5,000, Proteintech) for 

1 h at room temperature. Protein bands were visualized using an 

ECL detection system (Tanon, China). The grayscale values of 

protein bands were analyzed using ImageJ software (National 

Institutes of Health, USA), and the relative expression levels 

were normalized to β-actin. Statistical analysis and graph 

generation for WB data were performed using GraphPad Prism 

software (version 9.5, USA).

Statistical analysis

All statistical analyses and gene expression data were processed 

using R (version 4.4.3). When the data were normally distributed, 

we compared the two groups using an independent two-sample 

t-test. If the data were not normally distributed, we used the 

Wilcoxon rank-sum test for intergroup comparisons. A p-value 

of less than 0.05 was set as the threshold for statistical significance.

Results

Identification of differentially expressed 
genes

Raw AF and control transcriptome data were obtained from the 

GEO database, integrated after batch effect removal, and normalized 

to generate 58 AF cases and 65 control treatment cohorts (Figure 1).

Identifying of differentially expressed 
associated with AF

We performed differential analysis of the AF cohort to reveal 

differential genes for AF. A total of 64 deg were identified, of 

which 27 were upregulated and 37 were downregulated (Figure 2).

FIGURE 2 

Volcano and Heatmap plots depicting DECs between AF and healthy controls.
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Functional enrichment analysis of AF 
differential genes

Differential gene PPI networks were constructed through the 

GeneMANIA database (Figure 3) and analyzed for functional 

enrichment using GO, KEGG, and DO to identify potential 

mechanisms of action.

The results of the enrichment analysis are shown in Figure 4. 

In the biological process, AF-related DEGs are enriched in positive 

regulation of muscular systemic processes. This includes positive 

regulation of muscle cell development; negative regulation of 

myocardial fiber assembly; regulation of immune response; positive 

regulation of muscle tissue development; and negative regulation of 

muscle cell differentiation. For cellular components, these genes are 

mainly enriched in cellular structures such as myofibers, sarcoplasmic 

reticulum, nucleus pulposus lumen, autophagosomal membranes, 

I-bands, Z-discs, and myogenic fibers. For molecular function, 

these genes are enriched in a variety of molecular binding 

activities: cytokine binding; immunoglobulin receptor activity; 

glycosaminoglycan binding; immunoglobulin binding; BMP binding; 

heparin binding. These functions are involved in the regulation of the 

heart and the immune system, suggesting that AF may be closely 

related to the interaction and signaling of these molecules.

KEGG pathway analysis further revealed significant 

enrichment of AF-related genes in several biological processes. 

Specifically, pathways such as pancreatic secretion, salivary 

secretion, and myocardial contraction, which are closely related 

to the regulation of cardiac function and the digestive system, 

FIGURE 3 

PPI network analysis for differential genes.
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showed significant enrichment. At the same time, we also 

observed enrichment of pathways related to infectious diseases 

such as Staphylococcus aureus infection and tuberculosis, which 

may be related to the activation of in%ammatory responses in 

patients with atrial fibrillation. In addition, the enrichment of 

pathways such as mineral uptake and natural killer cell-mediated 

cytotoxicity suggests possible immune and metabolic 

mechanisms involved in AF. The significant enrichment of the 

calcium signaling pathway is particularly noteworthy because 

this pathway plays a central role in cardiac electrophysiology 

and contractile function, and its abnormalities may be directly 

associated with the development of AF. Finally, the enrichment 

of cytoskeletal pathways in muscle cells emphasizes the 

importance of cardiac muscle structure and function in AF.

Disease ontology semantic and enrichment analyses revealed 

significant associations of AF with multiple biological processes. 

Specifically, AF was significantly associated with processes such as 

pancreatic secretion, Staphylococcus aureus infection, salivation, 

myocardial contraction, leishmaniasis, tuberculosis, mineral uptake, 

phagolysosomes, osteoclast differentiation, natural killer cell- 

mediated cytotoxicity, calcium signaling pathways, asthma, and 

cytoskeleton in muscle cells.

Analysis of immune cell infiltration in AF

Single-sample gene set enrichment analysis (ssGSEA) results for 

atrial fibrillation revealed functions and pathways associated with 

immune cell subsets. ssGSEA was used to depict the relative 

abundance of immune cell subsets in the AF cohort. Samples from 

the AF cohort showed activated B cells, activated CD4+ T cells, 

activated CD8+ T cells, activated dendritic cells, CD56bright natural 

killer cells, CD56dim natural killer cells, eosinophils, γ δ T cells, 

immature B cells, immature dendritic cells, myeloid-derived 

suppressor cells (MDSC), as compared to controls, macrophages, 

mast cells, monocytes, natural killer T cells, natural killer cells, 

neutrophils, plasmacytoid dendritic cells, regulatory T cells, follicular 

helper T cells, type 1 helper T cells, type 17 helper T cells, and type 2 

helper T cells were enriched. The box line plot further demonstrates 

that the proportions of macrophages, endothelial cells, and activated 

dendritic cells were elevated in the atrial fibrillation cohort, whereas 

the abundance of effector memory CD8+ T cells was reduced 

compared with the control group. These results suggest changes in 

the immune microenvironment in the AF cohort, particularly in the 

composition of specific immune cell subsets (Figures 5A,B).

Identification of hub genes via machine 
learning

We used three machine learning algorithms, LASSO, RF, and 

SVM-RFE, to further screen Hub genes for AF. We identified 24 

potential candidate biomarkers by the LASSO algorithm (Figure 6). 

The RF algorithm ranked the genes based on the importance 

calculation of each gene, and we selected the top 30 as potential 

candidates for AF (Figure 7). To establish the optimal number of 

Hub genes, we selected the top 30 genes for the SVM-RFE 

algorithm results as candidate genes (Figure 8). By intersecting the 

results of all three algorithms, we identified six Hub genes for AF: 

C1orf105, DHRS9, CHGB, PDE8B, CSRP3 and FCER1G. The 

visualization results were shown in Figure 9.

FIGURE 4 

Barplots of GO, KEGG, D0 enrichment analysis results.
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Diagnostic value assessment

We constructed a nomogram model based on the six gene 

signature. This model demonstrated excellent diagnostic 

performance, with an AUC of 0.97. Calibration curves validated its 

accurate predictive capacity for AF. Moreover, DCA results 

confirmed the clinical applicability of the nomogram model. 

Collectively, these findings indicate that the nomogram model 

exhibits robust predictive performance (Figure 10). Additionally, 

we generated a differential expression box plot of the Hub gene. 

Finally, we validated the hub genes in GSE2240 by ROC curve 

analysis. The differential expression results showed that the 

expression of DHRS9, CHGB, PDE8B, and CSRP3 was up- 

regulated, and the expression of FCER1G and C1orf105 was down- 

regulated compared to the control (Figure 11). In the external 

validation set (Figure 12), the expression of DHRS9, CHGB, 

FIGURE 5 

(A) Boxplots comparing immune cell abundances between AF vs. controls. (B) Barplots comparing imumme cell abundances between AF 

vs. controls.
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PDE8B, CSRP3 and FCER1G was up-regulated, whereas that of 

C1orf105 was down-regulated. The ROC curve analysis results 

showed that the AUC of each gene exceeded 0.75, indicating 

significant diagnostic value. The visualization results are shown in 

Figure 13. Similarly, in the external validation set (Figure 14), each 

gene showed great diagnostic value.

FIGURE 6 

Biomarkers screening and optimal parameter (lambda) in the Lasso model.

FIGURE 7 

Biomarkers screening relative importance of overlapping candidate top 20 genes calculate& the RF model.
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Expression levels in single-cell 
transcriptome data

To further explore the relationship between the six key genes 

and atrial fibrillation, we downloaded right auricular tissue 

samples from 18 AF patients and 16 non-AF individuals in the 

GSE255612 dataset of the GEO database. After data pre- 

processing, normalization, scaling, and cell clustering, 12 distinct 

clusters were identified in the dataset. Upon cell annotation, 

these clusters were categorized into 12 cell types, namely 

Fibroblasts, Cardiomyocytes, Macrophages, Endothelial Cells, 

Pericytes, Adipocytes, Smooth Muscle Cells, T Cells, 

Neuroendocrine Cells, Mast Cells, Mesenchymal Stem Cells, and 

Proliferating Cells (Figure 15). Further analysis revealed that 

FIGURE 8 

The curve with the highest and lowest biomarker screening accuracy in the SVM-RFE model.

FIGURE 9 

Venn diagram of six candidate genes screened by three machine learning algorithms.
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DHRS9 and CSRP3 were predominantly expressed in 

cardiomyocytes, PDE8B in Adipocytes and cardiomyocytes, and 

FCER1G in macrophages (Figures 16, 17).

To determine if the hub genes were differentially expressed 

within specific cell types, we performed comparative analysis 

between AF and control samples for each major cell population, 

including fibroblasts, cardiomyocytes and macrophages. Violin 

plots illustrating the expression distribution of the six hub genes in 

fibroblasts are presented in Supplementary Figures S1, S2. Notably, 

none of these genes exhibited significant differential expression at 

the single-cell level within these populations. This indicates that 

their identification as differentially expressed genes in the bulk 

tissue analysis is likely attributable to AF-associated changes in the 

cellular composition of the atrial tissue, such as the expansion of 

fibroblast and macrophage populations, rather than substantial 

changes in their expression level within individual cells.

qRT-PCR experimental validations of the 
hub genes

First, we collected right auricular tissues from 4 AF patients and 4 

non-AF patients. qRT-PCR results showed that mRNA levels of 

DHRS9, CHGB, PDE8B, CSRP3, and FCER1G were downregulated 

in right auricular tissues of patients with AF and upregulated in 

C1orf105 compared with non-lesional control tissues (Figure 18).

Western blot experimental validations of 
the hub genes

To further validate the protein expression levels of the six hub 

genes, we performed Western blot analysis on right auricular 

tissues from 3 AF patients and 3 non-AF controls. Consistent 

with the mRNA results, the protein levels of DHRS9, CHGB, 

PDE8B, CSRP3, and FCER1G were significantly downregulated 

in AF tissues, whereas C1orf105 protein expression was 

upregulated compared to controls (Figure 19).

Discussion

This study has systematically revealed the key molecular 

mechanisms and potential therapeutic targets in the development 

of atrial fibrillation by integrating single-cell and bulk 

transcriptomic data with machine learning algorithms.

FIGURE 10 

The visible nomogram, ROC curve, calibration curve, DCA curve for diagnosing AF.
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FIGURE 11 

Expression of Hub genes in AF patients compared to normal controls in the training set.

FIGURE 12 

Expression of Hub genes in AF patients compared to normal controls in the validation set.
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Our application of machine learning to dissect the molecular 

underpinnings of AF aligns with a growing trend in cardiovascular 

medicine, particularly in electrophysiology, to leverage artificial 

intelligence (AI) for enhanced disease understanding and patient 

management. For instance, recent advances demonstrate the 

powerful role of AI and machine learning in electrophysiology, 

ranging from analyzing electrocardiograms for improved AF 

detection and classification to predicting ablation outcomes and 

optimizing patient-specific treatment strategies (23). Our study 

extends this paradigm by applying similar computational 

intelligence not to clinical signal data, but to high-dimensional 

transcriptomic data. This approach allows us to move beyond 

correlation towards identifying causative molecular features and 

cell-type-specific expressions that underlie the AF substrate. By 

integrating bulk and single-cell RNA sequencing with robust 

machine learning algorithms, we demonstrate how AI-driven 

bioinformatics can uncover novel, interpretable biomarker 

signatures that may inform both mechanistic biology and future 

precision medicine approaches in AF.

Several hub genes closely related to AF have been identified 

(C1orf105, DHRS9, CHGB, PDE8B, CSRP3, FCER1G). 

Functional enrichment analysis indicates that calcium signaling 

pathways, immune microenvironment imbalance, and 

myocardial structural remodeling play a central role in AF. 

Single-cell transcriptomic data further reveals the cell—type— 

specific expression patterns of these hub genes.

DHRS9 is specifically highly expressed in cardiomyocytes, 

suggesting it may play an important role in cardiomyocyte 

electrophysiology or structural remodeling (24). DHRS9 encodes 

a member of the dehydrogenase/reductase family 9 involved in 

retinoic acid metabolism, and retinoic acid signaling has been 

proven to be related to cardiac development and fibrosis 

regulation (25). In this study, the significant differential 

expression of DHRS9 may re%ect myocardial cell metabolic 

reprogramming in AF patients, leading to abnormal calcium 

signaling pathways, thereby inducing arrhythmias. In addition, 

the association of DHRS9 with cardiomyocyte-related pathways, 

such as myocardial contraction and myofibril assembly, implies 

that it may be involved in AF progression by regulating the 

contractility of cardiomyocytes.

CSRP3 is highly expressed in cardiomyocytes, and its encoded 

protein is involved in sarcomere assembly and cytoskeletal 

stabilization (26, 27). This study shows that downregulated CSRP3 

expression may be closely related to myocardial fibrosis and 

structural remodeling in AF patients. Previous studies have 

confirmed that CSRP3 deficiency can lead to the disruption of the 

Z-disc structure in cardiomyocytes, thereby inducing arrhythmias 

(28). The significant enrichment of CSRP3 in “myofibril” and “Z- 

disc” cell components further supports its key role in maintaining 

the structural integrity of cardiomyocytes. Moreover, the 

interaction of CSRP3 with calmodulin may indirectly in%uence the 

occurrence of AF by regulating calcium ion homeostasis.

FIGURE 13 

The ROC curve of each candidate genes in the training set.
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The dual-expression pattern of PDE8B in adipocytes and 

cardiomyocytes reveals the potential role of metabolic regulation in 

AF. PDE8B encodes phosphodiesterase 8B, which is involved in 

energy metabolism and signal transduction by degrading cAMP 

(29). This study finds that abnormal expression of PDE8B may lead 

to an imbalance in cAMP levels within cardiomyocytes, thereby 

FIGURE 14 

The ROC curve of each candidate genes in the validation set.

FIGURE 15 

T-SNE clustering visualization for single-cell transcriptome data.
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affecting calcium ion release. The KEGG-enriched “cardiac muscle 

contraction” pathway supports this finding. Additionally, the high 

expression of PDE8B in adipocytes may suggest that adipose tissue- 

derived factors can regulate myocardial electrical activity through a 

paracrine pathway, offering a new perspective on the metabolic- 

electrophysiological coupling mechanism of AF.

The specific high expression of FCER1G in macrophages 

suggests that it is involved in AF progression through immune- 

FIGURE 16 

Expression levels of six genes in single-cell treatscriptome data.

FIGURE 17 

Distribution of six gene expressions in t-SNE space.
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in%ammatory pathways. FCER1G encodes the high-affinity IgE 

receptor γ-chain, a key molecule in the activation of mast cells 

and macrophages (30). This study shows an increase in 

macrophage infiltration in AF patients. FCER1G may promote 

the release of pro-in%ammatory factors by activating the NF-κB 

pathway, thereby aggravating atrial fibrosis and electrical 

remodeling. Its association with “natural killer cell-mediated 

cytotoxicity” indicates that it may in%uence the AF 

microenvironment by regulating immune cell interactions, 

providing a potential target for targeted immunotherapy.

As newly-discovered AF-associated genes, the specific 

functions of C1orf105 and CHGB remain to be further 

elucidated. C1orf105 is widely expressed in single-cell data and 

may be involved in atrial remodeling by regulating cell 

proliferation or apoptosis. CHGB is commonly found in 

neuroendocrine cells, and its upregulated expression may re%ect 

autonomic nervous system dysregulation in AF patients. This is 

consistent with previous reports that autonomic imbalance can 

trigger AF (31). Although the functions of these two genes are 

not yet clear, their association with “neuroendocrine regulation” 

and “cell proliferation” pathways suggests their potential role in 

AF, which needs to be verified through functional experiments.

The biomarkers identified in this study have distinct 

translational pathways depending on their primary source of 

expression. Tissue-based markers, such as CSRP3 and DHRS9 

which are highly expressed in cardiomyocytes, directly re%ect 

the pathophysiological processes of atrial remodeling, fibrosis, 

and electrophysiological dysfunction. They represent promising 

therapeutic targets for interfering with the core mechanisms of 

AF. However, their clinical application as diagnostic tools is 

limited by the invasiveness of obtaining cardiac tissue. In 

contrast, the detection of key genes like FCER1G and PDE8B in 

peripheral blood mononuclear cells (PBMCs), as revealed by our 

single-cell analysis, offers a promising avenue for non-invasive 

diagnosis. Blood-based biomarkers could be developed into 

liquid biopsies for AF screening, risk stratification, and 

potentially monitoring treatment response. It is important to 

note that while blood-based markers provide high clinical 

applicability, their expression levels may re%ect systemic states 

such as in%ammation or metabolic alterations, which could be 

in%uenced by comorbidities. Therefore, the integration of tissue- 

specific mechanistic insights with blood-based non-invasive 

detection methods could facilitate the development of a 

comprehensive strategy for managing AF.

FIGURE 18 

RT-qPCR analysis of six genes expression.
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Immune infiltration analysis shows that the proportion of 

macrophages and activated dendritic cells is increased in AF 

patients, while the number of effector memory CD8+ T cells is 

reduced. This is consistent with the characteristics of the chronic 

in%ammatory state in AF patients. The nomogram model based on 

the five-gene signature shows excellent diagnostic performance, 

and its robustness has been validated in an independent dataset. 

This finding provides a theoretical basis for the development of 

non-invasive AF biomarker detection. However, the clinical 

application of the current model still needs further validation in 

prospective cohorts, and its value in AF subtype stratification or 

treatment-response prediction needs to be explored.

In addition, the identification of these hub genes and their 

expression patterns in specific cell types provides novel insights 

into the pathophysiology of AF. For instance, the high 

expression of DHRS9 in cardiomyocytes and its association with 

metabolic reprogramming highlight the importance of metabolic 

alterations in AF. This could lead to the development of 

therapeutic strategies targeting metabolic pathways to modulate 

cardiac electrophysiology and structure. Similarly, the role of 

CSRP3 in maintaining cardiomyocyte integrity and its link to 

fibrosis suggest that preserving or restoring its function might 

mitigate AF progression. Moreover, the dual expression of 

PDE8B in adipocytes and cardiomyocytes underscores the 

complex interplay between metabolic tissues and cardiac 

function, indicating that targeting adipocyte-derived factors 

could be a novel approach to manage AF.

The immune-related findings, particularly the overexpression 

of FCER1G in macrophages and the increased infiltration of 

macrophages in AF patients, emphasize the in%ammatory nature 

of AF. This supports the potential of immunotherapeutic 

strategies in AF management. The association of FCER1G with 

immune cell interactions and its role in promoting pro- 

in%ammatory cytokines through the NF-κB pathway offer 

specific targets for intervention. Modulating the immune 

response in AF could not only reduce in%ammation but also 

prevent adverse structural remodeling.

Overall, this study bridges the gap between transcriptomic 

data and functional insights, providing a comprehensive view of 

AF mechanisms. It highlights the importance of integrating 

multi-omics data with advanced analytical techniques to uncover 

disease mechanisms and identifies potential therapeutic targets. 

Future research should focus on validating these findings in 

larger, diverse cohorts and exploring the functional roles of 

these genes through experimental models to translate these 

insights into clinical applications. Despite the limitations of this 

study, including its retrospective design and the need for further 

experimental validation, the identified genes and pathways 

present promising avenues for developing novel diagnostic tools 

and personalized treatment strategies for AF.

FIGURE 19 

Western blotting and quantitative analysis of six genes expression.
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Conclusion

This study reveals key molecular mechanisms and potential 

therapeutic targets for AF. It identifies six genes closely related 

to AF and demonstrates their specific expression patterns in 

different cell types. The constructed nomogram model shows 

excellent diagnostic performance and provides a basis for 

developing non-invasive biomarkers for AF. However, further 

experimental validation is needed for clinical application.
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