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Machine learning-driven
exploration of therapeutic
targets for atrial fibrillation-joint
analysis of single-cell and

bulk transcriptomes and
experimental validation

Yicheng Wang"**, Hong-Yi Yang"**, Zi-Ao Fan"** and
Jian-Cheng Zhang"***

Shengli Clinical Medicine College of Fujian Medical University, Fuzhou, Fujian, China, ?Fuzhou
University Affiliated Provincial Hospital, Fuzhou, Fujian, China, *Department of Cardiology, Fujian
Provincial Hospital, Fuzhou, Fujian, China

Background: To explore new therapeutic targets and strategies for atrial
fibrillation (AF) by analyzing gene expression profiles of AF patients using
machine learning techniques combined with transcriptomic data, and to
uncover the potential molecular mechanisms underlying AF.

Methods: Transcriptomic datasets associated with AF were obtained from the GEO
database. After batch effect removal and normalization, differential gene
expression analysis was performed to identify differentially expressed genes
(DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGQG), and Disease Ontology (DO) enrichment analyses were conducted to
explore the functions and pathways of these DEGs. Three machine learning
algorithms, Least Absolute Shrinkage and Selection Operator (LASSO), Support
Vector Machine—Recursive Feature Elimination (SVM-RFE), and random forest
(RF), were applied to screen key genes related to AF. A nomogram model was
developed based on the identified key genes, and its diagnostic performance
was evaluated. Single-cell transcriptome analysis was performed to investigate
the cell-type-specific expression patterns of these key genes. Finally, Real-time
PCR (RT-gPCR) and western blot (WB) analyses was performed on right auricular
tissue from patients with atrial fibrillation and control samples.

Results: A total of 64 DEGs were identified, including 27 upregulated and 37
downregulated genes. Enrichment analyses revealed that these genes were
involved in biological processes such as positive regulation of muscular systemic
processes, immune responses, and calcium signaling pathways. Three machine
learning algorithms identified six key genes for AF. The nomogram model based
on these six genes demonstrated excellent diagnostic performance with an AUC
of 0.97. Single-cell transcriptome analysis showed specific expression patterns of
these key genes in different cell types. Additionally, immune infiltration analysis
indicated changes in the immune microenvironment in AF patients. gPCR and
WB analyses also indicated that the differences in mRNA and protein expression
levels of these six molecules between the control group and the atrial fibrillation
group were consistent with the results of transcriptome analysis.
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Conclusion: This study provides new insights into the molecular mechanisms of AF
and offers potential non-invasive biomarkers for AF diagnosis. The identified key
genes and constructed model may facilitate the development of targeted

atrial fibrillation, machine learning, single-cell, bulk transcriptomes, therapeutic targets,

Wang et al.
therapies for AF.
KEYWORDS
network physiology
Introduction

Atrial fibrillation is one of the most common sustained
arrhythmias in clinical practice, with its prevalence showing a
steady upward trend (I, 2). AF not only significantly impairs
patients” quality of life but also markedly increases the risk of severe
complications such as stroke and heart failure, imposing a
substantial economic burden on patients, families, and society (3).

The pathophysiology of AF involves multiple processes, including
cardiac electrophysiological remodeling, structural remodeling,
aberrant neural regulation, and inflammatory responses (4, 5).
Interactions among ion channel dysfunction in atrial myocytes,
alterations in intercellular connexins, progression of myocardial
fibrosis, and autonomic nervous system imbalance collectively
contribute to the initiation and maintenance of AF (6). However,
the understanding of these mechanisms remains incomplete, which
limits the development of targeted therapeutic strategies (7).

Current treatment include

options for AF primarily

pharmacological therapy, catheter ablation, and surgical
intervention (8, 9). While pharmacological therapy is effective in
controlling ventricular rate and preventing thromboembolism,
long-term use is often associated with adverse effects, and some
(10).

Catheter ablation, as a curative approach, has limited success

patients exhibit poor responsiveness to medication
rates and carries a risk of recurrence. Surgical treatment, being
highly invasive, is applicable only to specific patient populations
(11). Overall, existing therapies fail to fully meet the clinical
needs of AF patients, highlighting the urgent need to explore
novel therapeutic targets and strategies (12).

The rapid

technologies has enabled comprehensive systemic analysis of

advancement of high-throughput omics
biological samples, thereby uncovering disease-related molecular
signatures and potential mechanisms (13, 14). Transcriptomics,
in particular, plays a critical role in elucidating the relationship
between gene expression changes and disease progression,
providing a rich resource for cardiovascular research (15, 16).

Continuous progress in machine learning and bioinformatics has
provided effective tools for processing and interpreting large-scale
omics datasets (13, 17-19). Machine learning algorithms can
identify patterns, select key features, and construct predictive
models from complex datasets, facilitating the discovery of
potential biomarkers and therapeutic targets (20-22).

Furthermore, our study aligns with the emerging framework of
Network Physiology, which emphasizes the integration of multi-
level biological networks to understand complex physiological
systems and disease states. In the context of atrial fibrillation, we
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explore not only gene-level interactions through protein-protein
interaction networks but also cell-type-specific expression patterns
and immune microenvironment crosstalk, thereby uncovering the
network-based mechanisms underlying AF pathogenesis. The
application of machine learning further enables the identification of
key network hubs that drive AF progression, highlighting the
central role of network analysis in bridging molecular features with
clinical phenotypes.

This study aims to systematically analyze the gene expression
profiles of AF patients using transcriptomic data and machine
learning techniques, with the goal of identifying key genes closely
associated with AF pathogenesis and therapeutic responses.
Through in-depth investigation of these genes, we aim to uncover
the potential molecular mechanisms underlying AF.

Materials and methods
Data acquisition

Transcriptomic datasets associated with atrial fibrillation were
obtained from the Gene Expression Omnibus (GEO) database. For
the discovery phase, we selected three datasets (GSE41177,
GSE115574, and GSE79768) based on the following criteria: (1)
sample type consisted of human atrial tissue, which is directly
relevant to AF pathophysiology; (2) each dataset contained a
sufficient number of both AF and control samples to ensure
analytical robustness; (3) they were generated using comparable
high-throughput platforms (Affymetrix or Illumina) to minimize
technical batch effects. Other AF-related datasets in GEO were
excluded if they had a small sample size (n <5 per group), were
derived from non-cardiac tissues for the discovery analysis, or lacked
clear phenotyping. The dataset GSE2240, which is an independent
atrial tissue dataset not used in the discovery process, was utilized for
external validation of the machine-learning-identified feature genes.
Furthermore, the dataset GSE255612, which contains right auricular
tissue samples from 18 AF patients and 16 non-AF individuals,
was downloaded for subsequent single-cell transcriptomic analysis
to explore cell-type-specific expression patterns. The specific
distribution of sample sizes for each dataset is shown in Table 1.

Batch effect removal

Before performing the difference analysis, we merged the
three AF datasets (GSE41177, GSE115574, GSE79768). We then
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TABLE 1 Distribution of sample sizes in each dataset.

10.3389/fcvm.2025.1652467

[Dataselpattom  Couniey_Tissue origin___natomicallocation  _AF () Controlin)

GSE41177 GPL570 Taiwan left atrial appendage LA free wall

GSE115574 GPL570 Turkey left/right atrial appendage LA/RA free wall 15 15
GSE79768 GPL570 Taiwan right atrial appendage LA/RA free wall 13 13
GSE2240 GPL96 Germany left/right atrial appendage LA/RA free wall 20 10

« »

corrected for batch effects using the “sva” package of the
R language. To assess the effectiveness of this correction, we
compared data quality before and after batch removal using

principal component analysis (PCA).

Differential expression analysis

Differential gene expression analysis of the sequencing data was
performed using the “limmaa” package in R software to compare
samples from the control and experimental groups, thereby
identifying DEGs. The criteria for screening DEGs were set as |
log2FC| > 0.5 and a P-value <0.05. The results of the differential
analysis were visualized using the “ggplot2” package to generate
volcano plots and heatmaps. The volcano plot clearly illustrates the
distribution of DEGs, including upregulated genes, downregulated
genes, and genes with no significant difference in expression.

GO and KEGG enrichment analysis

GO annotation from the org.Hs.eg.db package (version 3.1.0) in
R software was used as the background. Genes were mapped to this
background, and GO analysis was subsequently performed using
The GO analysis
biological processes (BP),

the clusterProfiler package (version 3.14.3).
covered three aspects: molecular
functions (MF), and cellular components (CC), aiming to detect
enriched pathways and thereby reveal the cellular functions,
signaling pathways, and disease-related differentially expressed
gene pathways primarily affected by the candidate target genes.
KEGG was used to annotate gene pathways. Enrichment was

considered statistically significant when P < 0.05.

DO enrichment analysis

DO enrichment analysis was performed using the org.Hs.eg.db
R package (version 3.1.0) to obtain gene annotation information
for the gene set. These genes were linked to the DO background
dataset to ensure each gene was associated with disease
classifications in the DO system. This approach aimed to identify
disease processes related to atrial fibrillation treatment responses.

Machine learning algorithm applications

LASSO regression was employed to identify key genes

associated with atrial fibrillation. After preprocessing the
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candidate differentially expressed genes, LASSO regression was
implemented using the glmnet function, treating the data as a
binary classification problem. The response variable was
extracted from sample names using regular expressions. The
model was evaluated by plotting the model object and
performing cross-validation via cv.glmnet to determine the
optimal lambda value. Finally, genes with non-zero coefficients
corresponding to the optimal lambda value were identified as
key genes related to the disease status of atrial fibrillation and
were output. SVM-RFE analysis was conducted using the
“e1071”, “kernlab” and “caret” packages in R. The number of
genes corresponding to the minimized cross-validation error in
the analysis results was used to determine the count of potential
biomarkers identified by SVM-RFE machine learning. Genes
with average rankings corresponding to the SVM-RFE analysis
were selected as potential biomarkers for AF. Random forest
analysis was performed using the “randomForest” package in
R. The importance scores of differentially expressed genes were
obtained at the point of minimized error on the cross-validation
curve. Genes with importance scores exceeding 1 were selected
as potential biomarkers for AF. A venn diagram was used to
identify the intersection of genes obtained from LASSO, SVM-
RFE, and Random Forest analyses. The final set of potential AF
biomarkers was derived from the overlapping genes identified by

these three machine learning methods.

Construction of protein-protein interaction
(PPI1) networks

Protein-protein interaction (PPI) networks were constructed
using the GeneMANIA database (http://www.string-db.org/) to
explore the regulatory interactions between genes and predict
potential regulatory factors. This approach facilitated a deeper
understanding of gene relationships and their regulatory
mechanisms in the context of atrial fibrillation.

Development and validation of nomogram

The integrated dataset from GSE41177, GSE115574, and
GSE79768 (after batch effect correction) was used as the training
set to construct the diagnostic model. To ensure a rigorous
evaluation and avoid data leakage, the validation process was
strictly separated. In this study, the “rms” package in R software
was employed to develop a nomogram model for identifying
diagnostic genes in AF. Each candidate gene was assigned a specific
score, with the total score being the sum of these individual gene
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scores. The model’s performance was first evaluated internally on the
training set. To evaluate the model’s accuracy, calibration curves were
plotted to assess the consistency between predicted probabilities and
actual outcomes. Furthermore, decision curve analysis (DCA) was
conducted to evaluate the clinical utility of the model. The
diagnostic efficacy of six key genes was assessed through receiver
operating characteristic (ROC) curve analysis. Finally, the
robustness of the model was validated using the independent
external validation set (GSE2240), which was not involved in any
prior steps of differential expression analysis or machine learning
feature selection.

Single-cell transcriptome analysis

In the single-cell RNA-sequencing (scRNA-seq) analysis pipeline,
data normalization is first carried out via the LogNormalize method
to guarantee the comparability of gene expression levels across
different cells. Then, the FindVariableFeatures method is employed
to select highly variable genes (top 2,000). To further eliminate
batch effects, the Harmony algorithm is applied for batch
correction, enhancing the comparability of data from different
experimental batches. Subsequently, dimensionality reduction is

TABLE 2 The sequences of the primers for qPCR.

10.3389/fcvm.2025.1652467

performed using principal component analysis (PCA). For cell
clustering, the non-linear dimensionality reduction method of
t-distributed stochastic neighbor embedding (t-SNE) is utilized for
analysis. Cell grouping is conducted using the FindClusters
function, and the clustering results are optimized by adjusting
different resolution parameters. The entire quality control workflow
comprises steps such as normalization, batch correction, and
dimensionality reduction to ensure the accuracy and reliability of
data analysis. With the thresholds of P<0.05 and log2FC > 0.25,
“FindAllMarkers” is used to identify differentially expressed genes
in each cluster. Based on the unique marker genes in the study, the
expression of these marker genes in different clusters is analyzed to
annotate the cells.

Quantitative Rt-PCR analysis

Total RNA was extracted from cardiac tissue using TRIzol
Reagent (Invitrogen, CA, USA), and reverse-transcribed into
cDNA via the Novo Protein Reverse Transcription Kit (Suzhou,
China). Real-time PCR was performed on a Roche LightCycler®
480 Real-Time PCR Apparatus (Bio-Rad, Basel, Switzerland) to
detect the expression of Clorf105, DHRS9, CHGB, PDE8B, CSRP3,

Gene symbol Species Forward primer Reverse primer
Clorfl05 Human ATTCACTACAGACTGCCCATTCT CGTTGTCTTGCCTATTGGTTCC
DHRS9 Human GGCTTTGGAAACTTGGCAGC TCGGTCACATCCAGAAGCAC
CHGB Human GCCAGATCGGAAACACATGC CGTCGTTTGTCCACCTCAGA
PDESB Human CAAACTCAGAACTTCGATGCAGA CTTCATGGTCATCCGATACTCG
CSRP3 Human GTGCTATGGGCGCAGATATGG CTCGGACTCTCCAAACTTCGC
FCERIG Human CTCCAGCCCAAGATGATTCCA CTTTCGCACTTGGATCTTCAGTC
Before batch correction After batch correction
251
Type Type

o 01 o | GSE115574 * | GSE115574

§ o] [o]
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FIGURE 1
PCA of three original AF datasets prior to batch effect correction and PCA of integrated AF dataset after batch effect correction.
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FCERIG, and B-actin (as a normalization control). The relative
expression levels of these hub genes were calculated using the 2
—AACT method. Statistical analysis was conducted with GraphPad
Prism, and t-tests were applied for two groups of data following a
normal distribution. A significance level of P <0.05 was adopted.
The primer sequences for Clorfl05, DHRS9, CHGB, PDESB,
CSRP3, and FCERIG are listed in Table 2.

Western blot analysis

Total protein was extracted from right auricular tissues of AF
patients and non-AF controls using RIPA lysis buffer containing
protease and phosphatase inhibitors. Protein concentrations
were determined using a BCA Protein Assay Kit (Beyotime,
China). Equal amounts of protein (20 ug per lane) were
separated by 10% SDS-PAGE and transferred onto PVDF
membranes (MeilunBio, China). After blocking with 5% non-fat
milk for
incubated overnight at 4°C with primary antibodies against
Clorfl05 (1:2,000, Abmart, PH13497), DHRS9 (1:2,000,
immunoway, YN0639), CHGB (1:2,000, immunoway, YT6192),
PDE8B (1:2,000, Proteintech, 30708-1-AP), CSRP3 (1:2,000,
immunoway, YN6528), FCERIG (1:2,000, Abmart, TD13263),
and B-actin (1:10,000, immunoway, YM8343) as a loading
control. After washing, the membranes were incubated with

1h at room temperature, the membranes were

HRP-conjugated secondary antibodies (1:5,000, Proteintech) for
1 h at room temperature. Protein bands were visualized using an
ECL detection system (Tanon, China). The grayscale values of
protein bands were analyzed using Image] software (National
Institutes of Health, USA), and the relative expression levels

10.3389/fcvm.2025.1652467

were normalized to [-actin. Statistical analysis and graph
generation for WB data were performed using GraphPad Prism
software (version 9.5, USA).

Statistical analysis

All statistical analyses and gene expression data were processed
using R (version 4.4.3). When the data were normally distributed,
we compared the two groups using an independent two-sample
t-test. If the data were not normally distributed, we used the
Wilcoxon rank-sum test for intergroup comparisons. A p-value
of less than 0.05 was set as the threshold for statistical significance.

Results

Identification of differentially expressed
genes

Raw AF and control transcriptome data were obtained from the
GEO database, integrated after batch effect removal, and normalized
to generate 58 AF cases and 65 control treatment cohorts (Figure 1).

Identifying of differentially expressed
associated with AF

We performed differential analysis of the AF cohort to reveal
differential genes for AF. A total of 64 deg were identified, of
which 27 were upregulated and 37 were downregulated (Figure 2).
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FIGURE 2
Volcano and Heatmap plots depicting DECs between AF and healthy controls
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Functional enrichment analysis of AF
differential genes

Differential gene PPI networks were constructed through the
GeneMANIA database (Figure 3) and analyzed for functional
enrichment using GO, KEGG, and DO to identify potential
mechanisms of action.

The results of the enrichment analysis are shown in Figure 4.
In the biological process, AF-related DEGs are enriched in positive
regulation of muscular systemic processes. This includes positive
regulation of muscle cell development; negative regulation of
myocardial fiber assembly; regulation of immune response; positive
regulation of muscle tissue development; and negative regulation of
muscle cell differentiation. For cellular components, these genes are

10.3389/fcvm.2025.1652467

mainly enriched in cellular structures such as myofibers, sarcoplasmic
reticulum, nucleus pulposus lumen, autophagosomal membranes,
I-bands, Z-discs, and myogenic fibers. For molecular function,
these genes are enriched in a variety of molecular binding
activities: cytokine binding; immunoglobulin receptor activity;
glycosaminoglycan binding; immunoglobulin binding; BMP binding;
heparin binding. These functions are involved in the regulation of the
heart and the immune system, suggesting that AF may be closely
related to the interaction and signaling of these molecules.

KEGG pathway further
enrichment of AF-related genes in several biological processes.

analysis revealed significant
Specifically, pathways such as pancreatic secretion, salivary
secretion, and myocardial contraction, which are closely related

to the regulation of cardiac function and the digestive system,

Networks
Co-expression
Physical Interactions
Predicted
Co-localization
Genetic Interactions
Shared protein domains

FIGURE 3
PPl network analysis for differential genes.

Functions
B cellular response to molecule of bacterial origin
W response to lipopolysaccharide
cellular response to biotic stimulus
W response to molecule of bacterial origin
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showed significant enrichment. At the same time, we also
observed enrichment of pathways related to infectious diseases
such as Staphylococcus aureus infection and tuberculosis, which
may be related to the activation of inflammatory responses in
patients with atrial fibrillation. In addition, the enrichment of
pathways such as mineral uptake and natural killer cell-mediated
cytotoxicity possible immune and metabolic
mechanisms involved in AF. The significant enrichment of the

suggests

calcium signaling pathway is particularly noteworthy because
this pathway plays a central role in cardiac electrophysiology
and contractile function, and its abnormalities may be directly
associated with the development of AF. Finally, the enrichment
of cytoskeletal pathways in muscle cells emphasizes the
importance of cardiac muscle structure and function in AF.

Disease ontology semantic and enrichment analyses revealed
significant associations of AF with multiple biological processes.
Specifically, AF was significantly associated with processes such as
pancreatic secretion, Staphylococcus aureus infection, salivation,
myocardial contraction, leishmaniasis, tuberculosis, mineral uptake,
phagolysosomes, osteoclast differentiation, natural killer cell-
mediated cytotoxicity, calcium signaling pathways, asthma, and
cytoskeleton in muscle cells.

Analysis of immune cell infiltration in AF

Single-sample gene set enrichment analysis (ssGSEA) results for
atrial fibrillation revealed functions and pathways associated with
immune cell subsets. ssGSEA was used to depict the relative
abundance of immune cell subsets in the AF cohort. Samples from
the AF cohort showed activated B cells, activated CD4+ T cells,
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activated CD8+ T cells, activated dendritic cells, CD56bright natural
killer cells, CD56dim natural killer cells, eosinophils, y & T cells,
immature B cells, immature dendritic cells, myeloid-derived
suppressor cells (MDSC), as compared to controls, macrophages,
mast cells, monocytes, natural killer T cells, natural killer cells,
neutrophils, plasmacytoid dendritic cells, regulatory T cells, follicular
helper T cells, type 1 helper T cells, type 17 helper T cells, and type 2
helper T cells were enriched. The box line plot further demonstrates
that the proportions of macrophages, endothelial cells, and activated
dendritic cells were elevated in the atrial fibrillation cohort, whereas
the abundance of effector memory CD8+ T cells was reduced
compared with the control group. These results suggest changes in
the immune microenvironment in the AF cohort, particularly in the
composition of specific immune cell subsets (Figures 5A,B).

Identification of hub genes via machine
learning

We used three machine learning algorithms, LASSO, RF, and
SVM-REFE, to further screen Hub genes for AF. We identified 24
potential candidate biomarkers by the LASSO algorithm (Figure 6).
The RF algorithm ranked the genes based on the importance
calculation of each gene, and we selected the top 30 as potential
candidates for AF (Figure 7). To establish the optimal number of
Hub genes, we selected the top 30 genes for the SVM-RFE
algorithm results as candidate genes (Figure 8). By intersecting the
results of all three algorithms, we identified six Hub genes for AF:
Clorf105, DHRS9, CHGB, PDE8B, CSRP3 and FCERI1G. The
visualization results were shown in Figure 9.
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Diagnostic value assessment

We constructed a nomogram model based on the six gene
This
performance, with an AUC of 0.97. Calibration curves validated its
accurate predictive capacity for AF. Moreover, DCA results

signature. model demonstrated excellent diagnostic

confirmed the clinical applicability of the nomogram model.
Collectively, these findings indicate that the nomogram model

Frontiers in Cardiovascular Medicine

exhibits robust predictive performance (Figure 10). Additionally,
we generated a differential expression box plot of the Hub gene.
Finally, we validated the hub genes in GSE2240 by ROC curve
analysis. The differential expression results showed that the
expression of DHRS9, CHGB, PDE8B, and CSRP3 was up-
regulated, and the expression of FCER1G and Clorfl05 was down-
regulated compared to the control (Figure 11). In the external
validation set (Figure 12), the expression of DHRS9, CHGB,
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PDESB, CSRP3 and FCER1G was up-regulated, whereas that of
Clorfl05 was down-regulated. The ROC curve analysis results
showed that the AUC of each gene exceeded 0.75, indicating
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significant diagnostic value. The visualization results are shown in
Figure 13. Similarly, in the external validation set (Figure 14), each

gene showed great diagnostic value.
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The curve with the highest and lowest biomarker screening accuracy in the SVM-RFE model.

FIGURE 9

LASSO

Venn diagram of six candidate genes screened by three machine learning algorithms.

Expression levels in single-cell
transcriptome data

To further explore the relationship between the six key genes
and atrial fibrillation, we downloaded right auricular tissue
samples from 18 AF patients and 16 non-AF individuals in the
GSE255612 dataset of the GEO database. After data pre-
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processing, normalization, scaling, and cell clustering, 12 distinct
clusters were identified in the dataset. Upon cell annotation,
these clusters were categorized into 12 cell types, namely
Fibroblasts, Cardiomyocytes, Macrophages, Endothelial Cells,
Pericytes, Adipocytes, Cells, T Cells,
Neuroendocrine Cells, Mast Cells, Mesenchymal Stem Cells, and
Proliferating Cells (Figure 15). Further analysis revealed that

Smooth  Muscle
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FIGURE 10
The visible nomogram, ROC curve, calibration curve, DCA curve for diagnosing AF.

DHRS9 and CSRP3 were
cardiomyocytes, PDE8B in Adipocytes and cardiomyocytes, and
FCERIG in macrophages (Figures 16, 17).

To determine if the hub genes were differentially expressed

predominantly expressed in

within specific cell types, we performed comparative analysis
between AF and control samples for each major cell population,
including fibroblasts, cardiomyocytes and macrophages. Violin
plots illustrating the expression distribution of the six hub genes in
fibroblasts are presented in Supplementary Figures S1, S2. Notably,
none of these genes exhibited significant differential expression at
the single-cell level within these populations. This indicates that
their identification as differentially expressed genes in the bulk
tissue analysis is likely attributable to AF-associated changes in the
cellular composition of the atrial tissue, such as the expansion of
fibroblast and macrophage populations, rather than substantial
changes in their expression level within individual cells.

gRT-PCR experimental validations of the
hub genes

First, we collected right auricular tissues from 4 AF patients and 4
non-AF patients. qRT-PCR results showed that mRNA levels of
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DHRS9, CHGB, PDE8B, CSRP3, and FCER1G were downregulated
in right auricular tissues of patients with AF and upregulated in
Clorfl105 compared with non-lesional control tissues (Figure 18).

Western blot experimental validations of
the hub genes

To further validate the protein expression levels of the six hub
genes, we performed Western blot analysis on right auricular
tissues from 3 AF patients and 3 non-AF controls. Consistent
with the mRNA results, the protein levels of DHRS9, CHGB,
PDES8B, CSRP3, and FCERIG were significantly downregulated
in AF tissues, whereas Clorfl05 protein expression was
upregulated compared to controls (Figure 19).

Discussion

This study has systematically revealed the key molecular
mechanisms and potential therapeutic targets in the development
fibrillation by and bulk
transcriptomic data with machine learning algorithms.

of atrial integrating  single-cell

frontiersin.org



10.3389/fcvm.2025.1652467

Expression of Hub genes in AF patients compared to normal controls in the validation set.
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The ROC curve of each candidate genes in the training set.

Our application of machine learning to dissect the molecular
underpinnings of AF aligns with a growing trend in cardiovascular
medicine, particularly in electrophysiology, to leverage artificial
intelligence (AI) for enhanced disease understanding and patient
management. For instance, recent advances demonstrate the
powerful role of Al and machine learning in electrophysiology,
ranging from analyzing electrocardiograms for improved AF
detection and classification to predicting ablation outcomes and
optimizing patient-specific treatment strategies (23). Our study
this
intelligence not to clinical signal data, but to high-dimensional

extends paradigm by applying similar computational
transcriptomic data. This approach allows us to move beyond
correlation towards identifying causative molecular features and
cell-type-specific expressions that underlie the AF substrate. By
integrating bulk and single-cell RNA sequencing with robust
machine learning algorithms, we demonstrate how Al-driven
bioinformatics can uncover novel, interpretable biomarker
signatures that may inform both mechanistic biology and future
precision medicine approaches in AF.

Several hub genes closely related to AF have been identified
(Clorf105, DHRS9, CHGB, PDE8B, CSRP3, FCERIG).
Functional enrichment analysis indicates that calcium signaling
pathways, immune microenvironment imbalance, and
myocardial structural remodeling play a central role in AF.
Single-cell transcriptomic data further reveals the cell—type—

specific expression patterns of these hub genes.
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DHRS9 is specifically highly expressed in cardiomyocytes,
suggesting it may play an important role in cardiomyocyte
electrophysiology or structural remodeling (24). DHRS9 encodes
a member of the dehydrogenase/reductase family 9 involved in
retinoic acid metabolism, and retinoic acid signaling has been
proven to be related to cardiac development and fibrosis
regulation (25). In this study, the significant differential
expression of DHRS9 may reflect myocardial cell metabolic
reprogramming in AF patients, leading to abnormal calcium
signaling pathways, thereby inducing arrhythmias. In addition,
the association of DHRS9 with cardiomyocyte-related pathways,
such as myocardial contraction and myofibril assembly, implies
that it may be involved in AF progression by regulating the
contractility of cardiomyocytes.

CSRP3 is highly expressed in cardiomyocytes, and its encoded
protein is involved in sarcomere assembly and cytoskeletal
stabilization (26, 27). This study shows that downregulated CSRP3
expression may be closely related to myocardial fibrosis and
structural remodeling in AF patients. Previous studies have
confirmed that CSRP3 deficiency can lead to the disruption of the
Z-disc structure in cardiomyocytes, thereby inducing arrhythmias
(28). The significant enrichment of CSRP3 in “myofibril” and “Z-
disc” cell components further supports its key role in maintaining
the the
interaction of CSRP3 with calmodulin may indirectly influence the

structural integrity of cardiomyocytes. Moreover,

occurrence of AF by regulating calcium ion homeostasis.
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FIGURE 15

T-SNE clustering visualization for single-cell transcriptome data.

The dual-expression pattern of PDE8B in adipocytes and
cardiomyocytes reveals the potential role of metabolic regulation in
AF. PDES8B encodes phosphodiesterase 8B, which is involved in
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energy metabolism and signal transduction by degrading cAMP
(29). This study finds that abnormal expression of PDE8B may lead
to an imbalance in cAMP levels within cardiomyocytes, thereby
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Distribution of six gene expressions in t-SNE space.

affecting calcium ion release.

contraction” pathway supports this finding. Additionally, the high

expression of PDE8B in adipo

derived factors can regulate myocardial electrical activity through a

The KEGG-enriched “cardiac muscle

cytes may suggest that adipose tissue-
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paracrine pathway, offering a new perspective on the metabolic-
electrophysiological coupling mechanism of AF.

The specific high expression of FCERIG in macrophages
suggests that it is involved in AF progression through immune-
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FIGURE 18
RT-gPCR analysis of six genes expression.

inflammatory pathways. FCER1G encodes the high-affinity IgE
receptor y-chain, a key molecule in the activation of mast cells
and macrophages (30). This study shows an increase in
macrophage infiltration in AF patients. FCERIG may promote
the release of pro-inflammatory factors by activating the NF-kB
pathway, thereby aggravating atrial fibrosis and electrical
remodeling. Its association with “natural killer cell-mediated
that it influence the AF

microenvironment by regulating immune cell interactions,

cytotoxicity”  indicates may
providing a potential target for targeted immunotherapy.

As newly-discovered AF-associated genes, the specific
functions of Clorfl05 and CHGB remain to be further
elucidated. Clorfl05 is widely expressed in single-cell data and
may be involved in atrial remodeling by regulating cell
proliferation or apoptosis. CHGB is commonly found in
neuroendocrine cells, and its upregulated expression may reflect
autonomic nervous system dysregulation in AF patients. This is
consistent with previous reports that autonomic imbalance can
trigger AF (31). Although the functions of these two genes are
not yet clear, their association with “neuroendocrine regulation”
and “cell proliferation” pathways suggests their potential role in
AF, which needs to be verified through functional experiments.

Frontiers in Cardiovascular Medicine

The biomarkers identified in this study have distinct
translational pathways depending on their primary source of
expression. Tissue-based markers, such as CSRP3 and DHRS9
which are highly expressed in cardiomyocytes, directly reflect
the pathophysiological processes of atrial remodeling, fibrosis,
and electrophysiological dysfunction. They represent promising
therapeutic targets for interfering with the core mechanisms of
AF. However, their clinical application as diagnostic tools is
limited by the invasiveness of obtaining cardiac tissue. In
contrast, the detection of key genes like FCERIG and PDESB in
peripheral blood mononuclear cells (PBMCs), as revealed by our
single-cell analysis, offers a promising avenue for non-invasive
diagnosis. Blood-based biomarkers could be developed into
liquid Dbiopsies for AF screening, risk stratification, and
potentially monitoring treatment response. It is important to
note that while blood-based markers provide high clinical
applicability, their expression levels may reflect systemic states
such as inflammation or metabolic alterations, which could be
influenced by comorbidities. Therefore, the integration of tissue-
specific mechanistic insights with blood-based non-invasive
detection methods could facilitate the development of a

comprehensive strategy for managing AF.
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Immune infiltration analysis shows that the proportion of
macrophages and activated dendritic cells is increased in AF
patients, while the number of effector memory CD8+ T cells is
reduced. This is consistent with the characteristics of the chronic
inflammatory state in AF patients. The nomogram model based on
the five-gene signature shows excellent diagnostic performance,
and its robustness has been validated in an independent dataset.
This finding provides a theoretical basis for the development of
non-invasive AF biomarker detection. However, the clinical
application of the current model still needs further validation in
prospective cohorts, and its value in AF subtype stratification or
treatment-response prediction needs to be explored.

In addition, the identification of these hub genes and their
expression patterns in specific cell types provides novel insights
into the pathophysiology of AF. For instance, the high
expression of DHRS9 in cardiomyocytes and its association with
metabolic reprogramming highlight the importance of metabolic
alterations in AF. This could lead to the development of
therapeutic strategies targeting metabolic pathways to modulate
cardiac electrophysiology and structure. Similarly, the role of
CSRP3 in maintaining cardiomyocyte integrity and its link to
fibrosis suggest that preserving or restoring its function might
mitigate AF progression. Moreover, the dual expression of
PDE8B in adipocytes and cardiomyocytes underscores the
complex interplay between metabolic tissues and cardiac
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function, indicating that targeting adipocyte-derived factors
could be a novel approach to manage AF.

The immune-related findings, particularly the overexpression
of FCERIG in macrophages and the increased infiltration of
macrophages in AF patients, emphasize the inflammatory nature
of AF. This supports the potential of immunotherapeutic
strategies in AF management. The association of FCERIG with
immune cell interactions and its role in promoting pro-
inflammatory cytokines through the NF-kB pathway offer
specific targets for intervention. Modulating the immune
response in AF could not only reduce inflammation but also
prevent adverse structural remodeling.

Overall, this study bridges the gap between transcriptomic
data and functional insights, providing a comprehensive view of
AF mechanisms. It highlights the importance of integrating
multi-omics data with advanced analytical techniques to uncover
disease mechanisms and identifies potential therapeutic targets.
Future research should focus on validating these findings in
larger, diverse cohorts and exploring the functional roles of
these genes through experimental models to translate these
insights into clinical applications. Despite the limitations of this
study, including its retrospective design and the need for further
experimental validation, the identified genes and pathways
present promising avenues for developing novel diagnostic tools
and personalized treatment strategies for AF.
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Conclusion

This study reveals key molecular mechanisms and potential
therapeutic targets for AF. It identifies six genes closely related
to AF and demonstrates their specific expression patterns in
different cell types. The constructed nomogram model shows
excellent diagnostic performance and provides a basis for
developing non-invasive biomarkers for AF. However, further
experimental validation is needed for clinical application.
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