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Atherosclerotic cardiovascular disease (ASCVD), including coronary heart 

disease and cerebrovascular disease, is caused by the accumulation of plaque 

on artery walls. Elevated levels of low-density lipoprotein (LDL) cholesterol 

significantly contribute to the development and progression of ASCVD. 

Multiple studies have provided evidence of a correlation between individual 

LDL subpopulations and the development of atherosclerosis (AS); among 

these, small, dense low-density lipoprotein (sdLDL) and lipoprotein(a) [Lp(a)] 

have been particularly implicated. There are multiple considerations of why 

sdLDL may cause AS including their low affinity for the LDL receptor, their 

ability to diffuse into the artery wall and remain there for a long time, and 

their tendency to become excessively oxidized. Oxidized LDL (oxLDL), 

generated under oxidative stress, drives AS by impairing endothelial function, 

promoting foam cell formation, and triggering vascular inflammation. Lp(a) 

contributes to the development and progression of AS by causing 

inflammation of the arterial wall. Studies conducted in recent years have 

found that electronegative LDL [L5/LDL(-)] may also be an important factor in 

the development and progression of AS. L5/LDL(-) causes atherosclerotic 

changes in the vascular wall by triggering apoptosis in endothelial cells via 

the lectin-like oxLDL receptor-1. This article offers an updated overview of 

ASCVD and briefly examines the classifications of atherogenic LDL 

subfractions and their roles in atherogenesis.
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1 Introduction

Extensive evidence has consistently substantiated the pivotal role 

of low-density lipoprotein (LDL) in both the initiation and 

advancement of atherosclerotic cardiovascular disease (ASCVD) 

(1–4). Consequently, the measurement of LDL levels is paramount 

in the comprehensive evaluation of cardiovascular risk, as 

emphasized in universally recognized international guidelines (5, 6).

Lowering LDL-C remains the cornerstone of ASCVD 

prevention and treatment. However, clinical observations reveal 

a paradox: some individuals with moderately elevated LDL-C 

remain free of ASCVD, while others with low LDL-C still 

experience major cardiovascular events such as ST-elevation 

myocardial infarction (STEMI) and stroke (7, 8). These 

discrepancies highlight the need to look beyond total LDL-C 

levels to identify the truly atherogenic subfractions or variants 

of LDL, including small, dense LDL (sdLDL), oxidized 

LDL (oxLDL), lipoprotein(a) [Lp(a)], and electronegative LDL 

[L5/LDL(-)] (9). While LDL-C levels and subfraction 

characterization provide valuable insights into atherogenic 

processes, they do not fully account for the residual 

cardiovascular risk that persists despite optimal lipid-lowering 

therapy (10). Additional factors such as in:ammation, elevated 

Lp(a), triglyceride (TG)-rich lipoproteins, and non-lipid 

contributors play important roles in ASCVD pathogenesis, 

underscoring that the study of LDL subfraction should be 

integrated into a broader, multifactorial risk assessment 

strategy (11).

Several research studies have provided evidence demonstrating a 

correlation between distinct subgroups of LDL and the occurrence of 

atherosclerosis (AS). Specifically, sdLDL has been identified as not 

only closely related to AS but also exerting a more pronounced 

impact (12). oxLDL is toxic toward endothelial cells (ECs), smooth 

muscle cells (SMCs), and fibroblasts; proliferating cells are more 

susceptible than quiescent cells in the S-phase of the cell cycle, i.e., 

during DNA synthesis (13). Lp(a) has been thought to encompass 

a spectrum of potential deleterious effects, including pro- 

atherosclerotic, prothrombotic, and pro-in:ammatory roles (14). 

L5/LDL(-), on the other hand, has been established as a 

dynamically active participant in the atherosclerotic process and is 

considered a potential in:ammatory biomarker (15). The purpose 

of this review is to investigate the interrelationship between sdLDL, 

oxLDL, Lp(a), and L5/LDL(-) levels and their association with AS.

2 Current atherogenic LDL classes and 
their physicochemical characteristics

LDL is generally characterized as a lipoprotein fraction with a 

density ranging from 1.019 to 1.063 g/ml, which can be separated 

using different laboratory techniques (16). The LDL fraction is not 

uniform and can be divided based on physicochemical properties 

such as density, size, and composition, with specific subfractions 

like sdLDL, oxLDL, Lp(a), and L5/LDL(-) linked to an increased 

risk of ASCVD.

2.1 sdLDL

It is a subfraction of LDL characterized by its smaller size and 

higher density, which is highly associated with increased risk of AS 

and cardiovascular disease (CVD) due to its ability to penetrate the 

arterial wall and their high susceptibility to modification. 

Ultracentrifugation was employed to categorize LDL (Table 1) into 

four types based on density: LDL I (large): 1.019–1.023 g/ml, 

LDL II (intermediate): 1.023–1.034 g/ml; LDL III (small): 1.034– 

1.044 g/ml; LDL IV (very small): 1.044–1.063 g/ml (17). Another 

technique extensively utilized for the identification of LDL is 

gradient gel electrophoresis (GGE) (Table 1), whereby LDL 

particles are separated by electrophoretic mobility, primarily 

determined by particle sizes (18). sdLDL, collectively referred to as 

LDL particles with densities >1.034 g/ml and a diameter <25.5 nm 

measured by GGE, are formed when plasma TG levels are elevated. 

Conversely, the observation of larger, more buoyant, or medium- 

sized LDLs with densities ≤1.034 g/ml and diameters ≥25.5 nm 

occurs at lower TG levels (19). Synthesis of sdLDL involves several 

complicated steps, not clearly understood yet. The generation of 

TG-rich very low-density lipoprotein (VLDL) large particles is 

induced by hypertriglyceridemia. Initially, TG-rich VLDL 

undergoes hydrolysis facilitated by lipoprotein lipase (LPL), 

followed by cholesterol ester (CE) transfer protein (CETP)- 

mediated exchange between TGs from VLDL and CEs from LDL 

and high-density lipoprotein (HDL) particles, leading to the 

formation of TG-rich LDLs. Subsequently, these LDLs are 

delipidated by hepatic lipase (HL) and transformed into smaller, 

denser (sdLDL) forms (20). The efficiency and extent of sdLDL 

formation vary considerably among individuals, largely due to 

metabolic factors such as insulin resistance. These factors alter 

lipoprotein metabolism and modulate HL activity, which in turn 

regulates TG hydrolysis and LDL remodeling (21). These 

modulators play essential roles in determining sdLDL 

concentrations and their atherogenic potential across different 

patient populations.

2.2 oxLDL

It is a modified form of LDL generated under oxidative stress 

conditions and is not a typical component of normal lipid 

metabolism. Rather, oxLDL acts as a pathological entity that 

promotes endothelial dysfunction, in:ammation, and foam cell 

formation, thereby playing a central role in the development and 

progression of ASCVD. The oxidative modification of LDL occurs 

primarily in the subendothelial space, where it can interact with 

reactive oxygen species (ROS), enzymes, and metal ions (22). LDL 

oxidation takes place in a stepwise fashion. In the initial phase, 

oxidation begins with ROS, such as superoxide or hydroxyl 

radicals, extracting hydrogen atoms from polyunsaturated fatty 

acids (PUFAs) present in LDL phospholipids or CEs (23). 

The process forms lipid radicals, which react with oxygen to 

generate lipid peroxides. In the propagation phase, lipid peroxides 

undergo decomposition to form reactive aldehydes, such as 
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malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE). These 

aldehydes can covalently bind to the amino groups of Lys and Arg 

residues in apolipoprotein B100 (apoB-100), creating Schiff base 

adducts and cross-links (24). In the termination phase, the 

oxidation process is terminated when antioxidants, such as α- 

tocopherol, neutralize free radicals, or when oxLDL is cleared by 

scavenger receptors.

From the oxidative modifications, distinct structural and 

chemical changes in both the lipid and protein components of LDL 

occur (25). Phosphatidylcholine and other surface phospholipids 

are oxidized, reducing structure :uidity and altering particle 

stability. Cholesterol moieties are also prone to oxidation, leading 

to the formation of oxysterols such as 7-ketocholesterol, which 

further destabilizes the LDL particle (26). As for protein 

modifications, reactive aldehydes, like MDA and HNE, form 

covalent adducts with lysine residues of apoB-100, altering its 

structure and receptor-binding properties (27). Schiff base adducts 

on oxLDL impair its ability to be recognized by the LDL receptor 

(LDLR), instead promoting uptake by scavenger receptors.

The fate of oxLDL in the body is markedly different from that 

of native LDL due to its altered structure and receptor affinity. 

Native LDL is primarily cleared by the liver through interaction 

with LDLR. In contrast, oxLDL is not efficiently recognized by 

the LDLR and is instead internalized by macrophages via 

scavenger receptors, including lectin-like oxidized-LDL receptor- 

1 (LOX-1), scavenger receptor class A (SR-A), and CD36 (28). 

This receptor-mediated uptake leads to accumulation of 

cholesterol within macrophages, forming foam cells. ECs, SMCs, 

TABLE 1 Methodologiesa for evaluating LDL particle density, size, and electronegativity.

Methodology Parameter 
measured

Description Advantages Limitations

Ultracentrifugation 

KBr gradient

LDL density Separates LDL based on density 

using high-speed centrifugation.

Gold standard for density separation; 

highly reproducible.

Time-consuming; requires 

specialized equipment; does not 

measure size directly.

Ultracentrifugation 

D2O/sucrose gradient

LDL density Separates LDL based on density 

using high-speed centrifugation.

Low-ionic strength maintains LDL in 

native state. Do not require 

subsequent dialysis.

Time-consuming; requires 

specialized equipment; expensive; 

does not measure size directly.

Iodixanol gradient 

ultracentrifugation

LDL density Separates LDL based on its 

buoyant density in a non-ionic, 

iso-osmotic medium

Maintains LDL integrity due to iso- 

osmotic and non-toxic conditions; 

high resolution; minimizes protein 

denaturation

Time-consuming and labor- 

intensive; requires specialized 

equipment; limited scalability and 

throughput for large sample numbers

Gradient gel electrophoresis LDL size Separates LDL particles by size 

using polyacrylamide gels.

Provides detailed size distribution; 

relatively simple.

Limited resolution; may not 

distinguish closely related sizes.

Agarose gel electrophoresis LDL electronegativity Separates LDL particles based 

on charge using agarose gels.

Simple and cost-effective; useful for 

assessing electronegativity.

Limited resolution; qualitative rather 

than quantitative.

Anion exchange fast protein 

liquid chromatography (FPLC) 

after ultracentrifugationb

LDL electronegativity Separates LDL particles based 

on charge using anion exchange 

column

Simple and cost-effective; useful for 

assessing electronegativity percentage

Semi-quantitative; requires 

specialized expertise

Gel filtration chromatography 

(SEC)

LDL size and relative 

abundance of LDL 

subfractions

Separates LDL particles based 

on hydrodynamic size by 

passing them through porous 

gel matrix.

Non-destructive, no need for harsh 

solvents, compatible with other 

detectors

Indirect density measurement (from 

size; sdLDL is denser), limited 

resolution.

Nuclear magnetic resonance 

(NMR) spectroscopy

LDL size and particle 

number

Measures the magnetic 

properties of LDL particles to 

determine size and 

concentration.

High throughput; provides detailed 

particle number and size data.

Expensive equipment requires 

specialized expertise.

Dynamic light scattering (DLS) LDL size Measures particle size based on 

light scattering :uctuations in 

solution.

Rapid and non-destructive; requires 

minimal sample preparation.

Less accurate for polydisperse 

samples; sensitive to contaminants.

Electron microscopy LDL size and 

morphology

Visualizes LDL particles directly 

using electron beams.

Provides direct visualization of size 

and shape.

Expensive; time-consuming; requires 

specialized sample preparation.

Ion mobility analysis LDL size distribution 

and collusion cross- 

section

Separates LDL particles based 

on their size, shape and charge 

in a gas phase under an electric 

field.

High resolution; can measure size and 

density simultaneously.

Expensive; limited availability.

Capillary isotachophoresis 

(cITP)

LDL size and charge Separates LDL by their 

differential migration in an 

electric field, forming discrete 

zones.

High resolution; no need pre-staining 

or ultracentrifugation; fast and 

requires small sample volumes

Limited standardization across labs; 

sensitivity to buffer/pH conditions; 

less common

Heparin-Mg precipitation Total LDL Separates LDL from other 

lipoproteins including VLDL 

and HDL

Simple and quick; large-scale 

lipoprotein preparation

Overestimation of HDL-C; 

interferences from high TG

LDL Density: Refers to the buoyant density of LDL particles, which correlates with their lipid and protein composition.

LDL Size: Refers to the diameter of LDL particles, with smaller, denser LDL particles being more atherogenic.

LDL Electronegativity: Refers to the negative charge on LDL particles, which can increase due to oxidation or glycation, making them more atherogenic.
aEach methodology has its strengths and limitations, and the choice of methods depends on the specific research or clinical question being addressed.
bAll teams investigating electronegative LDL employ this preparative FPLC isolation method, with only minor variations in processing, such as using gradual vs. stepwise gradients.
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and even hepatocytes can interact with oxLDL through various 

receptors in terms of degradation of these molecules. The 

altered structure of oxLDL can lead to impaired cellular 

processes, including changes in lipid metabolism, signal 

transduction, and gene expression.

2.3 Lp(a)

As a variant of LDL, Lp(a) stands as a well-established risk 

factor for AS, coronary artery disease (CAD), stroke, thrombosis, 

and aortic stenosis, with its association being genetically 

determined (29). Structurally, Lp(a) is characterized by the 

presence of apolipoprotein(a) [apo(a)] bound to apoB-100 with a 

single disulfide bridge through sulfhydryl group binding and 

noncovalent interactions with lysine moieties. Lp(a) particles have a 

spherical structure (24 nm–28.3 nm diameter, density 1.050 g/ml– 

1.101 g/ml) with apo(a) causing density and mobility differences 

compared to LDL. Human Lp(a) varies in size and density due to 

an apo(a) polymorphism in the APOA gene (30).

Lp(a) functions as a major carrier of oxidized phospholipids 

(oxPL) in human plasma, in:uencing events related to 

atherothrombotic CVD and calcific aortic valve injury (31). Lp(a) 

is sensitive to environmental changes in vivo, such as alterations 

in salt concentrations, impacting its diameter and external 

characteristics. Electron microscopy studies of oxidized Lp(a) 

[oxLp(a)] reveal structural changes associated with oxidation. 

These alterations may underlie the observed reduction in lipid 

extractability, possibly re:ecting tighter lipid binding or protein 

crosslinking (31). These changes may affect oxLp(a) recognition by 

LDLR and scavenger receptors, in:uencing the formation of foam 

cells and the accumulation of lipids, especially cholesterol, in 

vessel walls.

2.4 Electronegative LDL [L5/LDL(-)]

In literature, different research groups describe electronegative 

LDL in various ways. Some groups simplify the terminology by 

collectively referring to all negatively charged components of LDL 

as LDL(-), grouping them under a single category (32, 33). 

However, our definition is somewhat more nuanced. Following fast 

protein liquid chromatography (FPLC) fractionation of LDL, the 

least electronegative form is designated as L1, while the most 

electronegative form is categorized as L5 (34). Our definition 

differs because our research has shown that the lipid and 

apolipoprotein composition of L5 is significantly distinct from that 

of L1 (34, 35). Therefore, the characterization of L5 is not based 

solely on electronegativity but also considers other structural 

differences. To prevent any confusion for readers of this article, it 

should be clarified that, throughout the manuscript, we refer to 

these particles uniformly as L5/LDL(-), to standardize terminology 

and ensuring consistency.

Distinct physicochemical properties, which markedly 

differentiate it from conventional LDL, characterize L5/LDL(-). 

Relative to native LDL, L5/LDL(-) displays an altered lipid 

composition characterized by elevated levels of TGs, non-esterified 

FAs, ceramide, and lysophosphatidylcholine (LPC) (36). These 

compositional changes confer a more pro-atherogenic and pro- 

in:ammatory phenotype. Elevated TGs and non-esterified FAs 

can destabilize lipoprotein structure, enhance susceptibility to 

oxidative modification, and promote endothelial lipotoxicity (20). 

Increased ceramide content activates signaling pathways such 

as LOX-1-mediated NF-κB activation, leading to oxidative stress, 

in:ammatory cytokine release, endothelial dysfunction, and 

apoptosis (37, 38). LPC further amplifies vascular in:ammation 

by inducing adhesion molecule expressions such as vascular 

cell adhesion molecule-1 (VCAM-1) and intercellular adhesion 

molecule-1 (ICAM-1), facilitating monocyte recruitment and foam 

cell formation (39). Together, these alterations enhance L5/LDL 

(-)’s ability to penetrate the arterial wall, stimulate immune cell 

activation, impair nitric oxide (NO) bioavailability, and 

accelerate atherogenesis.

Additionally, L5/LDL(-) displays an abnormal conformation of 

the amino-terminal region of apoB-100 (40). L5/LDL(-) has been 

shown to possess phospholipolytic activity, which is typically 

absent in native LDL, and this enzymatic function contributes to its 

remodeling and enhanced propensity for self-aggregation (41). 

Notably, significant differences in CE levels have been observed 

between native LDL and L5/LDL(-) (34). However, compared to 

L5/LDL(-) from individuals with normal lipid levels, L5/LDL(-) 

from patients with familial hypercholesterolemia contains lower CE 

(34). Similar differences were also reported in patients with 

diabetes mellitus (DM) (35). These biochemical properties may 

underlie the pathobiological effects of L5/LDL(-) on various cell 

types involved in AS progression. Itabe et al. reported that L5/LDL 

(-) shows substantial reduction in phospholipid levels and an 

increase in free cholesterol levels (42). Reduced phospholipid levels 

in L5/LDL(-) may stem from oxidation, as oxPLs are more readily 

hydrolyzed by phospholipase enzymes compared to non-oxPL (43). 

However, the findings related to L5/LDL(-)’s reduced phospholipid 

content remain to be confirmed. Another relevant difference 

between native LDL and LDL(-)/L5 is an increased content of 

apolipoproteins other than apoB-100 in the latter. Among others, 

the content of apolipoprotein E (apoE), apolipoprotein C-III 

(apoC-III), apolipoprotein A-1 (apoA-I), apolipoprotein D (apoD), 

apolipoprotein J (apoJ, clusterin) or apolipoprotein F (apoF) is 

clearly increased in L5/LDL(-) (44, 45). The increased content of 

these apolipoproteins compared to native LDL may further 

modulate L5/LDL(-)’s atherogenic and in:ammatory properties. 

Elevated apoE can enhance LDL binding to heparan sulfate 

proteoglycans in the arterial intima, facilitating retention, while 

also altering receptor-mediated uptake pathways (46, 47). ApoC-III 

is strongly pro-atherogenic, inhibiting LPL-mediated TG hydrolysis 

and hepatic clearance, thereby prolonging particle residence time in 

circulation (48). Although apoA-I is generally anti-atherogenic 

(49), its presence on L5/LDL(-) may re:ect an exchange from HDL 

and potential functional impairment, limiting reverse cholesterol 

transport. ApoD and apoJ are associated with lipid remodeling and 

stress responses (50), but their enrichment on L5/LDL(-) could 

contribute to altered lipid trafficking and protection of damaged 

lipoproteins, potentially stabilizing a pro-in:ammatory profile. 
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Increased apoF, an inhibitor of CETP, may modify lipid exchange 

between lipoproteins, in:uencing particle composition and 

metabolism (51). Collectively, these apolipoprotein alterations may 

synergize with L5/LDL(–)’s abnormal lipid composition to 

promote vascular retention, impair clearance, and perpetuate 

vascular in:ammation.

3 Methodologies for assessing 
LDL particle density, size, and 
electronegativity

There are several methodologies used for assessing LDL 

particle density, size, and electronegativity (Table 1).

Density gradient ultracentrifugation technique separates LDL 

particles into subfractions based on their density, typically divided 

into three to four subclasses. Another ultracentrifugation method, 

iodixanol gradient ultracentrifugation, is a variation that uses 

iodixanol instead of salt gradients, providing slightly different 

density ranges for LDL subfractions (52).

Gradient gel electrophoresis separates LDL particles based on 

size under non-denaturing conditions. LDL subclasses are 

typically defined as: LDL I (large): 26.4–28.5 nm; LDL II 

(intermediate): 25.5–26.4 nm; LDL III A and B (small): 24.2– 

25.5 nm; LDL IV A and B (very small): 22.0–24.2 nm (19). Two 

phenotypes are distinguished based on peak LDL particle 

diameters: Pattern A: >25.5 nm (large and intermediate LDL), 

Pattern B: ≤25.5 nm (small and very small LDL).

Nuclear magnetic resonance (NMR) spectroscopy is a laboratory 

technique used to directly measure LDL particle number and 

size distribution (53). By providing detailed information on 

lipoprotein particle size, concentration, and composition, NMR- 

derived lipoprotein profiles have become a valuable adjunct to 

cardiovascular risk assessment. Precipitation methods separate 

sdLDL from larger LDL particles using different reagents (54, 55). 

Specifically, heparin-magnesium precipitation separates sdLDL 

using detergent and sphingomyelinase treatment (56). Dynamic 

light scattering measures LDL particle size and can be used to 

assess LDL aggregation susceptibility (56). Anion exchange 

chromatography is used to separate LDL according to its 

electronegativity which separates L5/LDL(-) from native 

LDL (57). As a high-resolution electrophoretic technique, capillary 

isotachophoresis can also be used to assess LDL electronegativity (58).

Some studies combine these techniques to comprehensively 

evaluate LDL properties, including particle density, size, and 

electronegativity (59). These approaches often integrate ApoB 

measurements to estimate LDL particle number alongside TG 

levels for assessing particle size. While direct LDL-C quantification 

methods exist, they are less commonly used due to higher costs, 

leading many studies to rely on indirect estimations like the 

Friedewald equation (60). Importantly, these analytical methods 

focus on LDL characterization for their atherogenic potential and 

should not be confused with the clinical concept of the LDL 

Window, which refers to the duration of LDL reduction after 

apheresis therapy.

4 Density distribution, size variability, 
and atherogenic potential of 
LDL particles

The size variability and density distribution of LDL particles 

plays a crucial role in determining their atherogenic potential, 

and understanding this heterogeneity is key to elucidating 

the complex mechanisms underlying CVD. As mentioned, 

LDL particles are not uniform; they exhibit a broad range of 

sizes and densities that in:uence their biological behavior, 

metabolism, and interaction with the arterial wall. This 

variability has significant clinical implications, as different LDL 

subfractions contribute to AS in distinct ways.

sdLDL particles are often associated with a greater atherogenic 

risk compared to larger, buoyant LDL particles due to several 

mechanistic properties, such as a greater propensity for arterial wall 

retention and increased susceptibility to oxidation (61). Increased 

proportion of sdLDL is associated with higher cardiovascular risk, 

even when total LDL-C levels are within normal range (62). The 

presence of sdLDL is often part of an atherogenic lipoprotein 

phenotype, which includes elevated TGs and low HDL cholesterol 

(HDL-C) (63). Studies have demonstrated that sdLDL is an 

independent risk factor for CVD, emphasizing the importance of 

both LDL quantity and quality in assessing cardiovascular risk (64). 

It is important to note that while this density-based classification is 

widely used, some recent studies have challenged the notion that all 

large LDL particles are less atherogenic. For instance, one study 

found that both very small and very large LDL particle sizes were 

associated with increased mortality risk compared to intermediate- 

sized LDL (63). sdLDL particles are also distinguished by their 

longer plasma residence time due to a reduced affinity for LDLR, 

which decreases their clearance from the circulation. This 

prolonged exposure time allows for increased interaction with 

arterial proteoglycans, promoting their retention and subsequent 

uptake by macrophages (1). Furthermore, these particles exhibit 

altered lipid and protein composition, such as a higher ratio of TG 

to CEs, which may render them more prone to oxidation, 

desialylation, and glycation modifications, thereby enhancing their 

atherogenic potential (65).

One of the primary characteristics that enhances the 

atherogenicity of sdLDL particles is their increased ability to 

penetrate the endothelial barrier and accumulate in the 

subendothelial space (66). Once trapped, these particles are more 

likely to undergo oxidative modification, forming oxLDL, which is 

a potent pro-in:ammatory agent and a key contributor to plaque 

formation and instability. oxLDL is recognized by scavenger 

receptors on macrophages, leading to the formation of foam cells 

and the initiation of an in:ammatory cascade within the arterial 

wall (67). This sequence of events is a critical step in the 

development and progression of atherosclerotic plaques, 

highlighting the importance of LDL particle size in in:uencing 

disease outcomes.

The relationship between LDL particle size and cardiovascular 

risk has been substantiated by several epidemiological and clinical 

studies. Individuals with a predominance of sdLDL particles are 

more likely to exhibit atherogenic dyslipidemia, characterized by 
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elevated TGs, low HDL-C, and an increased number of LDL particles. 

This pattern, often observed in patients with metabolic syndrome 

and type 2 DM (T2DM), is associated with a higher risk of CAD 

and other cardiovascular events (CVEs) (68). Recent meta-analyses 

confirm sdLDL particles are independently associated with an 

increased risk of CVEs, even after adjusting for traditional risk 

factors such as total LDL-C levels (64). As mentioned earlier, 

advanced lipid testing methods, such as NMR spectroscopy and ion 

mobility analysis, have enabled more precise quantification and 

characterization of LDL subfractions. These technologies allow for 

the identification of sdLDL particles and provide valuable 

information on their concentration and distribution within the 

LDL particle spectrum. Incorporating these measurements into 

routine clinical practice could improve risk stratification and enable 

more targeted therapeutic strategies for managing dyslipidemia and 

preventing CVD (69). However, due to the substantial 

discrepancies between NMR-derived sdLDL concentrations and 

those obtained via traditional methods such as ultracentrifugation 

or GGE, with NMR generally yielding higher values, it is necessary 

to carefully calibrate or validate NMR methodologies to ensure 

comparability across platforms.

Given the distinct atherogenic profile of sdLDL particles, 

emerging therapeutic approaches are focusing on not just lowering 

overall LDL-C levels but also modifying the distribution of LDL 

subfractions. Interventions that increase the size of LDL particles, 

such as the use of fibrates or omega-3 FAs, have been shown to 

reduce cardiovascular risk, particularly in patients with a 

predominance of sdLDL (70). Similarly, lifestyle interventions such 

as dietary modifications and physical activity can significantly 

impact LDL particle size and density, highlighting the importance 

of a holistic approach to cardiovascular risk management (71).

Lp(a) levels, largely determined by genetics, show significant 

interindividual variability, ranging from <1 mg/dl to >1,000 mg/dl 

in the general population and remain stable throughout life. 

Elevated Lp(a) levels are linked to in:ammatory conditions such as 

rheumatoid arthritis (RA) (72) and systemic lupus erythematosus 

(73). The atherogenic potential of Lp(a) is in:uenced by its 

structural properties and interactions with the vasculature. Lp(a) 

particles consist of an LDL core covalently bound to apo(a), which 

exhibits extensive size polymorphism. This variability arises from 

the number of kringle IV type 2 repeats in apo(a), affecting both 

particle size and plasma concentrations. Smaller apo(a) isoforms 

are associated with higher Lp(a) levels and increased atherogenicity. 

Lp(a) promotes atherogenesis through mechanisms including 

direct deposition onto arterial walls, facilitated by its greater 

susceptibility to oxidation compared to LDL (74). In fact, Lp(a) is 

the main transporter of oxPL in blood (75). Oxidized Lp(a) is 

readily taken up by macrophages via scavenger receptors, leading 

to foam cell formation, a key step in AS development. Additionally, 

elevated Lp(a) levels correlate inversely with vascular reactivity, 

contributing to endothelial dysfunction (76).

In addition to classifying LDL subfractions by size, density, or 

electronegativity, recent studies have emphasized the importance 

of quantifying particle mass composition, namely, the relative 

content of TG, free and esterified cholesterol, phospholipids, 

and protein within each subclass (77). These compositional 

profiles can vary significantly between LDL subfractions and are 

in:uenced by underlying metabolic states. For example, TG- 

enriched LDL particles are often found in insulin-resistant 

individuals and may correlate with delayed hepatic clearance 

and increased atherogenicity (78, 79). Advanced lipidomic 

approaches now allow for more precise characterization of these 

features, offering the potential to transform LDL subclass 

analysis from a descriptive tool into a quantitative, decision- 

support metric (80, 81). Incorporating compositional data may 

enhance cardiovascular risk stratification and support more 

individualized lipid-lowering strategies.

5 Electronegativity of LDL: 
mechanisms and implications

Electronegativity of LDL is a key factor in its atherogenic 

potential, with more electronegative LDL particles showing 

increased propensity for promoting AS. The formation of L5/LDL 

(-) occurs through various mechanisms, including oxidation, 

glycation, desialylation, and enzymatic modifications (82). These 

processes alter both the lipid and protein components of LDL, 

leading to changes in density, particle size, and surface charge. 

Oxidation, in particular, plays a crucial role in increasing LDL 

electronegativity, with oxPLs and modified apoB-100 contributing 

to the increased negative charge (83). Glycation of LDL, which is 

prevalent in diabetic conditions, also enhances L5/LDL(-)’s 

electronegativity and atherogenicity (40). Desialylation has also 

been related with the formation of L5/LDL(-) particles (84). Other 

factors, such as an abnormal conformation of apoB-100 (85, 86), 

increased apolipoprotein content (44, 45), and especially non- 

esterified fatty acids (NEFA) (87, 88), are also key determinants in 

increasing the electronegativity of LDL particles. Finally, the fact 

that a significant proportion of L5/LDL(-) is made up of sdLDL 

(88, 89) also contributes to an increase in electronegativity, since 

sdLDL has a greater negative charge than large or intermediate 

LDL particles (90).

The increased negative charge of LDL particles affects their 

interactions with extracellular matrix components and cell surface 

receptors. For instance, L5/LDL(-) shows a higher affinity for 

proteoglycans in the arterial wall, promoting its retention and 

accumulation in the subendothelial space (91, 92). Furthermore, 

L5/LDL(-) is preferentially recognized by scavenger receptors 

rather than the classical LDLR, leading to increased uptake by 

macrophages and foam cell formation (93). The electronegativity of 

LDL also in:uences its susceptibility to further modifications and 

aggregation, with more electronegative particles being more prone 

to additional oxidative changes and aggregation (94). Interestingly, 

recent studies have shown that L5/LDL(-) particles possess 

enzymatic activities, including platelet-activating factor acetyl 

hydrolase (95), phospholipase C (41) or ceramidase activities (36), 

which may play a role in modulating their effects on vascular cells 

(40). These properties contribute to the enhanced atherogenicity of 

L5/LDL(-). The presence of L5/LDL(-) in circulation has been 

associated with various pathological conditions, including CVD, 

DM, metabolic syndrome, and RA (96–102). Measurement of LDL 
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electronegativity has been proposed as a potential biomarker for 

assessing cardiovascular risk, complementing traditional lipid 

profile analyses (83, 103, 104). Understanding the mechanisms 

underlying LDL electronegativity and its implications in 

atherogenesis provides valuable insights for developing targeted 

therapeutic strategies to mitigate the harmful effects of these 

modified lipoproteins in CVDs.

6 Factors influencing LDL particle 
properties

The complex interplay of genetic, metabolic, and lifestyle 

factors in:uences the physical and chemical properties of LDL 

particles such as density, size, composition, and oxidative state, 

which can have profound implications for their metabolism, 

clearance, and role in cardiovascular health (105, 106). These 

factors collectively determine the structural and functional 

characteristics of LDL, which in turn impact its behavior in lipid 

metabolism and its role in health and disease.

One key factor is genetic variation, particularly in genes 

related to apolipoproteins, lipid metabolism, and LDLR. For 

instance, variations in the APOB gene can alter the structure of 

apoB-100, which is the primary protein component of LDL, 

affecting its receptor-binding affinity and clearance rate (107). 

Similarly, polymorphisms in the LDLR gene can in:uence the 

uptake and degradation of LDL particles, leading to alterations 

in their plasma concentrations and composition (108). Genetic 

determinants also play a key role in Lp(a) atherogenicity. The 

LPA gene exhibits size polymorphisms due to a variable number 

of kringle IV type 2 repeats, which define the apo(a) isoform 

size. Fewer repeats result in smaller isoforms, which are linked 

to elevated plasma Lp(a) concentrations and a higher risk of AS 

and CVEs (109).

Metabolic conditions, such as insulin resistance and DM, also 

modulate LDL properties by altering lipid exchange and 

modifying enzymatic activities. Insulin resistance often leads to 

increased TG content in LDL, forming TG-enriched LDL 

particles, which are more prone to lipolysis by HL. This process 

generates sdLDL particles that are more atherogenic (106). 

Additionally, glycation of LDL particles in the context of 

hyperglycemia further modifies their structure, making them 

more susceptible to oxidative damage and less efficiently cleared 

by the LDLR pathway (110). These changes in LDL composition 

and size are further compounded by enzymatic activity 

involving LPL and CETP, which mediate lipid exchange among 

lipoproteins, altering the distribution of CEs and TGs across 

LDL, VLDL, and HDL fractions.

Lifestyle factors, such as diet, physical activity, and smoking, 

also play a significant role in shaping LDL particle properties. 

Diets high in saturated fats and cholesterol increase the hepatic 

production of apoB-containing lipoproteins, leading to elevated 

concentrations of large, buoyant LDL particles (111). 

Conversely, high-carbohydrate diets and excessive alcohol 

consumption tend to promote the formation of sdLDL particles 

by increasing hepatic VLDL production and enhancing the 

activity of CETP (105). Regular physical activity can reduce the 

concentration of sdLDL by improving insulin sensitivity and 

lowering TG levels, thus promoting the formation of larger, less 

dense LDL particles. On the other hand, smoking has been 

shown to increase oxidative stress, which oxidizes LDL lipids 

and proteins, making the particles more atherogenic and less 

recognizable by the LDLR (112).

7 Contribution of LDL subfractions 
and particle characteristics to 
atherogenesis and their clinical 
relevance

The clinical relevance of LDL particle characteristics in 

atherogenicity has become a focal point in cardiovascular 

research, emphasizing the importance of not just LDL-C levels, 

but also the properties of LDL particles themselves. 

Atherogenesis is a disorder of the artery wall characterized by 

various stages: initial adhesion of monocytes and lymphocytes to 

the EC surface, subsequent migration of these cells into the sub- 

endothelial space, and, in the case of monocytes, differentiation 

into macrophages. The proatherogenic effect of these LDL 

subfractions is primarily due to their enhanced arterial wall 

penetration, increased susceptibility to oxidative or enzymatic 

modification, and greater uptake by macrophages through 

scavenger receptors, which promotes foam cell formation (113). 

This leads to the accumulation of CEs and the formation of 

foam cells, which, along with T lymphocytes, contribute to the 

development of atheroma plaque (Figure 1). Additionally, 

vascular SMCs migrate from the media into the intima and 

proliferate, resulting in the formation of atherosclerotic plaques 

(31). The entire atherogenic process involves crucial cellular 

activities like adhesion, migration, differentiation, proliferation, 

and interactions with the extracellular matrix (114–117).

7.1 sdLDL

The enhanced atherogenic potential of sdLDL has been 

attributed to several proposed pathophysiologic mechanisms. As 

stated before, these particles exhibit an extended circulation 

time, likely due to a diminished affinity for the LDLR (19) 

and impaired clearance kinetics (118, 119). Under normal 

physiological conditions, apoB-containing lipoproteins undergo 

continuous remodeling during their metabolic transit, with LDL 

particles efficiently cleared via hepatic LDLR. However, in 

metabolically abnormal states such as insulin resistance, 

increased TG-rich lipoprotein exchange promotes the formation 

of sdLDL, which are more prone to oxidative and structural 

modifications. Due to their smaller size, sdLDL particles 

penetrate the arterial endothelium more readily than larger LDL 

(65) and are more susceptible to qualitative modifications such 

as oxidation, desialylation, and glycosylation (120). These 

changes can impair LDLR dimerization, a structural requirement 

for optimal ligand binding and internalization (121), thereby 
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prolonging plasma half-life and promoting their accumulation in 

circulation. Such modifications also elicit an in:ammatory 

response, increase particle affinity for intimal proteoglycans, 

enhance preferential uptake by macrophages, and contribute to 

foam cell formation (122). The greater propensity for uptake by 

arterial tissue of sdLDL compared to larger LDL has been 

reported (123), implying increased trans-endothelial transport of 

smaller particles. Moreover, smaller LDL particles may exhibit 

decreased receptor-mediated uptake and increased binding to 

proteoglycans (124–126).

In vitro studies have established that LDL subfractions vary in 

their susceptibility to oxidative stress, a critical factor in 

atherogenesis (127–130). This susceptibility is commonly 

assessed by measuring the lag time before the onset of lipid 

peroxidation during copper-induced oxidation. Specifically, large 

buoyant LDL exhibits greater resistance to oxidation, while 

sdLDL is more susceptible to due to its smaller size and higher 

PUFAs content (130, 131).

Individuals with a predominance of sdLDL particles are at 

heightened cardiovascular risk, in part due to their increased 

oxidative susceptibility and enhanced atherogenicity (62). 

Clinical studies have demonstrated that sdLDL particle number 

correlates strongly with CAD, metabolic syndrome, and T2DM 

(132, 133). Moreover, meta-analyses of prospective studies have 

shown that sdLDL levels are significantly associated with the 

progression of AS and CVEs. Multiple studies have consistently 

demonstrated that the cholesterol content of sdLDL (sdLDL-C) 

is a stronger predictor of ASCVD risk than total LDL-C or 

large, buoyant LDL cholesterol. Both direct measurements and 

estimation methods have shown that sdLDL-C levels more 

effectively discriminate ASCVD risk across diverse populations 

(12, 134–136). These findings highlight the clinical importance 

of assessing sdLDL-C when evaluating the atherogenic potential 

of LDL subfractions and support its use as a superior biomarker 

for ASCVD risk stratification. Collectively, these observations 

underscore the importance of characterizing LDL particle 

FIGURE 1 

Schematic summary of the major pro-atherogenic mechanisms attributed to four pathogenic LDL subfractions, sdLDL (refs. 19–21, 61–69, 122–134), 

oxLDL (refs. 22, 23, 25, 28, 135–139), Lp(a) (refs. 29–31, 72–76, 140–145), and L5/LDL(-) (refs. 32–51, 146–150, 156, 172–175), organized by their 

actions in two anatomical compartments: the vessel lumen and the arterial intima. Dysfunctional endothelial cells (shaded between bloodstream 

and intima) mark the transition toward pathological changes. All four subfractions share key mechanisms, including reduced endothelial NO 

bioavailability, upregulation of adhesion molecules (VCAM-1, ICAM-1), proteoglycan binding [decorin, biglycan; relative affinity Lp(a)>L5/LDL 

(-) > sdLDL > oxLDL], macrophage cholesterol uptake (via CD36, LOX-1, SR-A1), activation of inflammatory pathways (NF-κB, NLRP3 

inflammasome, cytokines IL-1β and TNF-α), and plaque destabilization (MMP induction and vascular smooth muscle cell apoptosis). In addition, 

each subfraction displays unique features (underlined): sdLDL: oxidative susceptibility, reduced cholesterol efflux, thrombogenicity, and linkage to 

TG-rich remnants; oxLDL: eNOS inhibition, macrophage cytotoxicity, uptake via specialized scavenger receptors; Lp(a): antifibrinolytic effects via 

apolipoprotein(a), vascular calcification, and oxidative susceptibility; L5/LDL(-): complement activation and LOX-1–mediated apoptosis. CD36, 

scavenger receptor class B member 3; E, endothelium; eNOS, endothelial nitric oxide synthase; ICAM-1, intercellular adhesion molecule-1; IL-1β, 

interleukin-1 beta; L5/LDL(-), electronegative LDL; LDL, low-density lipoprotein; LOX-1, lectin-like oxidized LDL receptor-1; Lp(a), lipoprotein(a); 

MMPs, metalloproteinases; NF-κB, nuclear factor kappa B; NLRP3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain- 

containing 3; NO, nitric oxide; oxLDL, oxidized LDL; ROS, reactive oxygen species; sdLDL, small dense LDL; SMC, smooth muscle cell; TG, 

triacylglycerol; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell adhesion molecule-1.
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properties, particularly size and number, as potential biomarkers 

of residual cardiovascular risk. Given their susceptibility to 

oxidative modification, sdLDL particles not only represent a 

predictive marker but also serve as precursors to oxidized LDL, 

thereby directly linking them to the pathogenesis of AS (137).

7.2 oxLDL

It is a key player in the development of AS and contributes 

significantly to atherogenicity through various mechanisms. 

oxLDL promotes atherogenesis by inducing endothelial 

dysfunction by triggering oxidative stress, which results in the 

production of ROS and the activation of pro-in:ammatory 

pathways (138). Oxidative modification alters the properties of 

LDL, making it more prone to uptake by macrophages through 

scavenger receptors, particularly CD36 and SR-A, leading to the 

formation of foam cells (138). The accumulation of foam cells 

within the arterial wall is a hallmark of early atherosclerotic 

lesions and is associated with chronic in:ammation, further 

perpetuating the cycle of atherogenesis. Moreover, within the 

arterial wall, oxLDL stimulates the release of pro-in:ammatory 

cytokines such as interleukin-6 (IL-6) and tumor necrosis 

factor-alpha (TNF-α) from macrophages and vascular SMCs 

(115). These cytokines recruit additional immune cells to the 

site of in:ammation, amplifying the in:ammatory response 

and contributing to the progression of atherosclerotic plaques 

(116). Furthermore, oxLDL can upregulate the expression 

of adhesion molecules, such as VCAM-1 and ICAM-1, on 

ECs, enhancing monocyte adhesion and migration into 

the intima, which is essential for the formation of 

atherosclerotic lesions (117).

In addition to its in:ammatory effects, oxLDL, through 

its reactive lipid species, also interferes with normal lipid 

metabolism and clearance processes. These oxidative modifications 

can hinder the ability of LDL to be recognized and cleared by 

LDLR, leading to an accumulation of LDL particles in the 

circulation and within the arterial wall (139). The resulting lipid 

accumulation, combined with the in:ammatory response, creates a 

favorable environment for plaque formation and instability, 

increasing the risk of CVEs. oxLDL can stimulate the proliferation 

and migration of SMCs (Figure 1), contributing to the 

development of fibrous caps over atherosclerotic plaques, which 

can either stabilize or destabilize the plaque depending on the 

surrounding conditions (140).

Ultimately, the complex interplay between oxLDL, in:ammation, 

lipid metabolism, and vascular cell dynamics underscores its 

significant contributions to atherogenicity, making it a critical 

target for therapeutic intervention in the prevention and 

management of AS and its related CVDs. The presence of oxLDL 

particles also holds clinical significance in assessing atherogenic 

risk (141). Patients with higher concentrations of oxLDL 

demonstrate a greater risk of plaque rupture and acute coronary 

events, with elevated oxLDL levels linked to systemic in:ammation 

and AS, highlighting its value in cardiovascular risk assessment 

protocols (142).

7.3 Lp(a)

The structure of Lp(a) allows it to contribute to atherogenicity 

through multiple mechanisms, including promoting lipid 

accumulation, fostering in:ammation, and interfering with 

fibrinolysis (143). One key feature of Lp(a) that enhances its 

atherogenic potential is the presence of oxPLs on its surface, which 

can induce pro-in:ammatory responses in vascular cells, leading to 

endothelial dysfunction and vascular in:ammation (144). These 

oxPLs can interact with scavenger receptors on macrophages, 

promoting foam cell formation and plaque development. 

Furthermore, Lp(a) has been shown to stimulate the production of 

pro-in:ammatory cytokines and adhesion molecules, such as 

interleukin-8 and VCAM-1, which further enhance monocyte 

recruitment and retention within the arterial wall (145).

Another contribution of Lp(a) to atherogenesis is its 

interference with the fibrinolytic system. Lp(a) has an LDL core 

bound to apo(a), a unique glycoprotein that shares structural 

homology with plasminogen and competes with it for binding 

sites on fibrin and ECs, which can inhibit plasmin formation. 

This impairment of the fibrinolytic pathway can lead to a 

prothrombotic state and contribute to the development of 

atherosclerotic plaques with increased thrombotic potential 

(146). Additionally, Lp(a) can be preferentially retained in the 

arterial wall due to its high affinity for extracellular matrix 

components such as proteoglycans, further enhancing lipid 

deposition and plaque stability (147). Moreover, recent studies 

have demonstrated that elevated Lp(a) levels, even in individuals 

with no other lipid abnormalities, are associated with increased 

arterial wall in:ammation and early atherogenesis (148). This 

suggests that Lp(a) independently contributes to atherogenicity, 

making it an important biomarker and potential therapeutic 

target in the context of CVD.

7.4 L5/LDL(-)

It has garnered attention in recent years for its significant 

contributions to atherogenicity. L5/LDL(-) is characterized by its 

negative charge, which results from the presence of additional 

apolipoproteins with low isoelectric points (pI) such as apoE (pI 

5.5), apoAI (pI 5.4), apoCIII (pI 5.1), and apo(a) (pI 5.5), as well as 

increased NEFA and specific phospholipids. This unique 

composition enhances its ability to promote AS through several 

mechanisms. L5/LDL(-) has increased affinity for proteoglycans of 

the arterial wall, where it can accumulate and contribute to the 

formation of atherosclerotic plaques. Moreover, L5/LDL(-) exhibits 

greater pro-in:ammatory potential compared to native LDL 

particles (149). Studies have shown that L5/LDL(-) can induce EC 

dysfunction, promoting the expression of adhesion molecules such 

as ICAM-1 and VCAM-1 (150). This upregulation facilitates the 

recruitment and retention of monocytes, which differentiate into 

macrophages and form foam cells, a critical component of 

atherosclerotic lesions (151). Additionally, L5/LDL(-) can activate 

signaling pathways that lead to the production of pro-in:ammatory 
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cytokines, exacerbating the in:ammatory milieu within the arterial 

wall and perpetuating the atherosclerotic process (104).

Another significant aspect of L5/LDL(-)’s contribution to 

atherogenicity is its impaired clearance from circulation, which 

may re:ect impaired metabolism and contribute to lipid 

imbalance. L5/LDL(-) is less efficiently cleared from circulation 

due to its altered recognition by LDLR, leading to prolonged 

exposure of vascular tissues to its atherogenic effects. This 

impaired clearance probably results in higher plasma levels of 

L5/LDL(-), which are associated with increased cardiovascular 

risk (100). Furthermore, the accumulation of L5/LDL(-) in 

the arterial wall can induce oxidative stress and further 

lipid peroxidation, creating a vicious cycle that exacerbates 

endothelial dysfunction and promotes plaque instability (151).

The atherogenic effects of L5/LDL(-) have been supported by 

clinical studies that highlight the correlation between elevated 

levels of L5/LDL(-) and increased incidence of CVEs. For 

instance, recent research by Chan et al. showed that elevated 

concentrations of L5/LDL(-) are associated with a significantly 

higher risk of CAD (152, 153), independent of other lipid 

parameters. This evidence underscores the importance of L5/ 

LDL(-) as a critical player in the pathogenesis of AS, suggesting 

that it may serve as a valuable biomarker and potential 

therapeutic target in CVD management.

The clinical relevance of LDL particle characteristics in 

atherogenicity is underscored by their substantial impact on 

cardiovascular risk assessment and management. The recognition 

that not all LDL particles have the same characteristics has led to a 

paradigm shift in how clinicians should approach dyslipidemia, 

ultimately leading to improved patient outcomes through more 

personalized therapeutic strategies and better risk stratification.

8 Therapeutic approaches targeting 
LDL particle traits

Therapeutic approaches targeting LDL particle characteristics 

have evolved significantly in recent years, driven by a growing 

understanding of the distinct atherogenic potential associated 

with different LDL subfractions. Traditional lipid-lowering 

strategies have primarily focused on reducing overall LDL-C 

levels; however, emerging evidence highlights the necessity of 

addressing the qualitative characteristics of LDL particles, such 

as their density, size, and oxidative state (Table 2), to more 

effectively mitigate cardiovascular risk (Figure 2) (154).

The most established therapeutic strategy for lowering LDL-C 

is the use of statins, which inhibit the enzyme HMG-CoA 

reductase to reduce cholesterol synthesis in the liver. Statins not 

only lower overall LDL-C levels but have also been shown to 

shift the LDL particle distribution toward larger, more buoyant 

particles, which are considered less atherogenic (155). By doing 

so, statins can significantly reduce the incidence of CVEs. 

However, while statins remain the cornerstone of lipid 

management, their impact on LDL particle size varies among 

individuals, and not all patients achieve adequate LDL particle 

modification with statin therapy alone (62). To address the 

limitations of statin therapy, additional agents to modify lipid 

levels have been introduced to target specific LDL particle traits. 

For example, ezetimibe, a cholesterol absorption inhibitor, has 

been shown to further reduce LDL-C levels when used in 

conjunction with statins (154). Clinical trials indicate that this 

combination therapy can lead to a more pronounced decrease in 

sdLDL particles, potentially enhancing cardiovascular protection 

(25). In addition, it has been shown that therapies using 

different statins also decrease the proportion of L5/LDL(-) 

within total LDL (156–159).

In the context of sdLDL, novel and promising therapies aimed 

at reducing hypertriglyceridemia, such as inhibitors of the action 

of apoC-III or angiopoietin-like protein 3, including monoclonal 

antibodies, antisense oligonucleotides, or small interfering RNA 

(siRNA), are relevant since lowering TGs is expected to increase 

LDL particle size (Table 2; Figure 2).

Furthermore, proprotein convertase subtilisin/kexin type 9 

(PCSK9) inhibitors have emerged as a novel class of lipid- 

lowering agents that can dramatically lower LDL-C levels and 

alter LDL particle composition. PCSK9 inhibitors increase the 

number of available LDLRs on hepatocytes, promoting the 

clearance of atherogenic LDL particles from the circulation and 

thereby decreasing the concentration of sdLDL (160). Recent 

research has also investigated the potential of novel therapies 

such as apoB-targeting agents and antisense oligonucleotides to 

further refine LDL particle traits. These therapies aim to 

specifically reduce the concentration of apoB-containing 

lipoproteins, which include LDL and VLDL. Preliminary studies 

suggest that targeting apoB may lead to significant reductions in 

TABLE 2 Conventional lipid-lowering treatments vs. emerging LDL 
classes-targeted therapies.

Therapy Mechanism Limitations Emerging 
potential 

alternative

Statins HMGCR 

inhibition

Myopathy and 

diabetes risk

PCSK9 inhibitors, 

Inclisiran (PCSK9 

siRNA), Bempedoic 

acid

Bile acid 

sequestrants

Bind bile acids in 

the gut

GI side effects, weak 

LDL reduction

Obeticholic acid (FXR 

agonist)

Fibrates Activate PPAR-α Limited LDL- 

lowering effect, 

renal/hepatic 

toxicity

Olezersans (APOC3 

inhibitor), Evinacumab 

(ANGPTL3 inhibitor), 

Pemafibrate (PPAR-α 
modulator)

PCSK9i LDLR 

stabilization

High cost, injections Inclisiran, Oral 

PCSK9i, gene editing 

approaches

Ezetimibe NPC1L1 

inhibition

Modest efficacy Obicetrapib (CETP 

inhibitors), Oral 

PCSK9i, Evinacumab, 

Inclisiran

Bempedoic 

Acid

ACLY inhibition Limited sdLDL 

reduction

Oral PCSK9, 

ANGPTL3 inhibitors, 

Inclisiran

ACLY, ATP citrate lyase; ANGPTL3, angiopoietin-like protein 3; CETP, cholesteryl ester 

transfer protein; GI, gastrointestinal; HMGCR, HMG-CoA reductase; LDL, low-density 

lipoprotein; LDLR, low-density lipoprotein receptor; NPC1l, Niemann-Pick C1-like 1; 

PCSK9, protein convertase subtilisin/kexin type 9; PPAR, peroxisome proliferator- 

activated receptors; sdLDL, small, dense LDL.
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both LDL-C and the number of Lp(a) particles, thus lowering 

atherogenic risk (161). Olpasiran, a siRNA, blocks Lp(a) 

production by preventing translation of apo(a) mRNA (162, 

163). Treatment with the oxLDL-specific antibody orticumab 

reduced aortic AS by 43%, subvalvular plaque area by 50% and 

the macrophage content by 31% (164).

In addition to pharmacological therapies, lifestyle 

modifications play a crucial role in targeting LDL particle traits. 

Diet, physical activity, and weight management can significantly 

in:uence LDL particle size and density (165, 166). Diets rich in 

omega-3 FAs, soluble fiber, and monounsaturated fats have been 

shown to favorably modify LDL particle characteristics by 

promoting larger, less atherogenic particles (167). Regular 

physical activity not only aids in weight loss but also enhances 

the lipid profile by increasing the proportion of large, buoyant 

LDL particles while reducing sdLDL particles (168).

Breakthroughs in personalized medicine and next-generation 

lipid analysis tools are revolutionizing therapeutic approaches 

through tailored strategies based on a patient’s distinct LDL profile. 

By utilizing comprehensive lipid profiles, clinicians can identify 

patients with a predominance of sdLDL particles and implement 

targeted interventions to address these specific traits effectively (113).

Essentially, the landscape of therapeutic approaches targeting 

LDL particle traits has expanded significantly in recent years, 

incorporating a combination of pharmacological interventions, 

lifestyle modifications, and personalized medicine strategies. By 

focusing on not only the reduction of LDL-C but also the 

qualitative characteristics of LDL particles, healthcare providers 

can enhance the efficacy of cardiovascular risk management and 

potentially improve patient outcomes in the long term.

9 Emerging research directions in 
understanding LDL particle 
contributions to atherogenicity

Emerging research efforts to understand the atherogenic 

contributions of LDL particles are increasingly focused on 

the complex mechanisms that underlie LDL’s role in CVD. 

Traditional perspectives have primarily emphasized the 

quantity of circulating LDL-C as a risk factor; however, 

contemporary investigations are shifting toward a more nuanced 

understanding of LDL particle characteristics, including 

density, size, and biochemical modifications, as critical 

determinants of atherogenic potential. Recent studies have 

begun to elucidate how these LDL particle traits interact with 

various biological pathways, in:uencing the pathogenesis of AS 

and associated CVEs.

FIGURE 2 

Overview of conventional LDL-C–lowering therapies and emerging strategies targeting atherogenic LDL subfractions. This figure contrasts 

established lipid-lowering therapies with emerging interventions aimed at specific pathogenic LDL subfractions implicated in atherogenesis, 

including sdLDL, oxLDL, Lp(a), and L5/LDL(-). Conventional therapies, such as statins, PCSK9 inhibitors, bempedoic acid, and ezetimibe, primarily 

act through hepatic and intestinal pathways to lower circulating LDL-C levels. In contrast, novel agents, including evinacumab, inclisiran, and 

experimental therapeutics, are designed to exert systemic effects or selectively modulate the metabolism, clearance, or pathogenicity of distinct 

LDL subfractions. Together, these strategies reflect a paradigm shift toward mechanistically tailored interventions aimed at optimizing 

cardiovascular risk reduction beyond general LDL-C lowering. ACLY, ATP citrate lyase; ANGPTL3, angiopoietin-like protein 3; ASOSs, apo(a) 

antisense oligonucleotides; CETP, cholesteryl ester transfer protein; HL, hepatic lipase; HMGCR, HMG-Coa reductase; IDL, intermediate-density 

lipoprotein; L5/LDL(-), electronegative LDL; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; Lp(a), lipoprotein(a); LPL, 

lipoprotein lipase; NPC1l, Niemann-Pick C1-like 1; oxLDL, oxidized LDL; PCK9, protein convertase subtilisin/kexin type 9; PCK9i Ab, proprotein 

convertase subtilisin/kexin type 9 inhibitor antibody; sdLDL, small dense LDL; VLDL, very low-density lipoprotein.
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One promising area of research involves the exploration of LDL 

particle heterogeneity and its implications for vascular in:ammation. 

New approaches utilizing advanced lipidomic profiling techniques 

aim to quantify and characterize different LDL subfractions in 

various populations and their respective roles in atherogenesis. By 

employing NMR spectroscopy and mass spectrometry, researchers 

can identify distinct LDL subclasses and their relative contributions 

to cardiovascular risk. This level of understanding could inform 

strategies that specifically counteract the atherogenic effects of 

distinct LDL subfractions (113).

Another emerging direction is the investigation of genetic and 

epigenetic factors that in:uence LDL particle characteristics. The 

role of genetic variants, such as those affecting apoB and PCSK9, in 

modulating LDL particle size and number is actively studied (1). 

Epigenetic modifications, such as DNA methylation and histone 

modifications, are also being investigated for their potential to 

in:uence LDL metabolism and particle composition, offering new 

avenues for therapeutic intervention (169). Understanding the 

genetic underpinnings of LDL particle traits could provide critical 

insights into individual susceptibility to atherogenicity and may 

inform personalized approaches to lipid management.

The role of gut microbiota in modulating LDL particle 

characteristics and their subsequent atherogenic potential 

represents another exciting research frontier. Emerging evidence 

suggests that the composition of gut microbiota can impact lipid 

metabolism, leading to alterations in LDL particle traits (170). 

Certain gut bacteria have been shown to in:uence the 

absorption and processing of dietary lipids, which may 

subsequently affect LDL particle formation and composition 

(171). Investigating the microbiome’s impact on LDL particle 

characteristics could unveil novel therapeutic strategies that 

harness the gut-lipid axis to mitigate cardiovascular risk.

Additionally, the intersection of in:ammation, oxidative stress, 

and LDL particle dynamics is garnering increasing attention. 

Recent studies have highlighted the role of in:ammatory cytokines 

in modulating LDL particle composition, leading to a greater 

proportion of sdLDL particles (172). Understanding how systemic 

in:ammation interacts with LDL metabolism may yield insights 

into the development of new anti-in:ammatory therapies aimed at 

reducing LDL-related atherogenicity. This focus on in:ammation 

aligns with the broader recognition of CVD as an in:ammatory 

condition, necessitating a holistic approach to prevention 

and treatment.

Finally, the integration of novel imaging techniques, such as 

intravascular ultrasound and positron emission tomography, is 

enhancing our ability to visualize LDL particle behavior within the 

arterial wall and its relationship to plaque formation and stability 

(173). These technologies can provide real-time assessments of LDL 

dynamics and their contributions to atherogenesis, preparing the 

path for more precise risk stratification and management strategies 

(174). Emerging research directions in understanding LDL particle 

contributions to atherogenicity are multifaceted, focusing on the 

intricate interplay of particle characteristics, genetic and epigenetic 

in:uences, gut microbiota interactions, in:ammation, and advanced 

imaging technologies. These innovative approaches hold the 

potential to deepen our understanding of LDL’s role in CVD and 

inform the development of more effective, personalized 

therapeutic interventions.

10 Critical evaluation of L5/LDL(-) as 
an atherogenic LDL subfraction and 
emerging biomarker

Among atherogenic LDL subfractions, L5/LDL(-) has gained 

increasing attention due to its pro-in:ammatory, endothelial- 

damaging, and atherogenic properties demonstrated in 

experimental settings (31). However, despite compelling in vitro 

and animal model data, the clinical evidence supporting L5/LDL 

(-) as a diagnostic or prognostic biomarker remains limited and 

preliminary. To date, the majority of L5/LDL(-) studies have 

been conducted in relatively small cohorts, often in highly 

selected populations such as patients with metabolic syndrome, 

T2DM, STEMI, or chronic autoimmune disorders (32, 89, 96, 

99, 100, 152, 153, 159, 175–178). These studies, while suggestive, 

often lack sufficient power to generalize findings across broader 

populations. Furthermore, differences in lipoprotein separation 

techniques, L5/LDL(-) quantification methods, and patient 

phenotyping limit the reproducibility and comparability of 

findings across studies. Longitudinal data on L5/LDL(-) levels 

and cardiovascular outcomes are particularly scarce.

Moreover, many studies have not fully controlled for potential 

confounding factors such as concurrent lipid-lowering therapies, 

in:ammation, or comorbid conditions that may in:uence both 

LDL electronegativity and cardiovascular risk. Importantly, while 

the association between elevated L5/LDL(-) levels and 

endothelial dysfunction has been shown mechanistically in vitro, 

direct causal links in human populations remain to be established.

Given these limitations, the role of L5/LDL(-) as a clinical 

biomarker must be interpreted with caution. The current level 

of evidence is best characterized as hypothesis-generating rather 

than conclusive. Future studies with larger, more diverse 

populations, standardized methods for L5/LDL(-) quantification, 

and longitudinal follow-up will be critical to validate L5/LDL 

(-)’s utility as a biomarker and therapeutic target in AS.

11 Clinical practice guidelines and 
emerging relevance of LDL 
subfractions

Current clinical practice guidelines, including those from the 

American College of Cardiology (ACC)/American Heart 

Association (AHA) and the European Society of Cardiology (ESC)/ 

European Atherosclerosis Society (EAS), emphasize the central role 

of LDL-C in cardiovascular risk assessment and management 

(5, 179). Treatment strategies focus primarily on lowering total 

LDL-C through lifestyle modification and pharmacologic therapy, 

most notably statins, ezetimibe, and PCSK9 inhibitors, based on 

absolute risk categories and LDL-C thresholds.

Despite mounting evidence that certain LDL subfractions, 

such as sdLDL, oxLDL, Lp(a), and L5/LDL(-), may be more 
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directly implicated in atherogenesis than total LDL-C, these 

subfractions are not currently incorporated into routine risk 

stratification algorithms or treatment guidelines (31). Several 

reasons underlie this gap, including the lack of standardized, 

widely available assays for subfraction measurement, limited 

large-scale clinical data linking subfractions to outcomes 

independently of LDL-C, and the absence of intervention 

studies specifically targeting these subfractions (9, 180).

Nevertheless, a growing body of research suggests that patients 

with normal or mildly elevated LDL-C levels may still carry a high 

burden of atherogenic LDL subfractions, highlighting the need for 

more refined lipid profiling in selected populations, such as those 

with metabolic syndrome, diabetes, or residual cardiovascular risk 

despite statin therapy (181). Emerging strategies, including lifestyle 

interventions, niacin, fibrates, and some newer lipid-modifying 

agents (e.g., angiopoietin-like protein 3 inhibitors), may 

preferentially impact these atherogenic subfractions, although their 

clinical roles remain to be fully defined (65, 182, 183).

As such, LDL subfraction analysis currently resides in the 

realm of research or specialized lipid clinics rather than 

mainstream clinical practice. Future inclusion in guidelines will 

likely depend on validation from large-scale, prospective studies 

demonstrating incremental predictive value and clear benefit 

from subfraction-targeted therapies.

12 Conclusion

This review comprehensively explores the multifaceted nature of 

atherogenic LDL particles by examining their density, size and 

electronegativity, and elucidates how these characteristics 

contribute to their atherogenic potential. Current classification 

systems provide a framework for distinguishing various LDL 

subfractions based on their physicochemical properties, yet 

understanding the underlying mechanisms requires robust 

methodological approaches for precise measurement and 

characterization. The evidence indicates that smaller, denser, and 

more electronegative LDL particles exhibit a higher propensity for 

contributing to atherogenesis due to enhanced susceptibility to 

oxidative modification and preferential uptake by macrophages.

Factors such as diet, genetics, and metabolic conditions further 

modulate LDL particle properties, adding another layer of 

complexity to their role in CVD risk. The clinical relevance of LDL 

subfractions and their distinct characteristics suggest that tailored 

therapeutic strategies targeting these properties may offer a more 

effective approach to reducing atherogenicity and mitigating CVD 

risk. This growing body of evidence underscores the importance of 

integrating these insights into clinical practice to improve risk 

stratification and therapeutic interventions.
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Glossary

ACLY ATP citrate lyase

Apo(a) apolipoprotein(a)

ApoA-I apolipoprotein A-1

ApoB-100 apolipoprotein B100

ApoC-III apolipoprotein C-III

ApoD apolipoprotein D

ApoE apolipoprotein E

ApoF apolipoprotein F

ApoJ apolipoprotein J

AS atherosclerosis

ASOSs apo(a) antisense oligonucleotides

ASCVD atherosclerotic cardiovascular disease

CAD coronary artery disease

CD36 scavenger receptor class B member 3

CE cholesterol ester

CETP cholesteryl ester transfer protein

CVD cardiovascular disease

CVEs cardiovascular events

DM diabetes mellitus

eNOS endothelial nitric oxide synthase

FPLC fast protein liquid chromatography

HDL high-density lipoprotein

HDL-C high-density lipoprotein cholesterol

HL hepatic lipase

HMGCR HMG-CoA reductase

ICAM-1 intercellular adhesion molecule-1

IDL intermediate-density lipoprotein

IL-1β interleukin-1 beta

L5/LDL(-) electronegative LDL

LDL low-density lipoprotein

LDLR low-density lipoprotein receptor

LOX-1 lectin-like oxidized LDL receptor-1

Lp(a) lipoprotein(a)

LPC lysophosphatidylcholine

LPL lipoprotein lipase

MMPs metalloproteinases

NEFA non-esterified fatty acids

NF-κB nuclear factor kappa B

NLRP3 nucleotide-binding domain, leucine-rich- 

containing family, pyrin domain-containing 3

NO nitric oxide

NPC1l Niemann-Pick C1-like 1

NMR nuclear magnetic resonance

oxLDL oxidized LDL

oxLp(a) oxidized Lp(a)

oxPL oxidized phospholipids

PCK9 protein convertase subtilisin/kexin type 9

PCK9i Ab proprotein convertase subtilisin/kexin type 9 

inhibitor antibody

pI isoelectric points

PUFAs polyunsaturated fatty acids

ROS reactive oxygen species

RA rheumatoid arthritis

sdLDL small dense LDL

siRNA small interfering RNA

SMCs smooth muscle cells

SR-A scavenger receptor class A

STEMI ST-elevation myocardial infarction

TG triacylglycerol

TNF-α tumor necrosis factor-α
T2DM type 2 diabetes mellitus

VCAM-1 vascular cell adhesion molecule-1

VLDL very low-density lipoprotein
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