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Objectives: To establish an automated scoring system for abdominal aortic 

calcification (AAC) to facilitate standardized quantitative imaging analysis in 

support of clinical decision-making in atherosclerosis management.

Methods: x-ray images of the abdominal aorta were obtained for 2,941 

individuals from five medical centers in Zhejiang Province. Calcification 

severity was graded manually using the Kauppila scoring system, and cases 

were stratified into three groups based on total calcification burden. The 

automated assessment framework comprised two sequential components: a 

lumbar spine segmentation model based on nnUnet and an AAC score 

regression model based on ResNet. Model development was conducted 

using 1,737 training cases, with internal validation in 471 cases and external 

validation in 733 cases from independent centers. A retrospective matched 

cohort study was conducted in 200 AAC patients from Center B (100 dialysis- 

dependent and 100 not dialysis-dependent cases), to investigate associations 

with major adverse cardiovascular events.

Results: The developed automated quantification system demonstrated mean 

absolute errors of 1.686 (internal validation set) and 1.920 (external validation 

set), with strong correlation to expert ratings (Spearman’s ρ = 0.923 and 

0.888, respectively, both P < 0.001). Inter-rater reliability analysis revealed 

excellent agreement with manual scoring (intraclass correlation coefficients 

of 0.913 internally and 0.874 externally). Stratification based on calcification 

severity showed optimal sensitivity for the moderate calcification category 

(88.6%), with superior specificity for the non/mild (94.2%) and severe 

(91.5%) categories.

Conclusion: The established automated quantification system for AAC exhibits 

good assessment efficiency and measurement accuracy, offering a 

standardized approach to refine cardiovascular risk stratification in 

clinical practice.
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Introduction

Atherosclerosis (AS), as the core pathological basis of 

cardiovascular diseases, is a leading cause of disability and all- 

cause mortality worldwide (1–4). Abdominal aortic calcification 

(AAC), as a radiological marker of AS (5–7), re&ects the 

dynamic progression of vascular calcification in the 

atherosclerotic process, and the severity of AAC is significantly 

positively correlation with the arterial plaque burden. Notably, 

in patients with chronic kidney disease (CKD), particularly 

those who require maintenance dialysis, a quantitative AAC 

score has emerged as a key tool for assessing the risk of a 

cardiovascular event (8). Research has shown that this AAC 

score can be used not only for quantitative evaluation of the 

progression of AS but also as an important independent 

predictor of adverse cardiovascular events and all-cause 

mortality (9–11).

For the purpose of clinical AAC scoring, x-ray imaging has 

become the preferred radiological method for assessing AAC 

due to its significant advantages related to cost-effectiveness 

(12, 13). However, the diagnostic efficacy of x-ray–based AAC 

detection is inhibited by multidimensional technical limitations, 

including: (1) labor-intensive evaluation: traditional imaging 

assessment involves a manual, resource-heavy approach, which 

not only prolongs diagnostic time but also leads to inefficient 

allocation of medical resources (14); (2) subjectivity and 

variability: visual assessment methods are susceptible to 

in&uence by physician cognitive load and inter-observer 

variability, resulting in limited diagnostic reproducibility (15); 

and (3) lack of scalability: in large-scale screening scenarios, 

conventional methods are incapable of processing high- 

throughput imaging data due to the absence of an intelligent 

data processing framework. Therefore, the development of novel 

imaging-based assessment methods for AAC is critically needed.

Against the backdrop of generational advancements in 

traditional imaging assessment techniques, artificial intelligence 

(AI)-powered image analysis is reshaping the paradigm of AAC 

evaluation. Early breakthroughs were achieved through machine 

learning models based on dual-energy x-ray absorptiometry 

(DXA) imaging (16, 17), which enabled automated AAC scoring 

and advanced cardiovascular disease research. However, clinical 

AAC assessment currently relies primarily on conventional x-ray 

images (e.g., lateral lumbar or abdominal radiographs). While 

anatomical structure overlap is a challenge shared by both 

lateral lumbar DXA and conventional x-ray imaging, the latter 

presents greater difficulties for automated analysis due to higher 

image heterogeneity and the absence of standardized 

quantitative outputs. Conventional x-rays provide benefits like 

higher spatial resolution and better soft-tissue contrast (resulting 

from smaller pixels and higher doses), but their variability 

remains a significant hurdle.

While convolutional neural networks (CNNs) have 

demonstrated remarkable success in medical image analysis (18), 

the studies conducted so far toward an automated AAC scoring 

system have faced significant limitations. For example, one study 

reported an end-to-end CNN-based AAC scoring model (15), 

but its single-center design may limit the model’s 

generalizability across heterogeneous clinical settings.

Unlike existing AAC scoring systems constrained by 

traditional machine learning (16, 17) or single-center designs 

(15), the present study aimed to use a multicenter dataset to 

establish an x-ray–based deep learning framework, which can 

provide enhanced clinical efficiency and scoring accuracy 

for physicians.

Materials and methods

Data acquisition

We retrieved abdominal aortic radiographs from the picture 

archiving and communication systems (PACS) of five medical 

centers in Zhejiang Province and exported images in Digital 

Imaging and Communications in Medicine (DICOM) format 

while preserving essential clinical information for analysis.

The following inclusion criteria were applied: age >18 years; 

availability of lateral abdominal or lumbar radiographs; and 

image coverage from T12 to S1 vertebrae, with anterior soft 

tissue thickness exceeding vertebral anteroposterior diameter 

(ensuring complete visualization of the abdominal aorta from 

diaphragm to iliac bifurcation).

Cases were excluded according to the following exclusion 

criteria: structural incompleteness or significant vertebral 

destruction/compression (L1–L4 anterior vertebral height 

<2 cm), due to the resultant distortion of anatomical landmarks 

essential for standardized Kauppila scoring; poor image quality 

due to artifacts/noise obscuring lumbar vertebral structures; or 

prominent high-density overlapping shadows in lumbar/aortic 

regions. The detailed baseline clinical characteristics of the study 

participants are presented in Table 1.

This study was approved by the Medical Ethics Committee of 

Ningbo University Affiliated First Hospital (Approval No.: 

2025-040A) and adhered to the principles outlined in the 

Declaration of Helsinki. All clinical data were anonymized per 

institutional protocols, in compliance with China’s Ethical 

Review Measures for Life Sciences and Medical Research 

Involving Human Subjects. The need for an informed consent 

was exempted due to the retrospective nature of the study.

Dataset partitioning

To reduce computational costs while maintaining accuracy, we 

randomly selected 142 images from Center A (November 2021 to 

December 2021) and Center C (November 2023 to November 

Abbreviations  

AS, atherosclerosis; CNNs, convolutional neural networks; DXA, dual-energy x- 

ray absorptiometry; AAC, abdominal aortic calcification; AACS, abdominal 

aortic calcification score; CKD, chronic kidney disease; FC, final fully- 

connected; MACE, major adverse cardiovascular events.
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2023) to establish a small-scale dataset for lumbar segmentation 

model development. This subset was used for preliminary 

region-of-interest (ROI) localization, with a 132:10 training:test 

split ratio. A radiologist manually annotated L1–L5 vertebral 

bodies using ITK-SNAP software.

To develop the AAC scoring regression model, the dataset was 

systematically partitioned by lumbar segmentation model. The 

training set comprised data from: Center A (January 2019 to July 

2023), Center C (January 2022 to November 2023), Center D 

(January to December 2023), and Center E (January 2021 to 

December 2023). The internal validation set included cases from: 

Center A (August 2023 to February 2024) and Center E (January 

to March 2024). We maintained an approximate 4:1 ratio between 

training and internal validation sets. Additionally, cases from 

Center B (January 2021 to January 2024) served as the external 

validation set for rigorous evaluation of the model’s generalizability.

Manual AAC scoring

For manual scoring of AAC, this study employed the 

internationally recognized Kauppila semi-quantitative scoring 

method (19, 20), the gold standard for AAC assessment. The 

standardized evaluation protocol assessed four aortic segment 

pairs (anterior/posterior walls) corresponding to the L1–L4 

vertebral levels, with segment boundaries defined at midpoints 

of adjacent intervertebral spaces. The grading criteria were as 

follows: no detectable calcification: 0 points; calcification length 

<1/3 of aortic segment: 1 point; calcification length ≥1/3 but 

≤2/3 of segment: 2 points; and calcification length >2/3 of 

segment: 3 points. Based on the total score, cases were classified 

as: no or mild AAC (0–4 points), moderate AAC (5–15 points), 

or severe AAC (16–24 points) (21).

To ensure scoring accuracy, all raters were rigorously trained by 

applying the Kauppila scoring system to 451 training cases before 

formal evaluation for the present study. AAC scoring was 

performed through a standardized, double-blind protocol involving 

three stages: (1) initial independent scoring by two junior 

radiologists with <5 years of experience; (2) adjucation by a senior 

radiologist (≥5 years’ experience) for cases with discrepant AAC24 

total scores between junior radiologists were adjudicated (Through 

independent review, the senior radiologist assigned Kauppila sub- 

scores (0–3) to anterior/posterior walls of L1–L4 vertebrae. The 

definitive AAC24 reference standard was derived from this 

assessment.); and (3) quality control verification by another senior 

radiologist who independently scored cases in the internal/external 

validation sets and confirmed proper ROI localization in images, 

which had been processed by the lumbar spine segmentation and 

localization model. Figure 1 outlines the model design and 

laboratory work&ow design.

Clinical analysis

This study utilized an artificial intelligence-assisted calcification 

scoring system to screen abdominal aortic x-ray images from Center 

B’s database (January 2023 to January 2024), identifying cases with 

AAC positivity (AAC score ≥1). Using a stratified random sampling 

method based on patients’ dialysis history, the study established 

Observation Cohort 1 comprising 100 patients who received 

maintenance dialysis. For the control group (Observation 

Cohort 2), 100 patients not receiving dialysis treatment were 

chosen based on criteria including a glomerular filtration rate 

(GFR) >80 ml/min and no history of dialysis. Clinical data for 

both groups were retrospectively collected through the review of 

electronic medical records and telephone follow-ups, covering the 

period from January 2020 to December 2024. The primary focus 

was comparing the cumulative incidence of major adverse 

cardiovascular events (MACEs) between the two cohorts during 

the 5-year follow-up period. The MACE composite endpoint 

included four clinical outcomes: hemorrhagic stroke, ischemic 

stroke, myocardial infarction, and heart failure.

TABLE 1 Baseline patient characteristics and x-ray image acquisition conditions.

Hospital A B C D E Total P value

Sex P < 0.001, F = 11.97

F, n (%) 727 414 79 47 185 1,452

M, n (%) 737 319 105 117 211 1,489

Age, mean ± SD (years) 70.3 ± 10.9 (23–97) 68.6 ± 11.0 (21–97) 62 ± 13.3 (21–94) 65.7 ± 11.2 (37–89) 62.1 ± 11.2 (32–89) 68 ± 11.6 (21–97) P < 0.001, F = 58.14

CKD, n 327 164 184 164 396

Lumbar lateral 1,137 569 – – –

Company Philips Shimadzu – – – –

Tube current, mA 400 (400–517) 400 (400–630) – – – –

Tube voltage, Kv 85 (85–95) 95 (80–95) – – – –

Abdominal lateral 327 164 184 164 396

Company Philips Shimadzu Philips Philips United film –

Tube current, mA 320 (320–320) 250 (250–400) 320 (320–320) 320 (320–320) 400 (400–508) –

Tube voltage, Kv 85 (85–85) 80 (80–100) 85 (85–85) 85 (85–85) 85 (85–85) –

AAC score (manual)

No/Mild 3 (0,4) 2 (0,4) 1 (0,4) 2 (0,4) 2 (0,4) 2 (0,4) P < 0.001, F = 12.03

Moderate 9 (5,15) 8 (5,15) 9 (5,15) 7 (5,15) 10 (5,15) 9 (5,15) P < 0.001, F = 6.23

Severe 18 (16,24) 18 (16,24) 16 (16,19) 17 (16,23) 19 (16,24) 18 (16,24) P = 0.026, F = 2.86
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Construction of the AAC automated 
scoring system

The AAC automated scoring system primarily consists of two 

components: a lumbar spine segmentation and localization model 

and an AAC scoring regression model, as illustrated in Figure 2. 

The AAC score was treated as a continuous target variable for 

regression. This approach is justified as the score is derived 

from a continuous underlying physical quantity (calcified area), 

and each unit increment represents a comparable change in the 

extent of calcification.

Lumbar spine segmentation and 
localization model

The lumbar spine segmentation model was constructed using 

the 2D nnU-Net (22) framework, a state-of-the-art tool that 

automatically configures optimal preprocessing, network 

architecture, training, and postprocessing for a given dataset. This 

“no-new-Net” philosophy was selected to eliminate subjective 

manual tuning and ensure a robust, reproducible baseline, which 

is critical for providing high-quality masks for subsequent analysis.

The automatically configured architecture featured a 9-level 

encoder-decoder structure with feature channels of [32, 64, 128, 

256, 512, 512, 512, 512, 512] at each stage. The encoder 

employed consecutive convolutional layers with 3 × 3 kernels 

and instance normalization, progressively reducing spatial 

dimensions while increasing feature channels to capture 

hierarchical features at different scales. The decoder then 

upsampled the feature maps, recovering the original spatial 

dimensions of the input image. Skip connections were 

incorporated to fuse low-level spatial features from the encoder 

with high-level semantic features from the decoder.

During training, the model was optimized using a combined 

dice and cross entropy loss based on five-fold cross validation. 

The network was trained on 1,536 × 1,024 pixel patches with a 

batch size of 2, employing Z-score normalization for intensity 

standardization. Complete configurations are provided in the 

Supplementary plans.json File.

FIGURE 1 

Schematic diagram of the model design and laboratory workflow design processes.
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AAC scoring regression model

Prior to constructing the AAC scoring regression model, a 

series of image preprocessing steps were performed as follows: 

(1) segmentation mask generation: using the lumbar spine 

segmentation and localization model, segmentation masks for 

vertebrae L1–L5 were obtained; and (2) extraction: based on 

these masks, normalized original images were cropped to 

generate image patches containing the L1–L5 vertebral regions. 

The vertical coverage extended from the inferior border of T12 

to the inferior border of L5. The horizontal coverage included 

the L1–L5 vertebrae as well as soft tissue regions extending 3/4 

of the average anteroposterior vertebral length anteriorly. The 

processed image data were then used as input for the 

subsequent AAC scoring regression model.

Images were uniformly resized to 500 × 1,000 pixels. To 

generate a larger, more complex, and diverse dataset for 

enhancement of model accuracy and generalizability, images 

were augmented using several different methods, including 

random brightness adjustment (±10% adjustment), random 

contrast adjustment (±10% adjustment), random addition of 

Gaussian noise (σ∈[0,10]), random shift operation (±5% of 

image size), random scaling (±5%), and random angle rotation 

(±30 degrees). Augmentation was performed only in the training 

set before each epoch.

The AAC scoring regression model was constructed based on 

the framework of ResNet34, a publicly available deep residual 

network (23) comprising 34 layers. This choice was based on 

ResNet’s established efficacy as a deep feature extractor for two- 

dimensional images, particularly its ability to mitigate vanishing 

gradients through residual connections, which enables stable 

training of deep networks. To validate the architectural choices, 

a comparative ablation study was conducted against a 

VGG16_bn-based model under identical training conditions 

(detailed description provided in Supplementary Materials).

Transfer learning was implementded by fine-tuning the 

ImageNet-pretrained ResNet34 model weights. While the 

original ResNet34 was designed for classification tasks with a 

final fully-connected layer outputting 1,000 class probabilities, 

we modified the architecture for our regression task by replacing 

the final classifier with a custom sequential module. This 

module consisted of batch normalization, a dropout layer 

(P = 0.5), and a linear layer configured to produce a single 

continuous output value. To enhance feature representation, we 

integrated Spatial and Channel Squeeze & Excitation (SCse) 

attention modules (24) after each residual block, enabling the 

FIGURE 2 

Diagram of model construction for different tasks. (A) Part 1 of the model for lumbar segmentation and localization. (B) Part 2 of the model for AACS regression.
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model to focus on informative spatial regions and 

channel features.

The model was optimized using stochastic gradient descent 

with a momentum of 0.9 and weight decay of 0.0005, with an 

initial learning rate of 0.01. Training was conducted with a 

batch size of 32 for 500 epochs using mean squared error (MSE) 

as the loss function, with early stopping based on validation 

performance. Validation loss was monitored every 10 epochs, 

and training was effectively terminated at epoch 400 when 

validation loss plateaued, indicating no further improvement 

(Supplementary Figure S2). We employed an enhanced learning 

rate scheduling strategy combining linear warmup and cosine 

annealing. During the initial 200 iterations, the learning rate was 

linearly increased from 0.0033 (one-third of the base learning 

rate 0.01) to the full base value of 0.01. This warmup phase 

improved training stability by preventing early gradient 

explosion. Subsequently, the learning rate followed a cosine 

decay function to a minimum value of 0.0001 over the 

remaining training epochs, facilitating convergence to better 

optima (25).

Experimental evaluation metrics

All statistical analyses were conducted using SPSS software 

(version 27.0) and Python. The normality of continuous 

variables was assessed using the Shapiro–Wilk test and Q-Q 

plots. Normally distributed data are presented as 

mean ± standard deviation (mean ± SD), and non-normally 

distributed data are reported as median (range or interquartile 

range [IQR]). Categorical variables are expressed as frequency 

count (percentage, n [%]).

The AAC total score was treated as a continuous variable. 

Depending on the data distribution (assessed by skewness and 

kurtosis tests) of both model-predicted scores and manual 

standard scores, the Pearson correlation coefficient was 

calculated to evaluate linear relationships when normality 

assumptions were met. Otherwise, Spearman’s rank correlation 

coefficient was determined to assess monotonic associations. 

Model fit was quantified using the R2 coefficient. Prediction 

accuracy was measured by MSE and mean absolute error 

(MAE), with 95% confidence intervals (CIs) derived via 

bootstrapping (1,000 iterations). This involved repeatedly 

resampling the training set with replacement, retraining the 

model, predicting on the original test set, and calculating error 

metrics per iteration. The 95% CIs were defined as the 2.5th and 

97.5th percentiles of the resulting MSE and MAE distributions. 

Agreement between manual standard scores and model 

predictions was evaluated by calculating intraclass correlation 

coefficients (ICCs, two-way random-effects model ICC [2,1]) 

and weighted Kappa coefficients, with statistical significance set 

at P < 0.05.

Model performance was comprehensively evaluated through: 

(1) confusion matrices and calculation of overall accuracy rates, 

and (2) subgroup-specific metrics including accuracy, sensitivity, 

specificity, negative predictive value (NPV), and positive 

predictive value (PPV). Sensitivity analyses for cardiovascular 

outcomes included age/sex stratification and E-value calculation 

to assess unmeasured confounding effects.

Results

Baseline characteristics of study 
participants

The study population included a total of 1,464 cases from 

Center A (January 2019 to February 2024), 733 cases from 

Center B (January 2021 to January 2024), 184 cases from Center 

C (January 2022 to November 2023), 164 cases from Center D 

(January to December 2023), and 396 cases from Center E 

(January 2021 to March 2024).

For this study, a total of 1,737 cases were assigned to the 

training cohort, 471 to the internal validation cohort, and 733 to 

the external validation cohort. All imaging cohorts retained the 

full AAC spectrum (0–24). The detailed data distribution is 

shown in Table 2.

Segmentation and locoalization 
performance

For the lumbar spine segmentation model, the performance in 

segmenting vertebrae L1–L5 in the test set was excellent, with Dice 

scores of 0.92, 0.93, 0.95, 0.94, and 0.94, respectively. The 

segmentation model was subsequently applied to all imaging 

data to extract image patches for input into the AAC scoring 

regression model. Through manual review, the segmentation 

outputs met predefined ROI coverage criteria in 92.6% of cases 

(1,115/1,204) across both the internal and external validation sets.

AAC scoring regression performance

The AAC scoring regression model demonstrated excellent 

performance on the internal validation set with a MAE of 1.686, 

MSE of 4.730, and Spearman correlation coefficient of 0.923 

(P < 0.001). Similar robust performance was observed in the 

external validation set (MAE = 1.920; MSE = 5.835; Spearman’s 

ρ = 0.888, P < 0.001). Furthermore, the proportions of 

predictions deemed clinically acceptable (absolute error <4) were 

90.0% and 87.6% in the internal and external validatiaon sets, 

respectively. Although marginally higher errors were noted in 

the external validation set, the model maintained clinically 

acceptable accuracy and stability overall. The complete results 

for all evaluation metrics are presented in Table 3, with 

visualizations provided in Figure 3.

Comparatively, the results of the ablation study based on an 

alternative VGG16_bn architecture were calculated. Under 

identical training conditions, the ResNet34-based model 

achieved lower MAE and MSE for both the internal and 

external validation sets (Supplementary Table S1). Furthermore, 
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a higher proportion of predictions from the ResNet-34 model was 

clinically acceptable (absolute error <4). These results confirm the 

superiority of the chosen architecture for this task.

To further validate our findings, we conducted a 

comprehensive agreement analysis between manual standard 

scores (denoted as AAC1) and model-predicted scores 

(AI_Pred), with particular focus on ICCs and weighted Kappa 

statistics. Additionally, we incorporated a second independent 

manual rating (AAC2) for comparative analysis, to enable robust 

evaluation of discrepancies between the algorithmic and 

human assessments.

In the internal validation set, the model-predicted scores 

(AI_Pred) demonstrated strong agreement with manual standard 

scores (AAC1), as evidenced by an ICC of 0.913 and a weighted 

Kappa value of 0.716. For comparison, the inter-rater reliability 

between two human evaluators (AAC1 vs. AAC2) showed even 

higher concordance, with an ICC of 0.985 and weighted Kappa 

of 0.904.

In the external validation set, the agreement between manual 

standard scores (AAC1) and model predictions (AI_Pred) 

remained robust, with an ICC of 0.874 and weighted Kappa 

value of 0.644. By comparison, the inter-observer agreement 

between human raters (AAC1 vs. AAC2) in the external 

validation set showed superior consistency (ICC = 0.981, 

weighted Kappa = 0.887). The detailed results of this analysis are 

presented in Table 4.

Model performance according to AAC 
severity

Subgroup analysis revealed significant performance disparities 

across different AAC severity categories (detailed in Table 5 and 

Figure 4). Most notably, for both the No/mild (0–4) and Severe 

(16–24) AAC groups, the model exhibited markedly lower 

sensitivity compared to that for the Moderate (5–15) category. 

In the internal validation set, the model had sensitivities of 

74.1% for No/mild AAC and 65.1% for Severe AAC vs. 96.9% 

for Moderate AAC. Similarly, in the external validation set, 

these sensitivity values were 61.4% for No/mild AAC and 48.1% 

for Severe AAC vs. 96.1% for Moderate AAC. This consistent 

pattern (P < 0.001 for all inter-group comparisons) suggests 

potential detection challenges for extreme calcification 

conditions that warrant clinical attention.

Regarding specificity, the model showed significantly higher 

performance for both the No/mild and Severe AAC categories 

compared with the Moderate category. In the internal validation 

set, the model’s specificity reached 98.6% for No/mild AAC and 

99.0% for Severe AAC, whereas it was only 70.9% for Moderate 

AAC. Similarly, in the external validation set, the model’s 

specificity was 97.7% for No/mild AAC and 99.2% for Severe 

AAC, in stark contrast with a value of only 58.1% for Moderate 

AAC (all inter-group comparisons P < 0.001). This inverse 

pattern related to the sensitivity results suggests a potential 

trade-off effect in model performance across the categories of 

AAC severity.

Visual interpretation analysis

To qualitatively verify the model’s accuracy in localizing 

calcifications, we employed Grad-CAM (26) for visual 

explanatory insights. The results demonstrated strong agreement 

with radiologist assessments (78.35% correct focus; 

Supplementary Table S2) in the internal validation set. Figure 5

displays four randomly selected representative cases with distinct 

cardiovascular risk profiles involving: (A) chronic kidney 

disease, (B) hypertension, (C) hyperlipidemia, and (D) coronary 

artery disease. As exemplified in Figure 5A, the model’s 

attention heatmap comprehensively covered nearly all AAC 

calcification areas, yielding a predicted AAC score of 22 points, 

which closely matched the manual score of 23 points.

Cardiovascular outcomes

In this 5-year retrospective study, a markedly higher 

cardiovascular risk was observed in the dialysis cohort, with 17 

MACEs (15 patients, including 1 fatality) vs. 7 MACEs 

(7 patients) in the non-dialysis control cohort. Notably, 93.3% (14/ 

TABLE 2 Dataset partitioning for development and testing of AAC scoring regression model.

Dataset Total Abdominal 
lateral

Lumbar 
lateral

No/mild AAC (score 
0–4)

Moderate AAC (score 
5–15)

Severe AAC (score 
16–24)

Training 1,737 795 942 387 1,124 226

Internal 

validation

471 285 186 116 292 63

External 

validation

733 164 569 246 406 81

TABLE 3 Model performance metrics for accuracy and correlation.

Dataset Mean absolute error (MAE) Mean squared error (MSE) Spearman’s ρ R
2 coefficient

Internal validation set 1.686 (1.571, 1.811) 4.730 (4.100, 5.393) 0.923 (0.907, 0.935) P < 0.001 0.863 (0.835, 0.887) P < 0.001

External validation set 1.920 (1.809, 2.027) 5.835 (5.235, 6.486) 0.888 (0.886, 0.913) P < 0.001 0.811 (0.781, 0.835) P < 0.001
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15) of dialysis patients with MACEs and 85.7% (6/7) of non-dialysis 

cases with MACEs showed clinically significant calcification (AAC 

score >4). Furthermore, male patients predominated in the cohort 

(22% female vs. 78% male). Among younger patients with MACEs 

(age ≤65 years), those on dialysis substantially outnumbered non- 

dialysis individuals, whereas in the older group (age >65 years), 

both subgroups were similarly represented. These findings further 

underscore the prognostic value of vascular calcification 

assessment (see Table 6 for detailed results).

Discussion

This multicenter study compiled and analyzed data for a total of 

2,941 cases to develop and test an automated AAC scoring system 

using deep learning algorithms. The developed scoring system 

demonstrated both high scoring accuracy and robust clinical 

reliability in practical application. However, it is important to note 

that our model was trained and validated on a dataset from a single 

region, and its generalizability requires further external validation.

FIGURE 3 

Correlations between model predictions and manual standard scoring. (A) Internal validation. (B) External validation.
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Model evaluation

First, this multicenter study (n = 2,941) utilized lumbar/ 

abdominal lateral x-rays per the Kauppila criteria, offering 

significantly improved data diversity compared with single-center 

studies (15). Unlike the cohorts in prior studies, which exhibited 

right-skewed distributions (15, 17, 27), our cohort featured a 

substantially higher proportion of moderate calcification cases 

(AAC 5–15), achieving a near-normal sample distribution that 

enhanced the generalizability of the developed model across all 

calcification stages.

To address inherent field-of-view (FOV) variations in 

radiographs caused by technical/anatomical factors, we developed 

an innovative cascaded framework featuring: (1) a nnU-Net-based 

lumbar segmentation model, which achieved 92.6% precision in 

region localization and standardizes inputs by eliminating extra- 

aortic interference; and (2) a ResNet-based regression architecture 

(28, 29) that enhances micro-calcification detection (e.g., punctate/ 

arc-shaped patterns) via skip connections while mitigating gradient 

vanishing. Furthermore, our architectural choices (nnUNet for 

segmentation and ResNet for regression) were empirically validated 

through an ablation study, which confirmed their superiority over 

a strong alternative (VGG16_bn) for this specific task. This 

systermatic approach to model selection enhances the reliability of 

our findings.

An important consideration in this study is the treatment of 

the AAC score as a continuous variable for regression. Although 

the score is discrete, its foundation in a continuous physical 

measurement (calcified area) justifies this approach. Our error 

analyses (Supplementary Figure S3) revealed no substantial bias 

across the score range, and the majority of prediction errors 

were minor (±1), indicating that the regression model effectively 

learned the underlying progression of vascular calcification. 

However, we acknowleage that the dataset exhibited imbalance, 

with underrepretation of extreme scores (both very low and very 

high). This imbalance may partially explain the weak but 

significant correlation (Spearman’s ρ = 0.111, P < 0.05) between 

score and absolute error observed in the external validation set.

For clinical reliability, the model achieved clinically acceptable 

prediction rates (absolute error <4) of 90.0% in the internal 

validation set and 87.6% in the external validation set. Moreover, 

the developed model demonstrated excellent agreement with 

manual scoring in the internal validation set (R2 = 0.863, 

ICC = 0.913, weighted Kappa = 0.716), outperforming comparable 

deep learning models (R2 = .82) (15), with low prediction errors 

(MAE = 1.686, MSE = 4.730). External validation confirmed the 

TABLE 4 Comparison of ICC and Kappa values between manual standard 
scores (AAC1) vs. alternative manual ratings (AAC2) and model predictions 
(AI_Pred).

Comparison Dataset ICC (95% 
CI)

Weighted Kappa 
(95% CI)

AAC1 vs. AAC2 Internal 

validation set

0.985 (0.981, 

0.987)*

0.904 (0.891, 0.917)*

External 

validation set

0.981 (0.978, 

0.983)*

0.887 (0.876, 0.898)*

AAC1 vs. AI_Pred Internal 

validation set

0.913 (0.897, 

0.927)*

0.716 (0.691, 0.741)*

External 

validation set

0.874 (0.854, 

0.892)*

0.644 (0.620, 0.667)*

*All P < 0.001.

TABLE 5 Model performance metrics across categories of AAC severity.

Internal 
validation set 
(n = 471)

No/mild 
AAC 

(n = 116)

Moderate 
AAC 

(n = 292)

Severe AAC 
(n = 63)

Accuracy (%) 92.6 (86.4–96.1) 87.0 (82.7–90.4) 94.5 (85.9–98.0)

Sensitivity (%) 74.1 (65.4–81.2) 96.9 (94.2–98.4) 65.1 (52.8–75.7)

Specificity (%) 98.6 (94.4–99.7) 70.9 (65.4–75.8) 99.0 (92.5–99.9)

NPV (%) 92.1 (85.7–95.8) 93.4 (90.0–95.7) 94.8 (86.3–98.1)

PPV (%) 94.5 (88.7–97.4) 84.5 (79.9–88.2) 91.1 (81.5–96.0)

External 
validation set 
(n = 733)

No/mild 
AAC 

(n = 246)

Moderate 
AAC 

(n = 406)

Severe AAC 
(n = 81)

Accuracy (%) 85.5 (80.6–89.4) 79.1 (74.9–82.8) 93.6 (86.1–97.2)

Sensitivity (%) 61.4 (55.2–67.3) 96.1 (93.7–97.6) 48.1 (37.6–58.8)

Specificity (%) 97.7 (95.0–99.0) 58.1 (53.2–62.8) 99.2 (94.0–99.9)

NPV (%) 83.4 (78.2–87.5) 92.2 (89.2–94.4) 93.9 (86.4–97.4)

PPV (%) 93.2 (89.3–95.7) 74.0 (69.5–78.0) 88.6 (79.9–93.8)

FIGURE 4 

Confusion matrices by AAC severity category (Pred: model 

prediction, label: manual standard score).
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strong generalizability of our model (R2 = 0.811, ICC = 0.874, 

Kappa = 0.644). Subgroup analysis according to AAC severity 

revealed robust model performance across all categories (average 

values for accuracy/sensitivity/specificity/NPV/PPV >75%).

The present study also successfully implemented Grad-CAM 

as a visualization tool for model activation mapping, to achieve 

dual purposes: (1) enabling clinicians to intuitively verify 

whether the model accurately identified ROIs and (2) enhancing 

the transparency and interpretability of AAC score predictions.

Clinical findings

As a preliminary exploratory study, the primary aim of this 

study was to provide an initial assessment of the model’s 

performance within a well-characterized yet restricted cohort. 

This design inherently limits the interpretation of our 

prognostic findings and their generalizability. Nevertheless, the 

analysis of 200 systematically sampled AAC-positive cases 

revealed a significantly higher 5-year MACE incidence in 

dialysis vs. non-dialysis patients (15.0% vs. 7.0%, P < 0.01), with 

the requirement for dialysis occurring in younger individuals 

(median age, 61 vs. 83 years). These results not only align with 

the Kidney Disease Improving Global Outcomes (KDIGO) 

guidelines (8) and prior evidence (30, 31) but also identify 

substantial cardiovascular risk (7%) in AAC-positive patients 

with normal renal function.

Further analysis revealed a significantly higher median AAC 

score in dialysis-dependent cases that experienced MACEs 

(11 [IQR 2–19]) vs. non-dialysis cases (8 [IQR 3–18]). Notably, 

>70% of MACE patients in both groups exhibited moderate-to- 

severe calcification (AAC score >4), with a particularly high 

FIGURE 5 

Visualization of neural network activation maps from the developed automated AAC scoring system for four randomly selected representative cases 

with distinct cardiovascular risk profiles involving: (A) chronic kidney disease (manual AAC score: 23; model-predicted score: 22), (B) hypertension 

(manual AAC score: 19; model-predicted score: 17), (C) hyperlipidemia (manual AAC score: 1; model-predicted score: 1), and (D) coronary artery 

disease (manual AAC score: 10; model-predicted score: 11).
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prevalence in the dialysis subgroup (93.3%, 14/15 cases) compared 

to the non-dialysis subgroup (71.4%, 5/7 cases). These findings 

corroborate prior research by Gebre et al. and Niu et al. (5, 6, 32), 

demonstrating that: (1) the AAC score can effectively stratify 

patients by MACE risk, and (2) patients with moderate-to-severe 

AAC (AAC score >4) have a substantially elevated cardiovascular 

risk compared with those with a low AAC score.

Limitations and future directions

While achieving a significant goal of developing an automated 

scoring system for AAC, the present study has several limitations. 

(1) The developed model showed suboptimal performance in cases 

with severe calcification (AAC score >15) and no/mild calcification 

(AAC score 0–4), particularly regarding scoring accuracy and 

subgroup classification. To improve future versions, we plan to 

incorporate strategies such as cost-sensitive learning and targeted 

data augmentation, alongside the prospective collection of more 

cases from under-represented subgroups to enhance model 

robustness across all AAC severity levels. (2) A potential limitation 

is the focus on comparing against a single alternative architecture 

(VGG16_bn). While this comparison robustly justified our choice, 

future work could expand this to include a broader range of 

modern achitectures, such as Vision Transformers.

Future directions for this research will include: (1) developing 

comprehensive calcification quantification metrics with segmental/ 

wall-specific evaluation, complemented by a detailed class-wise 

analysis to optimize the established AAC scoring system; (2) 

improving visualization of calcification length/distribution (beyond 

heatmaps) and validating them via spatial metrics (e.g., Dice 

coefficient, IoU); (3) incorporating multi-center datasets from 

diverse regions with variations in imaging protocols, equipment, 

and demographic backgrounds to enhance model generalizability; 

and (4) expanding clinical validation through large-scale 

multicenter studies and multimodal data integration to strengthen 

cardiovascular risk stratification based on AAC assessment.

Conclusion

The present study developed a fully automated deep learning- 

based system for scoring the severity of AAC, and the developed 

system demonstrated strong agreement with manual ratings in 

both internal (ICC = 0.913) and external (ICC = 0.874) validation 

datasets. The developed system enables end-to-end AAC 

quantification from plain radiographs, offering an efficient 

solution for population-wide screening.
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