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Objectives: To establish an automated scoring system for abdominal aortic
calcification (AAC) to facilitate standardized quantitative imaging analysis in
support of clinical decision-making in atherosclerosis management.

Methods: x-ray images of the abdominal aorta were obtained for 2,941
individuals from five medical centers in Zhejiang Province. Calcification
severity was graded manually using the Kauppila scoring system, and cases
were stratified into three groups based on total calcification burden. The
automated assessment framework comprised two sequential components: a
lumbar spine segmentation model based on nnUnet and an AAC score
regression model based on ResNet. Model development was conducted
using 1,737 training cases, with internal validation in 471 cases and external
validation in 733 cases from independent centers. A retrospective matched
cohort study was conducted in 200 AAC patients from Center B (100 dialysis-
dependent and 100 not dialysis-dependent cases), to investigate associations
with major adverse cardiovascular events.

Results: The developed automated quantification system demonstrated mean
absolute errors of 1.686 (internal validation set) and 1.920 (external validation
set), with strong correlation to expert ratings (Spearman’s p=0.923 and
0.888, respectively, both P<0.001). Inter-rater reliability analysis revealed
excellent agreement with manual scoring (intraclass correlation coefficients
of 0.913 internally and 0.874 externally). Stratification based on calcification
severity showed optimal sensitivity for the moderate calcification category
(88.6%), with superior specificity for the non/mild (94.2%) and severe
(91.5%) categories.

Conclusion: The established automated quantification system for AAC exhibits
good assessment efficiency and measurement accuracy, offering a
standardized approach to refine cardiovascular risk stratification in
clinical practice.
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Introduction

Atherosclerosis (AS), as the core pathological basis of
cardiovascular diseases, is a leading cause of disability and all-
cause mortality worldwide (1-4). Abdominal aortic calcification
(AAC), as a radiological marker of AS (5-7), reflects the
dynamic progression of vascular calcification in the
atherosclerotic process, and the severity of AAC is significantly
positively correlation with the arterial plaque burden. Notably,
in patients with chronic kidney disease (CKD), particularly
those who require maintenance dialysis, a quantitative AAC
score has emerged as a key tool for assessing the risk of a
cardiovascular event (8). Research has shown that this AAC
score can be used not only for quantitative evaluation of the
progression of AS but also as an important independent
predictor of adverse cardiovascular events and all-cause
mortality (9-11).

For the purpose of clinical AAC scoring, x-ray imaging has
become the preferred radiological method for assessing AAC
due to its significant advantages related to cost-effectiveness
(12, 13). However, the diagnostic efficacy of x-ray-based AAC
detection is inhibited by multidimensional technical limitations,
including: (1) labor-intensive evaluation: traditional imaging
assessment involves a manual, resource-heavy approach, which
not only prolongs diagnostic time but also leads to inefficient
allocation of medical resources (14); (2) subjectivity and
methods are
load and

variability, resulting in limited diagnostic reproducibility (15);

variability: visual assessment susceptible to

influence by physician cognitive inter-observer
and (3) lack of scalability: in large-scale screening scenarios,

conventional methods are incapable of processing high-
throughput imaging data due to the absence of an intelligent
data processing framework. Therefore, the development of novel
imaging-based assessment methods for AAC is critically needed.

Against the backdrop of generational advancements in
traditional imaging assessment techniques, artificial intelligence
(AI)-powered image analysis is reshaping the paradigm of AAC
evaluation. Early breakthroughs were achieved through machine
learning models based on dual-energy x-ray absorptiometry
(DXA) imaging (16, 17), which enabled automated AAC scoring
and advanced cardiovascular disease research. However, clinical
AAC assessment currently relies primarily on conventional x-ray
images (e.g., lateral lumbar or abdominal radiographs). While
anatomical structure overlap is a challenge shared by both
lateral lumbar DXA and conventional x-ray imaging, the latter
presents greater difficulties for automated analysis due to higher
image heterogeneity and the absence of standardized
quantitative outputs. Conventional x-rays provide benefits like

higher spatial resolution and better soft-tissue contrast (resulting

Abbreviations

AS, atherosclerosis; CNNs, convolutional neural networks; DXA, dual-energy x-
ray absorptiometry; AAC, abdominal aortic calcification; AACS, abdominal
aortic calcification score; CKD, chronic kidney disease; FC, final fully-
connected; MACE, major adverse cardiovascular events.
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from smaller pixels and higher doses), but their variability
remains a significant hurdle.

While (CNNs)
demonstrated remarkable success in medical image analysis (18),

convolutional neural networks have
the studies conducted so far toward an automated AAC scoring
system have faced significant limitations. For example, one study
reported an end-to-end CNN-based AAC scoring model (15),
but its limit  the
generalizability across heterogeneous clinical settings.
Unlike existing AAC

traditional machine learning (16,

single-center  design may model’s

scoring systems constrained by
17) or single-center designs
(15), the present study aimed to use a multicenter dataset to
establish an x-ray-based deep learning framework, which can
provide enhanced clinical efficiency and scoring accuracy

for physicians.

Materials and methods
Data acquisition

We retrieved abdominal aortic radiographs from the picture
archiving and communication systems (PACS) of five medical
centers in Zhejiang Province and exported images in Digital
Imaging and Communications in Medicine (DICOM) format
while preserving essential clinical information for analysis.

The following inclusion criteria were applied: age >18 years;
availability of lateral abdominal or lumbar radiographs; and
image coverage from T12 to S1 vertebrae, with anterior soft
tissue thickness exceeding vertebral anteroposterior diameter
(ensuring complete visualization of the abdominal aorta from
diaphragm to iliac bifurcation).

Cases were excluded according to the following exclusion
criteria:  structural incompleteness or vertebral
(L1-L4 height
<2 cm), due to the resultant distortion of anatomical landmarks

significant

destruction/compression anterior vertebral
essential for standardized Kauppila scoring; poor image quality
due to artifacts/noise obscuring lumbar vertebral structures; or
prominent high-density overlapping shadows in lumbar/aortic
regions. The detailed baseline clinical characteristics of the study
participants are presented in Table 1.

This study was approved by the Medical Ethics Committee of
Ningbo University Affiliated First Hospital (Approval No.:
2025-040A) and adhered to the principles outlined in the
Declaration of Helsinki. All clinical data were anonymized per
institutional protocols, in compliance with China’s Ethical
Review Measures for Life Sciences and Medical Research
Involving Human Subjects. The need for an informed consent

was exempted due to the retrospective nature of the study.

Dataset partitioning

To reduce computational costs while maintaining accuracy, we
randomly selected 142 images from Center A (November 2021 to
December 2021) and Center C (November 2023 to November
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TABLE 1 Baseline patient characteristics and x-ray image acquisition conditions.

Hospital__ A B Cc D E____ Toa __ Puvle _
Sex

F, n (%) 727 414 79

M, n (%) 737 319 105

Age, mean + SD (years) | 70.3 £ 10.9 (23-97) | 68.6 + 11.0 (21-97) | 62+ 13.3 (21-94)
CKD, n 327 164 184
Lumbar lateral 1,137 569 -
Company Philips Shimadzu -

Tube current, mA 400 (400-517) 400 (400-630) -

Tube voltage, Kv 85 (85-95) 95 (80-95) -
Abdominal lateral 327 164 184
Company Philips Shimadzu Philips
Tube current, mA 320 (320-320) 250 (250-400) 320 (320-320)
Tube voltage, Kv 85 (85-85) 80 (80-100) 85 (85-85)
AAC score (manual)

No/Mild 3 (0,4) 2 (0,4) 1(0,4)
Moderate 9 (5,15) 8 (5,15) 9 (5,15)
Severe 18 (16,24) 18 (16,24) 16 (16,19)

2023) to establish a small-scale dataset for lumbar segmentation
model development. This subset was used for preliminary
region-of-interest (ROI) localization, with a 132:10 training:test
split ratio. A radiologist manually annotated L1-L5 vertebral
bodies using ITK-SNAP software.

To develop the AAC scoring regression model, the dataset was
systematically partitioned by lumbar segmentation model. The
training set comprised data from: Center A (January 2019 to July
2023), Center C (January 2022 to November 2023), Center D
(January to December 2023), and Center E (January 2021 to
December 2023). The internal validation set included cases from:
Center A (August 2023 to February 2024) and Center E (January
to March 2024). We maintained an approximate 4:1 ratio between
training and internal validation sets. Additionally, cases from
Center B (January 2021 to January 2024) served as the external
validation set for rigorous evaluation of the model’s generalizability.

Manual AAC scoring

For manual scoring of AAC, this study employed the
internationally recognized Kauppila semi-quantitative scoring
method (19, 20), the gold standard for AAC assessment. The
standardized evaluation protocol assessed four aortic segment
pairs (anterior/posterior walls) corresponding to the L1-L4
vertebral levels, with segment boundaries defined at midpoints
of adjacent intervertebral spaces. The grading criteria were as
follows: no detectable calcification: 0 points; calcification length
<1/3 of aortic segment: 1 point; calcification length >1/3 but
<2/3 of segment: 2 points; and calcification length >2/3 of
segment: 3 points. Based on the total score, cases were classified
as: no or mild AAC (0-4 points), moderate AAC (5-15 points),
or severe AAC (16-24 points) (21).

To ensure scoring accuracy, all raters were rigorously trained by
applying the Kauppila scoring system to 451 training cases before
formal evaluation for the present study. AAC scoring was
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P<0.001,F=11.97

47 185 1,452
117 211 1,489
65.7 £11.2 (37-89) | 62.1 +11.2 (32-89) | 68 +11.6 (21-97) | P<0.001, F=58.14
164 396
164 396
Philips United film -
320 (320-320) 400 (400-508) -
85 (85-85) 85 (85-85) -
2 (0,4) 2 (0,4) 2 (0,4) P<0.001, F=12.03
7 (5,15) 10 (5,15) 9 (5,15) P<0.001, F=6.23
17 (16,23) 19 (16,24) 18 (16,24) P=0.026, F=2.86

performed through a standardized, double-blind protocol involving
three stages: (1) initial independent scoring by two junior
radiologists with <5 years of experience; (2) adjucation by a senior
radiologist (>5 years’ experience) for cases with discrepant AAC24
total scores between junior radiologists were adjudicated (Through
independent review, the senior radiologist assigned Kauppila sub-
scores (0-3) to anterior/posterior walls of L1-L4 vertebrae. The
definitive AAC24 reference standard was derived from this
assessment.); and (3) quality control verification by another senior
radiologist who independently scored cases in the internal/external
validation sets and confirmed proper ROI localization in images,
which had been processed by the lumbar spine segmentation and
localization model. Figure 1 outlines the model design and
laboratory workflow design.

Clinical analysis

This study utilized an artificial intelligence-assisted calcification
scoring system to screen abdominal aortic x-ray images from Center
B’s database (January 2023 to January 2024), identifying cases with
AAC positivity (AAC score >1). Using a stratified random sampling
method based on patients’ dialysis history, the study established
Observation Cohort 1 comprising 100 patients who received
maintenance dialysis. For the control group (Observation
Cohort 2), 100 patients not receiving dialysis treatment were
chosen based on criteria including a glomerular filtration rate
(GFR) >80 ml/min and no history of dialysis. Clinical data for
both groups were retrospectively collected through the review of
electronic medical records and telephone follow-ups, covering the
period from January 2020 to December 2024. The primary focus
was comparing the cumulative incidence of major adverse
cardiovascular events (MACEs) between the two cohorts during
the 5-year follow-up period. The MACE composite endpoint
included four clinical outcomes: hemorrhagic stroke, ischemic

stroke, myocardial infarction, and heart failure.
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Inclusion criteria:
(1) Age > 18 years;
(2)Lateral abdominal or lumbar radiographs;
(3) The images included thoracic 12 and sacral 1 vertebrae, and
the soft tissue images in front of the lumbar spine were thicker
than the anteroposterior and posterior diameter length of the
vertebrae.
Exclusion criteria:
v (1) Lumbar vertebral body structure is
Images collected incomplete or there is obvious vertebral body
(n=3055) destruction and compressibility, and the
anterior margin height of either lumbar 1-4
. | vertebra is < 2c¢mj; (n=33)
g (2) The structure of the lumbar vertebra cannot
i be distinguished on the image; (n=31)
Images included (3) The lumbar vertebra or the soft tissue area in
(n=2941) front of the lumbar vertebra showed obvious
l high density overlapping shadow. (n=50)
Processed by the vertebral body Al
segmentation model
| , }
Training set Internal test set The hold-out validation |
(n=1737) (n=471) Set (n=733) [
|
I | . .| Reference standard
I I : J score
: : i Annotated by expert |
——————t : : !
1
Framework : | : II |
ResNet34 A £ vy o 1, Themodel
I I [ predicted score
| @ \ Predicted by model
| |
Output of AAC | i 2 aconw |
Kaupplia score \
FIGURE 1

Schematic diagram of the model design and laboratory workflow design processes

Construction of the AAC automated
scoring system

The AAC automated scoring system primarily consists of two
components: a lumbar spine segmentation and localization model
and an AAC scoring regression model, as illustrated in Figure 2.
The AAC score was treated as a continuous target variable for
regression. This approach is justified as the score is derived
from a continuous underlying physical quantity (calcified area),
and each unit increment represents a comparable change in the
extent of calcification.

Lumbar spine segmentation and
localization model

The lumbar spine segmentation model was constructed using
the 2D nnU-Net (22) framework, a state-of-the-art tool that
network
architecture, training, and postprocessing for a given dataset. This

automatically ~ configures  optimal  preprocessing,

Frontiers in Cardiovascular Medicine

“no-new-Net” philosophy was selected to eliminate subjective
manual tuning and ensure a robust, reproducible baseline, which
is critical for providing high-quality masks for subsequent analysis.

The automatically configured architecture featured a 9-level
encoder-decoder structure with feature channels of [32, 64, 128,
256, 512, 512, 512, 512, 512] at each stage. The encoder
employed consecutive convolutional layers with 3 x 3 kernels
and instance normalization, progressively reducing spatial
dimensions while increasing feature channels to capture
The decoder then
upsampled the feature maps, recovering the original spatial
of the Skip

incorporated to fuse low-level spatial features from the encoder

hierarchical features at different scales.

dimensions input image. connections were
with high-level semantic features from the decoder.

During training, the model was optimized using a combined
dice and cross entropy loss based on five-fold cross validation.
The network was trained on 1,536 x 1,024 pixel patches with a
batch size of 2, employing Z-score normalization for intensity
standardization. Complete configurations are provided in the

Supplementary plans.json File.
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(.-\ Part 1. Lumbar Segmentation and Localization b

‘ |

|

............................................. ;

3 |

%
N0l
D 2D nnU-Net
B Part 2. AACS Regression

FIGURE 2

Diagram of model construction for different tasks. (A) Part 1 of the model for lumbar segmentation and localization. (B) Part 2 of the model for AACS regression.

AAC Score

ResNet34 .

AAC scoring regression model

Prior to constructing the AAC scoring regression model, a
series of image preprocessing steps were performed as follows:
(1) segmentation mask generation: using the lumbar spine
segmentation and localization model, segmentation masks for
vertebrae L1-L5 were obtained; and (2) extraction: based on
these masks, normalized original images were cropped to
generate image patches containing the L1-L5 vertebral regions.
The vertical coverage extended from the inferior border of T12
to the inferior border of L5. The horizontal coverage included
the L1-L5 vertebrae as well as soft tissue regions extending 3/4
of the average anteroposterior vertebral length anteriorly. The
processed image data were then used as input for the
subsequent AAC scoring regression model.

Images were uniformly resized to 500 x 1,000 pixels. To
generate a larger, more complex, and diverse dataset for
enhancement of model accuracy and generalizability, images
were augmented using several different methods, including
random brightness adjustment (+10% adjustment), random
contrast adjustment (+10% adjustment), random addition of
Gaussian noise (6€[0,10]), random shift operation (+5% of
image size), random scaling (+5%), and random angle rotation

Frontiers in Cardiovascular Medicine

(+30 degrees). Augmentation was performed only in the training
set before each epoch.

The AAC scoring regression model was constructed based on
the framework of ResNet34, a publicly available deep residual
network (23) comprising 34 layers. This choice was based on
ResNet’s established efficacy as a deep feature extractor for two-
dimensional images, particularly its ability to mitigate vanishing
gradients through residual connections, which enables stable
training of deep networks. To validate the architectural choices,
a comparative ablation study was conducted against a
VGG16_bn-based model under identical training conditions
(detailed description provided in Supplementary Materials).

Transfer learning was implementded by fine-tuning the
While the

original ResNet34 was designed for classification tasks with a

ImageNet-pretrained ResNet34 model weights.
final fully-connected layer outputting 1,000 class probabilities,
we modified the architecture for our regression task by replacing
the final classifier with a custom sequential module. This
module consisted of batch normalization, a dropout layer
(P=0.5), and a linear layer configured to produce a single
continuous output value. To enhance feature representation, we
integrated Spatial and Channel Squeeze & Excitation (SCse)
attention modules (24) after each residual block, enabling the
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model to focus on informative spatial regions and
channel features.

The model was optimized using stochastic gradient descent
with a momentum of 0.9 and weight decay of 0.0005, with an
initial learning rate of 0.01. Training was conducted with a
batch size of 32 for 500 epochs using mean squared error (MSE)
as the loss function, with early stopping based on validation
performance. Validation loss was monitored every 10 epochs,
and training was effectively terminated at epoch 400 when
validation loss plateaued, indicating no further improvement
(Supplementary Figure S2). We employed an enhanced learning
rate scheduling strategy combining linear warmup and cosine
annealing. During the initial 200 iterations, the learning rate was
linearly increased from 0.0033 (one-third of the base learning
rate 0.01) to the full base value of 0.01. This warmup phase
improved training stability by preventing early gradient
explosion. Subsequently, the learning rate followed a cosine
decay function to a minimum value of 0.0001 over the
remaining training epochs, facilitating convergence to better

optima (25).

Experimental evaluation metrics

All statistical analyses were conducted using SPSS software
(version 27.0) and Python. The normality of continuous
variables was assessed using the Shapiro-Wilk test and Q-Q
distributed
mean + standard deviation (mean + SD),

plots.  Normally data are presented as
and non-normally
distributed data are reported as median (range or interquartile
range [IQR]). Categorical variables are expressed as frequency
count (percentage, n [%]).

The AAC total score was treated as a continuous variable.
Depending on the data distribution (assessed by skewness and
kurtosis tests) of both model-predicted scores and manual
standard

calculated to evaluate linear relationships when normality

scores, the Pearson correlation coefficient was
assumptions were met. Otherwise, Spearman’s rank correlation
coefficient was determined to assess monotonic associations.
Model fit was quantified using the R® coefficient. Prediction
accuracy was measured by MSE and mean absolute error
(MAE), with 95% (CIs) derived via

bootstrapping (1,000 involved

intervals
This
resampling the training set with replacement, retraining the

confidence
iterations). repeatedly
model, predicting on the original test set, and calculating error
metrics per iteration. The 95% CIs were defined as the 2.5th and
97.5th percentiles of the resulting MSE and MAE distributions.
standard
predictions was evaluated by calculating intraclass correlation
coefficients (ICCs, two-way random-effects model ICC [2,1])
and weighted Kappa coefficients, with statistical significance set
at P <0.05.
Model performance was comprehensively evaluated through:

Agreement between manual scores and model

(1) confusion matrices and calculation of overall accuracy rates,
and (2) subgroup-specific metrics including accuracy, sensitivity,
specificity, (NPV),

negative predictive value and positive

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1647882

predictive value (PPV). Sensitivity analyses for cardiovascular
outcomes included age/sex stratification and E-value calculation
to assess unmeasured confounding effects.

Results

Baseline characteristics of study
participants

The study population included a total of 1,464 cases from
Center A (January 2019 to February 2024), 733 cases from
Center B (January 2021 to January 2024), 184 cases from Center
C (January 2022 to November 2023), 164 cases from Center D
(January to December 2023), and 396 cases from Center E
(January 2021 to March 2024).

For this study, a total of 1,737 cases were assigned to the
training cohort, 471 to the internal validation cohort, and 733 to
the external validation cohort. All imaging cohorts retained the
full AAC spectrum (0-24). The detailed data distribution is
shown in Table 2.

Segmentation and locoalization
performance

For the lumbar spine segmentation model, the performance in
segmenting vertebrae L1-L5 in the test set was excellent, with Dice
scores of 0.92, 0.93, 0.95, 0.94, and 0.94, respectively. The
segmentation model was subsequently applied to all imaging
data to extract image patches for input into the AAC scoring
regression model. Through manual review, the segmentation
outputs met predefined ROI coverage criteria in 92.6% of cases
(1,115/1,204) across both the internal and external validation sets.

AAC scoring regression performance

The AAC scoring regression model demonstrated excellent
performance on the internal validation set with a MAE of 1.686,
MSE of 4.730, and Spearman correlation coefficient of 0.923
(P<0.001). Similar robust performance was observed in the
external validation set (MAE =1.920; MSE =5.835; Spearman’s
p=0.888, P<0.001).
predictions deemed clinically acceptable (absolute error <4) were

Furthermore, the proportions of
90.0% and 87.6% in the internal and external validatiaon sets,
respectively. Although marginally higher errors were noted in
the external validation set, the model maintained clinically
acceptable accuracy and stability overall. The complete results
for all evaluation metrics are presented in Table 3, with
visualizations provided in Figure 3.

Comparatively, the results of the ablation study based on an
alternative VGG16_bn architecture were calculated. Under
identical training conditions, the ResNet34-based model
achieved lower MAE and MSE for both the internal and
external validation sets (Supplementary Table S1). Furthermore,
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TABLE 2 Dataset partitioning for development and testing of AAC scoring regression model.

Dataset Total Abdominal Lumbar No/mild AAC (score | Moderate AAC (score @ Severe AAC (score
lateral lateral 0-4) 5-15) 16-24)

Training 1,737 795 942 387 1,124 226

Internal 471 285 186 116 292 63

validation

External 733 164 569 246 406 81

validation

TABLE 3 Model performance metrics for accuracy and correlation.

Dataset

Internal validation set

1.686 (1.571, 1.811)

Mean squared error (MSE)
4.730 (4.100, 5.393)

R? coefficient

0.863 (0.835, 0.887) P <0.001

Spearman’s p
0.923 (0.907, 0.935) P<0.001

‘ External validation set 1.920 (1.809, 2.027)

5.835 (5.235, 6.486)

0.888 (0.886, 0.913) P<0.001 | 0.811 (0.781, 0.835) P<0.001 ‘

a higher proportion of predictions from the ResNet-34 model was
clinically acceptable (absolute error <4). These results confirm the
superiority of the chosen architecture for this task.

To further
comprehensive agreement analysis between manual standard
AAC1)
(AI_Pred), with particular focus on ICCs and weighted Kappa

validate our findings, we conducted a

scores (denoted as and model-predicted scores
statistics. Additionally, we incorporated a second independent
manual rating (AAC2) for comparative analysis, to enable robust
evaluation of discrepancies between the algorithmic and
human assessments.

In the internal validation set, the model-predicted scores
(AI_Pred) demonstrated strong agreement with manual standard
scores (AAC1), as evidenced by an ICC of 0.913 and a weighted
Kappa value of 0.716. For comparison, the inter-rater reliability
between two human evaluators (AAC1 vs. AAC2) showed even
higher concordance, with an ICC of 0.985 and weighted Kappa
of 0.904.

In the external validation set, the agreement between manual
standard scores (AACI) and model predictions (AI_Pred)
remained robust, with an ICC of 0.874 and weighted Kappa
value of 0.644. By comparison, the inter-observer agreement
between human raters (AAC1 vs. AAC2) in the external
consistency (ICC =0.981,

weighted Kappa =0.887). The detailed results of this analysis are

validation set showed superior

presented in Table 4.

Model performance according to AAC
severity

Subgroup analysis revealed significant performance disparities
across different AAC severity categories (detailed in Table 5 and
Figure 4). Most notably, for both the No/mild (0-4) and Severe
(16-24) AAC groups, the model exhibited markedly lower
sensitivity compared to that for the Moderate (5-15) category.
In the internal validation set, the model had sensitivities of
74.1% for No/mild AAC and 65.1% for Severe AAC vs. 96.9%
for Moderate AAC. Similarly, in the external validation set,
these sensitivity values were 61.4% for No/mild AAC and 48.1%

Frontiers in Cardiovascular Medicine

for Severe AAC vs. 96.1% for Moderate AAC. This consistent
pattern (P<0.001 for all inter-group comparisons) suggests
potential ~detection challenges for extreme calcification
conditions that warrant clinical attention.

Regarding specificity, the model showed significantly higher
performance for both the No/mild and Severe AAC categories
compared with the Moderate category. In the internal validation
set, the model’s specificity reached 98.6% for No/mild AAC and
99.0% for Severe AAC, whereas it was only 70.9% for Moderate
AAC. Similarly, in the external validation set, the model’s
specificity was 97.7% for No/mild AAC and 99.2% for Severe
AAC, in stark contrast with a value of only 58.1% for Moderate
AAC (all inter-group comparisons P<0.001). This inverse
pattern related to the sensitivity results suggests a potential
trade-off effect in model performance across the categories of

AAC severity.

Visual interpretation analysis

To qualitatively verify the model’s accuracy in localizing
employed Grad-CAM (26)
explanatory insights. The results demonstrated strong agreement
with (78.35%
Supplementary Table S2) in the internal validation set. Figure 5

calcifications, we for visual

radiologist  assessments correct  focus;
displays four randomly selected representative cases with distinct
cardiovascular risk profiles involving: (A) chronic kidney
disease, (B) hypertension, (C) hyperlipidemia, and (D) coronary
artery disease. As exemplified in Figure 5A, the model’s
attention heatmap comprehensively covered nearly all AAC
calcification areas, yielding a predicted AAC score of 22 points,

which closely matched the manual score of 23 points.

Cardiovascular outcomes

In this 5-year retrospective study, a markedly higher
cardiovascular risk was observed in the dialysis cohort, with 17
MACEs (15 patients, including 1 fatality) vs. 7 MACEs
(7 patients) in the non-dialysis control cohort. Notably, 93.3% (14/
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FIGURE 3
Correlations between model predictions and manual standard scoring. (A) Internal validation. (B) External validation.

15) of dialysis patients with MACEs and 85.7% (6/7) of non-dialysis
cases with MACEs showed clinically significant calcification (AAC
score >4). Furthermore, male patients predominated in the cohort
(22% female vs. 78% male). Among younger patients with MACEs
(age <65 years), those on dialysis substantially outnumbered non-
dialysis individuals, whereas in the older group (age >65 years),
both subgroups were similarly represented. These findings further

underscore the prognostic value of vascular calcification
assessment (see Table 6 for detailed results).
Frontiers in Cardiovascular Medicine
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Discussion

This multicenter study compiled and analyzed data for a total of
2,941 cases to develop and test an automated AAC scoring system
using deep learning algorithms. The developed scoring system
demonstrated both high scoring accuracy and robust clinical
reliability in practical application. However, it is important to note
that our model was trained and validated on a dataset from a single
region, and its generalizability requires further external validation.
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TABLE 4 Comparison of ICC and Kappa values between manual standard
scores (AAC1) vs. alternative manual ratings (AAC2) and model predictions
(Al_Pred).

Comparison | Dataset ICC (95% Weighted Kappa

Cl) (95% ClI)

AACL1 vs. AAC2 Internal 0.985 (0.981, 0.904 (0.891, 0.917)*
validation set 0.987)*
External 0.981 (0.978, 0.887 (0.876, 0.898)*
validation set 0.983)*

AACI vs. AI_Pred | Internal 0.913 (0.897, 0.716 (0.691, 0.741)*
validation set 0.927)*
External 0.874 (0.854, 0.644 (0.620, 0.667)*
validation set 0.892)*

*All P<0.001.

TABLE 5 Model performance metrics across categories of AAC severity.

Severe AAC
(nh=63)

Moderate
AAC
(n=292)
87.0 (82.7-90.4)
96.9 (94.2-98.4)
70.9 (65.4-75.8)
93.4 (90.0-95.7)
84.5 (79.9-88.2)

Internal
validation set
(n=471)

Accuracy (%)

No/mild

AAC
(n=116)
92.6 (86.4-96.1)
74.1 (65.4-81.2)
98.6 (94.4-99.7)
92.1 (85.7-95.8)
94.5 (88.7-97.4)

No/mild
AAC

(n = 246)
85.5 (80.6-89.4)
61.4 (55.2-67.3)
97.7 (95.0-99.0)
83.4 (78.2-87.5)
93.2 (89.3-95.7)

94.5 (85.9-98.0)
65.1 (52.8-75.7)
99.0 (92.5-99.9)
94.8 (86.3-98.1)
91.1 (81.5-96.0)

Severe AAC
(n=81)

Sensitivity (%)
Specificity (%)
NPV (%)
PPV (%)

Moderate
AAC

(n =406)
79.1 (74.9-82.8)
96.1 (93.7-97.6)
58.1 (53.2-62.8)
92.2 (89.2-94.4)
74.0 (69.5-78.0)

External

validation set
(n=733)

Accuracy (%)

93.6 (86.1-97.2)
48.1 (37.6-58.8)
99.2 (94.0-99.9)
93.9 (86.4-97.4)
88.6 (79.9-93.8)

Sensitivity (%)
Specificity (%)
NPV (%)
PPV (%)

Model evaluation

First, this multicenter study (n=2941) utilized lumbar/
abdominal lateral x-rays per the Kauppila criteria, offering
significantly improved data diversity compared with single-center
studies (15). Unlike the cohorts in prior studies, which exhibited
right-skewed distributions (15, 17, 27), our cohort featured a
substantially higher proportion of moderate calcification cases
(AAC 5-15), achieving a near-normal sample distribution that
enhanced the generalizability of the developed model across all
calcification stages.

To address field-of-view (FOV)
radiographs caused by technical/anatomical factors, we developed

inherent variations in
an innovative cascaded framework featuring: (1) a nnU-Net-based
lumbar segmentation model, which achieved 92.6% precision in
region localization and standardizes inputs by eliminating extra-
aortic interference; and (2) a ResNet-based regression architecture
(28, 29) that enhances micro-calcification detection (e.g., punctate/
arc-shaped patterns) via skip connections while mitigating gradient
vanishing. Furthermore, our architectural choices (nnUNet for
segmentation and ResNet for regression) were empirically validated
through an ablation study, which confirmed their superiority over
a strong alternative (VGG16_bn) for this specific task. This
systermatic approach to model selection enhances the reliability of
our findings.
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FIGURE 4
Confusion matrices by AAC severity category
prediction, label: manual standard score).

(Pred: model

An important consideration in this study is the treatment of
the AAC score as a continuous variable for regression. Although
the score is discrete, its foundation in a continuous physical
measurement (calcified area) justifies this approach. Our error
analyses (Supplementary Figure S3) revealed no substantial bias
across the score range, and the majority of prediction errors
were minor (+1), indicating that the regression model effectively
learned the underlying progression of vascular calcification.
However, we acknowleage that the dataset exhibited imbalance,
with underrepretation of extreme scores (both very low and very
high). This imbalance may partially explain the weak but
significant correlation (Spearman’s p=0.111, P<0.05) between
score and absolute error observed in the external validation set.

For clinical reliability, the model achieved clinically acceptable
prediction rates (absolute error <4) of 90.0% in the internal
validation set and 87.6% in the external validation set. Moreover,
the developed model demonstrated excellent agreement with
manual scoring in the internal validation set (R2:0.863,
ICC =0.913, weighted Kappa=0.716), outperforming comparable
deep learning models (R*=.82) (15), with low prediction errors
(MAE =1.686, MSE =4.730). External validation confirmed the
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FIGURE 5

disease (manual AAC score: 10; model-predicted score: 11).

Visualization of neural network activation maps from the developed automated AAC scoring system for four randomly selected representative cases
with distinct cardiovascular risk profiles involving: (A) chronic kidney disease (manual AAC score: 23; model-predicted score: 22), (B) hypertension
(manual AAC score: 19; model-predicted score: 17), (C) hyperlipidemia (manual AAC score: 1; model-predicted score: 1), and (D) coronary artery

strong generalizability of our model (R*=0.811, ICC=0.874,
Kappa =0.644). Subgroup analysis according to AAC severity
revealed robust model performance across all categories (average
values for accuracy/sensitivity/specificity/ NPV/PPV >75%).

The present study also successfully implemented Grad-CAM
as a visualization tool for model activation mapping, to achieve
dual purposes: (1) enabling clinicians to intuitively verify
whether the model accurately identified ROIs and (2) enhancing
the transparency and interpretability of AAC score predictions.

Clinical findings
As a preliminary exploratory study, the primary aim of this

study was to provide an initial assessment of the model’s
performance within a well-characterized yet restricted cohort.

Frontiers in Cardiovascular Medicine

This
prognostic findings and their generalizability. Nevertheless, the

design inherently limits the interpretation of our
analysis of 200 systematically sampled AAC-positive cases
revealed a significantly higher 5-year MACE incidence in
dialysis vs. non-dialysis patients (15.0% vs. 7.0%, P <0.01), with
the requirement for dialysis occurring in younger individuals
(median age, 61 vs. 83 years). These results not only align with
the Kidney Disease Improving Global Outcomes (KDIGO)
guidelines (8) and prior evidence (30, 31) but also identify
substantial cardiovascular risk (7%) in AAC-positive patients
with normal renal function.

Further analysis revealed a significantly higher median AAC
score in dialysis-dependent cases that experienced MACEs
(11 [IQR 2-19]) vs. non-dialysis cases (8 [IQR 3-18]). Notably,
>70% of MACE patients in both groups exhibited moderate-to-
severe calcification (AAC score >4), with a particularly high
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TABLE 6 MACEs during follow-up according to the need for dialysis.

Statistical
values

Parameter Non-dialysis | Dialysis
group

(MACE+)

group
(MACE+)

Demographics

Age (years) 83 (67-90) 61 (54-79) P=0.453, F=0.586

Gender (M/F) 5/2 12/3 P=0.673, F=0.183

Calcification

AAC score (predicted) 8 (3-18) 11 (2-19) | P<0.001, F=10.914

MACE rate

Entire cohort 7% 15% E-value =3.71
(1.42-9.53)

Age <65y (n=9) 0 (0%) 9 (100.0%) -

Age >65y (n=13) 7 (46.2%) 6 (53.8%) -

Male (n=17) 5(29.4%) 12 (70.6%) -

Female (n=5) 2 (40%) 3 (60%) -

MACEs

Hemorrhagic stroke 1 3 -

Ischemic stroke 2 7 -

Myocardial infarction 4 5 -

Heart failure 0 2 -

prevalence in the dialysis subgroup (93.3%, 14/15 cases) compared
to the non-dialysis subgroup (71.4%, 5/7 cases). These findings
corroborate prior research by Gebre et al. and Niu et al. (5, 6, 32),
demonstrating that: (1) the AAC score can effectively stratify
patients by MACE risk, and (2) patients with moderate-to-severe
AAC (AAC score >4) have a substantially elevated cardiovascular
risk compared with those with a low AAC score.

Limitations and future directions

While achieving a significant goal of developing an automated
scoring system for AAC, the present study has several limitations.
(1) The developed model showed suboptimal performance in cases
with severe calcification (AAC score >15) and no/mild calcification
(AAC score 0-4), particularly regarding scoring accuracy and
subgroup classification. To improve future versions, we plan to
incorporate strategies such as cost-sensitive learning and targeted
data augmentation, alongside the prospective collection of more
cases from under-represented subgroups to enhance model
robustness across all AAC severity levels. (2) A potential limitation
is the focus on comparing against a single alternative architecture
(VGG16_bn). While this comparison robustly justified our choice,
future work could expand this to include a broader range of
modern achitectures, such as Vision Transformers.

Future directions for this research will include: (1) developing
comprehensive calcification quantification metrics with segmental/
wall-specific evaluation, complemented by a detailed class-wise
analysis to optimize the established AAC scoring system; (2)
improving visualization of calcification length/distribution (beyond
heatmaps) and validating them via spatial metrics (e.g., Dice
coefficient, IoU); (3) incorporating multi-center datasets from
diverse regions with variations in imaging protocols, equipment,
and demographic backgrounds to enhance model generalizability;

Frontiers in Cardiovascular Medicine

11

10.3389/fcvm.2025.1647882

and (4) clinical validation

multicenter studies and multimodal data integration to strengthen

expanding through large-scale

cardiovascular risk stratification based on AAC assessment.

Conclusion

The present study developed a fully automated deep learning-
based system for scoring the severity of AAC, and the developed
system demonstrated strong agreement with manual ratings in
both internal (ICC =0.913) and external (ICC = 0.874) validation
end-to-end AAC
quantification from plain radiographs, offering an efficient

datasets. The developed system enables

solution for population-wide screening.
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