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Background: This study seeks to develop and validate a machine learning (ML)

model for predicting atrial fibrillation (AF) recurrence at 12 months following

radiofrequency catheter ablation (RFCA).

Methods: A total of 430 consecutive patients with atrial fibrillation undergoing

first-time radiofrequency catheter ablation were retrospectively enrolled

between June 2022 and December 2023. Patients were randomly assigned to

either a training cohort (70%) or a testing cohort (30%). Four ML algorithms

were employed to develop prediction models. Model performance was

evaluated using the area under the receiver operating characteristic curve

(AUC) and accuracy. The SHapley Additive exPlanations (SHAP) methodology

was employed to interpret the best-performing model and quantify each

feature’s contribution to its predictions.

Results: Among the four machine learning algorithms evaluated, the Light

Gradient Boosting Machine (LightGBM) model showed promising predictive

performance on the testing set, achieving an accuracy of 0.721 and an AUC of

0.848 (95% CI: 0.778–0.919). Interpretation of the LightGBM model using

SHAP analysis identified B-type natriuretic peptide (BNP) and the neutrophil-

to-lymphocyte ratio (NLR) as the most impactful predictors for AF recurrence.

The analysis revealed that higher levels of BNP and NLR were strongly

associated with an increased risk of recurrence, whereas higher levels of

albumin and lymphocyte count were protective. Other significant predictors

included left atrial diameter (LAD) and nonparoxysmal atrial fibrillation (NPAF).

Conclusion: Machine learning-based models show modest but promising

performance for assessing AF recurrence risk after RFCA using routine clinical

data. While requiring extensive external validation before clinical application,

these models highlight the potential of ML to inform future risk stratification

and guide personalized follow-up strategies.
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Introduction

Atrial fibrillation (AF) remains the most prevalent sustained

arrhythmia, with globally increasing incidence and prevalence,

resulting in a substantial public health and economic burden (1).

The most serious complications associated with AF are stroke

and heart failure (2). Despite catheter ablation’s status as a Class

1 first-line therapy for AF rhythm control in select patients (3),

post-procedural recurrence rates remain substantial (30%–40%)

(4). Therefore, the accurate identification of patients at elevated

risk for AF recurrence is crucial for selecting appropriate ablation

candidates, managing postoperative expectations, and tailoring

individualized follow-up care strategies.

Machine learning algorithms are being increasingly employed

in medicine for diagnosis, treatment, and automated

classification, facilitated by advances in statistical theory and

computer technology (5). Research has established the predictive

potential of artificial intelligence and machine learning for

catheter ablation outcomes. Saiz-Vivo et al. (6) applied ML to

heart rate variability data from implantable monitors to predict

post-ablation AF recurrence. Hwang et al. (7) integrated speckle-

tracking echocardiography with deep learning to identify imaging

features predictive of post-ablation AF recurrence. Liu et al. (8)

developed an ML-based model using CT scans to detect non-

pulmonary vein AF triggers and predict post-ablation arrhythmia

recurrence. Although their machine learning-based prediction

model demonstrated good predictive performance, most studies

focused on relatively expensive or complex examinations, which

limits its generalizability to broader populations. In recent years,

several composite inflammatory markers (e.g., NLR, SII, MHR)

have demonstrated promising diagnostic value in predicting atrial

fibrillation recurrence after catheter ablation, with the added

advantage of being readily obtainable. Therefore, our objective

was to develop and validate a predictive model for AF recurrence

after RFCA using multiple ML algorithms. This model

incorporates demographic characteristics, imaging data,

laboratory measurements, and selected novel inflammatory

biomarkers. We systematically compared the performance of

each ML approach and identified the optimal predictive model.

Methods

Patient selection and data collection

This retrospective study included 430 consecutive patients

undergoing first-time RFCA for non-valvular AF at Weifang

People’s Hospital between June 2022 and December 2023. The

inclusion criteria comprised patients aged 18 years or older

undergoing first-time RFCA for non-valvular AF. Exclusion

criteria comprised: (1) Severe valvular heart disease; (2) Non-

first-time catheter ablation; (3) AF with primary cardiomyopathy;

(4) incomplete clinical/imaging data; and (5) follow-up

discontinuation. The patient selection flow diagram is depicted

in Figure 1.

Data were extracted from the hospital’s electronic medical

record (EMR) system. All data underwent a manual quality

review by two investigators to correct implausible values and

data entry errors. Missing data for key variables were addressed

through telephone follow-up, which successfully completed the

datasets for 18 patients. The remaining 11 patients with

irrecoverable key data were excluded. Consequently, all

subsequent analyses were performed using a complete case

analysis (CCA) approach.

This study received approval from the Medical Ethics

Committee of Weifang People’s Hospital (approval number

KYLL20241008-13) and was conducted in accordance with the

Declaration of Helsinki of the World Medical Association.

All patients’ baseline data were collected from their electronic

medical records, including sex, age, body mass index (BMI),

smoking and drinking history, sleep disorders, diabetes mellitus

(DM), hypertension, coronary heart disease (CHD), chronic

kidney disease (CKD), stroke/transient ischemic attack (TIA)

history, heart failure, and AF classification (paroxysmal/

persistent), white cells, lymphocytes, monocytes, neutrophils,

platelets, hemoglobin, red cell distribution width-coefficient of

variation (RDW-CV), uric acid, blood urea nitrogen, creatinine,

fasting blood glucose (FBG), lipid profile (triglycerides, Low

density lipoprotein cholesterol, high-density lipoprotein

cholesterol), gamma-glutamyl transferase (GGT), BNP, albumin,

free triiodothyronine (FT3), free tetraiodothyronine (FT4), and

thyroid-stimulating hormone (TSH), LAD, left ventricular end-

diastolic diameter (LVEDD), left ventricular ejection fraction

(LVEF), estimated glomerular filtration rate (eGFR), neutrophil-

to-lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR),

monocyte-to- high-density lipoprotein ratio (MHR), systemic

immune-inflammation (SII, neutrophil count × platelet count/

lymphocyte count). Furthermore, patient-specific CHA₂DS₂-VASc

and APPLE scores were calculated per established criteria. The

CHA₂DS₂-VASc score incorporated: hypertension, heart failure,

diabetes, vascular disease, age 65–74 years, and female sex

(1 point each); prior stroke/TIA or age ≥75 years (2 points each)

(9). The APPLE score included: age ≥65 years, persistent AF, left

atrial diameter ≥43 mm, eGFR≤ 60 ml/min/1.73 m2, and EF

<50% (1 point each) (10).

Post-procedural management and
follow-up

Following RFCA, all patients adhered to a standardized

management protocol. This included a 3-month course of an

antiarrhythmic drug (amiodarone) and a direct oral
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ablation; AUC, area under the receiver operating characteristic curve;
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anticoagulant (rivaroxaban), unless specific contraindications were

present. Postdischarge follow-up was conducted at 1, 3, 6, and 12

months, involving clinical evaluation, 12-lead ECG, and 24-hour

Holter monitoring. Symptomatic AF patients received additional

outpatient assessments. If the patients had any AF-related

symptoms, we performed further ECGs and Holter ECG

examinations. Atrial arrhythmias (AF, atrial flutter, or atrial

tachycardia) during the 90-day post-ablation blanking period

were excluded from recurrence analysis.

Feature selection

Initial statistical analyses included t-tests, Mann–Whitney U

tests, and chi-square tests to evaluate intergroup differences in

clinical characteristics. In our analysis, statistical significance

threshold was set at two-tailed p < 0.05. Spearman correlation

analysis was used to mitigate feature collinearity. To select the

most salient predictors from our initial set of candidate variables,

we employed the Least Absolute Shrinkage and Selection

Operator (LASSO) regression model. A critical prerequisite for

LASSO is the standardization of input features to prevent bias

from variables with different scales. Therefore, prior to the

LASSO analysis, all continuous variables were standardized using

the Z-score method. This transformation rescaled each feature to

have a mean of zero and a standard deviation of one. We chose

LASSO not only for its predictive accuracy but also for its ability

to produce a parsimonious and interpretable model, which is

highly desirable for clinical application. This method performs

L1 regularization, shrinking the coefficients of irrelevant features

to zero and thus selecting a smaller, more robust subset of

predictors. This approach also effectively manages

multicollinearity by selecting a single representative from groups

of correlated clinical variables.

Model building

The entire cohort was randomly divided into a training set

(70% of patients) and a testing set (30% of patients). To ensure

the representativeness of both sets, a stratified sampling

technique was employed based on the primary outcome

(recurrence vs. no recurrence), thereby maintaining the same

class distribution in both the training and testing sets as in the

original dataset.

Given the class imbalance observed in our data (23%

recurrence rate), we applied the Synthetic Minority Over-

sampling Technique (SMOTE) to the training data before model

fitting. This technique synthesizes new instances for the minority

class to create a balanced training set, which helps prevent the

model from being biased towards the majority class. Importantly,

the test set was not oversampled and retained its original class

distribution to serve as an unbiased benchmark for evaluating

the model’s true predictive performance on real-world data.

To predict AF recurrence following RFCA, we developed and

compared four distinct machine learning algorithms known for

their robust performance: support vector machine (SVM), light

gradient boosting machine (LightGBM), GradientBoosting, and

Adaptive Boosting (AdaBoost). The algorithms encompass

various modeling methodologies, enabling detection of intricate

FIGURE 1

Flow diagram of patient’s selection. AF, atrial fibrillation; RFCA, radiofrequency catheter ablation.
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data relationships and improved predictive performance. The SVM

algorithm exhibits robust classification capabilities, particularly

with high-dimensional datasets and limited samples. LightGBM,

AdaBoost, and Gradient Boosting are all ensemble learning

methods. While both LightGBM and Gradient Boosting employ

decision trees as their base learners, AdaBoost demonstrates

greater flexibility by accommodating various types of weak

classifiers. These methods exhibit strong predictive performance

when applied to appropriately structured datasets with sufficient

sample sizes, with LightGBM being particularly distinguished by

its computational efficiency. The selection of these algorithms

enables a comprehensive evaluation of different models’

performance in predicting atrial fibrillation recurrence after

RFCA, thereby ensuring optimal predictive outcomes. To ensure

a robust and unbiased evaluation of our models, we employed a

stratified five-fold cross-validation strategy. This procedure was

implemented on the training dataset. Specifically, the data was

partitioned into five subsets, or “folds”, of equal size. The

“stratified” nature of this process guarantees that the distribution

of the outcome classes within each fold is preserved to reflect the

class distribution of the overall training dataset. In each of the

five iterations, one fold was held out as the validation set, while

the other four folds were used for model training. The

performance metrics were then calculated on the validation set.

The final cross-validation performance of a model was

determined by averaging the metrics obtained from all five folds.

Model interpretation

To ensure transparency and interpretability of the final

LightGBM model, we employed the SHAP framework. SHAP is a

game-theoretic approach that explains the output of any machine

learning model by computing the contribution of each feature to

an individual prediction. We utilized a SHAP summary plot to

visualize both the global feature importance, ranked by the mean

absolute SHAP value across all patients, and the directionality of

each feature’s impact on predicting AF recurrence.

Statistical analysis

For normally distributed continuous variables, data are

presented as mean ± standard deviation with between-group

comparisons using Student’s t-test. Continuous variables

exhibiting non-normal distributions were reported as medians

with interquartile ranges (IQR) and analyzed via Mann–Whitney

U test. Category data were presented as frequencies (proportions)

with between-group comparisons performed using chi-square

testing. The ML algorithms were developed using Python 3.7

programming language. The LASSO algorithm and correlation

analysis were conducted using the “One-key AI” platform (http://

www.medai.icu/), which employed the “scipy”, “numpy”, and

“sklearn” packages in Python (version 3.7). The analysis code

used in this study is accessible at: https://gitee.com/

wangqingbaidu/OnekeyCompo. The AUC quantified model

prediction efficacy, while DeLong’s test determined statistical

significance of inter-model performance differences. Statistical

significance was defined as a two-tailed p-value < 0.05.

Results

Patient characteristics

This study included 430 treatment-naïve patients undergoing

initial radiofrequency ablation with complete medical records.

Among them, 101 experienced AF recurrence within 1 year,

leading to stratification into two groups based on recurrence

status. Significant differences between the groups were found for:

Smoking, Heart failure, CKD, NPAF, BNP, Creatinine, eGFR,

Albumin, FBG, RDW-CV, Neutrophils, Lymphocyte, LAD,

LVEDD, LVEF, APPLE score, SII, NLR and PLR. Table 1

presents the baseline characteristics of the included patients.

Feature selection and model building

Through Spearman correlation analysis and LASSO regression

with stratified fivefold cross-validation (Figures 2A,B), we identified

10 potential predictors of AF recurrence post-RFCA from the

initial 43 variables (Table 2). These predictors were subsequently

used to construct the final model.

The dataset was divided into a training set (70%) and a testing

set (30%) using a stratified random split based on the AF

recurrence. To confirm the validity of this split, we compared the

baseline characteristics between the two sets. As shown in

Supplementary Table S1, there were no significant statistical

differences for the vast majority of variables, indicating that the

training and testing sets were well-balanced and comparable.

This provides astrong basis for assessing the

model’s generalizability.

Four machine learning algorithms were employed to develop

prediction models in the training set. To ensure optimal

performance and prevent data leakage, hyperparameters for each

algorithm were tuned using a grid search with stratified 5-fold

cross-validation. Stratification was based on the AF recurrence

outcome to ensure that the proportion of positive and negative

cases was maintained across all folds, a crucial step for handling

potential class imbalance. For each model, we defined a grid of

relevant hyperparameters and sought the combination that

maximized the mean AUC across the validation folds. The final

optimized hyperparameters for all models are detailed in

Supplementary Table S2.

To compare the performance and stability of the candidate

models during the training phase, we visualized the distribution

of AUCs from the stratified cross-validation process

(Supplementary Figure S1). The boxplot clearly demonstrates

that the LightGBM model achieved not only the highest median

AUC but also showed a relatively tight interquartile range,

suggesting its superior predictive power and robustness compared

to the other models.
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The finalized models, using their optimized hyperparameters,

were then evaluated on the independent testing set. To visualize

the generalization capability of each model, we compared their

performance on the training and testing sets (Supplementary

Figure S2). The plot shows that the LightGBM and SVM models

maintained a smaller performance gap compared to other

models, providing visual confirmation of their superior stability

and lower risk of overfitting.

The receiver operating characteristic (ROC) curves and

corresponding AUC values for each model in the testing set are

presented in Figure 3. The results demonstrated that the LightGBM

model achieved a numerically high AUC of 0.848 compared to the

other models: GradientBoosting (AUC= 0.834), AdaBoost

(AUC= 0.830), and SVM (AUC= 0.802). Table 3 summarizes the

predictive performance across training and testing datasets.

Although a DeLong test indicated that the AUC of the LightGBM

model was not statistically significantly different from that of the

Gradient Boosting model (p = 0.21), we selected the LightGBM

model for further analysis given its combination of being the top

numerical performer and known computational efficiency.

TABLE 1 Baseline characteristics.

Characteristics Non-recurrence (n= 329) Recurrence (n = 101) p value

Age, years 63.82 ± 9.33 65.60 ± 8.20 0.125

Female, n (%) 149 (45.30) 37 (36.60) 0.125

BMI, kg/m2 25.82 ± 3.48 25.70 ± 3.63 0.878

Smoking, n (%) 35 (10.60) 24 (23.80) 0.001

Drinking, n (%) 16 (4.90) 8 (7.90) 0.242

Heart failure, n (%) 39 (11.90) 29 (28.70) <0.001

Hypertension, n (%) 183 (55.60) 51 (50.50) 0.365

DM, n (%) 45 (13.70) 20 (19.80) 0.133

CHD, n (%) 99 (30.10) 37 (36.60) 0.216

Stroke, n (%) 46 (14.0) 16 (15.80) 0.642

Sleep disorders, n (%) 7 (2.10) 2 (2.00) 0.928

CKD, n (%) 5 (1.5) 10 (9.9) <0.001

NPAF, n (%) 116 (35.30) 62 (61.40) <0.001

BNP, pg/ml 87 (41.00, 191.50) 179 (98.65, 370.50) <0.001

UA, (µmol/L) 327 (270, 389.50) 332 (267.50, 411) 0.303

Creatinine, (µmol/L) 63.00 (53.00, 74.00) 67.00 (59.00, 79.00) 0.015

eGFR (ml/min/1.73 m2) 111.77 (92.82, 137.10) 103.80 (85.31, 122.81) 0.011

TG, mmol/L 1.28 (0.96, 1.85) 1.23 (0.91, 1.64) 0.358

LDL-C, mmol/L 2.63 (2.02, 3.22) 2.44 (1.74, 3.12) 0.066

HDL-C, mmol/L 1.17 (1.01, 1.40) 1.14 (0.99, 1.40) 0.796

GGT, U/L 24.00 (18.00, 34.00) 25.00 (17.00, 38.50) 0.553

Albumin, g/L 42.10 (39.70, 45.20) 41.10 (38.90, 43.60) 0.012

FBG (mmol/L) 5.30 (4.80, 6.00) 5.50 (4.80, 7.60) 0.017

WBC count (×109/L) 5.91 (5.11, 6.94) 5.68 (4.81, 6.89) 0.316

RBC count (×109/L) 4.54 (4.23, 4.91) 4.49 (4.18, 4.92) 0.403

HGB, g/L 140.64 ± 15.54 138.68 ± 18.46 0.607

RDW-CV,% 12.50 (12.10, 12.80) 12.70 (12.40, 13.10) 0.002

Neutrophils (×109/L) 3.52 (2.91, 4.35) 3.77 (3.08, 4.85) 0.039

Lymphocyte (×109/L) 1.79 (1.45, 2.21) 1.42 (1.13, 1.88) <0.001

Monocytes (×109/L) 0.37 (0.30, 0.46) 0.38 (0.29, 0.46) 0.843

Platelet count (×109/L) 212.00 (180.50, 254.00) 202.00 (177.50, 245.00) 0.146

FT3, pmol/L 5.06 (4.66, 5.62) 4.99 (4.53, 5.43) 0.093

FT4, pmol/L 17.65 (15.39, 19.46) 18.06 (15.57, 19.87) 0.193

TSH, μIU/ml 1.68 (1.15, 2.53) 1.59 (1.05, 3.25) 0.847

LAD, mm 33.80 (30.60, 38.00) 38.45 (33.48, 42.00) <0.001

LVEDD, mm 49.00 (46.50, 51.60) 50.00 (47.00, 53.50) 0.015

LVEF, % 64.00 (60.00, 68.00) 62.00 (57.50, 66.00) <0.001

CHA2DS2-VASc score 2.50 ± 1.55 2.44 ± 1.48 0.722

APPLE score 1.18 ± 0.99 1.86 ± 1.36 <0.001

SII 402.55 (293.13, 579.98) 581.13 (396.61, 741.88) <0.001

NLR 1.91 (1.45, 2.66) 2.79 (1.91, 3.68) <0.001

PLR 118.30 (93.70, 150.31) 138.43 (122.06, 173.08) <0.001

MHR 8.07 (6.13, 10.80) 8.53 (6.01, 11.47) 0.910

BMI, body mass index; DM, diabetes mellitus; CHD, coronary heart disease; CKD, chronic kidney disease; NPAF, nonparoxysmal atrial fibrillation; BNP, B-type natriuretic peptide; UA, uric acid;

eGFR, estimated glomerular filtration rate; TG, total glyceride; LDL, low density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; GGT, gamma-glutamyl transferase; FBG, fasting

blood glucose; RDW-CV, red cell distribution width-coefficient of variation; FT3, free triiodothyronine; FT4, free tetraiodothyronine; TSH, thyroid-stimulating hormone; LAD, left atrial diameter;

LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; SII, systemic immune inflammation; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio;

MHR, monocyte-to- high-density lipoprotein ratio.
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Interpretation of the optimal model with
SHAP

To provide a detailed and clinically meaningful interpretation

of the best-performing LightGBM model, we conducted a SHAP

analysis on the testing set. The SHAP summary plot (Figure 4)

illustrates the global importance and impact of each of the 10

selected predictors on the model’s output. The analysis identified

BNP as the most influential predictor. As shown in Figure 4,

high BNP levels (represented by red dots) consistently yielded

high positive SHAP values, indicating a strong association with

an increased risk of AF recurrence. The NLR was the second

most important feature, where high values clearly drove the

prediction towards recurrence. Interestingly, the SHAP analysis

also highlighted significant protective factors. Higher levels of

ALB and lymphocyte count were associated with negative SHAP

values (pushing the prediction towards no recurrence),

suggesting they reduce the likelihood of postoperative AF

recurrence. This finding is clinically coherent, as a low

lymphocyte count is a key component of an elevated, high-risk

NLR. Other predictors aligned with established clinical

knowledge. A larger LAD, higher FBG, the presence of NPAF, a

higher APPLE score, and a history of smoking were all identified

as risk factors that increase the model’s predicted probability of

recurrence. This granular interpretation afforded by SHAP

enhances the model’s transparency and potential for clinical

decision support. Figure 5 displays the DCA results of the

LightGBM model in the test set, demonstrating clinical utility

across the 0.05–0.60 threshold probability range.

Discussion

As a well-established rhythm management strategy, catheter

ablation provides safe treatment for symptomatic AF patients

(11). The effectiveness of atrial fibrillation catheter ablation

persists as a clinical challenge, demonstrating 20%–45%

recurrence rates after initial procedures (12). Precise AF

recurrence prediction optimizes clinical decision-making and

patient selection for ablation. Consequently, preprocedural

quantification of personalized AF recurrence risk is imperative

for ablation candidates. Here, we developed and compared

several machine learning models for predicting late recurrence

following RFCA. Our findings suggest that ML models,

particularly LightGBM, demonstrate modest predictive

performance and warrant further investigation.

Our study’s findings should be viewed within the rapidly

advancing landscape of artificial intelligence in clinical

electrophysiology. In recent years, AI has demonstrated

remarkable capabilities across this field. For instance, deep

learning models, such as convolutional and recurrent neural

FIGURE 2

(A) The process of feature selection. We used the least absolute shrinkage and selection operator (LASSO) regression model with penalty parameter

tuning conducted by fivefold cross validation according to minimum criteria. Selection of the tuning parameter (λ). Based on the minimum criteria, the

vertical dotted line is plotted at the optimal value λ= 0.0110. (B) The vertical line was plotted with 10 selected features.

TABLE 2 Feature selection results and coefficients for each feature.

Variable name Coefficient

NLR 0.079150

NPAF 0.039257

APPLE score 0.036335

ALB −0.033608

FBG 0.028001

LAD 0.013889

BNP 0.012901

Lymphocyte −0.011794

Smoking 0.011365

CKD 0.004392

NLR, neutrophil-lymphocyte ratio; NPAF, nonparoxysmal atrial fibrillation; ALB, albumin;

FBG, fasting blood glucose; LAD, left atrial diameter; BNP, B-type natriuretic peptide;

CKD, chronic kidney disease.
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networks, have achieved expert-level performance in detecting and

classifying arrhythmias from 12-lead ECGs or wearable device

recordings (13). Other significant efforts have focused on

predicting the long-term success of catheter ablation for atrial

fibrillation by integrating clinical, electrophysiological, and

imaging data (14). Furthermore, AI is increasingly used for

personalized risk stratification, identifying patients at high risk

for events like sudden cardiac death or thromboembolism,

thereby guiding preventive strategies (15).

Machine learning is rapidly advancing with expanding

applications in cardiovascular medicine (16). These analytical

methods autonomously identify clinically significant patterns

through iterative data learning, eliminating the need for

predefined search parameters. ML’s key advantage lies in

autonomously modeling complex nonlinear interactions across

patient characteristics and comorbidities, eliminating predefined

variable constraints required in traditional methods like logistic

regression. Liu et al. (8) developed a deep learning-based model

(AUC = 0.82) using CT imaging to detect extra-pulmonary vein

AF triggers for predicting post-ablation arrhythmia recurrence.

Shade et al. (17) developed a deep learning model using late

gadolinium-enhanced CMR (LGE-CMR) imaging to

preprocedurally predict AF recurrence risk (AUC = 0.82). Their

methodology extracted high-risk features from simulated LGE-

CMR data. Although their machine learning model achieved

satisfactory predictive accuracy, its dependency on sophisticated

and high-cost diagnostics could hinder broad clinical adoption.

Therefore, developing efficient and generalizable prediction

FIGURE 3

Performance for machine learning models in the testing set based on the AUC of the ROC curve.

TABLE 3 Comparison of the performance of machine learning models in the training and testing set.

Set Model Accuracy AUC (95% CI) Sensitivity Specificity

Training set SVM 0.831 0.882 (0.835, 0.930) 0.838 0.828

LightGBM 0.824 0.919 (0.885, 0.952) 0.919 0.793

GradientBoosting 0.887 0.923 (0.886, 0.960) 0.784 0.921

AdaBoost 0.761 0.850 (0.803, 0.898) 0.851 0.731

Testing set SVM 0.791 0.802 (0.712, 0.891) 0.593 0.843

LightGBM 0.721 0.848 (0.778, 0.919) 0.852 0.686

GradientBoosting 0.713 0.834 (0.756, 0.911) 0.852 0.676

AdaBoost 0.667 0.830 (0.753, 0.907) 0.889 0.608

SVM, support vector machine; KNN, K-nearest neighbor; RF, random forest; LightGBM, light gradient boosting machine; AdaBoost, adaptive boosting.
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FIGURE 4

SHAP summary plot for the LightGBM model. Each point on the plot represents a single patient from the testing set. The y-axis lists the features,

ordered by their global importance (mean absolute SHAP value). The x-axis represents the SHAP value, indicating the feature’s impact on the

model output (a positive value increases the prediction of recurrence). The color of each point corresponds to the feature’s value for that patient,

from low (blue) to high (red). NLR, neutrophil-lymphocyte ratio; NPAF, nonparoxysmal atrial fibrillation; LAD, left atrial diameter; BNP, B-type

natriuretic peptide; CKD, chronic kidney disease; ALB, albumin.

FIGURE 5

Decision curve analysis of LightGBM model in testing set.
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models using machine learning with readily available and low-cost

indicators is crucial.

Inflammation significantly contributes to atrial fibrillation by

promoting both electrical and structural atrial remodeling (18).

Recent studies have identified novel inflammatory markers (e.g.,

NLR, SII, PLR) that are significantly associated with atrial

fibrillation recurrence. Moreover, these novel inflammatory

markers can be derived from routine clinical tests. However, few

existing prediction models have incorporated these emerging

inflammatory indicators for AF recurrence prediction. To our

knowledge, this is the first study to integrate novel inflammatory

biomarkers into an ML model for AF recurrence prediction. In

this study, we compared the performance of four machine

learning algorithms in predicting atrial fibrillation recurrence

after RFCA. Recognizing the methodological constraints of

retrospective single-center designs, we employed: (a) protocolized

data quality control measures to limit information bias, and (b)

multivariable regression modeling to account for confounding

variables, thereby strengthening inference validity and reducing

institution-specific bias effects. To safeguard against model

overfitting, we deployed these methodological safeguards: Firstly,

we employed LASSO regression for feature selection, utilizing its

L1 regularization properties to reduce model complexity and

suppress overfitting. Secondly, we implemented stratified 5-fold

cross-validation with repeated random partitioning to quantify

generalization performance during model training, thereby

mitigating overfitting risks through robust out-of-sample

validation. Finally, we developed predictive models using four

distinct machine learning algorithms: support vector machine

(SVM), Gradient Boosting, LightGBM, and AdaBoost. Through

comparative performance assessment across multiple algorithms,

we selected the optimal model based on prespecified metrics,

thereby enhancing external validity.

Our findings indicate that several machine learning models,

particularly those based on gradient boosting, can achieve modest

predictive performance. While the LightGBM model yielded the

numerically highest AUC (0.848), it is important to emphasize

that its performance was not statistically superior to other

competitive models like Gradient Boosting, as evidenced by the

DeLong test. The overlapping 95% confidence intervals for these

models further support this observation. Therefore, the data

suggest that multiple models perform comparably. Our choice of

LightGBM for deeper analysis is based on its combination of

being the top numerical performer and its well-established

advantages in computational efficiency, which are practical

considerations for potential future applications.

Interpretation of the LightGBM model using SHAP values

revealed the relative importance and directional impact of the 10

predictors (Figure 4). The analysis identified BNP, NLR, ALB,

and lymphocyte count as the four most influential factors. The

NLR serves as an established biomarker of systemic inflammatory

burden and oxidative stress status. Guo et al. (19) demonstrated

that elevated postprocedural NLR independently predicts

recurrent lone atrial fibrillation. Bazoukis et al. (20) reported

significantly elevated post-ablation NLR in patients experiencing

late atrial fibrillation recurrence, with NLR > 3.9 predicting

recurrence at 70% sensitivity and 38% specificity. Moreover, a

systematic meta-analysis by Shao et al. (21) confirmed that

elevated NLR—whether measured pre-procedurally or post-

intervention—consistently correlates with heightened risks of

both incident and recurrent atrial fibrillation. NLR reflects

systemic stress and inflammatory status, demonstrating the

strongest predictive contribution in our study. The SHAP

analysis confirmed that a higher lymphocyte count was

significantly associated with a reduced risk of AF recurrence,

indicating its protective effect (Figure 4). A prospective cohort

study (22) further demonstrated that elevated absolute counts of

WBC, neutrophils, and monocytes each independently associated

with increased atrial fibrillation risk, whereas higher lymphocyte

counts exhibited an inverse association. In addition,

histopathological analyses of atrial tissue biopsies from AF

patients reveal prominent lymphocytic and mononuclear cell

infiltration—a distinct inflammatory substrate absent in sinus

rhythm controls, as consistently documented in prior studies (23,

24). Consequently, patients exhibiting elevated NLR or

lymphocytopenia merit heightened clinical vigilance and targeted

risk stratification.

Established risk factors for arrhythmia recurrence include

persistent AF and left atrial enlargement (25). Previous reports have

demonstrated that LAD is a predictor of recurrences after RFCA

(26). Left atrial enlargement contributes to structural and electrical

remodeling within the atrium, thereby promoting the persistence

and perpetuation of atrial arrhythmias (27). The risk of arrhythmia

recurrence was greater in patients with persistent AF compared to

those with paroxysmal AF (28). Persistent AF contributes to atrial

fibrosis, promoting both structural and electrical remodeling, which

ultimately perpetuates the arrhythmia (29).

Albumin, a key plasma protein, modulates inflammation,

sustains colloidal osmotic pressure, and facilitates the transport

of diverse endogenous and exogenous compounds (30). Our

SHAP analysis prominently identified serum albumin level as the

third most important predictor and a strong independent

protective factor (Figure 4), where higher levels were robustly

associated with a lower risk of recurrence. Furthermore, albumin

reflects nutritional status, a parameter independently associated

with atrial fibrillation recurrence (31). Consequently, patients

identified as high-risk who present with hypoalbuminemia

warrant intensified clinical monitoring and targeted interventions.

The APPLE score, proposed by Kornej et al. (10), is a risk

stratification tool (range 0–5) for predicting AF recurrence after

catheter ablation, assigning 1 point per risk factor. Independent

external validation studies confirm the robust predictive performance

of the APPLE score for AF recurrence following RFCA and

demonstrate its ability to effectively stratify patients into distinct low-

, moderate-, and high-risk categories for recurrence (32, 33).

BNP, a hormone primarily secreted by ventricular

cardiomyocytes in response to wall stress, exerts diuretic and

natriuretic effects. Elevated circulating BNP levels are a

recognized feature in patients with AF. Our model identified

preprocedural BNP as the single most powerful predictor of

AF recurrence (Figure 4). This aligns with and reinforces

the findings of numerous investigations that have established
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the robust predictive utility of BNP for post-ablation

outcomes (34, 35).

The cardiotoxic effects of smoking are multifactorial, stemming

from over 4,000 constituents in cigarette smoke, with nicotine and

carbon monoxide being the primary mediators of direct

pathophysiological injury. Nicotine elevates sympathetic tone and

promotes atrial fibrosis, the latter involving induction of collagen

III mRNA expression (36). Collectively, these pro-fibrotic and

neurohormonal effects culminate in atrial conduction

abnormalities and enhanced automaticity (37). Conversely,

smoking may promote tissue inflammation, evidenced by elevated

blood levels of Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha

(TNF-α), and C-reactive protein (CRP) (38). This inflammatory

state can subsequently contribute to fibrosis and increase

susceptibility to arrhythmias (39). A recent study demonstrated

that smoking is associated with increased AF recurrence risk after

PVI, regardless of AF type (paroxysmal or persistent) (40).

Therefore, smoking cessation should be encouraged in all AF

patients, particularly those undergoing ablation, to achieve long-

term benefits for sinus rhythm maintenance and overall health.

Impaired renal function inevitably leads to systemic toxin

accumulation and tissue damage, adversely affecting cardiac

remodeling. Previous studies indicate that chronic kidney disease

(CKD) is a risk factor not only for new-onset atrial fibrillation

(AF) (41), but also for AF recurrence following catheter ablation

(42). Therefore, particular attention should be given to AF

patients with CKD.

Abnormally elevated fasting glucose often indicates diabetes or

prediabetes (impaired fasting glucose). Prior research has

established that dysglycemia detrimentally alters the biatrial

electrophysiological substrate, manifesting as prolonged intra-atrial

conduction, diminished bipolar voltage, and elevated recurrence

risk following catheter ablation (43). Therefore, aggressive glycemic

control is warranted in AF patients with impaired fasting glucose

or diabetes to maintain long-term sinus rhythm.

Several limitations of this study warrant consideration. First,

our model was developed using data from a single center, which

inherently limits the sample size and may introduce selection

bias, potentially restricting the model’s external validity. To

confirm its generalizability and clinical utility, future validation

in larger, independent, and multicenter cohorts is essential.

Second, the ascertainment of AF recurrence relied on scheduled

monitoring and patient-reported symptoms rather than

continuous surveillance with implantable loop recorders. This

approach may have missed asymptomatic episodes, leading to a

potential underestimation of the true recurrence rate. Third, the

retrospective design of our study precluded the detailed

collection of pre-procedural medication data, such as the specifics

of antiarrhythmic drug therapy or the use of beta-blockers and

renin-angiotensin system inhibitors. The absence of this

information represents a potential unmeasured confounding

factor. Future prospective studies are needed to meticulously

collect and integrate these variables into predictive models to

refine risk stratification. Fourth, we excluded patients with

primary cardiomyopathy, a group with distinct pathophysiology

and higher ablation failure rates. While this exclusion enhances

the model’s precision for the intended target population (i.e., AF

without primary cardiomyopathy), it concurrently limits its

applicability to this specific high-risk subgroup. Therefore, the

development of dedicated prediction models for patients with

underlying cardiomyopathies is warranted. Finally, our selected

LightGBM model exhibits a crucial performance trade-off,

prioritizing high sensitivity (0.852) at the expense of modest

specificity (0.686). This performance profile results in a higher

false-positive rate, which could lead to unnecessary downstream

testing or increased patient anxiety. Consequently, the model is

best positioned as a screening tool to identify patients warranting

closer surveillance, rather than as a standalone diagnostic

instrument. Final treatment decisions must continue to integrate

the model’s output with comprehensive clinical judgment. Future

research should focus on improving specificity, perhaps by

incorporating novel biomarkers or longitudinal data, to enhance

the model’s overall clinical utility.

Conclusion

In this single-center study, we developed and compared

several machine learning models for predicting late AF

recurrence post-RFCA. The models demonstrated modest

predictive performance, with no single algorithm proving

statistically superior to others. The LightGBM model, while

being the top numerical performer, primarily showed potential

due to its computational efficiency. Crucially, these findings

require rigorous external and prospective validation to assess

their generalizability and true clinical utility. At present, such

models should be considered exploratory tools that may help

generate hypotheses for future studies rather than being used

for direct clinical decision-making.
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