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Background: This study seeks to develop and validate a machine learning (ML)
model for predicting atrial fibrillation (AF) recurrence at 12 months following
radiofrequency catheter ablation (RFCA).

Methods: A total of 430 consecutive patients with atrial fibrillation undergoing
first-time radiofrequency catheter ablation were retrospectively enrolled
between June 2022 and December 2023. Patients were randomly assigned to
either a training cohort (70%) or a testing cohort (30%). Four ML algorithms
were employed to develop prediction models. Model performance was
evaluated using the area under the receiver operating characteristic curve
(AUC) and accuracy. The SHapley Additive exPlanations (SHAP) methodology
was employed to interpret the best-performing model and quantify each
feature's contribution to its predictions.

Results: Among the four machine learning algorithms evaluated, the Light
Gradient Boosting Machine (LightGBM) model showed promising predictive
performance on the testing set, achieving an accuracy of 0.721 and an AUC of
0.848 (95% CI: 0.778-0.919). Interpretation of the LightGBM model using
SHAP analysis identified B-type natriuretic peptide (BNP) and the neutrophil-
to-lymphocyte ratio (NLR) as the most impactful predictors for AF recurrence.
The analysis revealed that higher levels of BNP and NLR were strongly
associated with an increased risk of recurrence, whereas higher levels of
albumin and lymphocyte count were protective. Other significant predictors
included left atrial diameter (LAD) and nonparoxysmal atrial fibrillation (NPAF).
Conclusion: Machine learning-based models show modest but promising
performance for assessing AF recurrence risk after RFCA using routine clinical
data. While requiring extensive external validation before clinical application,
these models highlight the potential of ML to inform future risk stratification
and guide personalized follow-up strategies.
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Introduction

Atrial fibrillation (AF) remains the most prevalent sustained
arrhythmia, with globally increasing incidence and prevalence,
resulting in a substantial public health and economic burden (1).
The most serious complications associated with AF are stroke
and heart failure (2). Despite catheter ablation’s status as a Class
1 first-line therapy for AF rhythm control in select patients (3),
post-procedural recurrence rates remain substantial (30%-40%)
(4). Therefore, the accurate identification of patients at elevated
risk for AF recurrence is crucial for selecting appropriate ablation
candidates, managing postoperative expectations, and tailoring
individualized follow-up care strategies.

Machine learning algorithms are being increasingly employed
in medicine for diagnosis, treatment, and automated
classification, facilitated by advances in statistical theory and
computer technology (5). Research has established the predictive
potential of artificial intelligence and machine learning for
catheter ablation outcomes. Saiz-Vivo et al. (6) applied ML to
heart rate variability data from implantable monitors to predict
post-ablation AF recurrence. Hwang et al. (7) integrated speckle-
tracking echocardiography with deep learning to identify imaging
features predictive of post-ablation AF recurrence. Liu et al. (8)
developed an ML-based model using CT scans to detect non-
pulmonary vein AF triggers and predict post-ablation arrhythmia
recurrence. Although their machine learning-based prediction
model demonstrated good predictive performance, most studies
focused on relatively expensive or complex examinations, which
limits its generalizability to broader populations. In recent years,
several composite inflammatory markers (e.g., NLR, SII, MHR)
have demonstrated promising diagnostic value in predicting atrial
fibrillation recurrence after catheter ablation, with the added
advantage of being readily obtainable. Therefore, our objective
was to develop and validate a predictive model for AF recurrence

ML algorithms. This
characteristics,  imaging

model
data,
laboratory measurements, and selected novel inflammatory

after RFCA using multiple

incorporates  demographic

biomarkers. We systematically compared the performance of
each ML approach and identified the optimal predictive model.

Methods
Patient selection and data collection

This retrospective study included 430 consecutive patients
undergoing first-time RFCA for non-valvular AF at Weifang

Abbreviations

ML, machine learning; AF, atrial fibrillation; RFCA, radiofrequency catheter
ablation; AUC, area under the receiver operating characteristic curve;
LightGBM, light gradient boosting machine; NLR, neutrophil-to-lymphocyte
ratio; NPAF, nonparoxysmal atrial fibrillation; PLR, platelet to lymphocyte
ratio, MHR, monocyte-to- high-density lipoprotein ratio; SII, systemic
immune-inflammation; BNP, B-type natriuretic peptide; CKD, chronic kidney
disease; LAD, left atrial diameter; LVEF, left ventricular ejection fraction;
ROC, receiver operating characteristic; SVM, support vector machine; KNN,
K-nearest neighbor; AdaBoost, adaptive boosting.
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People’s Hospital between June 2022 and December 2023. The
inclusion criteria comprised patients aged 18 years or older
undergoing first-time RFCA for non-valvular AF. Exclusion
criteria comprised: (1) Severe valvular heart disease; (2) Non-
first-time catheter ablation; (3) AF with primary cardiomyopathy;
and (5)
discontinuation. The patient selection flow diagram is depicted

(4) incomplete clinical/imaging data; follow-up
in Figure 1.

Data were extracted from the hospital’s electronic medical
record (EMR) system. All data underwent a manual quality
review by two investigators to correct implausible values and
data entry errors. Missing data for key variables were addressed
through telephone follow-up, which successfully completed the
datasets for 18 patients. The remaining 11 patients with
key data
subsequent analyses were performed using a complete case

irrecoverable were excluded. Consequently, all
analysis (CCA) approach.

This study received approval from the Medical Ethics
Committee of Weifang People’s Hospital (approval number
KYLL20241008-13) and was conducted in accordance with the
Declaration of Helsinki of the World Medical Association.

All patients’ baseline data were collected from their electronic
medical records, including sex, age, body mass index (BMI),
smoking and drinking history, sleep disorders, diabetes mellitus
(DM), hypertension, coronary heart disease (CHD), chronic
kidney disease (CKD), stroke/transient ischemic attack (TIA)
heart and AF
persistent), white cells, lymphocytes, monocytes, neutrophils,

history, failure, classification  (paroxysmal/
platelets, hemoglobin, red cell distribution width-coefficient of
variation (RDW-CV), uric acid, blood urea nitrogen, creatinine,
fasting blood glucose (FBG), lipid profile (triglycerides, Low
density high-density

cholesterol), gamma-glutamyl transferase (GGT), BNP, albumin,

lipoprotein  cholesterol, lipoprotein
free triiodothyronine (FT;), free tetraiodothyronine (FT,), and
thyroid-stimulating hormone (TSH), LAD, left ventricular end-
diastolic diameter (LVEDD), left ventricular ejection fraction
(LVEF), estimated glomerular filtration rate (eGFR), neutrophil-
to-lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR),
monocyte-to- high-density lipoprotein ratio (MHR), systemic
immune-inflammation (SII, neutrophil count x platelet count/
lymphocyte count). Furthermore, patient-specific CHA,DS,-VASc
and APPLE scores were calculated per established criteria. The
CHA,DS,-VASc score incorporated: hypertension, heart failure,
diabetes, vascular disease, age 65-74 years, and female sex
(1 point each); prior stroke/TIA or age >75 years (2 points each)
(9). The APPLE score included: age >65 years, persistent AF, left
atrial diameter >43 mm, eGEFR <60 ml/min/1.73 m?, and EF
<50% (1 point each) (10).

Post-procedural management and
follow-up

Following RFCA, all patients adhered to a standardized
management protocol. This included a 3-month course of an

antiarrhythmic  drug  (amiodarone) and a direct oral
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Consecutive 491 AF patients with RFCA from June 2022 to
December 2023 (n=491)
- Severe cardiac valvular disease (n=4)
- Non-first-time catheter ablation (n=29)
- AF with primary cardiomyopathy (n=3)
- Incomplete clinical/imaging data (n=11)
- Follow-up discontinuation (n=14)
Patients included in the final analysis
(n=430)
Training set Testing set
(n=301) (n=129)
FIGURE 1
Flow diagram of patient’s selection. AF, atrial fibrillation; RFCA, radiofrequency catheter ablation

anticoagulant (rivaroxaban), unless specific contraindications were
present. Postdischarge follow-up was conducted at 1, 3, 6, and 12
months, involving clinical evaluation, 12-lead ECG, and 24-hour
Holter monitoring. Symptomatic AF patients received additional
outpatient assessments. If the patients had any AF-related
symptoms, we performed further ECGs and Holter ECG
examinations. Atrial arrhythmias (AF, atrial flutter, or atrial
tachycardia) during the 90-day post-ablation blanking period
were excluded from recurrence analysis.

Feature selection

Initial statistical analyses included t-tests, Mann-Whitney U
tests, and chi-square tests to evaluate intergroup differences in
clinical characteristics. In our analysis, statistical significance
threshold was set at two-tailed p <0.05. Spearman correlation
analysis was used to mitigate feature collinearity. To select the
most salient predictors from our initial set of candidate variables,
we employed the Least Absolute Shrinkage and Selection
Operator (LASSO) regression model. A critical prerequisite for
LASSO is the standardization of input features to prevent bias
from variables with different scales. Therefore, prior to the
LASSO analysis, all continuous variables were standardized using
the Z-score method. This transformation rescaled each feature to
have a mean of zero and a standard deviation of one. We chose
LASSO not only for its predictive accuracy but also for its ability
to produce a parsimonious and interpretable model, which is
highly desirable for clinical application. This method performs
L1 regularization, shrinking the coefficients of irrelevant features

Frontiers in Cardiovascular Medicine

to zero and thus selecting a smaller, more robust subset of
This
multicollinearity by selecting a single representative from groups

predictors. approach  also  effectively  manages

of correlated clinical variables.

Model building

The entire cohort was randomly divided into a training set
(70% of patients) and a testing set (30% of patients). To ensure
of both stratified
technique was employed based on the primary outcome

the representativeness sets, a sampling
(recurrence vs. no recurrence), thereby maintaining the same
class distribution in both the training and testing sets as in the
original dataset.

Given the class imbalance observed in our data (23%
recurrence rate), we applied the Synthetic Minority Over-
sampling Technique (SMOTE) to the training data before model
fitting. This technique synthesizes new instances for the minority
class to create a balanced training set, which helps prevent the
model from being biased towards the majority class. Importantly,
the test set was not oversampled and retained its original class
distribution to serve as an unbiased benchmark for evaluating
the model’s true predictive performance on real-world data.

To predict AF recurrence following RFCA, we developed and
compared four distinct machine learning algorithms known for
their robust performance: support vector machine (SVM), light
gradient boosting machine (LightGBM), GradientBoosting, and
Adaptive Boosting (AdaBoost).
various modeling methodologies, enabling detection of intricate

The algorithms encompass
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data relationships and improved predictive performance. The SVM
algorithm exhibits robust classification capabilities, particularly
with high-dimensional datasets and limited samples. LightGBM,
AdaBoost, and Gradient Boosting are all ensemble learning
methods. While both LightGBM and Gradient Boosting employ
decision trees as their base learners, AdaBoost demonstrates
greater flexibility by accommodating various types of weak
classifiers. These methods exhibit strong predictive performance
when applied to appropriately structured datasets with sufficient
sample sizes, with LightGBM being particularly distinguished by
its computational efficiency. The selection of these algorithms
enables a comprehensive evaluation of different models’
performance in predicting atrial fibrillation recurrence after
RFCA, thereby ensuring optimal predictive outcomes. To ensure
a robust and unbiased evaluation of our models, we employed a
stratified five-fold cross-validation strategy. This procedure was
implemented on the training dataset. Specifically, the data was
partitioned into five subsets, or “folds”, of equal size. The
“stratified” nature of this process guarantees that the distribution
of the outcome classes within each fold is preserved to reflect the
class distribution of the overall training dataset. In each of the
five iterations, one fold was held out as the validation set, while
the other four folds were used for model training. The
performance metrics were then calculated on the validation set.
The final

determined by averaging the metrics obtained from all five folds.

cross-validation performance of a model was

Model interpretation

To ensure transparency and interpretability of the final
LightGBM model, we employed the SHAP framework. SHAP is a
game-theoretic approach that explains the output of any machine
learning model by computing the contribution of each feature to
an individual prediction. We utilized a SHAP summary plot to
visualize both the global feature importance, ranked by the mean
absolute SHAP value across all patients, and the directionality of
each feature’s impact on predicting AF recurrence.

Statistical analysis

For normally distributed continuous variables, data are
presented as mean *standard deviation with between-group
I-test.
exhibiting non-normal distributions were reported as medians

comparisons using Student’s Continuous variables
with interquartile ranges (IQR) and analyzed via Mann-Whitney
U test. Category data were presented as frequencies (proportions)
with between-group comparisons performed using chi-square
testing. The ML algorithms were developed using Python 3.7
programming language. The LASSO algorithm and correlation
analysis were conducted using the “One-key AI” platform (http://
www.medai.icu/), which employed the “scipy”, “numpy”, and
“sklearn” packages in Python (version 3.7). The analysis code
used in this

study is accessible at: https://gitee.com/

wangqingbaidu/OnekeyCompo. The AUC quantified model
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prediction efficacy, while DeLong’s test determined statistical
significance of inter-model performance differences. Statistical
significance was defined as a two-tailed p-value < 0.05.

Results
Patient characteristics

This study included 430 treatment-naive patients undergoing
initial radiofrequency ablation with complete medical records.
Among them, 101 experienced AF recurrence within 1 vyear,
leading to stratification into two groups based on recurrence
status. Significant differences between the groups were found for:
Smoking, Heart failure, CKD, NPAF, BNP, Creatinine, eGFR,
Albumin, FBG, RDW-CV, Neutrophils, Lymphocyte, LAD,
LVEDD, LVEF, APPLE score, SII, NLR and PLR. Table 1
presents the baseline characteristics of the included patients.

Feature selection and model building

Through Spearman correlation analysis and LASSO regression
with stratified fivefold cross-validation (Figures 2A,B), we identified
10 potential predictors of AF recurrence post-RFCA from the
initial 43 variables (Table 2). These predictors were subsequently
used to construct the final model.

The dataset was divided into a training set (70%) and a testing
set (30%) using a stratified random split based on the AF
recurrence. To confirm the validity of this split, we compared the
baseline characteristics between the two sets. As shown in
Supplementary Table S1, there were no significant statistical
differences for the vast majority of variables, indicating that the
training and testing sets were well-balanced and comparable.
This
model’s generalizability.

provides  astrong  basis  for  assessing  the

Four machine learning algorithms were employed to develop
prediction models in the training set. To ensure optimal
performance and prevent data leakage, hyperparameters for each
algorithm were tuned using a grid search with stratified 5-fold
cross-validation. Stratification was based on the AF recurrence
outcome to ensure that the proportion of positive and negative
cases was maintained across all folds, a crucial step for handling
potential class imbalance. For each model, we defined a grid of
relevant hyperparameters and sought the combination that
maximized the mean AUC across the validation folds. The final
optimized hyperparameters for all models are detailed in
Supplementary Table S2.

To compare the performance and stability of the candidate
models during the training phase, we visualized the distribution
of AUCs stratified
(Supplementary Figure S1). The boxplot clearly demonstrates
that the LightGBM model achieved not only the highest median
AUC but also showed a relatively tight interquartile range,

from the cross-validation ~ process

suggesting its superior predictive power and robustness compared
to the other models.
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TABLE 1 Baseline characteristics.

Characteristics

Non-recurrence (n = 329)

10.3389/fcvm.2025.1642409

Recurrence (n =

Age, years 63.82 +£9.33 65.60 + 8.20 0.125
Female, n (%) 149 (45.30) 37 (36.60) 0.125
BMI, kg/m2 25.82+3.48 25.70 £3.63 0.878
Smoking, n (%) 35 (10.60) 24 (23.80) 0.001
Drinking, n (%) 16 (4.90) 8 (7.90) 0.242
Heart failure, n (%) 39 (11.90) 29 (28.70) <0.001
Hypertension, n (%) 183 (55.60) 51 (50.50) 0.365
DM, n (%) 45 (13.70) 20 (19.80) 0.133
CHD, n (%) 99 (30.10) 37 (36.60) 0216
Stroke, 1 (%) 46 (14.0) 16 (15.80) 0.642
Sleep disorders, n (%) 7 (2.10) 2 (2.00) 0.928
CKD, n (%) 5 (L.5) 10 (9.9) <0.001
NPAF, n (%) 116 (35.30) 62 (61.40) <0.001
BNP, pg/ml 87 (41.00, 191.50) 179 (98.65, 370.50) <0.001
UA, (umol/L) 327 (270, 389.50) 332 (267.50, 411) 0.303
Creatinine, (umol/L) 63.00 (53.00, 74.00) 67.00 (59.00, 79.00) 0.015
eGFR (ml/min/1.73 m?) 111.77 (92.82, 137.10) 103.80 (85.31, 122.81) 0.011
TG, mmol/L 1.28 (0.96, 1.85) 1.23 (0.91, 1.64) 0.358
LDL-C, mmol/L 2.63 (2.02, 3.22) 244 (1.74, 3.12) 0.066
HDL-C, mmol/L 1.17 (1.01, 1.40) 1.14 (0.99, 1.40) 0.796
GGT, U/L 24.00 (18.00, 34.00) 25.00 (17.00, 38.50) 0.553
Albumin, g/L 42.10 (39.70, 45.20) 41.10 (38.90, 43.60) 0.012
FBG (mmol/L) 5.30 (4.80, 6.00) 5.50 (4.80, 7.60) 0.017
WBC count (X109/L) 591 (5.11, 6.94) 5.68 (4.81, 6.89) 0.316
RBC count (><109/L) 4.54 (4.23, 4.91) 449 (4.18, 4.92) 0.403
HGB, g/L 140.64 + 15.54 138.68 + 18.46 0.607
RDW-CV,% 12.50 (12.10, 12.80) 12.70 (12.40, 13.10) 0.002
Neutrophils (><109/L) 3.52 (291, 4.35) 3.77 (3.08, 4.85) 0.039
Lymphocyte (x10°/L) 1.79 (145, 2.21) 1.42 (1.13, 1.88) <0.001
Monocytes (><109/L) 0.37 (0.30, 0.46) 0.38 (0.29, 0.46) 0.843
Platelet count (><109/L) 212.00 (180.50, 254.00) 202.00 (177.50, 245.00) 0.146
FT3, pmol/L 5.06 (4.66, 5.62) 4.99 (4.53, 5.43) 0.093
FT4, pmol/L 17.65 (15.39, 19.46) 18.06 (15.57, 19.87) 0.193
TSH, uIU/ml 1.68 (1.15, 2.53) 1.59 (1.05, 3.25) 0.847
LAD, mm 33.80 (30.60, 38.00) 38.45 (33.48, 42.00) <0.001
LVEDD, mm 49.00 (46.50, 51.60) 50.00 (47.00, 53.50) 0.015
LVEF, % 64.00 (60.00, 68.00) 62.00 (57.50, 66.00) <0.001
CHA,DS,-VASc score 2.50 £ 1.55 244 +148 0.722
APPLE score 1.18 £ 0.99 1.86 +1.36 <0.001
SIT 402.55 (293.13, 579.98) 581.13 (396.61, 741.88) <0.001
NLR 1.91 (1.45, 2.66) 2.79 (1.91, 3.68) <0.001
PLR 118.30 (93.70, 150.31) 138.43 (122.06, 173.08) <0.001
MHR 8.07 (6.13, 10.80) 8.53 (6.01, 11.47) 0.910

BMI, body mass index; DM, diabetes mellitus; CHD, coronary heart disease; CKD, chronic kidney disease; NPAF, nonparoxysmal atrial fibrillation; BNP, B-type natriuretic peptide; UA, uric acid;
eGFR, estimated glomerular filtration rate; TG, total glyceride; LDL, low density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; GGT, gamma-glutamyl transferase; FBG, fasting
blood glucose; RDW-CV, red cell distribution width-coefficient of variation; FTj, free triiodothyronine; FT,, free tetraiodothyronine; TSH, thyroid-stimulating hormone; LAD, left atrial diameter;
LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; SII, systemic immune inflammation; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio;

MHR, monocyte-to- high-density lipoprotein ratio.

The finalized models, using their optimized hyperparameters,
were then evaluated on the independent testing set. To visualize
the generalization capability of each model, we compared their
performance on the training and testing sets (Supplementary
Figure S2). The plot shows that the LightGBM and SVM models
maintained a smaller performance gap compared to other
models, providing visual confirmation of their superior stability
and lower risk of overfitting.

The receiver operating characteristic (ROC) curves and
corresponding AUC values for each model in the testing set are

Frontiers in Cardiovascular Medicine 05

presented in Figure 3. The results demonstrated that the LightGBM
model achieved a numerically high AUC of 0.848 compared to the
other models: GradientBoosting (AUC=0.834), AdaBoost
(AUC =0.830), and SVM (AUC =0.802). Table 3 summarizes the
predictive performance across training and testing datasets.
Although a DeLong test indicated that the AUC of the LightGBM
model was not statistically significantly different from that of the
Gradient Boosting model (p=0.21), we selected the LightGBM
model for further analysis given its combination of being the top
numerical performer and known computational efficiency.
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(A) The process of feature selection. We used the least absolute shrinkage and selection operator (LASSO) regression model with penalty parameter
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vertical dotted line is plotted at the optimal value 2 = 0.0110. (B) The vertical line was plotted with 10 selected features.
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TABLE 2 Feature selection results and coefficients for each feature.

Variable name Coefficient

NLR 0.079150
NPAF 0.039257
APPLE score 0.036335
ALB —0.033608
FBG 0.028001
LAD 0.013889
BNP 0.012901
Lymphocyte —0.011794
Smoking 0.011365
CKD 0.004392

NLR, neutrophil-lymphocyte ratio; NPAF, nonparoxysmal atrial fibrillation; ALB, albumin;
FBG, fasting blood glucose; LAD, left atrial diameter; BNP, B-type natriuretic peptide;
CKD, chronic kidney disease.

Interpretation of the optimal model with
SHAP

To provide a detailed and clinically meaningful interpretation
of the best-performing LightGBM model, we conducted a SHAP
analysis on the testing set. The SHAP summary plot (Figure 4)
illustrates the global importance and impact of each of the 10
selected predictors on the model’s output. The analysis identified
BNP as the most influential predictor. As shown in Figure 4,
high BNP levels (represented by red dots) consistently yielded
high positive SHAP values, indicating a strong association with
an increased risk of AF recurrence. The NLR was the second
most important feature, where high values clearly drove the
prediction towards recurrence. Interestingly, the SHAP analysis
also highlighted significant protective factors. Higher levels of
ALB and lymphocyte count were associated with negative SHAP
the
suggesting they reduce the likelihood of postoperative AF

values  (pushing prediction towards no recurrence),

Frontiers in Cardiovascular Medicine

recurrence. This finding is clinically coherent, as a low
lymphocyte count is a key component of an elevated, high-risk
NLR. Other predictors aligned with established clinical
knowledge. A larger LAD, higher FBG, the presence of NPAF, a
higher APPLE score, and a history of smoking were all identified
as risk factors that increase the model’s predicted probability of
recurrence. This granular interpretation afforded by SHAP
enhances the model’s transparency and potential for clinical
decision support. Figure 5 displays the DCA results of the
LightGBM model in the test set, demonstrating clinical utility
across the 0.05-0.60 threshold probability range.

Discussion

As a well-established rhythm management strategy, catheter
ablation provides safe treatment for symptomatic AF patients
(11). The effectiveness of atrial fibrillation catheter ablation
demonstrating  20%-45%
(12). Precise AF
recurrence prediction optimizes clinical decision-making and

persists as a clinical

recurrence rates after initial procedures

challenge,

patient selection for ablation. Consequently, preprocedural
quantification of personalized AF recurrence risk is imperative
for ablation candidates. Here, we developed and compared
several machine learning models for predicting late recurrence
following RFCA. Our
LightGBM,

performance and warrant further investigation.

findings suggest that ML models,

particularly demonstrate  modest  predictive

Our study’s findings should be viewed within the rapidly

advancing landscape of artificial intelligence in clinical

electrophysiology. In has
remarkable capabilities across this field. For instance, deep

recent years, Al demonstrated

learning models, such as convolutional and recurrent neural
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FIGURE 3
Performance for machine learning models in the testing set based on the AUC of the ROC curve.

TABLE 3 Comparison of the performance of machine learning models in the training and testing set.

Accuracy AUC (95% ClI) Sensitivity Specificity
Training set SVM 0.831 0.882 (0.835, 0.930) 0.838 0.828
LightGBM 0.824 0.919 (0.885, 0.952) 0919 0.793
GradientBoosting 0.887 0.923 (0.886, 0.960) 0.784 0921
AdaBoost 0.761 0.850 (0.803, 0.898) 0.851 0.731
Testing set SVM 0.791 0.802 (0.712, 0.891) 0.593 0.843
LightGBM 0721 0.848 (0.778, 0.919) 0.852 0.686
GradientBoosting 0.713 0.834 (0.756, 0.911) 0.852 0.676
AdaBoost 0.667 0.830 (0.753, 0.907) 0.889 0.608

SVM, support vector machine; KNN, K-nearest neighbor; RF, random forest; LightGBM, light gradient boosting machine; AdaBoost, adaptive boosting.

networks, have achieved expert-level performance in detecting and
classifying arrhythmias from 12-lead ECGs or wearable device
recordings (13). Other significant efforts have focused on
predicting the long-term success of catheter ablation for atrial
fibrillation by integrating clinical, electrophysiological, and
imaging data (14). Furthermore, Al is increasingly used for
personalized risk stratification, identifying patients at high risk
for events like sudden cardiac death or thromboembolism,
thereby guiding preventive strategies (15).

Machine learning is rapidly advancing with expanding
applications in cardiovascular medicine (16). These analytical
methods autonomously identify clinically significant patterns
through iterative data learning, eliminating the need for
predefined search parameters. ML’s key advantage lies in

Frontiers in Cardiovascular Medicine

autonomously modeling complex nonlinear interactions across
patient characteristics and comorbidities, eliminating predefined
variable constraints required in traditional methods like logistic
regression. Liu et al. (8) developed a deep learning-based model
(AUC=0.82) using CT imaging to detect extra-pulmonary vein
AF triggers for predicting post-ablation arrhythmia recurrence.
Shade et al. (17) developed a deep learning model using late
gadolinium-enhanced =~ CMR  (LGE-CMR)
preprocedurally predict AF recurrence risk (AUC =0.82). Their
methodology extracted high-risk features from simulated LGE-
CMR data. Although their machine learning model achieved

imaging  to

satisfactory predictive accuracy, its dependency on sophisticated
and high-cost diagnostics could hinder broad clinical adoption.
Therefore, developing efficient and generalizable prediction
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models using machine learning with readily available and low-cost
indicators is crucial.

Inflammation significantly contributes to atrial fibrillation by
promoting both electrical and structural atrial remodeling (18).
Recent studies have identified novel inflammatory markers (e.g.,
NLR, SII, PLR) that are significantly associated with atrial
fibrillation recurrence. Moreover, these novel inflammatory
markers can be derived from routine clinical tests. However, few
existing prediction models have incorporated these emerging
inflammatory indicators for AF recurrence prediction. To our
knowledge, this is the first study to integrate novel inflammatory
biomarkers into an ML model for AF recurrence prediction. In
this study, we compared the performance of four machine
learning algorithms in predicting atrial fibrillation recurrence
after RFCA. Recognizing the methodological constraints of
retrospective single-center designs, we employed: (a) protocolized
data quality control measures to limit information bias, and (b)
multivariable regression modeling to account for confounding
variables, thereby strengthening inference validity and reducing
institution-specific bias effects. To safeguard against model
overfitting, we deployed these methodological safeguards: Firstly,
we employed LASSO regression for feature selection, utilizing its
L1 regularization properties to reduce model complexity and
suppress overfitting. Secondly, we implemented stratified 5-fold
cross-validation with repeated random partitioning to quantify
thereby
out-of-sample

generalization performance during model training,
through
validation. Finally, we developed predictive models using four

mitigating  overfitting  risks robust
distinct machine learning algorithms: support vector machine
(SVM), Gradient Boosting, LightGBM, and AdaBoost. Through
comparative performance assessment across multiple algorithms,
we selected the optimal model based on prespecified metrics,
thereby enhancing external validity.

Our findings indicate that several machine learning models,
particularly those based on gradient boosting, can achieve modest
predictive performance. While the LightGBM model yielded the
numerically highest AUC (0.848), it is important to emphasize
that its performance was not statistically superior to other
competitive models like Gradient Boosting, as evidenced by the
DeLong test. The overlapping 95% confidence intervals for these
models further support this observation. Therefore, the data
suggest that multiple models perform comparably. Our choice of
LightGBM for deeper analysis is based on its combination of
being the top numerical performer and its well-established
advantages in computational efficiency, which are practical
considerations for potential future applications.

Interpretation of the LightGBM model using SHAP values
revealed the relative importance and directional impact of the 10
predictors (Figure 4). The analysis identified BNP, NLR, ALB,
and lymphocyte count as the four most influential factors. The
NLR serves as an established biomarker of systemic inflammatory
burden and oxidative stress status. Guo et al. (19) demonstrated
that NLR
recurrent lone atrial fibrillation. Bazoukis et al. (20) reported

elevated postprocedural independently predicts

significantly elevated post-ablation NLR in patients experiencing
late atrial fibrillation recurrence, with NLR>3.9 predicting
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recurrence at 70% sensitivity and 38% specificity. Moreover, a
systematic meta-analysis by Shao et al. (21) confirmed that
elevated NLR—whether measured pre-procedurally or post-
intervention—consistently correlates with heightened risks of
both incident and recurrent atrial fibrillation. NLR reflects
systemic stress and inflammatory status, demonstrating the
strongest predictive contribution in our study. The SHAP
analysis confirmed that a higher lymphocyte count was
significantly associated with a reduced risk of AF recurrence,
indicating its protective effect (Figure 4). A prospective cohort
study (22) further demonstrated that elevated absolute counts of
WBC, neutrophils, and monocytes each independently associated
with increased atrial fibrillation risk, whereas higher lymphocyte
exhibited an addition,
histopathological analyses of atrial tissue biopsies from AF

counts inverse  association. In
patients reveal prominent lymphocytic and mononuclear cell
infiltration—a distinct inflammatory substrate absent in sinus
rhythm controls, as consistently documented in prior studies (23,
exhibiting elevated NLR or

lymphocytopenia merit heightened clinical vigilance and targeted

24). Consequently, patients
risk stratification.

Established risk factors for arrhythmia recurrence include
persistent AF and left atrial enlargement (25). Previous reports have
demonstrated that LAD is a predictor of recurrences after RFCA
(26). Left atrial enlargement contributes to structural and electrical
remodeling within the atrium, thereby promoting the persistence
and perpetuation of atrial arrhythmias (27). The risk of arrhythmia
recurrence was greater in patients with persistent AF compared to
those with paroxysmal AF (28). Persistent AF contributes to atrial
fibrosis, promoting both structural and electrical remodeling, which
ultimately perpetuates the arrhythmia (29).

Albumin, a key plasma protein, modulates inflammation,
sustains colloidal osmotic pressure, and facilitates the transport
of diverse endogenous and exogenous compounds (30). Our
SHAP analysis prominently identified serum albumin level as the
third most important predictor and a strong independent
protective factor (Figure 4), where higher levels were robustly
associated with a lower risk of recurrence. Furthermore, albumin
reflects nutritional status, a parameter independently associated
with atrial fibrillation recurrence (31). Consequently, patients
identified as high-risk who present with hypoalbuminemia
warrant intensified clinical monitoring and targeted interventions.

The APPLE score, proposed by Kornej et al. (10), is a risk
stratification tool (range 0-5) for predicting AF recurrence after
catheter ablation, assigning 1 point per risk factor. Independent
external validation studies confirm the robust predictive performance
of the APPLE score for AF recurrence following RFCA and
demonstrate its ability to effectively stratify patients into distinct low-
, moderate-, and high-risk categories for recurrence (32, 33).

BNP, a
cardiomyocytes in response to wall stress, exerts diuretic and

hormone primarily secreted by ventricular
natriuretic effects. Elevated circulating BNP levels are a
recognized feature in patients with AF. Our model identified
preprocedural BNP as the single most powerful predictor of
AF recurrence (Figure 4). This aligns with and reinforces

the findings of numerous investigations that have established
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the robust predictive
outcomes (34, 35).
The cardiotoxic effects of smoking are multifactorial, stemming

utility of BNP for post-ablation

from over 4,000 constituents in cigarette smoke, with nicotine and

carbon monoxide being the primary mediators of direct
pathophysiological injury. Nicotine elevates sympathetic tone and
promotes atrial fibrosis, the latter involving induction of collagen
III mRNA expression (36). Collectively, these pro-fibrotic and
effects

abnormalities and

neurohormonal culminate in atrial conduction

enhanced automaticity (37). Conversely,
smoking may promote tissue inflammation, evidenced by elevated
blood levels of Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha
(TNF-01), and C-reactive protein (CRP) (38). This inflammatory
state can subsequently contribute to fibrosis and increase
susceptibility to arrhythmias (39). A recent study demonstrated
that smoking is associated with increased AF recurrence risk after
PVI, regardless of AF type (paroxysmal or persistent) (40).
Therefore, smoking cessation should be encouraged in all AF
patients, particularly those undergoing ablation, to achieve long-
term benefits for sinus rhythm maintenance and overall health.

Impaired renal function inevitably leads to systemic toxin
accumulation and tissue damage, adversely affecting cardiac
remodeling. Previous studies indicate that chronic kidney disease
(CKD) is a risk factor not only for new-onset atrial fibrillation
(AF) (41), but also for AF recurrence following catheter ablation
(42). Therefore, particular attention should be given to AF
patients with CKD.

Abnormally elevated fasting glucose often indicates diabetes or
prediabetes (impaired fasting glucose). Prior research has
established that dysglycemia detrimentally alters the biatrial
electrophysiological substrate, manifesting as prolonged intra-atrial
conduction, diminished bipolar voltage, and elevated recurrence
risk following catheter ablation (43). Therefore, aggressive glycemic
control is warranted in AF patients with impaired fasting glucose
or diabetes to maintain long-term sinus rhythm.

Several limitations of this study warrant consideration. First,
our model was developed using data from a single center, which
inherently limits the sample size and may introduce selection
bias, potentially restricting the model’s external validity. To
confirm its generalizability and clinical utility, future validation
in larger, independent, and multicenter cohorts is essential.
Second, the ascertainment of AF recurrence relied on scheduled
than

continuous surveillance with implantable loop recorders. This

monitoring and  patient-reported symptoms rather
approach may have missed asymptomatic episodes, leading to a
potential underestimation of the true recurrence rate. Third, the
detailed

collection of pre-procedural medication data, such as the specifics

retrospective design of our study precluded the

of antiarrhythmic drug therapy or the use of beta-blockers and
The of this
information represents a potential unmeasured confounding

renin-angiotensin  system inhibitors. absence
factor. Future prospective studies are needed to meticulously
collect and integrate these variables into predictive models to
refine risk stratification. Fourth, we excluded patients with
primary cardiomyopathy, a group with distinct pathophysiology

and higher ablation failure rates. While this exclusion enhances

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1642409

the model’s precision for the intended target population (i.e., AF
without primary cardiomyopathy), it concurrently limits its
applicability to this specific high-risk subgroup. Therefore, the
development of dedicated prediction models for patients with
underlying cardiomyopathies is warranted. Finally, our selected
LightGBM model exhibits a crucial performance trade-off,
prioritizing high sensitivity (0.852) at the expense of modest
specificity (0.686). This performance profile results in a higher
false-positive rate, which could lead to unnecessary downstream
testing or increased patient anxiety. Consequently, the model is
best positioned as a screening tool to identify patients warranting
closer surveillance, rather than as a standalone diagnostic
instrument. Final treatment decisions must continue to integrate
the model’s output with comprehensive clinical judgment. Future
research should focus on improving specificity, perhaps by
incorporating novel biomarkers or longitudinal data, to enhance
the model’s overall clinical utility.

Conclusion

In this single-center study, we developed and compared
several machine learning models for predicting late AF
recurrence post-RFCA. The models demonstrated modest
predictive performance, with no single algorithm proving
statistically superior to others. The LightGBM model, while
being the top numerical performer, primarily showed potential
due to its computational efficiency. Crucially, these findings
require rigorous external and prospective validation to assess
their generalizability and true clinical utility. At present, such
models should be considered exploratory tools that may help
generate hypotheses for future studies rather than being used
for direct clinical decision-making.
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