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Objective: Aortic stenosis (AS) is a critical risk factor for the development of 

structural heart disease, and identifying its pathogenic genes will provide new 

insights into cardiac pathology and treatment.

Methods: “edgeR” was used to calculate differentially expressed genes (DEGs) 

for bulk-RNAseq. GO, KEGG, and GSEA analyses were performed on the 

DEGs. Aortic valves from 8 AS patients and 8 non-AS patients were collected 

for proteomic sequencing. After DEG analysis, five algorithms were used 

to identify hub genes. ROC curves were constructed for the hub genes. 

Single-cell RNA sequencing (scRNAseq) was applied to systematically 

elaborate the mechanism in AS pathogenesis.

Results: Transcriptome data showed that AS was accompanied by high 

expression of genes such as MMP9, CXCL8, and SPP1, with significant 

activation of hypoxia, inflammatory response, and fibrosis. Proteomic 

sequencing of calcified AS revealed significantly enhanced hypoxic response, 

TNF-α signaling, and extracellular matrix (ECM) formation. Sixteen hub genes, 

including ITGB3, ITGAV, and MMP9, were identified by five algorithms, all with 

high diagnostic efficacy (AUC > 0.75). PCR experiments confirmed that MMP9 

and PLAU were highly expressed in calcified aortic valves (P < 0.05). scRNAseq 

revealed that in highly calcified regions, MMP9 and PLAU were mainly 

distributed in endothelial cells, monocytes, and macrophages, participating in 

the differentiation of monocytes and macrophages and relating to lipid 

metabolism and proinflammatory responses.

Conclusion: The 16 hub genes can assist in the diagnosis of aortic stenosis, and 

MMP9 and PLAU may participate in AS development by regulating the 

proinflammatory effects of monocytes and macrophages.
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Introduction

Aortic stenosis (AS) is a cardiac valvular disease caused by 

structural abnormalities of the aortic valve, leading to left 

ventricular out�ow tract obstruction, primarily manifested as 

lea�et thickening, calcification, and limited mobility. In structural 

heart diseases, AS accounts for approximately 25%–30%, with a 

significantly increasing prevalence with age—the prevalence of 

severe AS in individuals over 75 years old reaches 3%–5% (1). The 

5-year mortality rate of untreated severe AS patients exceeds 50%, 

and the 2-year mortality rate is as high as 50%–80% when 

combined with heart failure symptoms (2). Its pathological 

features include valvular fibrocalcification (calcium deposition in 

lea�ets and annulus), congenital bicuspid aortic valve 

malformation (accounting for 30%–50% of AS cases), and 

in�ammation-mediated extracellular matrix remodeling (3). Major 

risk factors include age, bicuspid aortic valve, hypertension, 

hyperlipidemia, chronic kidney disease, and metabolic syndrome (4).

The etiology of AS is complex, involving multi-level 

pathological mechanisms. At the tissue level, degenerative 

calcification is the most common cause (accounting for >80% of 

elderly patients), characterized by rupture of lea�et collagen 

fibers, lipid deposition, and abnormal aggregation of 

hydroxyapatite crystals, leading to valve thickening and stiffness 

(5). Congenital bicuspid aortic valve is an important inducer 

(30%–50% of AS cases), whose abnormal blood �ow shear stress 

accelerates valve fibrosis and calcification (4). Stimulated by 

in�ammatory factors and oxidative stress, valvular interstitial 

cells differentiate into osteoblast-like cells by activating the 

Runx2/BMP2 signaling pathway, promoting calcium nodule 

formation (6). Additionally, macrophage infiltration releases 

matrix metallo-proteinases (MMPs) that degrade the 

extracellular matrix (ECM), further exposing calcification sites (7).

Calcification in AS primarily occurs on the ventricular side of 

the lea�ets and the fibrosa layer, with its distribution closely 

related to local biomechanics and molecular microenvironment. 

The latest histopathological study (8) shows that AS calcification 

originates in the collagen fiber rupture zone of the fibrosa layer, 

then spreads along stress-concentrated regions (ventricular side), 

forming multifocal hydroxyapatite deposits. High-resolution 

micro-CT reveals that calcification density on the ventricular 

side is 3–5 times higher than that on the aortic side. Especially 

in patients with bicuspid aortic valve (BAV), abnormal blood 

�ow shear stress directly enhances endothelial injury on the 

ventricular side and activates the osteogenic phenotype of 

valvular interstitial cells (VICs) (9). Single-cell RNA sequencing 

further reveals that ventricular-side VICs highly express 

osteogenic differentiation markers (such as RUNX2, BMP2), 

accompanied by macrophage infiltration releasing IL-1β and 

TGF-β to drive the fibrocalcification cascade (10). Additionally, 

studies based on hydrodynamic simulations indicate that the 

ventricular side, subject to higher cyclic tensile stress (>50 kPa), 

promotes the expression of calcification-related genes through 

the integrin-ERK1/2 pathway (11).

This study first performed a combined analysis of RNA-seq 

data from two groups of aortic calcification patients, collected 

clinical patient samples for proteomic sequencing, identified hub 

genes using five algorithms and combined them with RNA-seq 

analysis, and finally used single-cell transcriptome sequencing 

data to explore the mechanism by which genes participate in the 

occurrence of aortic calcification.

Methods

Transcriptome data download and 
preprocessing

GSE51472 and GSE12644 were downloaded from the GEO 

database (12, 13). GSE51472 included 5 control, 5 sclerotic, and 

5 calcified samples, while GSE12644 included 10 control and 10 

calcified samples. In R software, Counts data were converted to 

FPKM and then log-normalized. Sample boxplots were plotted 

to assess the degree of normalization.

Differentially expressed gene analysis 
and GSEA

“edgeR” (14) was used to calculate gene expression changes, 

and DEGs were screened with the threshold of Log2|FC| ≥ 1 and 

adjusted P-value <0.05. “msigdbr” (15) was used for gene set 

enrichment analysis (GSEA) of DEGs, and “enrichplot” was 

used to plot the top-ranked terms.

PPI network construction, GO and KEGG 
analysis

The STRING database (16) was used to construct the protein- 

protein interaction (PPI) network of DEGs, and Cytoscape 

software (17) was used to visualize the interaction relationships 

between genes. “clusterProfiler” (18) was used for GO and 

KEGG pathway analysis using a significance cutoff of P < 0.05, 

and the SRPLOT platform (19) was used to visualize the 

relevant enriched terms.

Patient sample collection and proteomic 
sequencing

The aortic valve tissues of patients with aortic regurgitation 

(control) and AS in the hospital from January to April, 2024 

were collected. Among them, the organization acquisition 

method is implemented in accordance with relevant guidelines 

and regulations, and it is confirmed that all subjects and/or their 

legal guardians have obtained informed consent. This project 

was approved by the Xinjiang Uygur Autonomous Region 

People’s Hospital (KY2024030102). Aortic valve tissues were 

washed with pre-cooled saline within 10 min to remove blood 

residues. Lea�ets were separated, tissues were cut into small 

pieces (<0.2 cm3), snap-frozen in liquid nitrogen, and stored at 
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−80 °C. After thawing, tissues were soaked in decalcification 

solution (4 °C, 24–48 h), with fresh solution replaced every 6 h. 

After decalcification, tissues were ground into powder with 

liquid nitrogen, and interference was removed by differential 

centrifugation. Protein expression was detected by liquid 

chromatography-mass spectrometry (LC-MS/MS), and 

MaxQuant was used to match mass spectrometry data to the 

protein database.

HE staining and alizarin Red staining

The HE staining procedure for aortic valve tissues included: 

formalin fixation for 24–48 h, dehydration (gradient ethanol 

treatment), transparency (xylene), paraffin embedding, and 

sectioning; the staining process included dewaxing and 

rehydration, hematoxylin nuclear staining for 5–10 min, 

hydrochloric acid-ethanol differentiation, water reblueing, eosin 

cytoplasm staining for 1–2 min, followed by gradient ethanol 

dehydration, xylene transparency, and neutral gum sealing for 

microscopic observation of cell morphology and collagen 

fiber structure.

The alizarin red staining procedure for aortic valve tissues 

was: dewaxing sections to water, staining in alizarin red 

S solution for 5–10 min, washing with running water to 

remove �oating color; counterstaining nuclei with hematoxylin 

for 30 s, hydrochloric acid-ethanol differentiation, water 

reblueing, gradient ethanol dehydration, xylene transparency, 

and neutral gum sealing.

Identification of key gene modules and Hub 
genes

The MCODE algorithm (20) was used to identify key 

modules in the PPI network. Five algorithms in Cytohubba 

(21) were used to detect the top 30 key genes in the PPI 

network. UpSet (22) was used to visualize the overlap of the 

five algorithms.

ROC curve, transcriptional regulation, and 
m6A modification prediction

The SRPLOT platform was used to construct ROC curves for 

proteomic sequencing data. The TRRUST database (23) was used 

to predict transcription factors of hub genes, and the M6A2Target 

database (24) was used to predict m6A-modified genes of 

hub genes.

PCR experiments

PCR experiments were performed to detect the mRNA 

expression levels of MMP9 and PLAU in aortic valve tissues. 

Specific steps: frozen tissues were ground in liquid nitrogen, 

lysed using an RNA extraction kit, centrifuged to remove 

impurities, and total RNA was purified by binding to an RNA 

adsorption column. Reverse transcription was performed 

according to the Takara PrimeScript RT Master Mix 

instructions (42 °C for 15 min, 85 °C for 5 s to inactivate), 

synthesizing cDNA; qPCR amplification was performed using 

Takara SYBR Premix Ex Taq (95 °C pre-denaturation for 30 s, 

40 cycles: 95 °C for 5 s, 60 °C for 30 s). Melting curves 

were used to verify product specificity, and the relative 

expression of target genes was calculated. The primer 

sequences as shown in Table 1.

Single-cell transcriptome data 
preprocessing and DEG analysis

Published single-cell transcriptome data (GSE220774) (25) from 

aortic calcification patients were collected, including single-cell 

transcriptome data from three regions (fibrosa layer, ventricular 

layer, and intermediate layer/remaining layer) of five patients. Data 

preprocessing strictly followed the Seurat official recommended 

pipeline (26), including filtering low-quality cells and noise genes, 

data normalization, identification of highly variable genes, 

principal component analysis for dimensionality reduction, 

Louvain clustering algorithm for cell subset identification, cell type 

annotation using “SingleR” and “Cellmarker” (27, 28), and finally 

“FindMarkers” for DEG analysis between different cell populations.

Cell pseudotime analysis

Cell pseudotime analysis maps single-cell transcriptome data 

to a low-dimensional space, constructs developmental or 

differentiation trajectories between cells, and infers dynamic 

changes in cell states. Monocle3 (29) was used to analyze the 

differentiation trajectories of monocytes and macrophages, 

which assigns a “pseudotime” value to each cell, identifies 

differential gene modules along the trajectory, reveals 

differentiation-driving genes and branching events, and finally 

visualizes time-dependent gene expression patterns through 

trajectory plots. The specific steps include using DDRTree to 

reduce dimensionality, sort and map cells, and the built-in 

Branched expression analysis modeling (BEAM) is used to assist 

in branch judgment.

TABLE 1 Information on gene primer sequences.

Gene Forward primer Reverse primer

GAPDH 5′-ACACCCACTCCTCCACCTTTG-3′ 5′-TCCACCACCCTGTTGCTGTAG-3′
MMP9 5′-GGCACCACCACAACATCACC-3′ 5′-GGGCAAAGGCGTCGTCAATC-3′
PLAU 5′-GGCTTAACTCCAACACGCAAGG-3′ 5′-AACGGATCTTCAGCAAGGCAATG-3′
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Results

Activation of inflammatory and fibrosis in 
aortic sclerosis and calcification

After gene annotation and normalization of the GSE51472 

dataset (Figure 1A), comparison of gene expression between the 

control group and aortic sclerosis group showed that aortic 

sclerosis had minimal impact on gene expression (Figure 1B), 

but activated proin�ammatory signals (IL-6-STAT3, TNF-α, and 

IL-2-STAT5), hypoxic signals, and fibrosis (epithelial- 

mesenchymal transition) (Figure 1C). Compared with the control 

group, aortic calcification patients had significantly upregulated 

collagen molecules (COL1A1 and SPP1), proin�ammatory 

molecules (CXCL13, TNFRSF17, and S100A8), and matrix 

metalloproteinase (MMP) family genes (Figure 1D). Meanwhile, 

GSEA results for aortic calcification and sclerosis were consistent 

(Figures 1C,E), and the PPI network of upregulated genes showed 

that integrins and proin�ammatory factors played important roles 

(Figure 1F). Two key modules were identified by the MCODE 

algorithm (Figure 1G), both related to in�ammatory responses 

such as cytokine production, Toll-like receptor pathway, cell 

chemotaxis, and NF-κB signaling pathway (Figures 1H,I). This 

suggests that the accumulation of extracellular matrix (ECM) and 

the local in�ammatory microenvironment may jointly promote 

the formation of aortic calcification.

Upregulation of cell chemotaxis and ECM 
formation in aortic calcification

Normalization of the GSE12644 dataset (Figure 2A) showed 

that aortic calcification significantly increased genes such as 

MMP9, MMP12, and SPP1 compared with the control group 

FIGURE 1 

Transcriptional dysregulation in aortic calcification. Sample normalization of the GSE51472 dataset (A), DEGs in aortic sclerosis patients compared 

with controls (B), and gene set enrichment analysis (C); DEGs in aortic calcification patients (D), GSEA (E), PPI network (F), networks of the top two 

key gene modules (G), and enrichment analysis of key modules (H,I). Sample size: Control group (n = 5); AS group (n = 5).
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(Figure 2B), which are involved in in�ammatory response and 

fibrosis progression (Figure 2C). Construction of the PPI 

network revealed that upregulated MMP9, SPP1, and COL3A1 

were in central positions (Figure 2D). Similar to the 

GSE51472 dataset, these DEGs were mainly related to 

extracellular matrix formation, cell chemotaxis, and cytokine 

production (Figure 2E). Intersection analysis of the two 

datasets identified 31 genes significantly upregulated in aortic 

calcification (Figure 2F), with MMP9, CXCL8, SPP1, and 

PLAU ranking among the top (Figures 2G,H). GO and KEGG 

enrichment analyses showed that intersection genes were 

related to cell chemotaxis and ECM formation, consistent 

with the pathological changes in the overall valve 

tissue (Figure 2I).

Collection of as patients and proteomic 
sequencing

Eight aortic valves from patients with aortic regurgitation 

(control) and eight from AS patients were collected, with basic 

information listed in Supplementary Table S1. HE staining of 

valve tissues showed that collagen fibers (red) in the control 

group were neatly arranged at 100× magnification (Figure 3A), 

while those in AS patients showed disorganized collagen fibers 

with extensive blue-violet calcium salt deposition (Figure 3B). 

Alizarin red staining showed that normal valve tissues had 

almost no red staining and aggregation (Figure 3C), while AS 

valves had abundant red complexes with minimal adhesion at 

junctions (Figure 3D). Aortic calcification is accompanied by the 

FIGURE 2 

Transcriptional dysregulation in aortic calcification. Sample normalization of the GSE12644 dataset (A), DEGs in aortic calcification patients 

compared with control group (B), GSEA (C), PPI network (D), and GO/KEGG enrichment analysis (E); identification of intersection genes, PPI 

network (G,H), and GO/KEGG enrichment analysis (I). D: Red for upregulated genes, green for downregulated genes; H: Ranked by Degree, with 

darker colors indicating higher ranks. Sample size: Control group (n = 10); AS group (n = 10).
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activation of tissue fibrosis, yet its driving factors remain to be 

comprehensively evaluated.

Proteomic characteristics of AS

Since proteins are the primary executors of cellular 

functions, proteins were collected and subjected to proteomic 

sequencing in this study. After proteomic sequencing of 16 

samples, gene annotation and normalization were performed 

(Figure 4A). DEGs showed significant upregulation of proteins 

such as COL10A1, THBS2, and S100A8 (Figure 4B). Heatmaps 

showed stable high expression of COL10A1, S100P, and 

ITGA2B in AS (Figure 4C), with these DEGs involved in 

in�ammatory response, hypoxia, and fibrosis (Figure 4D), 

consistent with transcriptomic data. GO enrichment analysis 

showed these genes were related to ECM formation, 

interleukin and chemokine production (Figure 4E), as well as 

pathways such as complement and coagulation cascades, and 

ECM-receptor interaction (Figure 4F). The PPI network 

showed that dysregulated genes were primarily upregulated 

(Figure 4G), participating in processes such as wound healing 

response, ECM formation, and cell chemotaxis (Figure 4H). 

This further confirms that immune cell activation and fibrosis 

are risk factors for aortic calcification.

Identification and expression validation of 
hub genes

To identify the driving factors that drive aortic calcification, 

five algorithms were used to calculate the top 30 genes in the 

DEG network, with overlapping genes defined as hub genes. 

Sixteen hub genes were obtained (Figure 5A), significantly 

enriched in processes such as ECM-receptor interaction, damage 

response, and leukocyte migration (Figure 5B). Analysis of hub 

gene expression in proteomic data showed upregulation in AS 

(Figure 5C), while in datasets GSE12644 and GSE51472, only 

MMP9, PLAU, THBS2, and SERPINE1 had significantly 

increased mRNA expression in calcified aortic valves (P < 0.05, 

Figures 5D,E).

Diagnostic efficacy of hub genes and 
prediction of gene regulatory network

To clarify the important value of the identified genes, 16 hub 

genes were predicted AS in proteomic data. 13 hub genes 

including ITGA2B, THBS2, and MMP9 had ROC values >0.8, 

indicating good diagnostic efficacy in distinguishing AS 

(Figure 6A). To clarify the regulation of hub genes, transcription 

factors were predicted, identifying 33 TFs with regulatory 

FIGURE 3 

He and alizarin red staining. HE and alizarin red staining of tissues from non-stenotic (A,C) and stenotic (B,D) aortic valves.
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relationships to hub genes (Figure 6B), but these TFs had no 

impact on the high expression of hub genes (Figure 6C). m6A 

modification prediction showed that hub genes such as MMP9 

and PLAU were regulated by 29 m6A enzymes (Figure 6D), 

with significantly reduced protein expression levels of RBMX, 

YTHDF1, and HNRNPC (P < 0.05, Figure 6E). Intersection of 

aortic calcification intersection genes (transcriptome) and hub 

genes (proteome) yielded two genes, PLAU and MMP9 

(Figure 6F). qPCR results showed significantly higher mRNA 

expression of PLAU and MMP9 in AS compared with 

controls (Figures 6G,H).

Expression analysis of genes in different 
cells of aortic calcification patients

To clarify the molecular mechanism of PLAU and MMP9 in 

aortic calcification, published patient single-cell transcriptome 

data (GSE220774) were collected and characterized. In 

sequencing data, the number of RNAs showed no significant 

correlation with mitochondrial proportion (Figure 7A) but a 

high correlation with RNA features (Figure 7B), indicating high 

data quality. Cell annotation identified endothelial cells, 

macrophages, monocytes, smooth muscle cells, and T cells 

(Figure 7C), distributed across different fibro-calcification (FC) 

scores (Figure 7D). In total smooth muscle cells, PLAU and 

MMP9 expression had no obvious correlation with FC scores, 

with PLAU mainly highly expressed in ventricular-side smooth 

muscle cells of highly calcified regions (Figure 7E). In both 

overall and region-specific T cells, the two genes were mainly 

expressed in T cells of moderately calcified regions (Figure 7F). 

In endothelial cells, PLAU was highly expressed in ventricular- 

side endothelial cells of calcified regions (Figure 7G). In both 

overall and regional analyses, PLAU and MMP9 were 

significantly highly expressed in macrophages of highly calcified 

regions (Figure 7H), and monocytes, similar to endothelial cells, 

FIGURE 4 

Proteomic sequencing analysis of aortic valves from non-stenotic and stenotic patients. Quality control (A), volcano plot (B) and heatmap (C) of 

DEGs, GSEA (D), GO (E) and KEGG analysis (F), PPI network (G), and enrichment analysis of upregulated genes (H) Sample size: Control group 

(n = 8); AS group (n = 8).
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had PLAU highly expressed in ventricular-side monocytes of 

calcified regions (Figure 7I). This suggests that the high 

expression of the two genes may be associated with the immune 

cell activation identified in the bulk-RNA data.

Impact of fibro-calcification score on cell 
functions in aortic calcification

To clarify the impact of fibrosis on different cells, the study 

conducted a systematic analysis of 5 cell types in different 

regions separately. In smooth muscle cells, higher FC scores 

were associated with significant changes in cardiac valve 

morphology, glycolysis, damage repair, TGF-β signaling 

pathway, and HIF-1 signaling pathway compared with lower FC 

scores (Figure 8A). In T cells with higher FC scores, cytokine 

production, T cell receptor signaling pathway, NF-κB signaling 

pathway, and HIF-1 signaling pathway were significantly altered 

compared with lower scores (Figure 8B). In different regions of 

the aortic valve, highly calcified endothelial cells showed 

significant upregulation of TNF signaling pathway, MAPK 

signaling pathway, endothelial cell development, and response to 

oxidative stress (Figure 8C). In macrophages, the highly calcified 

fibrosa layer showed stronger proin�ammatory signals 

(Figure 8D). Similar to macrophages, monocytes in the highly 

calcified fibrosa layer also showed enhanced proin�ammatory 

FIGURE 5 

Identification and expression analysis of hub genes. Hub gene identification by multi-algorithms (A), enrichment analysis of hub genes (B), expression 

analysis of hub genes in proteomic sequencing (C), and their expression in GSE12644 and GSE51472 datasets (D,E). differences in mean values 

between the control group and AS group were analyzed using an independent samples t-test. Statistical significance was set at P < 0.05.
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signals (Figure 8E), possibly an important factor in their 

differentiation into macrophages.

Impact of genes on functions of different 
cells in aortic calcification

Given the high expression of PLAU and MMP9 in 

macrophages and monocytes of highly calcified regions, 

pseudotime analysis was used to clarify their roles. In 

monocytes, initial positions of the differentiation trajectory were 

mainly cells not expressing PLAU and MMP9, while terminal 

positions were cells expressing both genes (Figures 9A,B). 

Similar to monocytes, initial-position cells in macrophage 

differentiation trajectories did not express PLAU and 

MMP9, while terminal cells mainly expressed these genes 

(Figures 9C,D). Compared with cells not expressing PLAU, 

PLAU-expressing cells had enhanced chemotaxis, migration, and 

in�ammatory responses (Figure 9E). Compared with cells not 

expressing MMP9, MMP9-expressing cells showed enhanced 

lipid transport and small-molecule metabolism (Figure 9E). 

Therefore, these two genes may play different roles in the 

functions of monocytes and macrophages.

Discussion

AS is considered an active disease, mainly divided into 

initiation and propagation stages (30). The former is primarily 

characterized by endothelial cell injury and low-density 

lipoprotein accumulation in the valve, stimulating monocyte 

infiltration and differentiation into macrophages (31). Early 

aortic valve macrophages recruit other immune cells to further 

exacerbate endothelial injury, consistent with the enhanced 

in�ammatory response in early aortic sclerosis found in this 

study. Meanwhile, enhanced TNF signaling pathway and 

oxidative stress response in endothelial cells of highly calcified 

aortic valves also re�ect immune cell stimulation. In the 

propagation stage, valve fibrosis and calcification are key triggers 

for AS (32). In different structural heart diseases, fibrosis is an 

FIGURE 6 

Diagnostic efficacy, transcriptional regulation, RNA modification, and expression validation of hub genes. ROC curves of hub genes in proteomics (A), 

transcriptional regulatory network (B) and expression analysis (C) of hub genes, m6A modification (D) and expression analysis (E) of hub genes, 

intersection analysis of transcriptomic DEGs and hub genes (F), and mRNA expression validation of overlapping genes (G,H). Sample size: Control 

group (n = 8); AS group (n = 8). differences in mean values between the control group and AS group were analyzed using an independent 

samples t-test. Statistical significance was set at P < 0.05.
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important driver of heart failure (33). This study found significant 

increases in fibrosis-related genes and ECM formation in AS 

patients through two RNA-seq datasets and proteomic 

sequencing. Current research indicates that hypoxia-induced 

glycolysis is an important factor in disease deterioration, widely 

involved in tissue fibrosis (34). This study also found activation 

of the HIF-1 signaling pathway in the transcriptome, proteome, 

and single-cell transcriptome of AS patients, suggesting it may 

be a potential therapeutic target for AS.

Most current studies primarily use transcriptomics to identify 

AS pathogenic genes, but since proteins are the direct executors of 

biological functions, this study combined transcriptomics from 

public databases with proteomic sequencing. At the 

transcriptional level of aortic valve tissue, DEGs and biological 

functions of aortic calcification were analyzed independently, 

and genes from important modules were intersected to obtain 

robust candidates. Numerous studies have shown that MMPs 

are involved in ECM formation (35), which was also observed in 

the AS transcriptome. Consistent with current views, this study 

found that immune cells characterized by upregulated 

chemokines and proin�ammatory factors actively participate 

in AS progression, indicating an important role of immune cells 

in AS fibrosis. At the protein level of aortic valve tissue, calcified 

AS patients showed enhanced fibrosis and in�ammation. 

Identification of 16 hub genes through multi-algorithms revealed 

that 13/16 had high diagnostic efficacy, promising for 

FIGURE 7 

Single-cell transcriptome data analysis of valve calcification patients. Data quality control (A,B), UMAP of cell annotation and calcification scores (C, 

D), expression of PLAU and MMP9 in smooth muscle cells, T cells, endothelial cells, macrophages, and monocytes across different FC scores and 

positions (E–I). FC score: fibro-calcification score.
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histopathological diagnosis. Surprisingly, only 4/16 genes showed 

consistent mRNA and protein levels, but this partially avoids the 

limitations of single-omics analysis. The study finally found that 

MMP9 and PLAU showed significantly increased mRNA and 

protein levels after AS occurrence. Notably, due to the difficulty 

in collecting samples from patients with AS, this study used 8 

samples per group for proteomic sequencing, which to a certain 

extent increases the risk of false positives. To address this 

limitation, verification was performed on patient tissues with 3 

samples per group. It is worth noting that the heterogeneity in 

smoking, alcohol consumption, and coronary artery disease 

among the patients included in the study for proteomic 

sequencing may have a potential impact on the expression 

profiles. For instance, patients with AS group had lower rates of 

smoking and alcohol consumption, which might have resulted 

in the absence of observations related to in�ammatory factors 

and oxidative stress in their protein expression profiles (36). 

Additionally, patients with AS group had a higher prevalence of 

a history of coronary artery disease, which could have led to an 

overemphasis on biological responses associated with ischemia 

and hypoxia (37). However, since the identified hub genes were 

not directly associated with reduced in�ammation-oxidative 

stress or enhanced ischemia-hypoxia, the adverse effects caused 

by these baseline differences were significantly mitigated.

Tissue-level transcriptomics and proteomics are widely used 

for biomarker development, but their mechanistic research 

remains to be further explored. Current studies have found that 

MMP9 and PLAU are involved in extracellular matrix 

formation, mainly produced by fibroblasts (35, 38). This study, 

through single-cell transcriptomics, found that MMP9 and 

PLAU are not highly expressed in smooth muscle cells and 

T cells of highly calcified regions but are mainly associated with 

endothelial cells, monocytes, and macrophages. This suggests 

that these two genes may be involved in endothelial cell injury 

and early immune activation of monocyte-macrophages in aortic 

calcification. Using pseudotime analysis, we verified that the 

expression of MMP9 and PLAU is involved in the 

differentiation process of monocytes and macrophages. 

Meanwhile, lipid metabolism is a hallmark of activated 

macrophages—a characteristic also observed in the MMP9+ 

monocyte/macrophage population identified in the present 

study. Previous studies (39) have established that upon 

migrating to the valvular region, monocytes differentiate into 

macrophages; these macrophages then secrete proin�ammatory 

factors to recruit additional monocytes. This pathological 

cascade may be linked to the enhanced chemotaxis of PLAU+ 

monocytes and the amplified in�ammatory response of MMP9+ 

macrophages, as documented in our research. Consequently, 

MMP9 and PLAU hold promise as potential synergistic targets 

for anti-in�ammatory interventions against AS. Notably, MMP9 

and PLAU display higher expression in monocytes residing 

within the calcified ventricularis layer—a valvular region 

FIGURE 8 

Impact of fibro-calcification score on cell functions. Effects of FC score on smooth muscle cell and T cell functions in the fibrosa layer (A,B); effects 

on endothelial cell, macrophage, and monocyte functions in the fibrosa layer, mixed remaining layer, and ventricular layer (C–E).
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exposed to substantial mechanical stress. This observation suggests 

that the expression of these two genes may be modulated by 

mechanical stress, thereby indirectly contributing to valvular 

calcification under high-pressure conditions. It further implies 

the existence of a more robust monocyte-macrophage activation 

loop within the ventricularis layer, which could exacerbate the 

progression of AS-related valvular pathology.

An observational study showed that in pediatric patients, 

circulating MMPs, including MMP9, can be used to predict 

aortic dilation associated with bicuspid aortic valves (40). Given 

that both aortic valve calcification and dilation present an 

in�ammatory phenotype, MMP9 may also serve as a marker for 

the progression of valvular calcification. PLAU is a chronic 

in�ammatory marker; studies using GWAS analysis have 

FIGURE 9 

Effects of genes on cell pseudotime and functions. Impact of PLAU and MMP9 on differentiation trajectories of monocytes (A,B) and macrophages 

(C,D); effects on functions of endothelial cells, monocytes, and macrophages in the fibrosa layer (E).
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revealed that it exhibits high variability in blood samples, 

suggesting it could be a crucial observation indicator (41). 

However, further research is needed to explore its role in 

patients with calcific aortic stenosis. Since there are certain 

differences in smoking, alcohol consumption, and other aspects 

between the two groups of patients enrolled in this study, a 

comprehensive assessment combining imaging examinations and 

other biomarkers is required in clinical application to improve 

the accuracy of diagnosis.

In conclusion, this study screened 16 hub genes from the 

proteome that can assist in AS diagnosis. Combining bulk RNA- 

seq and scRNA-seq, it was found that MMP9 and PLAU are 

mainly related to the immune activation of monocytes and 

macrophages in aortic valve calcification, providing new insights 

for early AS treatment.
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