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Integrated multi-omics analysis
reveals key hub genes and
mechanisms in calcific

aortic stenosis
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Objective: Aortic stenosis (AS) is a critical risk factor for the development of
structural heart disease, and identifying its pathogenic genes will provide new
insights into cardiac pathology and treatment.

Methods: “edgeR” was used to calculate differentially expressed genes (DEGs)
for bulk-RNAseq. GO, KEGG, and GSEA analyses were performed on the
DEGs. Aortic valves from 8 AS patients and 8 non-AS patients were collected
for proteomic sequencing. After DEG analysis, five algorithms were used
to identify hub genes. ROC curves were constructed for the hub genes.
Single-cell RNA sequencing (scRNAseq) was applied to systematically
elaborate the mechanism in AS pathogenesis.

Results: Transcriptome data showed that AS was accompanied by high
expression of genes such as MMP9, CXCL8, and SPP1, with significant
activation of hypoxia, inflammatory response, and fibrosis. Proteomic
sequencing of calcified AS revealed significantly enhanced hypoxic response,
TNF-a signaling, and extracellular matrix (ECM) formation. Sixteen hub genes,
including ITGB3, ITGAV, and MMP9, were identified by five algorithms, all with
high diagnostic efficacy (AUC > 0.75). PCR experiments confirmed that MMP9
and PLAU were highly expressed in calcified aortic valves (P < 0.05). scRNAseq
revealed that in highly calcified regions, MMP9 and PLAU were mainly
distributed in endothelial cells, monocytes, and macrophages, participating in
the differentiation of monocytes and macrophages and relating to lipid
metabolism and proinflammatory responses.

Conclusion: The 16 hub genes can assist in the diagnosis of aortic stenosis, and
MMP9 and PLAU may participate in AS development by regulating the
proinflammatory effects of monocytes and macrophages.
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Introduction

Aortic stenosis (AS) is a cardiac valvular disease caused by
structural abnormalities of the aortic valve, leading to left
ventricular outflow tract obstruction, primarily manifested as
leaflet thickening, calcification, and limited mobility. In structural
heart diseases, AS accounts for approximately 25%-30%, with a
significantly increasing prevalence with age—the prevalence of
severe AS in individuals over 75 years old reaches 3%-5% (1). The
5-year mortality rate of untreated severe AS patients exceeds 50%,
and the 2-year mortality rate is as high as 50%-80% when
combined with heart failure symptoms (2). Its pathological
features include valvular fibrocalcification (calcium deposition in
leaflets and annulus), congenital bicuspid aortic valve
malformation (accounting for 30%-50% of AS cases), and
inflammation-mediated extracellular matrix remodeling (3). Major
risk factors include age, bicuspid aortic valve, hypertension,
hyperlipidemia, chronic kidney disease, and metabolic syndrome (4).

The etiology of AS is complex, involving multi-level
pathological mechanisms. At the tissue level, degenerative
calcification is the most common cause (accounting for >80% of
elderly patients), characterized by rupture of leaflet collagen
fibers,

hydroxyapatite crystals, leading to valve thickening and stiffness

lipid deposition, and abnormal aggregation of
(5). Congenital bicuspid aortic valve is an important inducer
(30%-50% of AS cases), whose abnormal blood flow shear stress
accelerates valve fibrosis and calcification (4). Stimulated by
inflammatory factors and oxidative stress, valvular interstitial
cells differentiate into osteoblast-like cells by activating the
Runx2/BMP2 signaling pathway, promoting calcium nodule
formation (6). Additionally, macrophage infiltration releases
(MMPs)  that degrade the

extracellular matrix (ECM), further exposing calcification sites (7).

matrix  metallo-proteinases

Calcification in AS primarily occurs on the ventricular side of
the leaflets and the fibrosa layer, with its distribution closely
related to local biomechanics and molecular microenvironment.
The latest histopathological study (8) shows that AS calcification
originates in the collagen fiber rupture zone of the fibrosa layer,
then spreads along stress-concentrated regions (ventricular side),
forming multifocal hydroxyapatite deposits. High-resolution
micro-CT reveals that calcification density on the ventricular
side is 3-5 times higher than that on the aortic side. Especially
in patients with bicuspid aortic valve (BAV), abnormal blood
flow shear stress directly enhances endothelial injury on the
ventricular side and activates the osteogenic phenotype of
valvular interstitial cells (VICs) (9). Single-cell RNA sequencing
further that VICs highly express
osteogenic differentiation markers (such as RUNX2, BMP2),
accompanied by macrophage infiltration releasing IL-1p and
TGEF-P to drive the fibrocalcification cascade (10). Additionally,
studies based on hydrodynamic simulations indicate that the

reveals ventricular-side

ventricular side, subject to higher cyclic tensile stress (>50 kPa),
promotes the expression of calcification-related genes through
the integrin-ERK1/2 pathway (11).

This study first performed a combined analysis of RNA-seq
data from two groups of aortic calcification patients, collected
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clinical patient samples for proteomic sequencing, identified hub
genes using five algorithms and combined them with RNA-seq
analysis, and finally used single-cell transcriptome sequencing
data to explore the mechanism by which genes participate in the
occurrence of aortic calcification.

Methods

Transcriptome data download and
preprocessing

GSE51472 and GSE12644 were downloaded from the GEO
database (12, 13). GSE51472 included 5 control, 5 sclerotic, and
5 calcified samples, while GSE12644 included 10 control and 10
calcified samples. In R software, Counts data were converted to
FPKM and then log-normalized. Sample boxplots were plotted
to assess the degree of normalization.

Differentially expressed gene analysis
and GSEA

“edgeR” (14) was used to calculate gene expression changes,
and DEGs were screened with the threshold of Log2|FC| > 1 and
adjusted P-value <0.05. “msigdbr” (15) was used for gene set
enrichment analysis (GSEA) of DEGs, and “enrichplot” was
used to plot the top-ranked terms.

PPl network construction, GO and KEGG
analysis

The STRING database (16) was used to construct the protein-
protein interaction (PPI) network of DEGs, and Cytoscape
software (17) was used to visualize the interaction relationships
between genes. “clusterProfiler” (18) was used for GO and
KEGG pathway analysis using a significance cutoff of P <0.05,
and the SRPLOT platform (19) was used to visualize the
relevant enriched terms.

Patient sample collection and proteomic
sequencing

The aortic valve tissues of patients with aortic regurgitation
(control) and AS in the hospital from January to April, 2024
were collected. Among them, the organization acquisition
method is implemented in accordance with relevant guidelines
and regulations, and it is confirmed that all subjects and/or their
legal guardians have obtained informed consent. This project
was approved by the Xinjiang Uygur Autonomous Region
People’s Hospital (KY2024030102). Aortic valve tissues were
washed with pre-cooled saline within 10 min to remove blood
residues. Leaflets were separated, tissues were cut into small
pieces (<0.2 cm®), snap-frozen in liquid nitrogen, and stored at
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—80 °C. After thawing, tissues were soaked in decalcification
solution (4 °C, 24-48 h), with fresh solution replaced every 6 h.
After decalcification, tissues were ground into powder with
liquid nitrogen, and interference was removed by differential
centrifugation. Protein expression was detected by liquid
spectrometry (LC-MS/MS), and
MaxQuant was used to match mass spectrometry data to the

chromatography-mass

protein database.

HE staining and alizarin Red staining

The HE staining procedure for aortic valve tissues included:
formalin fixation for 24-48 h, dehydration (gradient ethanol
treatment), transparency (xylene), paraffin embedding, and
sectioning; the

staining process included dewaxing and

rehydration, hematoxylin nuclear staining for 5-10 min,
hydrochloric acid-ethanol differentiation, water reblueing, eosin
cytoplasm staining for 1-2 min, followed by gradient ethanol
dehydration, xylene transparency, and neutral gum sealing for
microscopic observation of cell morphology and collagen
fiber structure.

The alizarin red staining procedure for aortic valve tissues
was: dewaxing sections to water, staining in alizarin red
S solution for 5-10 min, washing with running water to
remove floating color; counterstaining nuclei with hematoxylin
for 30s,

reblueing, gradient ethanol dehydration, xylene transparency,

hydrochloric acid-ethanol differentiation, water

and neutral gum sealing.

Identification of key gene modules and Hub
genes

The MCODE algorithm (20) was used to identify key
modules in the PPI network. Five algorithms in Cytohubba
(21) were used to detect the top 30 key genes in the PPI
network. UpSet (22) was used to visualize the overlap of the
five algorithms.

ROC curve, transcriptional regulation, and
m6A modification prediction

The SRPLOT platform was used to construct ROC curves for
proteomic sequencing data. The TRRUST database (23) was used
to predict transcription factors of hub genes, and the M6A2Target
database (24) was used to predict mé6A-modified genes of
hub genes.

TABLE 1 Information on gene primer sequences.

10.3389/fcvm.2025.1640014

PCR experiments

PCR experiments were performed to detect the mRNA
expression levels of MMP9 and PLAU in aortic valve tissues.
Specific steps: frozen tissues were ground in liquid nitrogen,
lysed using an RNA extraction Kkit, centrifuged to remove
impurities, and total RNA was purified by binding to an RNA
adsorption column. Reverse transcription was performed
RT Master Mix
instructions (42 °C for 15 min, 85°C for 5s to inactivate),

according to the Takara PrimeScript
synthesizing cDNA; qPCR amplification was performed using
Takara SYBR Premix Ex Taq (95 °C pre-denaturation for 30 s,
40 cycles: 95°C for 5s, 60°C for 30s). Melting curves
were used to verify product specificity, and the relative
expression of target genes was calculated. The primer
sequences as shown in Table I.

Single-cell transcriptome data
preprocessing and DEG analysis

Published single-cell transcriptome data (GSE220774) (25) from
aortic calcification patients were collected, including single-cell
transcriptome data from three regions (fibrosa layer, ventricular
layer, and intermediate layer/remaining layer) of five patients. Data
preprocessing strictly followed the Seurat official recommended
pipeline (26), including filtering low-quality cells and noise genes,
data normalization, identification of highly variable genes,

principal component analysis for dimensionality reduction,
Louvain clustering algorithm for cell subset identification, cell type
annotation using “SingleR” and “Cellmarker” (27, 28), and finally

“FindMarkers” for DEG analysis between different cell populations.

Cell pseudotime analysis

Cell pseudotime analysis maps single-cell transcriptome data

to a low-dimensional space, constructs developmental or
differentiation trajectories between cells, and infers dynamic
changes in cell states. Monocle3 (29) was used to analyze the
differentiation trajectories of monocytes and macrophages,
which assigns a “pseudotime” value to each cell, identifies
differential

differentiation-driving genes and branching events, and finally

gene modules along the trajectory, reveals
visualizes time-dependent gene expression patterns through
trajectory plots. The specific steps include using DDRTree to
reduce dimensionality, sort and map cells, and the built-in
Branched expression analysis modeling (BEAM) is used to assist

in branch judgment.

‘ Gene Forward primer Reverse primer

GAPDH 5’-ACACCCACTCCTCCACCTTTG-3’
MMP9 5’-GGCACCACCACAACATCACC-3’
PLAU 5"-GGCTTAACTCCAACACGCAAGG-3’

Frontiers in Cardiovascular Medicine

5’-TCCACCACCCTGTTGCTGTAG-3’
5’-GGGCAAAGGCGTCGTCAATC-3’
5-AACGGATCTTCAGCAAGGCAATG-3’
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(Figures 1C,E), and the PPI network of upregulated genes showed
that integrins and proinflammatory factors played important roles
(Figure 1F). Two key modules were identified by the MCODE
algorithm (Figure 1G), both related to inflammatory responses
such as cytokine production, Toll-like receptor pathway, cell
chemotaxis, and NF-«B signaling pathway (Figures 1H,I). This
suggests that the accumulation of extracellular matrix (ECM) and
the local inflammatory microenvironment may jointly promote
the formation of aortic calcification.

Results

Activation of inflammatory and fibrosis in
aortic sclerosis and calcification

After gene annotation and normalization of the GSE51472
dataset (Figure 1A), comparison of gene expression between the
control group and aortic sclerosis group showed that aortic
sclerosis had minimal impact on gene expression (Figure 1B),
but activated proinflammatory signals (IL-6-STAT3, TNF-q, and
IL-2-STATS5), hypoxic signals, and fibrosis (epithelial-
mesenchymal transition) (Figure 1C). Compared with the control Upregulation of cell chemotaxis and ECM
group, aortic calcification patients had significantly upregulated  formation in aortic calcification

collagen molecules (COL1A1 and SPP1), proinflammatory
molecules (CXCL13, TNFRSF17, and S100A8), and matrix Normalization of the GSE12644 dataset (Figure 2A) showed

metalloproteinase (MMP) family genes (Figure 1D). Meanwhile,  that aortic calcification significantly increased genes such as
GSEA results for aortic calcification and sclerosis were consistent ~ MMP9, MMP12, and SPP1 compared with the control group
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FIGURE 1
Transcriptional dysregulation in aortic calcification. Sample normalization of the GSE51472 dataset (A), DEGs in aortic sclerosis patients compared

with controls (B), and gene set enrichment analysis (C); DEGs in aortic calcification patients (D), GSEA (E), PPI network (F), networks of the top two
key gene modules (G), and enrichment analysis of key modules (H,I). Sample size: Control group (n =5); AS group (n =5).
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Transcriptional dysregulation in aortic calcification. Sample normalization of the GSE12644 dataset (A), DEGs in aortic calcification patients
compared with control group (B), GSEA (C), PPI network (D), and GO/KEGG enrichment analysis (E); identification of intersection genes, PPI
network (G,H), and GO/KEGG enrichment analysis (I). D: Red for upregulated genes, green for downregulated genes; H: Ranked by Degree, with
darker colors indicating higher ranks. Sample size: Control group (n =10); AS group (n = 10).

(Figure 2B), which are involved in inflammatory response and
fibrosis progression (Figure 2C). Construction of the PPI
network revealed that upregulated MMP9, SPP1, and COL3Al
were in central positions (Figure 2D). Similar to the
GSE51472 dataset, these DEGs were mainly related to
extracellular matrix formation, cell chemotaxis, and cytokine
production (Figure 2E). Intersection analysis of the two
datasets identified 31 genes significantly upregulated in aortic
calcification (Figure 2F), with MMP9, CXCL8, SPPI, and
PLAU ranking among the top (Figures 2G,H). GO and KEGG
enrichment analyses showed that intersection genes were
related to cell chemotaxis and ECM formation, consistent

with the pathological changes in the overall valve
tissue (Figure 2I).
Frontiers in Cardiovascular Medicine

Collection of as patients and proteomic
sequencing

Eight aortic valves from patients with aortic regurgitation
(control) and eight from AS patients were collected, with basic
information listed in Supplementary Table S1. HE staining of
valve tissues showed that collagen fibers (red) in the control
group were neatly arranged at 100x magnification (Figure 3A),
while those in AS patients showed disorganized collagen fibers
with extensive blue-violet calcium salt deposition (Figure 3B).
Alizarin red staining showed that normal valve tissues had
almost no red staining and aggregation (Figure 3C), while AS

valves had abundant red complexes with minimal adhesion at
junctions (Figure 3D). Aortic calcification is accompanied by the
05 frontiersin.org
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(A) Control 100x

©) Control 100x

FIGURE 3

He and alizarin red staining. HE and alizarin red staining of tissues from non-stenotic (A,C) and stenotic (B,D) aortic valves.

AS 100x

(B)

activation of tissue fibrosis, yet its driving factors remain to be
comprehensively evaluated.

Proteomic characteristics of AS

Since proteins are the primary executors of cellular
functions, proteins were collected and subjected to proteomic
sequencing in this study. After proteomic sequencing of 16
samples, gene annotation and normalization were performed
(Figure 4A). DEGs showed significant upregulation of proteins
such as COL10A1, THBS2, and S100A8 (Figure 4B). Heatmaps
showed stable high expression of COL10Al, S100P, and
ITGA2B in AS (Figure 4C), with these DEGs involved in
inflammatory response, hypoxia, and fibrosis (Figure 4D),
consistent with transcriptomic data. GO enrichment analysis
these related to ECM formation,
interleukin and chemokine production (Figure 4E), as well as

showed genes were
pathways such as complement and coagulation cascades, and
ECM-receptor interaction (Figure 4F). The PPI network
showed that dysregulated genes were primarily upregulated
(Figure 4G), participating in processes such as wound healing
response, ECM formation, and cell chemotaxis (Figure 4H).
This further confirms that immune cell activation and fibrosis
are risk factors for aortic calcification.

Frontiers in Cardiovascular Medicine

Identification and expression validation of
hub genes

To identify the driving factors that drive aortic calcification,
five algorithms were used to calculate the top 30 genes in the
DEG network, with overlapping genes defined as hub genes.
Sixteen hub genes were obtained (Figure 5A), significantly
enriched in processes such as ECM-receptor interaction, damage
response, and leukocyte migration (Figure 5B). Analysis of hub
gene expression in proteomic data showed upregulation in AS
(Figure 5C), while in datasets GSE12644 and GSE51472, only
MMP9, PLAU, THBS2, and SERPINEI
increased mRNA expression in calcified aortic valves (P <0.05,
Figures 5D,E).

had significantly

Diagnostic efficacy of hub genes and
prediction of gene regulatory network

To clarify the important value of the identified genes, 16 hub
genes were predicted AS in proteomic data. 13 hub genes
including ITGA2B, THBS2, and MMP9 had ROC values >0.8,
indicating good diagnostic efficacy in distinguishing AS
(Figure 6A). To clarify the regulation of hub genes, transcription
factors were predicted, identifying 33 TFs with regulatory
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relationships to hub genes (Figure 6B), but these TFs had no
impact on the high expression of hub genes (Figure 6C). m6A
modification prediction showed that hub genes such as MMP9
and PLAU were regulated by 29 m6A enzymes (Figure 6D),
with significantly reduced protein expression levels of RBMX,
YTHDF1, and HNRNPC (P <0.05, Figure 6E). Intersection of
aortic calcification intersection genes (transcriptome) and hub
genes (proteome) yielded two genes, PLAU and MMP9
(Figure 6F). qPCR results showed significantly higher mRNA
expression of PLAU and MMP9 in AS compared with
controls (Figures 6G,H).

Expression analysis of genes in different
cells of aortic calcification patients

To clarify the molecular mechanism of PLAU and MMP9 in
aortic calcification, published patient single-cell transcriptome
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data (GSE220774) collected and characterized. In

sequencing data, the number of RNAs showed no significant

were

correlation with mitochondrial proportion (Figure 7A) but a
high correlation with RNA features (Figure 7B), indicating high
identified endothelial cells,
macrophages, monocytes, smooth muscle cells, and T cells
(Figure 7C), distributed across different fibro-calcification (FC)
scores (Figure 7D). In total smooth muscle cells, PLAU and
MMP9 expression had no obvious correlation with FC scores,

data quality. Cell annotation

with PLAU mainly highly expressed in ventricular-side smooth
muscle cells of highly calcified regions (Figure 7E). In both
overall and region-specific T cells, the two genes were mainly
expressed in T cells of moderately calcified regions (Figure 7F).
In endothelial cells, PLAU was highly expressed in ventricular-
side endothelial cells of calcified regions (Figure 7G). In both
PLAU and MMP9 were
significantly highly expressed in macrophages of highly calcified

overall and regional analyses,

regions (Figure 7H), and monocytes, similar to endothelial cells,
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had PLAU highly expressed in ventricular-side monocytes of
calcified regions (Figure 7I). This suggests that the high
expression of the two genes may be associated with the immune
cell activation identified in the bulk-RNA data.

Impact of fibro-calcification score on cell
functions in aortic calcification

To clarify the impact of fibrosis on different cells, the study
conducted a systematic analysis of 5 cell types in different
regions separately. In smooth muscle cells, higher FC scores
were associated with significant changes in cardiac valve
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morphology, glycolysis, damage repair, TGF-B

pathway, and HIF-1 signaling pathway compared with lower FC
scores (Figure 8A). In T cells with higher FC scores, cytokine

signaling

production, T cell receptor signaling pathway, NF-«xB signaling
pathway, and HIF-1 signaling pathway were significantly altered
compared with lower scores (Figure 8B). In different regions of
the aortic valve, highly calcified endothelial cells showed
significant upregulation of TNF signaling pathway, MAPK
signaling pathway, endothelial cell development, and response to
oxidative stress (Figure 8C). In macrophages, the highly calcified
fibrosa layer showed stronger proinflammatory signals
(Figure 8D). Similar to macrophages, monocytes in the highly

calcified fibrosa layer also showed enhanced proinflammatory
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signals (Figure 8E), possibly an important factor in their

differentiation into macrophages.

Impact of genes on functions of different
cells in aortic calcification

Given the high expression of PLAU and MMP9 in
of highly calcified
used to clarify their roles.

macrophages and monocytes regions,

pseudotime analysis was In
monocytes, initial positions of the differentiation trajectory were
mainly cells not expressing PLAU and MMP9, while terminal
positions were cells expressing both genes (Figures 9A,B).
Similar to monocytes, initial-position cells in macrophage
differentiation did not PLAU
MMPY9, while terminal cells mainly expressed these genes
(Figures 9C,D). Compared with cells not expressing PLAU,
PLAU-expressing cells had enhanced chemotaxis, migration, and
inflammatory responses (Figure 9E). Compared with cells not
expressing MMP9, MMP9-expressing cells showed enhanced

and

trajectories express

Frontiers in Cardiovascular Medicine

09

lipid transport and small-molecule metabolism (Figure 9E).
Therefore, these two genes may play different roles in the
functions of monocytes and macrophages.

Discussion

AS is considered an active disease, mainly divided into
initiation and propagation stages (30). The former is primarily
characterized by endothelial cell injury and low-density
lipoprotein accumulation in the valve, stimulating monocyte
infiltration and differentiation into macrophages (31). Early
aortic valve macrophages recruit other immune cells to further
exacerbate endothelial injury, consistent with the enhanced
inflammatory response in early aortic sclerosis found in this
study. Meanwhile, enhanced TNF signaling pathway and
oxidative stress response in endothelial cells of highly calcified
aortic valves also reflect In the
propagation stage, valve fibrosis and calcification are key triggers

for AS (32). In different structural heart diseases, fibrosis is an

immune cell stimulation.
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important driver of heart failure (33). This study found significant
increases in fibrosis-related genes and ECM formation in AS
through two RNA-seq datasets
sequencing. Current research indicates that hypoxia-induced

patients and proteomic
glycolysis is an important factor in disease deterioration, widely
involved in tissue fibrosis (34). This study also found activation
of the HIF-1 signaling pathway in the transcriptome, proteome,
and single-cell transcriptome of AS patients, suggesting it may
be a potential therapeutic target for AS.

Most current studies primarily use transcriptomics to identify
AS pathogenic genes, but since proteins are the direct executors of
biological functions, this study combined transcriptomics from
databases with proteomic At the

public sequencing.
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transcriptional level of aortic valve tissue, DEGs and biological
functions of aortic calcification were analyzed independently,
and genes from important modules were intersected to obtain
robust candidates. Numerous studies have shown that MMPs
are involved in ECM formation (35), which was also observed in
the AS transcriptome. Consistent with current views, this study
that
chemokines and proinflammatory factors actively participate

found immune cells characterized by upregulated

in AS progression, indicating an important role of immune cells
in AS fibrosis. At the protein level of aortic valve tissue, calcified
AS patients showed enhanced fibrosis and inflammation.
Identification of 16 hub genes through multi-algorithms revealed

that 13/16 had high diagnostic efficacy, promising for
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Impact of fibro-calcification score on cell functions. Effects of FC score on smooth muscle cell and T cell functions in the fibrosa layer (A,B); effects
on endothelial cell, macrophage, and monocyte functions in the fibrosa layer, mixed remaining layer, and ventricular layer (C—E)

histopathological diagnosis. Surprisingly, only 4/16 genes showed
consistent mRNA and protein levels, but this partially avoids the
limitations of single-omics analysis. The study finally found that
MMP9 and PLAU showed significantly increased mRNA and
protein levels after AS occurrence. Notably, due to the difficulty
in collecting samples from patients with AS, this study used 8
samples per group for proteomic sequencing, which to a certain
extent increases the risk of false positives. To address this
limitation, verification was performed on patient tissues with 3
samples per group. It is worth noting that the heterogeneity in
smoking, alcohol consumption, and coronary artery disease
among the patients included in the study for proteomic
sequencing may have a potential impact on the expression
profiles. For instance, patients with AS group had lower rates of
smoking and alcohol consumption, which might have resulted
in the absence of observations related to inflammatory factors
and oxidative stress in their protein expression profiles (36).
Additionally, patients with AS group had a higher prevalence of
a history of coronary artery disease, which could have led to an
overemphasis on biological responses associated with ischemia
and hypoxia (37). However, since the identified hub genes were
not directly associated with reduced inflammation-oxidative
stress or enhanced ischemia-hypoxia, the adverse effects caused
by these baseline differences were significantly mitigated.
Tissue-level transcriptomics and proteomics are widely used
for biomarker development, but their mechanistic research
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remains to be further explored. Current studies have found that
MMP9 and PLAU are
formation, mainly produced by fibroblasts (35, 38). This study,
through single-cell transcriptomics, found that MMP9 and

involved in extracellular matrix

PLAU are not highly expressed in smooth muscle cells and
T cells of highly calcified regions but are mainly associated with
endothelial cells, monocytes, and macrophages. This suggests
that these two genes may be involved in endothelial cell injury
and early immune activation of monocyte-macrophages in aortic
calcification. Using pseudotime analysis, we verified that the

expression of MMP9 and PLAU is involved in the
differentiation process of monocytes and macrophages.
Meanwhile, lipid metabolism is a hallmark of activated

macrophages—a characteristic also observed in the MMP9*
monocyte/macrophage population identified in the present
(39) have established that upon
migrating to the valvular region, monocytes differentiate into

study. Previous studies
macrophages; these macrophages then secrete proinflammatory
factors to recruit additional monocytes. This pathological
cascade may be linked to the enhanced chemotaxis of PLAU"
monocytes and the amplified inflammatory response of MMP9™
macrophages, as documented in our research. Consequently,
MMP9 and PLAU hold promise as potential synergistic targets
for anti-inflammatory interventions against AS. Notably, MMP9
and PLAU display higher expression in monocytes residing
within the calcified ventricularis layer—a valvular region
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FIGURE 9
Effects of genes on cell pseudotime and functions. Impact of PLAU and MMP9 on differentiation trajectories of monocytes (A,B) and macrophages
(C,D); effects on functions of endothelial cells, monocytes, and macrophages in the fibrosa layer (E).

exposed to substantial mechanical stress. This observation suggests
that the expression of these two genes may be modulated by
mechanical stress, thereby indirectly contributing to valvular
calcification under high-pressure conditions. It further implies
the existence of a more robust monocyte-macrophage activation
loop within the ventricularis layer, which could exacerbate the
progression of AS-related valvular pathology.
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An observational study showed that in pediatric patients,
circulating MMPs, including MMP9, can be used to predict
aortic dilation associated with bicuspid aortic valves (40). Given
that both aortic valve calcification and dilation present an
inflammatory phenotype, MMP9 may also serve as a marker for
the progression of valvular calcification. PLAU is a chronic
inflammatory marker; studies using GWAS analysis have
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revealed that it exhibits high variability in blood samples,
suggesting it could be a crucial observation indicator (41).
However, further research is needed to explore its role in
patients with calcific aortic stenosis. Since there are certain
differences in smoking, alcohol consumption, and other aspects
between the two groups of patients enrolled in this study, a
comprehensive assessment combining imaging examinations and
other biomarkers is required in clinical application to improve
the accuracy of diagnosis.

In conclusion, this study screened 16 hub genes from the
proteome that can assist in AS diagnosis. Combining bulk RNA-
seq and scRNA-seq, it was found that MMP9 and PLAU are
mainly related to the immune activation of monocytes and
macrophages in aortic valve calcification, providing new insights
for early AS treatment.
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