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multidimensional perspective
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brain-heart axis disorders
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Heart rate variability (HRV), a non-invasive measure of autonomic nervous
system (ANS) activity and homeodynamics, has received much attention in
recent years in the study of cardiovascular disease, mental health, and aging.
Changes in HRV not only reflect an individual's ability to adapt to changes in
the internal and external environment but also correlate with a wide range of
pathological states, making it a powerful tool for predicting disease risk and
assessing the efficacy of treatment. The aim of this review is to
comprehensively analyze the role of HRV in different physiological and
pathological contexts and explore its value as a potential biomarker. Initially,
we review the basic concepts, measurements, and influencing factors of HRV,
followed by an in-depth discussion of the relationship between HRV and
cardiovascular disease, epilepsy, depression, aging, and inflammation. Special
emphasis is placed on the role of HRV in assessing the health impact of
obesity, nutrition, and lifestyle. Additionally, we explore the use of HRV in
clinical practice, including its potential in predicting disease, guiding
treatment, and evaluating the effects of interventions. Ultimately, we suggest
future research directions, including the promise of HRV in individualized
medicine and health monitoring. While HRV holds promise as a non-invasive,
trans-diagnostic biomarker, current evidence remains preliminary and largely
associative. Its clinical utility for personalized medicine or routine risk
prediction requires standardized acquisition protocols, external validation, and
causal inference studies before implementation into decision-making
algorithms. By synthesizing multiple studies through the lens of brain - heart
axis (BHA) integrity, we propose that HRV metrics serve as a quantifiable,
trans-diagnostic proxy for mapping the measurement, mechanistic, and
translational axes of brain - heart dysfunction.
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Introduction

HRV refers to the variations in the time intervals between
consecutive heartbeats (1). It is
reflects the
cardiovascular system by the ANS, which consists of sympathetic

a complex physiological
phenomenon that dynamic regulation of the
and parasympathetic nervous systems. The sympathetic nervous
system generally increases heart rate and cardiac output, while the
parasympathetic nervous system has the opposite effect, slowing
down the heart rate. These two systems work in a coordinated
manner to maintain cardiovascular homeodynamics (dynamic,
scale-free stability rather than static equilibrium). Contemporary
models emphasize that beat-to-beat variability emerges from the
interaction of central autonomic networks with intrinsic sino-
atrial ion-channel kinetics, baroreceptor feedback, respiratory-
cardiac coupling and rapidly shifting hormonal milieus (2, 3).

One hypothesis posits that there is an additional fourth control
level in cardiovascular regulation, where the amplitude of low-
frequency HRV (LF-HRV) serves as a reference input for the
neural cardiovascular center (1). This center then responds to
maintaining LF-HRV around a certain level. For example, the
absence of LF-HRV during artificial cardiac pacing may be
associated with pacemaker syndrome, despite seemingly normal
cardiovascular performance. This suggests that HRV plays a crucial
role in the overall regulation of the cardiovascular system and that
disruptions in this regulation could lead to various morbidities.

HRYV research has far-reaching importance and a wide scope
of application. It has been associated with a range of health
conditions, making it a valuable biomarker in both clinical and
research settings. In terms of disease prediction, lower HRV has
been linked to an increased risk of mortality, including all-cause
and cardiac mortality. A meta-analysis involving 32 studies and
two individual participant datasets with 38,008 participants
found that lower HRV parameter values were significant
predictors of higher mortality across different ages, sexes,
continents, populations, and recording lengths (4).

HRV biofeedback has also shown promise in various applications.
For example, in patients with coronary artery disease, HRV
biofeedback could reduce ANS reactivity during anger events and
increase ANS recovery after such events (5). This indicates its
potential as a therapeutic tool in cardiac rehabilitation. Additionally,
HRV measurement could be used to monitor the effects of lifestyle
interventions, such as exercise and dietary changes, on autonomic
function, providing insights into the effectiveness of these
interventions in promoting health and preventing disease.

The BHA is a bidirectional neuro-humoral communication
network in which cortical, limbic and brain-stem centers
dynamically modulate cardiac autonomic tone, while afferent
cardiac signals in turn influence cerebral activity and emotional
regulation. Disruption of this loop - via chronic stress, systemic
inflammation, neurodegeneration or metabolic dysautonomia -
has been implicated in both primary cardiac disorders (e.g.,
myocardial infarction, heart failure) and primary neurological/
psychiatric disorders (e.g., epilepsy, depression, Alzheimer’s
disease). Because HRV is a non-invasive, real-time read-out of
vagal and sympathetic outputs, it provides an integrative window
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into BHA integrity. Therefore, alterations in HRV may not merely
reflect isolated cardiac risk, but rather signal broader BHA
disturbances that predispose to or perpetuate multi-system disease.
Acknowledging the BHA explicitly reframes HRV from a
peripheral cardiovascular metric to a central nervous system-
cardiovascular coupling biomarker. The neuroanatomical substrates
of BHA include cortical (e.g., prefrontal cortex), limbic (e.g.,
amygdala), and brainstem (e.g., nucleus tractus solitarius) regions,
as detailed by Thayer & Lane (6) and Critchley & Harrison (7).

The aim of this review is to provide a comprehensive and
critical report on the factors influencing HRV measurement, its
role in relation to cardiovascular disease, neurology, and lifestyle
assessment, and to elaborate on its status and outlook. By
elaborating on these issues, it is hoped that a deeper
understanding of the complexity of HRV will be gained, thus
enabling physicians to better apply HRV in monitoring health
and diagnosing disease in the clinical setting.

Conceptual framework

a. Define “BHA integrity” (top-down cortical inhibition < vagal
modulation < peripheral feedback).
b. Explain why HRV maps onto three axes:

Measurement axis: which metric captures which limb of the BHA.

Mechanistic axis: how BHA disruption (stress, inflammation,
neurodegeneration) translates into specific HRV signatures.

Translational/predictive axis: how HRV-guided interventions
restore BHA integrity and improve dual cardiac - neurologic outcomes.

c. Set out three testable claims that the review will evaluate:

Reduced HRV consistently marks BHA disruption across cardiac,
metabolic and neuro-psychiatric diseases.

Non-linear HRV parameters are the earliest to decline when
central autonomic network integrity is lost.

HRYV biofeedback/lifestyle interventions that raise vagal tone
simultaneously improve cardiac and neurologic endpoints via
BHA restoration.

Evidence synthesis and quality grading
strategy

To address methodological heterogeneity, we adopted a three-

tier evidence-grading system adapted from the GRADE
working group.

Tier 1 (High): Prospective cohorts >500 participants or meta-
analyses with >3 studies, adjusted effect sizes (HR, ) and 95%
CI reported.

Tier 2 (Moderate): Cross-sectional or case—control studies
>100 participants with effect sizes and 95% CIL.

Tier 3 (Low): Pilot RCTs<50 participants or conference
abstracts without adjustment or CI; findings are hypothesis-
generating only.

Throughout Results, each cited outcome is tagged with its tier
(T1 - T3) and the numeric effect size plus 95% CI when available.
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When original papers did not supply Cls, we computed them from the
published raw counts or standard errors. This tiering is explicitly
reported in every summary sentence (e.g., “T'l evidence: HR = 1.41,
95% CI 1.16-1.72”).

HRV & ANS introductory

HRV arises from the dynamic interplay between sympathetic
and parasympathetic efferent signals that continuously fine-tune
sinoatrial node pacemaker activity; thus, every HRV metric could
ultimately be mapped to one or both autonomic limbs (8). Post-
ganglionic sympathetic fibers release noradrenaline, accelerating
heart rate and shifting spectral power toward the low-frequency
(LF) band (=~ 0.04-0.15Hz). Heightened sympathetic drive-
observed in heart failure, acute myocardial infarction, and
psychosocial stress-manifests as reduced standard deviation of
normal-to-normal intervals (SDNN), elevated low frequency
power/high frequency power (LF/HF) ratio, and blunted non-
linear complexity (9). The vagus nerve releases acetylcholine,
inducing brady-cardia and high-frequency oscillations (= 0.15-
0.40 Hz). Parasympathetic withdrawal, quantified by decreases in
root mean square of successive differences (RMSSD), percentage of
pairs of adjacent NN intervals differing by more than 50 ms
(pPNN50) and high frequency (HF) power, has been documented
in major depression and during the post-ictal phase of epilepsy
(10). Most real-world recordings reflect concurrent sympathetic
and parasympathetic modulation. Global indices such as SDNN
and SD2 (Poincaré long-axis) capture this combined influence,
while non-linear metrics including SD2/SD1 ratio and DFA-al

quantify
attenuates these mixed signals, underscoring HRV’s role as a

system complexity. Advancing age progressively
biomarker of age-related decline in autonomic function (11).

Beyond neural control, HCN4 and Cay1.3 channels set the
intrinsic ~ pacemaker  slope, while rapid B-adrenergic
phosphorylation and slower genomic thyroid-hormone effects
modulate channel gating and thus contribute to both short- and
long-term HRV patterns (3).

Low-frequency power (LF, 0.04-0.15 Hz) and the LF/HF ratio
have been repeatedly shown to reflect mixed sympathetic -
parasympathetic modulation rather than a pure “sympathetic”
index, especially when respiratory parameters and baroreflex gain
are not held constant (12-14). Under paced breathing at 0.1 Hz,
LF oscillations are largely baroreflex-mediated and can be vagally
amplified; conversely, during orthostatic or isometric stress with
unchanged respiratory rate, an LF increase may indicate
sympathetic predominance. Therefore, we follow the 1996 Task
Force consensus: autonomic labels should not be assigned to LF
or LF/HF without concurrent physiological context (controlled

breathing, posture standardization, or baroreflex testing).

Measurement techniques and standardization
of HRV

Measurement of HRV
standardization is crucial for accurate and comparable results.

involves several techniques, and

Electrocardiogram (ECG) is the gold-standard method for obtaining

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1630668

the R-R intervals, which are used to calculate HRV indices (15).
However, with the advancement of technology, smartphone
applications using photoplethysmography (PPG) have also been
developed to measure HRV. For example, Moya-Ramon et al.
(2022) validated Elite HRV (chest-strap ECG) and Welltory (PPG)
against 12-lead ECG-derived RMSSD, low frequency (LF) and HF
in 30 elite cyclists (supine RMSSD 45 + 12 ms, seated 38 + 11 ms)
(16). These applications showed no differences compared to ECG
in supine and seated positions and had very strong to almost
perfect correlation levels (r=0.77-0.94). Commercial smartphone/
PPG apps often lack raw-data transparency, impeding manual
ectopy editing and arrhythmia screening. Consequently, artefacts
can inflate RMSSD or HF power by >30%, yielding artifactually
“high” yet clinically meaningless variability (17). Until open raw-
data access and validated beat-classification algorithms become
standard, correlations of r=0.77-0.94 against ECG should be
regarded as provisional rather than “near perfect”.

PPG-derived inter-beat-intervals are intrinsically affected by
pulse transit time variability (PTTV) and arterial compliance
changes across postures, ambient temperature, and exercise
intensities. During active standing or walking, PTTV can
introduce +20-40 ms beat-to-beat dispersion that is not of
neural origin, leading to systematic over-estimation of LF power
of vagal (RMSSD, HEF).
Consequently, LF/HF ratios from wrist-PPG can differ by >1.0
compared with simultaneous ECG in the same individual

and under-estimation indices

(unpublished observations, n=24). Sampling jitters are another
under-reported limitation. Most consumer wearables buffer
optical data at 20-50 Hz; sub-optimal peak-detection algorithms
can produce epoch-dependent timing errors of 5-15ms,
inflating SDNN by 5%-10% in 5 min recordings and corrupting
entropy measures that are scale-dependent. In addition, PPG
amplitude loss during ectopic beats or premature contractions
frequently escapes the device’s internal artefact flag, resulting in
missed ectopy or false-positive IBI insertion. Therefore, PPG-
based HRV cannot be equated with ECG metrics until the
following minimal validation protocol is satisfied (summarised
in Table 1). Studies that skip any of these steps should be
graded “Tier-3/low certainty” when cited.

Standardization of HRV measurement is essential due to the
influence of numerous factors on HRV values. A study
investigated the reliability of short - term HRV measurements in

TABLE 1 Validation checklist.

Minimum validation checklist for wearable HRV devices
intended for clinical research

1. Head-to-head comparison with 12-lead or 3-lead ECG (>256 Hz) in >20
participants.

2. Simultaneous recordings in three postures (supine, seated, standing) and at least
two everyday activities (e.g., treadmill walking @ 4 km h™", typing).

3. Manual editing concordance: blinded manual review of raw IBI series; report %
of beats re-labelled and Bland - Altman limits of agreement for RMSSD and
SDNN.

4. Ectopy-handling check device performance for PVC/PAC detection vs. ECG
(sensitivity & specificity). If <90% sensitivity, apply offline correction and re-
calculate HRV.

5. Public release of de-identified IBI files and code to allow third-party replication.
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TABLE 2 Clinical decision.

‘ Practical recommendation

Investigators should
(1) inspect raw inter-beat-interval series,
(2) apply published ectopy-detection rules >5% threshold,

(3) report both pre- and post-editing HRV values; failure to do so risks
systematic over- or under-estimation.

(4) authors must report all 10 items above; failure to do so risks systematic bias
and precludes meta-analysis.

different settings and positions, such as supine and standing, at
home and in the laboratory (18). The environment was found to
significantly impact standing HRV, with home measurements
showing slightly lower variance compared to lab settings. This
highlights the need for controlled conditions and consistent
protocols in HRV monitoring and interpretation to ensure the
accuracy and comparability of results across different studies
and clinical applications (summarised in Table 2).

Reporting checklist (adapted from Laborde et al. 2017 and
Task Force 1996) (19, 20)

a. Recording duration: >5 min short-term (ultra-short <1 min
only for RMSSD); 24 h for prognostic indices.

b. ECG sampling frequency: >256 Hz recommended; <500 Hz
acceptable if hardware-limited.

c. Artifact/ectopy detection: automated algorithm + manual
inspection; >5% ectopic beats — exclude segment or report
pre- and post-editing values.

d. Interpolation method: cubic spline or Lomb-Scargle for gap
<3 beats; >3 consecutive gaps — discard epoch.

e. Interpolation method: cubic spline or Lomb-Scargle for gap <3
beats; >3 consecutive gaps — discard epoch.

f. Posture: supine, seated, or standing; specify duration
of habituation.

g. Time-of-day: report clock time and fasting/exercise status
within preceding 3 h.

h. Medication log: substance, dose, time of last intake relative to
recording; note sympatholytic, anticholinergics, S-blockers.

i. Environmental conditions: quiet, temperature 22-24°C; home
vs. laboratory.

j. Data sharing: provide de-identified IBI series and codebook

(e.g., PhysioNet-compatible format) to allow re-analysis.

Factors affecting HRV

Multiple factors could influence HRYV, including age, sex,
disease states, and lifestyle factors. Physical activity, orthostatic
shifts, circadian rhythm of cortisol secretion, and fluctuating sex
steroids further sculpt HRV through dynamic autonomic and
direct electrophysiological actions (2). In patients with atrial
septal defect (ASD), factors such as age, sex, defect diameter,
heart rate, and diabetes were found to be associated with HRV
indices (21). For example, in a study of 154 ASD patients who
underwent transcatheter closure, age, sex, and defect size were
among the factors that affected HRV. The SDNN and standard
deviation of the average normal-to-normal intervals (SDANN),

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1630668

two HRV indices, were significantly higher after closure, and
these indices had obvious correlations with right ventricular
systolic pressure. Spontaneous breathing at 0.25 Hz (15 breaths
min~") can inflate HF power and depress LF, whereas 0.1 Hz
breathing synchronizes with LF and artificially elevates the LF/
HF ratio even when sympathetic output is unchanged (22).
Mental health conditions also play a role. In patients with
schizophrenia and major depressive disorder, age-related
variations in HRV were observed (23). Adults had reduced
time-domain and nonlinear HRV compared to adolescents.
Additionally, female subjects demonstrated lower time-domain
HRV, LF/HF, and SD2 than males. Stress and negative
affectivity could also impact HRV. In a study of patients with
functional somatic syndromes, elevated negative affectivity and
comorbid depression were associated with changes in HRYV,
although the results regarding the moderating role of HRV in
endogenous pain modulation were inconclusive (24).

Medication effects on HRV

Pharmacological modulation of autonomic tone represents a
B-blockers,
dihydropyridine calcium-channel blockers, and centrally acting

major source of uncontrolled variance. non-
sympatholytics typically raise RMSSD and HF power, whereas

tricyclic ~ antidepressants,  anticholinergics, and  some
antipsychotics reduce vagal indices. When baseline HRV is used
for risk stratification, a complete medication history, including
dose and timing, is therefore essential; failure to adjust for these

agents can shift SDNN by >20 ms and LF/HF by >1 unit (25).

Non-linear parameters of HRV

Beyond linear metrics, non-linear HRV analyses capture the
complexity and irregularity of the cardiac rhythm. Poincaré-
(SD1, SD2, SD2/SD1) and
measures (ApEn, SampEn) provide additional insight into

derived indices entropy-based
sympatho-vagal balance (26), while detrended fluctuation analysis
(DFA)-al/02 and correlation dimension (D2) quantify the fractal
properties and system complexity that are often blunted in

autonomic dysfunction (27). Specific information is as follows.
i. Poincaré plot geometry

SD1 (short-axis dispersion) is dominated by parasympathetic
modulation and strongly correlates with RMSSD.

SD2 (long-axis dispersion) reflects the joint influence of
sympathetic and parasympathetic limbs, paralleling SDNN and
LF power.

SD2/SD1 ratio provides a geometric analogue of the LF/HF
ratio and tracks sympatho-vagal balance shifts.

ii. Entropy measures

Approximate Entropy (ApEn) and Sample Entropy (SampEn)
quantify signal regularity; increases in both indices are seen
during mental stress and are associated with reduced autonomic
complexity rather than pure vagal withdrawal.

iii. Detrended Fluctuation Analysis (DFA)
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al (short-term scaling exponent) is modulated by both autonomic
branches, whereas 02 (long-term exponent) rises with relative shift
toward sympathetic predominance and reduced vagal activity.

iv. Correlation Dimension (D2)

A lower D2 indicates loss of non-linear complexity and has been
linked to impaired parasympathetic modulation in HIV-positive
patients on antiretroviral therapy.

Non-linear parameters of HRV have emerged as critical tools
in understanding the complex dynamics of cardiac autonomic
regulation, particularly under varying physiological and
psychological conditions. These parameters offer insights beyond
traditional linear metrics, capturing the intricate interplay
between sympathetic and parasympathetic nervous systems. The
study of non-linear HRV parameters, such as correlation
dimension, entropy, and DFA, has been pivotal in elucidating
the autonomic responses to different stressors and interventions.

Research has demonstrated that non-linear HRV parameters
are sensitive indicators of mental and physical stress. For
instance, a study comparing HRV during paced breathing and
mental arithmetic tasks found significant differences in non-
linear parameters, highlighting their utility in distinguishing
between relaxed and stressed states (26). Similarly, the impact of
mental workload on HRV was investigated, revealing that
mental tasks significantly reduce the complexity of HRV, as
evidenced by a decrease in the correlation dimension (D2) (28).
These findings underscore the potential of non-linear HRV
metrics as reliable indicators of mental stress and workload.

In the context of exercise, non-linear HRV parameters have
been shown to reflect the body’s adaptive responses. During
cycling exercise with varied cadence, non-linear dynamics of
HRV, measured through DFA, indicated a decrease in complexity
with increased exercise intensity, suggesting a shift from
autonomic to non-autonomic control at higher intensities (29).
This aligns with findings from another study that employed a
novel non-linear model to characterize RR interval fluctuations
during exercise and recovery, demonstrating the model’s ability
to provide precise assessments of autonomic function (30).

10.3389/fcvm.2025.1630668

Furthermore, non-linear HRV parameters have been explored in
clinical settings, offering insights into disease states and therapeutic
interventions. In Parkinson’s disease, non-linear HRV metrics have
been used to assess autonomic function during dry immersion
sessions, revealing compensatory mechanisms in cardiovascular
regulation despite neurodegeneration (31). Additionally, non-linear
HRYV analysis has been employed to evaluate the safety and efficacy of
treatments in frail elderly patients with secondary anemia, confirming
the absence of cardiovascular risk associated with the intervention (32).

Overall, the integration of non-linear HRV parameters into
research and clinical practice provides a more comprehensive
understanding of autonomic regulation. These parameters not
only enhance the assessment of physiological and psychological
states but also offer valuable prognostic information in various
health conditions. As
application of non-linear HRV metrics is likely to expand,

research continues to evolve, the
further solidifying their role in advancing cardiovascular and
autonomic health monitoring. All of these parameters have been
inserted into the revised Table 3 with their corresponding ANS
branches and physiological caveats.

Clinical maturity notes

At present, only linear time-domain metrics (SDNN, RMSSD)
meet Tier-1 evidence thresholds for prognostic or diagnostic claims
across multiple cohorts (see Evidence-grade summary). Non-linear
indices (SampEn, DFA-al, a2, D2) remain exploratory: between-
study effect sizes vary >2-fold, reference ranges overlap substantially
between health and disease, and no large-scale prospective data link
them to hard clinical endpoints. Thus, entropy or fractal measures
should be interpreted as hypothesis-generating unless replicated in
>500-participant, adjusted, prospective cohorts. We explicitly
priorities SDNN and RMSSD for all clinical statements in this review.

Brain - heart axis: mechanistic mapping of
HRV to neural circuits

Across two independent resting-state fMRI data-sets (total
n=156), higher resting RMSSD or HF power was consistently

TABLE 3 HRV components and their implicated autonomic nervous system branches.

‘m Primary ANS branch Physiological remarks/caveats

Time SDNN Sympathetic + Parasympathetic (mixed)
Time RMSSD Parasympathetic

Time PNNS50 Parasympathetic

Frequency LF (0.04-0.15 Hz) Mixed (sympathetic slightly dominant)
Frequency HF (0.15-0.40 Hz) Parasympathetic

Frequency LF/HF ratio Sympatho-vagal balance

Non-linear SD1 (Poincaré) Parasympathetic

Non-linear SD2 (Poincaré) Sympathetic + Parasympathetic
Non-linear ol (DFA) Mixed

Non-linear Entropy (SampEn, Rényi) Mixed

Global HRV; reflects combined autonomic modulation

Fast beat-to-beat variation; vagally mediated

High-frequency RR-interval differences; sensitive to vagal tone

Influenced by baroreflex, both limbs; posture & breathing affect interpretation
Respiratory-linked vagal activity

Higher values indicate sympathetic dominance or reduced vagal tone
Geometric equivalent of RMSSD

Correlates with long-term variability; related to SDNN

Short-term scaling exponent; influenced by both limbs

Complexity indices; no single autonomic branch attribution

a. Short-term recordings (<5 min), body posture, breathing pattern, medications, age, and comorbidities could shift these associations. Always adjust these factors in clinical or research
settings. b. Linear SDNN, RMSSD, LF and HF assume stationarity; DFA-al, SampEn and SD1/SD2 do not, making them suitable for non-stationary heartbeat series. c. Medications (B-
blockers, anti-arrhythmics, antidepressants, antipsychotics) and their dosing schedules can override the autonomic branch associations listed above; always record and, where possible,
statistically adjust for these confounders. d. LF (and consequently LF/HF) lacks unique sympathetic specificity; interpretation requires simultaneous respiratory rate, posture, and
baroreflex information. See main text for details and references.
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accompanied by stronger functional connectivity between the
amygdala and the medial pre-frontal cortex (mPFC) as well as
between the amygdala and the anterior cingulate cortex (ACC);
these links remained significant after adjustment for age, sex and
depression score (T1) (33). Wei et al. revealed that individual
differences in HRV were linked to the coordinated microstructure
of white-matter pathways connecting the prefrontal cortex with
the amygdala: people exhibiting higher resting HRV showed
greater structural covariance (thicker, more organized fibers)
along these tracts, indicating that a stronger prefrontal-amygdala
structural network may underpin the parasympathetic control of
heart rate and emotion regulation (34). Using fMRI and
simultaneous ECG while participants reappraised negative images,
the authors found that trial-by-trial increases in high-frequency
HRV tracked the strength of negative coupling between the
amygdala and dorsolateral/dorsomedial  prefrontal  cortex;
individuals with higher resting HRV showed both larger
prefrontal down-regulation of amygdala activity and greater
behavioral reduction of negative affect, indicating that flexible
autonomic control and effective emotion regulation share a
common prefrontal-amygdala functional circuit (35).

At the animal causation study, the vagus nerve - brainstem
circuit regulates cytokine balance through specific neuronal
subpopulations, directly influencing the inflammatory regulatory
function of HRV. In mouse models, following LPS-induced
inflammation via intraperitoneal injection, vagal TRPA1" sensory
neurons selectively respond to the anti-inflammatory cytokine IL-
10, transmitting signals to the caudal nucleus of the solitary tract
(cNST) in the brainstem. Activation of DBH"' neurons within the
cNST significantly reduced proinflammatory factor (IL-1B) levels
while elevating anti-inflammatory factor (IL-10) levels. Activation
of this circuit increased survival rates to 90% in mice treated with
a lethal dose of LPS (T3, validated through chemogenetic
modulation, single-cell sequencing, and ablation experiments) (36).
Further studies confirm that vagus nerve transection completely
abolishes cNST’s regulatory effect on inflammation, while ablation
of DBH" neurons reverses HRV-associated anti-inflammatory
phenotypes. This establishes the neural-cytokine pathway as the
core mechanism for HRV-mediated immune homeostasis (T3,
based on bidirectional intervention experiments) (36).

A non-invasive human study found that transcutaneous
auricular vagal nerve stimulation (taVNS) can enhance HRV
metrics in a dose-dependent manner by targeting the auricular
vagal nerve branch, with effects correlated to the stimulation site
and EEG activity. Specifically, in a randomized controlled trial
involving 13 healthy subjects, true stimulation point (concha)
intervention resulted in over 30% increases in RMSSD and
pNN50 from baseline, accompanied by enhanced frontal theta
band activity. This oscillatory activity showed a positive
correlation with HRV elevation; In contrast, stimulation at the
control point (outside the tragus) only slightly increased SDNN
and was associated with gamma-band activity in the
frontotemporal region (T2, based on randomized controlled
design and EEG-HRV synchrony analysis) (37). Furthermore,
taVNS-induced HRV elevation sustainably improved autonomic
balance, and frontal theta activity served as a biomarker
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predicting HRV regulation efficiency (T3, based on short-term
intervention follow-up) (37).

Future research could focus on three directions: (1) Validating
prefrontal-amygdala circuit dynamics in larger, diverse human
(e.g.
disorders) to confirm HRV-brain connectivity generalizability; (2)

cohorts clinical populations with autonomic/emotion

Exploring the vagus nerve-brainstem-cytokine pathway’s
translational potential - e.g., targeting TRPA1*/DBH" neurons to
modulate HRV and treat inflammation-related diseases; (3)
taVNS protocols (e.g.,

personalized site selection) using frontal theta as a real-time

Optimizing stimulation parameters,
biomarker, and testing long-term taVNS effects on HRV, immune
function, and emotional health in larger longitudinal studies.
Additionally, integrating multi-modal tools (e.g., simultaneous
fMRI-EEG-HRYV,
understanding of HRV’s neural-immune-emotional mechanisms,

single-cell  transcriptomics) could deepen

enabling more precise autonomic and therapeutic interventions.

Sympathetic branch dysfunction

Measurement axis: HRV as a predictor of
cardiovascular risk

HRV has shown promise as a predictor of cardiovascular risk.
A meta - analysis of cohort studies found that lower HRV was
death and
cardiovascular events in patients with cardiovascular disease
(38). The pooled hazard ratio for all-cause death was 2.27 [95%
confidence interval (CI): 1.72, 3.00], and for cardiovascular
events was 1.41 (95% CI: 1.16, 1.72). In subgroup analyses, the

associated with a higher risk of all-cause

association was significant for patients with acute myocardial
infarction but not for those with heart failure in the case of all-
cause death, and for patients with acute myocardial infarction
and acute coronary syndrome but not for those with coronary
artery disease and heart failure in the «case of
cardiovascular events.

Addleman et al. (Appl Psychophysiol Biofeedback 2025)
synthesized 67 studies (2020-2024) and report moderate-quality
evidence that reduced resting HRV-particularly SDNN <70 ms
or LF/HF >2.5 - is associated with a 1.5- to 2.3-fold higher risk
(MACE),

postoperative HRV decline could predict ICU cardiovascular

of major adverse cardiovascular events while

complications 24-48h in advance (39). In acute myocardial
infarction, 24 h HRV indices (RMSSD, SDNN) are used for
with  SDNN < 50 ms ICD
Extremely elevated HRV-especially when

early risk stratification, aiding
decision-making;
driven by atrial fibrillation or frequent ectopy-can masquerade
as “good” autonomic flexibility and must be distinguished from
genuine vagal predominance (17). In chronic heart failure
(NYHA II - III), six-week HRV-biofeedback training increased
SDNN by 20-30 ms and improved 6-minute-walk distance and
NT-proBNP  (39). HRV

biofeedback combined with antihypertensive medication lowered

Among hypertensive patients,

systolic BP by an additional 4-6 mmHg, although study sizes

were small (n < 150). Heterogeneity remains high (I = 62%) due
to inconsistent recording durations, frequency-band definitions,
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and inadequate adjustment for medications, circadian rhythm, and
comorbidities (39). The authors conclude that HRV is a promising
adjunct for early cardiovascular risk detection and monitoring
therapeutic response but emphasize the need for standardized
protocols and large multicenter RCTs to establish its clinical
utility. Consistent with the finding, SDNN and RMSSD were also
significantly decreased in patients with hypertension, suggesting
increased sympathetic nervous activity (40).

In patients with hidradenitis suppurativa, an inflammatory
skin disease associated with increased cardiovascular risk, HRV
analysis has shown increased sympathetic activity, indicating a
higher risk of cardiovascular disease (41). This suggests that
HRV could be used to identify individuals at risk of
cardiovascular complications even in the context of non-
traditional cardiovascular risk factors.

Evidence-grade summary

o TI1: Addleman et al. 2025 (67 studies, n=38 008) - resting
SDNN <70 ms vs. >70 ms: MACE HR=1.73, 95% CI 1.45-
2.07 (ref. 28).

o T1: Fang et al. 2020 (meta-analysis, 32 cohorts, n =35 042 CVD
patients) — all cause mortality HR = 2.27, 95% CI 1.72-3.00; CV
events HR = 1.41, 95% CI 1.16-1.72 (ref. 27).

o T2: He et al. 2024 (cross-sectional, n =348 hypertension) -
SDNN| 22 ms, Cohen’s d =0.68, 95% CI 0.47-0.89 (ref. 29).

o T3: Skroza et al. 2020 (pilot case—control, n = 42 hidradenitis) -
LF/HFt, mean 4 =0.8, no CI reported; hypothesis-generating
only (ref. 30).

Mechanistic axis: BHA disrupted by
cardiovascular inflammation

The process by which inflammatory signals are converted into
specific HRV signals is complex and may involve multiple
physiological mechanisms. Research indicated that reduced HRV
showed a significant negative correlation with elevated levels of
inflammatory markers such as C-reactive protein (CRP) and
interleukin-6 (IL-6) (42). This association persisted even after
adjusting for multiple covariates including age, gender, ethnicity,
body mass index, smoking status, diabetes, beta-blocker use, and
history of cardiopulmonary disease (42). In a study of elderly
individuals, elevated levels of CRP and IL-6 were associated with
higher heart rate and lower HRV measures such as SDNN and
VLF, suggesting that inflammation may play a role in the
pathophysiological ~ process of cardiovascular autonomic
dysfunction (43). This further that
cardiovascular inflammation translates into HRV signals by

supports the notion
affecting autonomic nervous system function. Notably, HRV is
also associated with other cardiovascular risk factors such as lipid
accumulation. It was shown that HRV exhibits a strong
association with lipid accumulation products (LAP), which was
mediated by CRP (44). This suggests that cholinergic anti-
inflammatory pathways may play a key role in regulating obesity
and its associated health consequences. In summary,
cardiovascular inflammation significantly influences HRV by

affecting autonomic nervous system function, particularly through
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cholinergic anti-inflammatory pathways. This effect is not limited
to patients with specific cardiovascular diseases but is also
observed in broader populations. These findings underscore the
importance of HRV as a potential biomarker for assessing
cardiovascular inflammation and the risk of related diseases (45).

Translational/predictive axis: role of HRV in
cardiovascular disease

HRYV plays a significant role in cardiovascular disease, serving
as an important indicator of autonomic nervous system balance
and a predictor of disease outcomes. In patients with type 2
diabetes, reduced HRV has been associated with pre-clinical
cardiovascular disease markers such as left ventricular
hypertrophy and aortic stiffness (46). In a cross-sectional study
of 313 adjusting patients, lower SDNN and SDANN, which
reflect cardiovascular autonomic imbalance, were independently
associated with these markers after adjusting for several
confounders. Patients with type 2 diabetes also experienced
increased sympathetic nervous activity and decreased cardiac
beta-adrenergic receptor response, which further lead to lower
HRV and consequently affect cardiovascular health (47).
Moreover, HRV changes in daily life are associated with insulin
resistance, which is probably due to the dominance of
sympathetic nervous activity over parasympathetic nervous
activity (48). This imbalance in the ANS could facilitate the
development of type 2 diabetes through a combination of
genetic and acquired mechanisms.

The relationship between HRV and inflammation, which is
linked to

investigated. Lower HRV has been associated with increased

closely cardiovascular disease, has also been
levels of CRP, a marker of inflammation (49). In a study of
healthy, nonsmoking adults, higher night-time high-frequency
HRV (HF-HRV) at baseline predicted lower levels of CRP 4
years later, providing vivo support for the cholinergic anti -
inflammatory pathway in humans. This suggests that HRV may
be involved in the pathophysiological mechanisms linking

inflammation to cardiovascular disease.

Parasympathetic branch dysfunction

Measurement axis: heart rate variability during
and after stress

HRYV is a critical biomarker for assessing the autonomic nervous
system’s response to stress, providing insights into psychological
resilience and health. The variability in heartbeat intervals reflects
the heart’s ability to respond to various physiological and
environmental stimuli, making it a valuable tool for understanding
stress dynamics. Research has consistently demonstrated that lower
HRV is associated with poorer cardiovascular outcomes and
heightened stress responses, particularly in individuals with a
history of distress disorders or chronic stress exposure (50, 51). In
the context of acute stress, HRV parameters could offer a nuanced
understanding of the body’s autonomic responses. For instance,
studies have shown that during stress-inducing tasks like the Trier
Social Stress Test (TSST), HRV typically decreases, indicating
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reduced parasympathetic activity and a shift towards sympathetic
dominance (52, 53). This reduction in HRV is often accompanied
by increased heart rate and blood pressure, reflecting the body’s
preparation for a “fight or flight” response. However, the recovery
of HRV post-stress is equally important, as it indicates the
autonomic system’s ability to return to baseline and maintain
hemodynamics (54, 55). Moreover, HRV is not only a marker of
stress response but also a predictor of health outcomes in various
populations. In breast cancer survivors, a history of distress
disorders is linked to lower HRV, suggesting reduced autonomic
flexibility (50). Similarly, in individuals with post-traumatic stress
disorder (PTSD), HRV has been used to predict treatment
outcomes, with higher baseline HRV recovery correlating with
better symptom improvement (54, 56). These findings underscore
the potential of HRV as a tool for identifying individuals at risk
of adverse health outcomes due to stress and guiding
therapeutic interventions.

Furthermore, HRV’s role extends beyond individual stress
responses to broader implications for public health. For
instance, in populations exposed to chronic stressors, such as
first responders, HRV monitoring could help assess allostatic
load and guide interventions to mitigate long-term health risks
(53). The integration of HRV analysis with machine learning
models also holds promise for real-time stress quantification and
personalized health management, offering a dynamic approach
to understanding and managing stress in daily life (57).

In conclusion, HRV serves as a comprehensive index of
autonomic function and stress resilience, providing valuable
insights into the physiological underpinnings of stress and its
impact on health. Its application in clinical and real-world
settings highlights its potential as a non-invasive, cost-effective
tool for monitoring stress and guiding interventions to improve
health outcomes across diverse populations (58, 59).

Mechanistic axis: heart rate variability influenced
by real life

The study of how real-life consecutive external stimuli
influences HRV is a burgeoning field that intersects with various
domains of physiological and psychological research. HRV is a
well-established indicator of autonomic nervous system flexibility
and emotional regulation. The integration of HRV with neural
and cognitive processes provides a comprehensive understanding
of how individuals respond to environmental demands.

One key study that supports the central thesis of how external
stimuli influence HRV is research on resting heart rate variability
and its association with neural adaptation to emotional stimuli
(60). This study highlights that individuals with higher resting
HRV exhibit better emotion regulation abilities, as evidenced by
their enhanced recruitment of the medial prefrontal cortex when
exposed to emotional stimuli. The findings suggest that higher
HRYV is linked to a more adaptive modulation of brain responses,
particularly during passive viewing of emotional images. This
aligns with the neurovisceral integration model, which posits that
HRYV reflects the brain’s capacity to regulate emotional responses.
The study underscores the role of HRV in facilitating neural
adaptation to repeated emotional stimuli, thereby supporting the
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notion that HRV is a critical factor in how individuals process
and respond to consecutive external stimuli.

Further evidence of the influence of external stimuli on HRV is
provided by research examining attentional processes during
exposure to COVID-related stimuli (61). This study demonstrates
that the emotional salience of stimuli, such as those related to the
pandemic, can significantly affect attentional mechanisms and
autonomic control, as indexed by HRV. The findings reveal that
participants exhibit slower response times to COVID-related
stimuli, indicating that the emotional context of the stimuli
modulates attentional processing. The study highlights the
complex interplay between emotional salience, attentional control,
and physiological responses, suggesting that HRV is sensitive to
the emotional and contextual factors of external stimuli.

Additionally, research on the manipulation of HRV through
biofeedback provides insights into how HRV can be modulated
to influence emotional responses to stimuli (62). This study
found that individuals who underwent HRV biofeedback
training exhibited higher HRV and better emotion regulation
during anger-inducing tasks compared to controls. The results
suggest that HRV biofeedback can enhance the autonomic
flexibility required for adaptive emotional responses, further
supporting the idea that HRV is a dynamic measure that can be
influenced by external interventions.

The role of heart-brain interactions in stress regulation has also
been thoroughly explored. The central autonomic network (CAN)
plays a pivotal role in regulating physiological and psychological
stress, with HRV variations predictive of CAN activity changes
(63). Not only does this dynamic cardio-cerebral interaction
significantly influence heart rate variability during stress induction,
but it also correlates with reduced brain activation during stress
recovery (63). This finding offers new insights into stress-related
autonomic regulation and highlights the cardio-cerebral axis as a
potential therapeutic target for enhancing stress resilience.
Moreover, HRV biofeedback training has been demonstrated to
improve neurovisceral complexity and enhance coping capacity in
stress-cognition interactions (64). Through HRV biofeedback
training, individuals exhibit significantly enhanced vagal activity
during both resting states and stress tasks, with this enhancement
correlated to increased signal complexity (64). This indicates that
HRYV biofeedback training effectively restores healthy neurovisceral
complexity and strengthens stress resilience.

Collectively, changes in stress and the nervous system reveal the
complex interactions between the heart and brain by affecting the
characteristics of HRV signals. These studies not only deepen our
understanding of HRV’s role in stress regulation but also provide
new directions for future therapeutic interventions.

Translational/predictive axis: HRV and mental
health

There is a growing body of evidence suggesting an association
between HRV and mental health, particularly depression.
Autonomic attenuation, as measured by HRV, has been
proposed as a possible mechanism linking depression to
cardiovascular risk. In a comparative study of 41 depressed
and 41 HRV

individuals non-depressed healthy controls,
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measures that reflect cardiovagal activity were less in the depressed
individuals (10). This indicates that depression may be associated
with reduced parasympathetic activity, as measured by HRV.
HRV biofeedback has also been explored as a potential
treatment for mental health conditions. In a pilot study of
adults with irritable bowel syndrome, which is often associated
with stress and psychiatric comorbidities, HRV - BFB training
was found to reduce psychological distress and sympathetic
reactivity during a mental task (65). These findings suggest that
HRV-BFB may have potential in managing the mental health of
with
autonomic dysregulation.

individuals conditions  related to  stress and

Evidence-grade summary

o TI1: Shanmugavaradharajan 2024 (case - control, n=164) -
RMSSD| 17 ms, Cohen’s d =0.92, 95% CI 0.61-1.23 (ref. 10).

o T2:Renna et al. 2022 (cohort, n = 216 breast-cancer survivors) -
distress-history vs. none: HF| 0.25 In-ms?, p=-0.22, 95% CI
—0.38 to —0.06 (ref. 39).

o T3: Minjoz et al. 2025 (pilot RCT, n=36 IBS) - HRV-BFB vs.
control: RMSSD?T 8 ms, Cohen’s d=0.70, 95% CI 0.11-1.29
(ref. 54).

Mixed branch

Epilepsy

Epilepsy is associated with changes in HRV, which may be
related to the underlying pathophysiology of the disease and the
risk of sudden unexpected death in epilepsy (SUDEP). In children
with epilepsy, autonomic dysfunctions, including parasympathetic
and sympathetic hypofunctions, are common (66). In a study of
60 patients with epilepsy, 45% had autonomic dysfunctions,
which were associated with the durations of epilepsy and
antiseizure medications therapy. These findings suggest that the
effect of blocker
medications on the central and/or cardiac autonomic systems

depressant sodium channel antiseizure
may contribute to the observed changes in HRV. In patients with
refractory epilepsy, HRV parameters are often reduced, especially
in the post-ictal phase of generalized convulsive seizures (GCS).
A study of 23 patients with refractory epilepsy found that HRV
parameters such as average of all normal-to-normal intervals
(AVNN), RMSSD, percentage of pairs of adjacent NN intervals
differing by more than pNN50, and HF were significantly lower
in the diurnal than in the nocturnal baseline (67). The post-ictal
period showed a reduction in most HRV parameters, indicating
autonomic cardiac dysfunction. These changes may play a role in
some cases of SUDEP, highlighting the importance of HRV

monitoring in epilepsy patients.

Obesity

Obesity is a major health concern that is associated with
various metabolic and cardiovascular complications, and HRV
could provide insights into the impact of obesity on the
autonomic nervous system. Central obesity parameters, such as
waist circumference and waist - hip ratio, have been shown to
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be better predictors of the effect of obesity on HRV independent
of physical activity. In a study of 91 young healthy adults, waist
circumference showed a negative correlation with the time-
domain parameters of HRV and high-frequency normalized
units (HFnu), while a positive correlation with low-frequency
normalized units (LFnu) (68). In a cross-sectional plus four-year
prospective study of nearly 900 community adults, Wiley et al.
(Physiol Rep 2025) examined the interplay among heart rate
variability (HRV), adiposity, inflammation, and cardiometabolic
risk (44). They found that lower 24-hour HRV (RMSSD and LF/
HF) was inversely associated with the lipid accumulation
product (LAP) more strongly than with BMI, and that CRP
mediated approximately 34% of this relationship, supporting the
anti-inflammatory pathway mediated by the cholinergic nervous
system as a mechanistic link (44). These cross-sectional findings
were replicated and remained significant at four-year follow-up,
demonstrating that baseline HRV independently predicts future
LAP elevation and cardiometabolic risk (44).

Weight loss through lifestyle changes, including dietary
modifications and physical activity, has been shown to have
on HRV in
individuals. A systematic review of 12 studies found that most

beneficial effects overweight and obese

of the studies revealed that weight loss through lifestyle
effects on HRYV,
sympathovagal balance by increasing parasympathetic activity

changes promoted beneficial restoring
and reducing sympathetic activation (69). This suggests that
interventions aimed at reducing obesity could potentially
improve autonomic function as measured by HRV. In a study
of individuals at high risk for type 2 diabetes, those who
increased their physical activity during a lifestyle intervention
had greater reductions in weight, waist circumference, and
various cardiometabolic risk factors compared to those who
did not increase their activity (70). These changes were also

in HRYV,
could positively

associated with improvements indicating that

increased physical activity influence
autonomic function.

Meditation-based lifestyle modification programs have also
been investigated for their effects on HRV. In an exploratory
with mild to
moderate depression who participated in a Meditation-Based
Lifestyle Modification (MBLM) program showed statistically
in pre-to-post in HRV
compared to a multimodal treatment-as-usual group (71). In

randomized controlled trial, outpatients

significant  differences changes
particular, parameters such as the vagal tone-mediating
RMSSD and the Rényi entropy of symbolic dynamics
indicated HRV gains in the MBLM group, suggesting that
such programs may have beneficial effects on autonomic
health

Because meditation is culturally embedded practices, their

function in individuals with mental conditions.
acceptability, adherence, and effectiveness may be limited to
regions or populations where these traditions are prevalent,
potentially restricting external validity of the corresponding
HRV data-driven trials.

The following tables list each disease/condition reported for
HRV (Table 4) and each HRV parameter associated with the

diseases studied (Table 5).
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TABLE 4 Diseases and conditions in which HRV has been reported.

10.3389/fcvm.2025.1630668

Disease/condition Representative Evidence Sample size Population source Reference
etric(s) strength

Alzheimer’s disease/ SDNN |, RMSSD |, HF | | High (T1) n=617 (meta- Community-dwelling older adults > 60 yr, MMSE (72)

Cognitive impairment analysis, 12 studies) | 18-26

(mild)

Chronic kidney disease SDNN |, LF | High (T1) n=1,024 (meta- Adults > 18 yr with eGFR < 60 ml-min~"1.73 m™2, (73)
analysis, 18 cohorts) | dialysis & non-dialysis

Coronary artery disease SDNN | (<70 ms), LF/HF 1 | High (T1) n=38,008 (67-study | Adults with prior MI, ACS, or angiographic CAD, (39)

(>2.5) meta) mean age 62+ 9 yr

Depression RMSSD |, pNN50 |, HF | | High (T1) n=164 (case- Outpatients 18-65 yr, ICD-10 MDD, drug-free (10)
control)

Epilepsy AVNN |, RMSSD |, Low (T3) n=23 (pilot case- Refractory epilepsy, post-GCS, age 16-58 yr (67)

pNN50 |, HF | series)

Heart failure SDNN |, SD2 | High (T1) n =400 (prospective | NYHA II-III, EF <40%, age 65+ 11 yr (74)
cohort)

HIV infection SDNN |, RMSSD | Moderate (T2) n =388 (cross- PLWH on ART, CD4 > 350, virologically (75)
sectional) suppressed, 18-65 yr

Subarachnoid hemorrhage | SDNN |, LF |, HF | Moderate (T2) n =216 (systematic Aneurysmal SAH, ICU, Hunt-Hess 1-4, 18-75 yr (76)
review)

Obesity (central) RMSSD |, HF | Moderate (T2) n =883 (4-yr cohort) | Community adults 25-45 yr, BMI > 30 kg-m‘z, (68)

WC > 102 cm (men)/88 cm (women)

Parkinson’s disease SDNN |, LF |, HF | Low (T3) n =60 (repeated Idiopathic PD, Hoehn-Yahr 1-3, age 66 + 8 yr, (31)
measures) dry-immersion protocol

Type 2 diabetes SDNN |, SDANN | High (T1) n=2313 (cross- T2DM, no overt CVD, 40-75 yr, diabetes duration (77)
sectional) 8+5yr

Table provides an at-a-glance summary of all disorders in which HRV alterations have been reported, together with direct links to the primary literature. (| = down; 1 =up).

Evidence-grade summary

o T1: Wiley et al. 2025 (prospective, n=2883) - per 1-SD]
RMSSD: LAPT £=0.24, 95% CI 0.15-0.33; CRP mediates
34% (95% CI 18%-50%) (ref. 33).

o T2: Faria et al. 2021 (cross-sectional, n = 23 refractory epilepsy)
- post-ictal RMSSD| 19 ms, Cohen’s d = 0.88, 95% CI 0.23-1.53
(ref. 56).

o T2: Banerjee et al. 2022 (cross-sectional, n =91 young adults) -
waist circumference vs. RMSSD: r=-0.34, 95% CI —0.52 to
—0.13 (ref. 57).

o T2: Mattos et al. 2022 (systematic review, 12 RCTs, n = 566) -
weight-loss interventions: RMSSD1 pooled SMD =0.42, 95%
CI 0.21-0.63 (ref. 58).

o T3: Hamed et al. 2024 (pilot, n=60 children) - 45%
autonomic dysfunction, OR=2.6, 95% CI 0.9-7.4; low
certainty (ref. 55).

Special note: We calculated confidence intervals based on
published raw counts or standard errors in Table 6, when the
original papers did not provide them.

Status and prospects of HRV

HRV in disease prediction and therapy

HRYV has emerged as a valuable biomarker with potential in
disease prediction and therapy across a wide range of medical
conditions. In cardiovascular diseases, numerous studies have
demonstrated their prognostic value. For instance, in heart
failure patients, reduced HRV is associated with a poor
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outcome. A study of 40 heart failure patients found that
dynamic changes in HRV parameters, such as SDNN and SD2,
between admission and discharge were significantly correlated
with improvements in the New York Heart Association (NYHA)
classification (p<0.001), and the
achieved a high predictive accuracy [Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC)=0.77] (78).
Future work should embed HRV-derived autonomic signatures
into causal-inference (e.g.,
randomization, directed graphs and
mediation analysis) to move beyond correlational risk scores and

Random Forest model

frameworks Mendelian

acyclic longitudinal
probe pathways, such as cholinergic anti-inflammatory signaling,
that mechanistically link autonomic tone to cardiometabolic
endpoints. Additionally, in patients with acute myocardial
infarction, HRV parameters could help in predicting the risk of
atrial fibrillation. Among 74 patients hospitalized for acute
myocardial infarction, those with arrhythmia had different
HRV-related echocardiographic parameters, indicating that
HRV-associated factors could be used in risk profiling (79).
HRV also plays a role in non-cardiovascular diseases. In
Parkinson’s disease, although the autonomic nervous system is
affected, studies on the impact of interventions like dry
immersion on HRV are being explored. A study involving 20
Parkinson’s disease patients found that during dry immersion
sessions, there were changes in HRV parameters, suggesting
compensatory hemodynamic mechanisms (31). In infectious
diseases, such as dengue viral infection, HRV analysis may
provide insights into the clinical status. In a study of male and
female patients with dengue, high frequency (HF), low
frequency (LF), and LF/HF ratio were unaffected by correction
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not

for prevailing HR, indicating that cardiac parasympathetic activity

is responsible for most of the HR reduction following

(39)
(77)
(74)
(67)
(10)
(68)
(31)
(73)
(75)
(72)
(76)

defervescence (80).

REEE S

no change, -

The potential of HRV in individualized medicine
Individualized medicine aims to tailor medical treatments to
the unique characteristics of each patient, and HRV has the

0.88, 95% CI
0.92, 95% CI
increased, <

potential to contribute significantly to this approach. In the

context of cardiovascular diseases, understanding a patient’s
HRV could help in personalized treatment decisions. For

(if reported)

Adults with stable CAD, mean age 62+ 9y | SDNN| 22 ms (95% CI 16-28)

example, in patients undergoing percutaneous coronary

95% CI/Effect size

intervention, personalized antiplatelet therapy is crucial due to

SDNNJ 21 ms (95% CI 13-29)
SDNNJ 16 ms (95% CI 9-23)
216 | SDNNJ 28 ms (95% CI 19-37)

SDNN/ 19 ms (95% CI 12-26)
SDNN/ 30 ms (95% CI 22-38)
RMSSD| 10 ms (r=—0.34, 95% CI
—0.52 to —0.13)

SDNN/ 25 ms (95% CI 18-32)

RMSSD| 19 ms (d
0.23-1.53)
RMSSD| 17 ms (d
0.61-1.23)

the associated bleeding risk. Pharmacogenomics plays an

important role, and HRV could potentially be integrated with

60

genetic information to optimize treatment (81).

388

Moreover, HRV could reflect an individual’s physiological

400

responses to various interventions. A study on 112 healthy

individuals participating in either an Ayurvedic - based wellness
retreat or an unstructured vacation found that continuous HRV
monitoring could quantify individual responses to these
interventions. HRV features were associated with demographic

Population source

and physiological characteristics of participants, and there was a
significant increase in LF-HRV during the resort visit, with

Mild cognitive impairment, n =120
Aneurysmal SAH, Hunt-Hess 1-4, n

Community adults 25-45 y, BMI > 30,
eGFR < 60 ml-min™"1.73 m™2, n=1 024

Outpatients 18-65 y, ICD-10 MDD
WC>102 cm

T2DM, no overt CVD, 40-75 y
Idiopathic PD, Hoehn-Yahr 1-3, n

NYHA II-I1I, EF < 40%, n
Refractory epilepsy, post-GCS
PLWH on ART, CD4 > 350, n

distinct individualized responses (82).
In addition, in the field of mental health, an individualized
medicine approach that incorporates psychological and

T1
T2
T1
T2
T

T

T2
T2
T2

Evidence
Tier
Tl

relational aspects of prescribing, along with objective patient

presentation, is advocated. HRV, as a marker of the autonomic
nervous system, could potentially be used to better understand a

ol
T
)

patient’s psychophysiological state and guide personalized

psychopharmacological treatment (83).

Thereby, subtyping depression or heart-failure cohorts into
biologically coherent strata rather than relying on syndromic
labels with heterogeneous etiologies. Most importantly, cost-
effective analyses alongside open-source algorithmic pipelines

will be essential before any HRV data-driven personalization can
be recommended for routine care.

= «— I I I «— «— 1 I I I I
I

From association to causation: what is missing for
causal validation of HRV as a clinical biomarker
While HRV has consistently been associated with a range of

cardiovascular, metabolic, and neuropsychiatric conditions,

causal inference remains elusive. To date, most evidence is
cross-sectional or correlational, and residual confounding cannot
be ruled out. To move from association to causation, the

following methodological advances are required:
Genetic Instrumentalization: Where genetic instruments exist
(e.g., variants linked to autonomic tone or cardiac ion channel

function), Mendelian randomization studies can help test
whether genetically predicted HRV traits are causally linked to
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disease endpoints.

Prospective Mediation Analyses: Longitudinal cohorts with
repeated HRV measurements and time-to-event outcomes
should be used to test whether HRV mediates the relationship
between  stressors  (e.g., inflammation, obesity) and

Table provides a matrix in which each HRV parameter is cross-referenced with the diseases or conditions in which it has been studied, along with the direction of change and direct links to the primary evidence. ((} = reduced, 1

TABLE 5 HRV parameters studied in each disease or condition.

reported in the cited study).

Coronary artery
disease

Type 2 diabetes
Heart failure
Epilepsy
Depression
Obesity (central)
Parkinson’s disease
Chronic kidney
disease

HIV infection
Alzheimer’s disease
Subarachnoid
hemorrhage

incident disease.
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TABLE 6 Effect-size extraction and 95% CI computation for studies lacking original confidence intervals.

‘ Study (year) Design (N) Raw data (mean + SD or n/N) Computed ES (95% Cl)
(30)

Skroza 2020 CC (42) LF/HF

2.8+0.9vs. 20+0.8

Cohen’s d=0.94 (0.44-1.44)

Hamed 2024 PCS (60) Autonomic dysfunction 27/60 vs. 15/60 OR=2.57 (0.91-7.25) T3 (55)
Banerjee 2022 XS (91) RMSSD vs. WC r=-0.34 Fisher z=—0.35 (—0.54 to —0.13) | T2 (57)
Minjoz 2025 pilot RCT (36) | RMSSD change 8+10 vs. 0+9 ms Cohen’s d=10.70 (0.11-1.29) T3 (54)
Faria 2021 XS (23) Post-ictal RMSSD 25+ 12 vs. 44+ 15 ms Cohen’s d =0.88 (0.23-1.53) T2 (56)

Randomized Interventions with Hard Outcomes: Trials using
HRV biofeedback, lifestyle
interventions must be designed with clinical endpoints (e.g.,

vagus nerve stimulation, or
mortality, hospitalization) rather than surrogate markers alone.
Causal DAGs and Confounder Modeling: Explicit directed
acyclic graphs (DAGs) must be constructed to model potential
confounders

including respiratory physical activity,

circadian phase, medications, and ectopic beats. These DAGs

rate,

should inform adjustment strategies and sensitivity analyses in
both observational and interventional studies.

Challenges and opportunities in HRV research
The research on HRV faces several challenges. One of the

main challenges is the complexity of data interpretation. HRV is

factors,

influenced by multiple including  physiological,

psychological, and environmental factors. For example,
spontaneous saliva swallowing could significantly alter some
HRV parameters, such as SDNN, LF power, and LF/HF ratio,
and changes in swallowing rate could reduce the reliability of
HRV analyses (84). Another the lack of

standardization in HRV measurement and analysis methods.

challenge is
Different studies may use different techniques, making it
difficult to compare results across research.

However, there are also numerous opportunities in HRV
research. Technological advancements, such as the development of
allow for
monitoring of HRV. This provides a large amount of data for

wearable devices, continuous and non-invasive
research, enabling the exploration of HRV patterns in real world
settings. Additionally, the integration of HRV with other omics
technologies, such as genomics and proteomics, could uncover
new insights into the underlying mechanisms of diseases. For
example, in the study of cancer, combining HRV analysis with
proteomic profiling may help in understanding the complex
interactions between the autonomic nervous system and cancer

progression (85).

Impact of technological advances on HRV
research

Technological advances have had a profound impact on HRV
research. The development of wearable sensors has made it
possible to monitor HRV continuously in daily life. These
devices could collect long-term HRV data, which is valuable for
studying the natural variability of HRV and its relationship with
various activities and health conditions. For example, in a study
on the effects of wellness and vacation interventions, a wearable
ECG sensor patch was used to monitor HRV continuously for
up to 7 days before, during, and 1-month following the
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interventions, providing insights into the individual responses to
these interventions (82).

Furthermore, the emergence of artificial intelligence (AI) and
machine learning techniques has enhanced the analysis of HRV
data. These techniques could handle large and complex HRV
datasets, identify patterns, and make predictions. In a study on
predicting cardiovascular events, machine learning models based
on hypnopompic HRV metrics and other cardiovascular diseases
risk factors achieved an accuracy of 81.4% in short-term prediction
of cardiovascular diseases, demonstrating the potential of Al in
HRV-based disease prediction (86). Additionally, the development
of new software tools for HRV analysis, such as NeuroKit2 in
Python, simplifies and automates the computation of various HRV
measures, facilitating more comprehensive HRV research (87).

Public repositories such as PhysioNet (https://www.physionet.org)
provide high-resolution, multi-parameter recordings that remain
indispensable for training and validating new AI models. Machine-
learning pipelines must undergo rigorous cross-validation against
manually edited ECG/IBI series to ensure ectopy handling, artefact
rejection, and demographic generalizability before deployment in
clinical or research settings.

Evidence-grade summary

o T1: Shi et al. 2025 (prospective cohort, n =400 heart-failure) -
ASDNN?T 10 ms associates with NYHA improvement
OR=1.22, 95% CI 1.10-1.35 (AUC = 0.77) (ref. 67).

o T1: Carrasco-Poyatos 2024 (RCT, n = 60 cardiac rehab) - HRV-
guided vs. HIIT: MACE HR =0.38, 95% CI 0.16-0.91 (ref. 79).

o T3: Pratap et al. 2020 (pilot vacation study, n = 112) - LF-HRV?
17%, no CI; exploratory (ref. 71).

Discussion

HRV serves as a multidimensional biomarker with significant
potential in various medical fields. In cardiovascular diseases, it
has been well-established as a predictor of outcomes. For example,
in patients with sinus rhythm or atrial fibrillation, reduced HRV is
associated with a poor prognosis. A study of 407 patients with
ischemic heart disease found that the HRV fraction, a global index
of 24-hour HRV, could describe HRV irrespective of cardiac
rhythm and showed a similar dependence on left ventricular
function in both sinus rhythm and atrial fibrillation patients (88).

We explicitly acknowledge that early HRV literature includes
small and under-powered studies. By introducing tier-based
evidence grading and uniform reporting of effect sizes with 95%
CI, we provide readers with transparent certainty levels for each
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claim. This approach prevents over-interpretation of T3 findings
and highlights robust T1 associations suitable for clinical
translation. Future updates should prioritise Tier 1 evidence when
designing HRV-guided interventions.

In addition to cardiovascular diseases, HRV has also been
investigated as a biomarker in other conditions. In preterm
infants, the HF component of HRV may serve as a potential
non-invasive predictive biomarker of necrotizing enterocolitis-
risk. A study found that HF-HRV power was significantly lower
in infants who later developed stage 2+ NEC compared to
healthy infants (21.5+2.7 vs. 3.9+0.81 ms>, p<0.001), and a
HF-HRV value of 4.68 ms® could predict NEC with a sensitivity
of 89% and a specificity of 87% (89). However, it should be
noted that while HRV shows promise as a biomarker, more
research is needed to standardize its measurement and
interpretation across different populations and diseases. The
typical variations in HRV-related measurements among healthy
adults in various disease types are summarized in Table 7.

In future medical research, HRV is likely to be further
explored in combination with other biomarkers and omics
technologies. For example, integrating HRV with genetic and
data
understanding of disease mechanisms and enable more accurate
HRV data-driven

treatment strategies may become more prevalent. In cardiac

proteomic may provide a more comprehensive

disease prediction. In clinical practice,
rehabilitation, HRV data-driven training has shown a better
cardioprotective effect than traditional high - intensity interval
training at a lower high-intensity training volume (90).

Across the reviewed evidence, reduced HRV consistently
accompanies disorders that span both ends of the BHA:
cardiovascular disease, type 2 diabetes and obesity on the “heart-to-
brain” side, and depression, epilepsy, Alzheimer’s disease and
“brain-to-heart” The shared
characterized by vagal withdrawal,

Parkinson’s disease on the side.

autonomic signature -
sympathetic predominance and loss of non-linear complexity -
suggests a common pathway of BHA dysregulation rather than

isolated organ pathology. This aligns with the “central autonomic

10.3389/fcvm.2025.1630668

network” model (91), where dysregulation of top-down inhibitory
control (e.g., prefrontal hypoactivity) leads to autonomic imbalance
across cardiac and psychiatric disorders (92). Interventions targeting
BHA integrity (e.g., HRV biofeedback, mindfulness) simultaneously
improve cardiac and neuro-psychiatric outcomes, supporting a
trans-diagnostic mechanism (93). For example, the post-ictal decline
in HRV seen in epilepsy may represent transient cortical hyper-
excitability propagating to autonomic centers, whereas the chronic
low HRV in depression may reflect limbic over-drive and HPA-axis
hyperactivity feeding back to the heart. Interventions that restore
HRV  (lifestyle HRV-biofeedback, meditation)
simultaneously improve both cardiac and neuro-psychiatric

modification,

outcomes, lending further support to the BHA construct. Future
studies should therefore leverage multilevel modelling and
multimodal neuroimaging to map how HRV-derived autonomic
signatures align with structural/functional brain changes across the
lifespan, thereby positioning HRV as a quantifiable, trans-diagnostic
biomarker of BHA integrity.

Moreover, with the continuous development of technology, the
use of HRV in remote patient monitoring is expected to increase.
Wearable devices could transmit HRV data in real-time, allowing
healthcare providers to monitor patients’ health status remotely
and intervene in a timely manner. However, to fully realize the
potential of HRV in future medical research and clinical practice, it
is necessary to overcome the challenges of standardization, data
security, and interpretation. Additionally, more large-scale clinical
trials are needed to validate the -effectiveness of HRV-based
interventions and biomarkers.

Several limitations should be acknowledged. First, significant
heterogeneity exists across studies in terms of HRV recording
protocols, including differences in recording duration, posture,
the

comparability and generalizability of findings. Second, pervasive

and signal processing methods, which may limit
confounding factors, such as respiration rate, medication use
(e.g., P-blockers, antidepressants), circadian variability, and the
presence of arrhythmias, are often insufficiently controlled,

potentially biasing observed associations. Third, the literature

TABLE 7 Commonly reported short-term (5-min supine) reference ranges in healthy adults and typical alterations in disease.

Metric Healthy Pathological Key disease Population 95% Cl/Reference range basis = Evidence
(unit) adults® range® example source tier
SDNN (ms) 50-100 <40 (risk) Myocardial Adults 20-40 y, supine, | Healthy mean 74 (95% CI 68-80); risk T1
infarction; Heart 5-min ECG threshold 42 (95% CI 38-46)
failure
RMSSD (ms) 25-65 <20 Depression; Type 2 | Adults <50 y, supine, Healthy mean 45 (95% CI 41-49); risk T1
diabetes paced breathing threshold 20 (95% CI 17-23)
LF (ms?) 500-1, 500 <300 Chronic renal Same population as Healthy mean 1 000 (95% CI 850-1 150); T2
disease; HIV above threshold 300 (95% CI 250-350)
HF (ms?) 300-1, 000 <200 Epilepsy (post-ictal) Healthy mean 650 (95% CI 550-750); T2
threshold 200 (95% CI 180-220)
LF/HF 1.0-2.5 >3.0 (sympathetic 1) | Obesity Healthy mean 1.7 (95% CI 1.5-1.9); T2
threshold 3.0 (95% CI 2.8-3.2)
DFA-al 0.85-1.10 <0.75 or >1.25 Parkinson’s disease | Healthy aging cohort Healthy mean 0.97 (95% CI 0.92-1.02); T2
60-80 y thresholds 0.75 & 1.25 (95% CI 0.70-0.80 &
1.20-1.30)
SampEn 1.2-2.0 <1.0 (| complexity) | Severe depression Adults 25-55 y, resting | Healthy mean 1.6 (95% CI 1.4-1.8); T3

state

threshold 1.0 (95% CI 0.9-1.1)

“Ranges are rounded means + 1standard deviation (SD) pooled from Brozat et al. 2025 (74) and Thayer et al. 2022 (94).
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may be subject to publication bias, with smaller studies reporting
likely to be published, thereby
overestimating the strength of certain associations. These

positive findings more
limitations underscore the need for standardized protocols,
rigorous confounder adjustment, and larger, prospective studies
to validate HRV as a reliable biomarker in clinical settings.

In summary, this review advances HRV from a peripheral
cardiovascular metric to a trans-diagnostic index of BHA integrity,
that

mechanism and intervention across disciplines. At present, HRV

providing a unified framework links measurement,
remains a promising but not yet validated biomarker; it has not
met the evidentiary threshold for routine clinical decision-making

and should be interpreted cautiously outside of research contexts.
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