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Heart rate variability (HRV), a non-invasive measure of autonomic nervous 

system (ANS) activity and homeodynamics, has received much attention in 

recent years in the study of cardiovascular disease, mental health, and aging. 

Changes in HRV not only reflect an individual’s ability to adapt to changes in 

the internal and external environment but also correlate with a wide range of 

pathological states, making it a powerful tool for predicting disease risk and 

assessing the efficacy of treatment. The aim of this review is to 

comprehensively analyze the role of HRV in different physiological and 

pathological contexts and explore its value as a potential biomarker. Initially, 

we review the basic concepts, measurements, and influencing factors of HRV, 

followed by an in-depth discussion of the relationship between HRV and 

cardiovascular disease, epilepsy, depression, aging, and inflammation. Special 

emphasis is placed on the role of HRV in assessing the health impact of 

obesity, nutrition, and lifestyle. Additionally, we explore the use of HRV in 

clinical practice, including its potential in predicting disease, guiding 

treatment, and evaluating the effects of interventions. Ultimately, we suggest 

future research directions, including the promise of HRV in individualized 

medicine and health monitoring. While HRV holds promise as a non-invasive, 

trans-diagnostic biomarker, current evidence remains preliminary and largely 

associative. Its clinical utility for personalized medicine or routine risk 

prediction requires standardized acquisition protocols, external validation, and 

causal inference studies before implementation into decision-making 

algorithms. By synthesizing multiple studies through the lens of brain - heart 

axis (BHA) integrity, we propose that HRV metrics serve as a quantifiable, 

trans-diagnostic proxy for mapping the measurement, mechanistic, and 

translational axes of brain - heart dysfunction.
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Introduction

HRV refers to the variations in the time intervals between 

consecutive heartbeats (1). It is a complex physiological 

phenomenon that re�ects the dynamic regulation of the 

cardiovascular system by the ANS, which consists of sympathetic 

and parasympathetic nervous systems. The sympathetic nervous 

system generally increases heart rate and cardiac output, while the 

parasympathetic nervous system has the opposite effect, slowing 

down the heart rate. These two systems work in a coordinated 

manner to maintain cardiovascular homeodynamics (dynamic, 

scale-free stability rather than static equilibrium). Contemporary 

models emphasize that beat-to-beat variability emerges from the 

interaction of central autonomic networks with intrinsic sino- 

atrial ion-channel kinetics, baroreceptor feedback, respiratory- 

cardiac coupling and rapidly shifting hormonal milieus (2, 3).

One hypothesis posits that there is an additional fourth control 

level in cardiovascular regulation, where the amplitude of low- 

frequency HRV (LF-HRV) serves as a reference input for the 

neural cardiovascular center (1). This center then responds to 

maintaining LF-HRV around a certain level. For example, the 

absence of LF-HRV during artificial cardiac pacing may be 

associated with pacemaker syndrome, despite seemingly normal 

cardiovascular performance. This suggests that HRV plays a crucial 

role in the overall regulation of the cardiovascular system and that 

disruptions in this regulation could lead to various morbidities.

HRV research has far-reaching importance and a wide scope 

of application. It has been associated with a range of health 

conditions, making it a valuable biomarker in both clinical and 

research settings. In terms of disease prediction, lower HRV has 

been linked to an increased risk of mortality, including all-cause 

and cardiac mortality. A meta-analysis involving 32 studies and 

two individual participant datasets with 38,008 participants 

found that lower HRV parameter values were significant 

predictors of higher mortality across different ages, sexes, 

continents, populations, and recording lengths (4).

HRV biofeedback has also shown promise in various applications. 

For example, in patients with coronary artery disease, HRV 

biofeedback could reduce ANS reactivity during anger events and 

increase ANS recovery after such events (5). This indicates its 

potential as a therapeutic tool in cardiac rehabilitation. Additionally, 

HRV measurement could be used to monitor the effects of lifestyle 

interventions, such as exercise and dietary changes, on autonomic 

function, providing insights into the effectiveness of these 

interventions in promoting health and preventing disease.

The BHA is a bidirectional neuro-humoral communication 

network in which cortical, limbic and brain-stem centers 

dynamically modulate cardiac autonomic tone, while afferent 

cardiac signals in turn in�uence cerebral activity and emotional 

regulation. Disruption of this loop - via chronic stress, systemic 

in�ammation, neurodegeneration or metabolic dysautonomia - 

has been implicated in both primary cardiac disorders (e.g., 

myocardial infarction, heart failure) and primary neurological/ 

psychiatric disorders (e.g., epilepsy, depression, Alzheimer’s 

disease). Because HRV is a non-invasive, real-time read-out of 

vagal and sympathetic outputs, it provides an integrative window 

into BHA integrity. Therefore, alterations in HRV may not merely 

re�ect isolated cardiac risk, but rather signal broader BHA 

disturbances that predispose to or perpetuate multi-system disease. 

Acknowledging the BHA explicitly reframes HRV from a 

peripheral cardiovascular metric to a central nervous system– 

cardiovascular coupling biomarker. The neuroanatomical substrates 

of BHA include cortical (e.g., prefrontal cortex), limbic (e.g., 

amygdala), and brainstem (e.g., nucleus tractus solitarius) regions, 

as detailed by Thayer & Lane (6) and Critchley & Harrison (7).

The aim of this review is to provide a comprehensive and 

critical report on the factors in�uencing HRV measurement, its 

role in relation to cardiovascular disease, neurology, and lifestyle 

assessment, and to elaborate on its status and outlook. By 

elaborating on these issues, it is hoped that a deeper 

understanding of the complexity of HRV will be gained, thus 

enabling physicians to better apply HRV in monitoring health 

and diagnosing disease in the clinical setting.

Conceptual framework

a. Define “BHA integrity” (top-down cortical inhibition ↔ vagal 

modulation ↔ peripheral feedback).

b. Explain why HRV maps onto three axes:

Measurement axis: which metric captures which limb of the BHA.

Mechanistic axis: how BHA disruption (stress, in�ammation, 

neurodegeneration) translates into specific HRV signatures.

Translational/predictive axis: how HRV-guided interventions 

restore BHA integrity and improve dual cardiac - neurologic outcomes. 

c. Set out three testable claims that the review will evaluate:

Reduced HRV consistently marks BHA disruption across cardiac, 

metabolic and neuro-psychiatric diseases.

Non-linear HRV parameters are the earliest to decline when 

central autonomic network integrity is lost.

HRV biofeedback/lifestyle interventions that raise vagal tone 

simultaneously improve cardiac and neurologic endpoints via 

BHA restoration.

Evidence synthesis and quality grading 
strategy

To address methodological heterogeneity, we adopted a three- 

tier evidence-grading system adapted from the GRADE 

working group.

Tier 1 (High): Prospective cohorts ≥500 participants or meta- 

analyses with ≥3 studies, adjusted effect sizes (HR, β) and 95% 

CI reported.

Tier 2 (Moderate): Cross-sectional or case–control studies 

≥100 participants with effect sizes and 95% CI.

Tier 3 (Low): Pilot RCTs < 50 participants or conference 

abstracts without adjustment or CI; findings are hypothesis- 

generating only.

Throughout Results, each cited outcome is tagged with its tier 

(T1 - T3) and the numeric effect size plus 95% CI when available. 
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When original papers did not supply CIs, we computed them from the 

published raw counts or standard errors. This tiering is explicitly 

reported in every summary sentence (e.g., “T1 evidence: HR = 1.41, 

95% CI 1.16–1.72”).

HRV & ANS introductory

HRV arises from the dynamic interplay between sympathetic 

and parasympathetic efferent signals that continuously fine-tune 

sinoatrial node pacemaker activity; thus, every HRV metric could 

ultimately be mapped to one or both autonomic limbs (8). Post- 

ganglionic sympathetic fibers release noradrenaline, accelerating 

heart rate and shifting spectral power toward the low-frequency 

(LF) band (≈ 0.04–0.15 Hz). Heightened sympathetic drive- 

observed in heart failure, acute myocardial infarction, and 

psychosocial stress-manifests as reduced standard deviation of 

normal-to-normal intervals (SDNN), elevated low frequency 

power/high frequency power (LF/HF) ratio, and blunted non- 

linear complexity (9). The vagus nerve releases acetylcholine, 

inducing brady-cardia and high-frequency oscillations (≈ 0.15– 

0.40 Hz). Parasympathetic withdrawal, quantified by decreases in 

root mean square of successive differences (RMSSD), percentage of 

pairs of adjacent NN intervals differing by more than 50 ms 

(pNN50) and high frequency (HF) power, has been documented 

in major depression and during the post-ictal phase of epilepsy 

(10). Most real-world recordings re�ect concurrent sympathetic 

and parasympathetic modulation. Global indices such as SDNN 

and SD2 (Poincaré long-axis) capture this combined in�uence, 

while non-linear metrics including SD2/SD1 ratio and DFA-α1 

quantify system complexity. Advancing age progressively 

attenuates these mixed signals, underscoring HRV’s role as a 

biomarker of age-related decline in autonomic function (11).

Beyond neural control, HCN4 and CaV1.3 channels set the 

intrinsic pacemaker slope, while rapid β-adrenergic 

phosphorylation and slower genomic thyroid-hormone effects 

modulate channel gating and thus contribute to both short- and 

long-term HRV patterns (3).

Low-frequency power (LF, 0.04–0.15 Hz) and the LF/HF ratio 

have been repeatedly shown to re�ect mixed sympathetic - 

parasympathetic modulation rather than a pure “sympathetic” 

index, especially when respiratory parameters and barore�ex gain 

are not held constant (12–14). Under paced breathing at 0.1 Hz, 

LF oscillations are largely barore�ex-mediated and can be vagally 

amplified; conversely, during orthostatic or isometric stress with 

unchanged respiratory rate, an LF increase may indicate 

sympathetic predominance. Therefore, we follow the 1996 Task 

Force consensus: autonomic labels should not be assigned to LF 

or LF/HF without concurrent physiological context (controlled 

breathing, posture standardization, or barore�ex testing).

Measurement techniques and standardization 
of HRV

Measurement of HRV involves several techniques, and 

standardization is crucial for accurate and comparable results. 

Electrocardiogram (ECG) is the gold-standard method for obtaining 

the R-R intervals, which are used to calculate HRV indices (15). 

However, with the advancement of technology, smartphone 

applications using photoplethysmography (PPG) have also been 

developed to measure HRV. For example, Moya-Ramon et al. 

(2022) validated Elite HRV (chest-strap ECG) and Welltory (PPG) 

against 12-lead ECG-derived RMSSD, low frequency (LF) and HF 

in 30 elite cyclists (supine RMSSD 45 ± 12 ms, seated 38 ± 11 ms) 

(16). These applications showed no differences compared to ECG 

in supine and seated positions and had very strong to almost 

perfect correlation levels (r = 0.77–0.94). Commercial smartphone/ 

PPG apps often lack raw-data transparency, impeding manual 

ectopy editing and arrhythmia screening. Consequently, artefacts 

can in�ate RMSSD or HF power by >30%, yielding artifactually 

“high” yet clinically meaningless variability (17). Until open raw- 

data access and validated beat-classification algorithms become 

standard, correlations of r ≈ 0.77–0.94 against ECG should be 

regarded as provisional rather than “near perfect”.

PPG-derived inter-beat-intervals are intrinsically affected by 

pulse transit time variability (PTTV) and arterial compliance 

changes across postures, ambient temperature, and exercise 

intensities. During active standing or walking, PTTV can 

introduce ±20–40 ms beat-to-beat dispersion that is not of 

neural origin, leading to systematic over-estimation of LF power 

and under-estimation of vagal indices (RMSSD, HF). 

Consequently, LF/HF ratios from wrist-PPG can differ by >1.0 

compared with simultaneous ECG in the same individual 

(unpublished observations, n = 24). Sampling jitters are another 

under-reported limitation. Most consumer wearables buffer 

optical data at 20–50 Hz; sub-optimal peak-detection algorithms 

can produce epoch-dependent timing errors of 5–15 ms, 

in�ating SDNN by 5%–10% in 5 min recordings and corrupting 

entropy measures that are scale-dependent. In addition, PPG 

amplitude loss during ectopic beats or premature contractions 

frequently escapes the device’s internal artefact �ag, resulting in 

missed ectopy or false-positive IBI insertion. Therefore, PPG- 

based HRV cannot be equated with ECG metrics until the 

following minimal validation protocol is satisfied (summarised 

in Table 1). Studies that skip any of these steps should be 

graded “Tier-3/low certainty” when cited.

Standardization of HRV measurement is essential due to the 

in�uence of numerous factors on HRV values. A study 

investigated the reliability of short - term HRV measurements in 

TABLE 1 Validation checklist.

Minimum validation checklist for wearable HRV devices 
intended for clinical research

1. Head-to-head comparison with 12-lead or 3-lead ECG (≥256 Hz) in ≥20 

participants.

2. Simultaneous recordings in three postures (supine, seated, standing) and at least 

two everyday activities (e.g., treadmill walking @ 4 km h−1, typing).

3. Manual editing concordance: blinded manual review of raw IBI series; report % 

of beats re-labelled and Bland - Altman limits of agreement for RMSSD and 

SDNN.

4. Ectopy-handling check device performance for PVC/PAC detection vs. ECG 

(sensitivity & specificity). If <90% sensitivity, apply of�ine correction and re- 

calculate HRV.

5. Public release of de-identified IBI files and code to allow third-party replication.
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different settings and positions, such as supine and standing, at 

home and in the laboratory (18). The environment was found to 

significantly impact standing HRV, with home measurements 

showing slightly lower variance compared to lab settings. This 

highlights the need for controlled conditions and consistent 

protocols in HRV monitoring and interpretation to ensure the 

accuracy and comparability of results across different studies 

and clinical applications (summarised in Table 2).

Reporting checklist (adapted from Laborde et al. 2017 and 

Task Force 1996) (19, 20) 

a. Recording duration: ≥5 min short-term (ultra-short ≤1 min 

only for RMSSD); 24 h for prognostic indices.

b. ECG sampling frequency: ≥256 Hz recommended; ≤500 Hz 

acceptable if hardware-limited.

c. Artifact/ectopy detection: automated algorithm + manual 

inspection; ≥5% ectopic beats → exclude segment or report 

pre- and post-editing values.

d. Interpolation method: cubic spline or Lomb-Scargle for gap 

≤3 beats; >3 consecutive gaps → discard epoch.

e. Interpolation method: cubic spline or Lomb-Scargle for gap ≤3 

beats; >3 consecutive gaps → discard epoch.

f. Posture: supine, seated, or standing; specify duration 

of habituation.

g. Time-of-day: report clock time and fasting/exercise status 

within preceding 3 h.

h. Medication log: substance, dose, time of last intake relative to 

recording; note sympatholytic, anticholinergics, β-blockers.

i. Environmental conditions: quiet, temperature 22–24°C; home 

vs. laboratory.

j. Data sharing: provide de-identified IBI series and codebook 

(e.g., PhysioNet-compatible format) to allow re-analysis.

Factors affecting HRV

Multiple factors could in�uence HRV, including age, sex, 

disease states, and lifestyle factors. Physical activity, orthostatic 

shifts, circadian rhythm of cortisol secretion, and �uctuating sex 

steroids further sculpt HRV through dynamic autonomic and 

direct electrophysiological actions (2). In patients with atrial 

septal defect (ASD), factors such as age, sex, defect diameter, 

heart rate, and diabetes were found to be associated with HRV 

indices (21). For example, in a study of 154 ASD patients who 

underwent transcatheter closure, age, sex, and defect size were 

among the factors that affected HRV. The SDNN and standard 

deviation of the average normal-to-normal intervals (SDANN), 

two HRV indices, were significantly higher after closure, and 

these indices had obvious correlations with right ventricular 

systolic pressure. Spontaneous breathing at 0.25 Hz (15 breaths 

min−1) can in�ate HF power and depress LF, whereas 0.1 Hz 

breathing synchronizes with LF and artificially elevates the LF/ 

HF ratio even when sympathetic output is unchanged (22).

Mental health conditions also play a role. In patients with 

schizophrenia and major depressive disorder, age-related 

variations in HRV were observed (23). Adults had reduced 

time-domain and nonlinear HRV compared to adolescents. 

Additionally, female subjects demonstrated lower time-domain 

HRV, LF/HF, and SD2 than males. Stress and negative 

affectivity could also impact HRV. In a study of patients with 

functional somatic syndromes, elevated negative affectivity and 

comorbid depression were associated with changes in HRV, 

although the results regarding the moderating role of HRV in 

endogenous pain modulation were inconclusive (24).

Medication effects on HRV

Pharmacological modulation of autonomic tone represents a 

major source of uncontrolled variance. β-blockers, non- 

dihydropyridine calcium-channel blockers, and centrally acting 

sympatholytics typically raise RMSSD and HF power, whereas 

tricyclic antidepressants, anticholinergics, and some 

antipsychotics reduce vagal indices. When baseline HRV is used 

for risk stratification, a complete medication history, including 

dose and timing, is therefore essential; failure to adjust for these 

agents can shift SDNN by >20 ms and LF/HF by >1 unit (25).

Non-linear parameters of HRV
Beyond linear metrics, non-linear HRV analyses capture the 

complexity and irregularity of the cardiac rhythm. Poincaré- 

derived indices (SD1, SD2, SD2/SD1) and entropy-based 

measures (ApEn, SampEn) provide additional insight into 

sympatho-vagal balance (26), while detrended �uctuation analysis 

(DFA)-α1/α2 and correlation dimension (D2) quantify the fractal 

properties and system complexity that are often blunted in 

autonomic dysfunction (27). Specific information is as follows. 

i. Poincaré plot geometry

SD1 (short-axis dispersion) is dominated by parasympathetic 

modulation and strongly correlates with RMSSD.

SD2 (long-axis dispersion) re�ects the joint in�uence of 

sympathetic and parasympathetic limbs, paralleling SDNN and 

LF power.

SD2/SD1 ratio provides a geometric analogue of the LF/HF 

ratio and tracks sympatho-vagal balance shifts. 

ii. Entropy measures

Approximate Entropy (ApEn) and Sample Entropy (SampEn) 

quantify signal regularity; increases in both indices are seen 

during mental stress and are associated with reduced autonomic 

complexity rather than pure vagal withdrawal. 

iii. Detrended Fluctuation Analysis (DFA)

TABLE 2 Clinical decision.

Practical recommendation

Investigators should

(1) inspect raw inter-beat-interval series,

(2) apply published ectopy-detection rules ≥5% threshold,

(3) report both pre- and post-editing HRV values; failure to do so risks 

systematic over- or under-estimation.

(4) authors must report all 10 items above; failure to do so risks systematic bias 

and precludes meta-analysis.
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α1 (short-term scaling exponent) is modulated by both autonomic 

branches, whereas α2 (long-term exponent) rises with relative shift 

toward sympathetic predominance and reduced vagal activity. 

iv. Correlation Dimension (D2)

A lower D2 indicates loss of non-linear complexity and has been 

linked to impaired parasympathetic modulation in HIV-positive 

patients on antiretroviral therapy.

Non-linear parameters of HRV have emerged as critical tools 

in understanding the complex dynamics of cardiac autonomic 

regulation, particularly under varying physiological and 

psychological conditions. These parameters offer insights beyond 

traditional linear metrics, capturing the intricate interplay 

between sympathetic and parasympathetic nervous systems. The 

study of non-linear HRV parameters, such as correlation 

dimension, entropy, and DFA, has been pivotal in elucidating 

the autonomic responses to different stressors and interventions.

Research has demonstrated that non-linear HRV parameters 

are sensitive indicators of mental and physical stress. For 

instance, a study comparing HRV during paced breathing and 

mental arithmetic tasks found significant differences in non- 

linear parameters, highlighting their utility in distinguishing 

between relaxed and stressed states (26). Similarly, the impact of 

mental workload on HRV was investigated, revealing that 

mental tasks significantly reduce the complexity of HRV, as 

evidenced by a decrease in the correlation dimension (D2) (28). 

These findings underscore the potential of non-linear HRV 

metrics as reliable indicators of mental stress and workload.

In the context of exercise, non-linear HRV parameters have 

been shown to re�ect the body’s adaptive responses. During 

cycling exercise with varied cadence, non-linear dynamics of 

HRV, measured through DFA, indicated a decrease in complexity 

with increased exercise intensity, suggesting a shift from 

autonomic to non-autonomic control at higher intensities (29). 

This aligns with findings from another study that employed a 

novel non-linear model to characterize RR interval �uctuations 

during exercise and recovery, demonstrating the model’s ability 

to provide precise assessments of autonomic function (30).

Furthermore, non-linear HRV parameters have been explored in 

clinical settings, offering insights into disease states and therapeutic 

interventions. In Parkinson’s disease, non-linear HRV metrics have 

been used to assess autonomic function during dry immersion 

sessions, revealing compensatory mechanisms in cardiovascular 

regulation despite neurodegeneration (31). Additionally, non-linear 

HRV analysis has been employed to evaluate the safety and efficacy of 

treatments in frail elderly patients with secondary anemia, confirming 

the absence of cardiovascular risk associated with the intervention (32).

Overall, the integration of non-linear HRV parameters into 

research and clinical practice provides a more comprehensive 

understanding of autonomic regulation. These parameters not 

only enhance the assessment of physiological and psychological 

states but also offer valuable prognostic information in various 

health conditions. As research continues to evolve, the 

application of non-linear HRV metrics is likely to expand, 

further solidifying their role in advancing cardiovascular and 

autonomic health monitoring. All of these parameters have been 

inserted into the revised Table 3 with their corresponding ANS 

branches and physiological caveats.

Clinical maturity notes

At present, only linear time-domain metrics (SDNN, RMSSD) 

meet Tier-1 evidence thresholds for prognostic or diagnostic claims 

across multiple cohorts (see Evidence-grade summary). Non-linear 

indices (SampEn, DFA-α1, α2, D2) remain exploratory: between- 

study effect sizes vary >2-fold, reference ranges overlap substantially 

between health and disease, and no large-scale prospective data link 

them to hard clinical endpoints. Thus, entropy or fractal measures 

should be interpreted as hypothesis-generating unless replicated in 

≥500-participant, adjusted, prospective cohorts. We explicitly 

priorities SDNN and RMSSD for all clinical statements in this review.

Brain - heart axis: mechanistic mapping of 
HRV to neural circuits

Across two independent resting-state fMRI data-sets (total 

n = 156), higher resting RMSSD or HF power was consistently 

TABLE 3 HRV components and their implicated autonomic nervous system branches.

Domain Metric Primary ANS branch Physiological remarks/caveats

Time SDNN Sympathetic + Parasympathetic (mixed) Global HRV; re�ects combined autonomic modulation

Time RMSSD Parasympathetic Fast beat-to-beat variation; vagally mediated

Time pNN50 Parasympathetic High-frequency RR-interval differences; sensitive to vagal tone

Frequency LF (0.04–0.15 Hz) Mixed (sympathetic slightly dominant) In�uenced by barore�ex, both limbs; posture & breathing affect interpretation

Frequency HF (0.15–0.40 Hz) Parasympathetic Respiratory-linked vagal activity

Frequency LF/HF ratio Sympatho-vagal balance Higher values indicate sympathetic dominance or reduced vagal tone

Non-linear SD1 (Poincaré) Parasympathetic Geometric equivalent of RMSSD

Non-linear SD2 (Poincaré) Sympathetic + Parasympathetic Correlates with long-term variability; related to SDNN

Non-linear α1 (DFA) Mixed Short-term scaling exponent; in�uenced by both limbs

Non-linear Entropy (SampEn, Rényi) Mixed Complexity indices; no single autonomic branch attribution

a. Short-term recordings (<5 min), body posture, breathing pattern, medications, age, and comorbidities could shift these associations. Always adjust these factors in clinical or research 

settings. b. Linear SDNN, RMSSD, LF and HF assume stationarity; DFA-α1, SampEn and SD1/SD2 do not, making them suitable for non-stationary heartbeat series. c. Medications (β- 

blockers, anti-arrhythmics, antidepressants, antipsychotics) and their dosing schedules can override the autonomic branch associations listed above; always record and, where possible, 

statistically adjust for these confounders. d. LF (and consequently LF/HF) lacks unique sympathetic specificity; interpretation requires simultaneous respiratory rate, posture, and 

barore�ex information. See main text for details and references.

Liu et al.                                                                                                                                                                10.3389/fcvm.2025.1630668 

Frontiers in Cardiovascular Medicine 05 frontiersin.org



accompanied by stronger functional connectivity between the 

amygdala and the medial pre-frontal cortex (mPFC) as well as 

between the amygdala and the anterior cingulate cortex (ACC); 

these links remained significant after adjustment for age, sex and 

depression score (T1) (33). Wei et al. revealed that individual 

differences in HRV were linked to the coordinated microstructure 

of white-matter pathways connecting the prefrontal cortex with 

the amygdala: people exhibiting higher resting HRV showed 

greater structural covariance (thicker, more organized fibers) 

along these tracts, indicating that a stronger prefrontal-amygdala 

structural network may underpin the parasympathetic control of 

heart rate and emotion regulation (34). Using fMRI and 

simultaneous ECG while participants reappraised negative images, 

the authors found that trial-by-trial increases in high-frequency 

HRV tracked the strength of negative coupling between the 

amygdala and dorsolateral/dorsomedial prefrontal cortex; 

individuals with higher resting HRV showed both larger 

prefrontal down-regulation of amygdala activity and greater 

behavioral reduction of negative affect, indicating that �exible 

autonomic control and effective emotion regulation share a 

common prefrontal-amygdala functional circuit (35).

At the animal causation study, the vagus nerve - brainstem 

circuit regulates cytokine balance through specific neuronal 

subpopulations, directly in�uencing the in�ammatory regulatory 

function of HRV. In mouse models, following LPS-induced 

in�ammation via intraperitoneal injection, vagal TRPA1+ sensory 

neurons selectively respond to the anti-in�ammatory cytokine IL- 

10, transmitting signals to the caudal nucleus of the solitary tract 

(cNST) in the brainstem. Activation of DBH+ neurons within the 

cNST significantly reduced proin�ammatory factor (IL-1β) levels 

while elevating anti-in�ammatory factor (IL-10) levels. Activation 

of this circuit increased survival rates to 90% in mice treated with 

a lethal dose of LPS (T3, validated through chemogenetic 

modulation, single-cell sequencing, and ablation experiments) (36). 

Further studies confirm that vagus nerve transection completely 

abolishes cNST’s regulatory effect on in�ammation, while ablation 

of DBH+ neurons reverses HRV-associated anti-in�ammatory 

phenotypes. This establishes the neural-cytokine pathway as the 

core mechanism for HRV-mediated immune homeostasis (T3, 

based on bidirectional intervention experiments) (36).

A non-invasive human study found that transcutaneous 

auricular vagal nerve stimulation (taVNS) can enhance HRV 

metrics in a dose-dependent manner by targeting the auricular 

vagal nerve branch, with effects correlated to the stimulation site 

and EEG activity. Specifically, in a randomized controlled trial 

involving 13 healthy subjects, true stimulation point (concha) 

intervention resulted in over 30% increases in RMSSD and 

pNN50 from baseline, accompanied by enhanced frontal theta 

band activity. This oscillatory activity showed a positive 

correlation with HRV elevation; In contrast, stimulation at the 

control point (outside the tragus) only slightly increased SDNN 

and was associated with gamma-band activity in the 

frontotemporal region (T2, based on randomized controlled 

design and EEG-HRV synchrony analysis) (37). Furthermore, 

taVNS-induced HRV elevation sustainably improved autonomic 

balance, and frontal theta activity served as a biomarker 

predicting HRV regulation efficiency (T3, based on short-term 

intervention follow-up) (37).

Future research could focus on three directions: (1) Validating 

prefrontal-amygdala circuit dynamics in larger, diverse human 

cohorts (e.g., clinical populations with autonomic/emotion 

disorders) to confirm HRV-brain connectivity generalizability; (2) 

Exploring the vagus nerve-brainstem-cytokine pathway’s 

translational potential - e.g., targeting TRPA1+/DBH+ neurons to 

modulate HRV and treat in�ammation-related diseases; (3) 

Optimizing taVNS protocols (e.g., stimulation parameters, 

personalized site selection) using frontal theta as a real-time 

biomarker, and testing long-term taVNS effects on HRV, immune 

function, and emotional health in larger longitudinal studies. 

Additionally, integrating multi-modal tools (e.g., simultaneous 

fMRI-EEG-HRV, single-cell transcriptomics) could deepen 

understanding of HRV’s neural-immune-emotional mechanisms, 

enabling more precise autonomic and therapeutic interventions.

Sympathetic branch dysfunction

Measurement axis: HRV as a predictor of 
cardiovascular risk

HRV has shown promise as a predictor of cardiovascular risk. 

A meta - analysis of cohort studies found that lower HRV was 

associated with a higher risk of all-cause death and 

cardiovascular events in patients with cardiovascular disease 

(38). The pooled hazard ratio for all-cause death was 2.27 [95% 

confidence interval (CI): 1.72, 3.00], and for cardiovascular 

events was 1.41 (95% CI: 1.16, 1.72). In subgroup analyses, the 

association was significant for patients with acute myocardial 

infarction but not for those with heart failure in the case of all- 

cause death, and for patients with acute myocardial infarction 

and acute coronary syndrome but not for those with coronary 

artery disease and heart failure in the case of 

cardiovascular events.

Addleman et al. (Appl Psychophysiol Biofeedback 2025) 

synthesized 67 studies (2020–2024) and report moderate-quality 

evidence that reduced resting HRV-particularly SDNN < 70 ms 

or LF/HF > 2.5 - is associated with a 1.5- to 2.3-fold higher risk 

of major adverse cardiovascular events (MACE), while 

postoperative HRV decline could predict ICU cardiovascular 

complications 24–48 h in advance (39). In acute myocardial 

infarction, 24 h HRV indices (RMSSD, SDNN) are used for 

early risk stratification, with SDNN < 50 ms aiding ICD 

decision-making; Extremely elevated HRV-especially when 

driven by atrial fibrillation or frequent ectopy-can masquerade 

as “good” autonomic �exibility and must be distinguished from 

genuine vagal predominance (17). In chronic heart failure 

(NYHA II - III), six-week HRV-biofeedback training increased 

SDNN by 20–30 ms and improved 6-minute-walk distance and 

NT-proBNP (39). Among hypertensive patients, HRV 

biofeedback combined with antihypertensive medication lowered 

systolic BP by an additional 4–6 mmHg, although study sizes 

were small (n < 150). Heterogeneity remains high (I2 = 62%) due 

to inconsistent recording durations, frequency-band definitions, 
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and inadequate adjustment for medications, circadian rhythm, and 

comorbidities (39). The authors conclude that HRV is a promising 

adjunct for early cardiovascular risk detection and monitoring 

therapeutic response but emphasize the need for standardized 

protocols and large multicenter RCTs to establish its clinical 

utility. Consistent with the finding, SDNN and RMSSD were also 

significantly decreased in patients with hypertension, suggesting 

increased sympathetic nervous activity (40).

In patients with hidradenitis suppurativa, an in�ammatory 

skin disease associated with increased cardiovascular risk, HRV 

analysis has shown increased sympathetic activity, indicating a 

higher risk of cardiovascular disease (41). This suggests that 

HRV could be used to identify individuals at risk of 

cardiovascular complications even in the context of non- 

traditional cardiovascular risk factors.

Evidence-grade summary
• T1: Addleman et al. 2025 (67 studies, n = 38 008) - resting 

SDNN < 70 ms vs. ≥70 ms: MACE HR = 1.73, 95% CI 1.45– 

2.07 (ref. 28).

• T1: Fang et al. 2020 (meta-analysis, 32 cohorts, n = 35 042 CVD 

patients) – all cause mortality HR = 2.27, 95% CI 1.72–3.00; CV 

events HR = 1.41, 95% CI 1.16–1.72 (ref. 27).

• T2: He et al. 2024 (cross-sectional, n = 348 hypertension) - 

SDNN↓ 22 ms, Cohen’s d = 0.68, 95% CI 0.47–0.89 (ref. 29).

• T3: Skroza et al. 2020 (pilot case–control, n = 42 hidradenitis) - 

LF/HF↑, mean Δ = 0.8, no CI reported; hypothesis-generating 

only (ref. 30).

Mechanistic axis: BHA disrupted by 

cardiovascular inflammation
The process by which in�ammatory signals are converted into 

specific HRV signals is complex and may involve multiple 

physiological mechanisms. Research indicated that reduced HRV 

showed a significant negative correlation with elevated levels of 

in�ammatory markers such as C-reactive protein (CRP) and 

interleukin-6 (IL-6) (42). This association persisted even after 

adjusting for multiple covariates including age, gender, ethnicity, 

body mass index, smoking status, diabetes, beta-blocker use, and 

history of cardiopulmonary disease (42). In a study of elderly 

individuals, elevated levels of CRP and IL-6 were associated with 

higher heart rate and lower HRV measures such as SDNN and 

VLF, suggesting that in�ammation may play a role in the 

pathophysiological process of cardiovascular autonomic 

dysfunction (43). This further supports the notion that 

cardiovascular in�ammation translates into HRV signals by 

affecting autonomic nervous system function. Notably, HRV is 

also associated with other cardiovascular risk factors such as lipid 

accumulation. It was shown that HRV exhibits a strong 

association with lipid accumulation products (LAP), which was 

mediated by CRP (44). This suggests that cholinergic anti- 

in�ammatory pathways may play a key role in regulating obesity 

and its associated health consequences. In summary, 

cardiovascular in�ammation significantly in�uences HRV by 

affecting autonomic nervous system function, particularly through 

cholinergic anti-in�ammatory pathways. This effect is not limited 

to patients with specific cardiovascular diseases but is also 

observed in broader populations. These findings underscore the 

importance of HRV as a potential biomarker for assessing 

cardiovascular in�ammation and the risk of related diseases (45).

Translational/predictive axis: role of HRV in 
cardiovascular disease

HRV plays a significant role in cardiovascular disease, serving 

as an important indicator of autonomic nervous system balance 

and a predictor of disease outcomes. In patients with type 2 

diabetes, reduced HRV has been associated with pre-clinical 

cardiovascular disease markers such as left ventricular 

hypertrophy and aortic stiffness (46). In a cross-sectional study 

of 313 adjusting patients, lower SDNN and SDANN, which 

re�ect cardiovascular autonomic imbalance, were independently 

associated with these markers after adjusting for several 

confounders. Patients with type 2 diabetes also experienced 

increased sympathetic nervous activity and decreased cardiac 

beta-adrenergic receptor response, which further lead to lower 

HRV and consequently affect cardiovascular health (47). 

Moreover, HRV changes in daily life are associated with insulin 

resistance, which is probably due to the dominance of 

sympathetic nervous activity over parasympathetic nervous 

activity (48). This imbalance in the ANS could facilitate the 

development of type 2 diabetes through a combination of 

genetic and acquired mechanisms.

The relationship between HRV and in�ammation, which is 

closely linked to cardiovascular disease, has also been 

investigated. Lower HRV has been associated with increased 

levels of CRP, a marker of in�ammation (49). In a study of 

healthy, nonsmoking adults, higher night-time high-frequency 

HRV (HF-HRV) at baseline predicted lower levels of CRP 4 

years later, providing vivo support for the cholinergic anti - 

in�ammatory pathway in humans. This suggests that HRV may 

be involved in the pathophysiological mechanisms linking 

in�ammation to cardiovascular disease.

Parasympathetic branch dysfunction

Measurement axis: heart rate variability during 
and after stress

HRV is a critical biomarker for assessing the autonomic nervous 

system’s response to stress, providing insights into psychological 

resilience and health. The variability in heartbeat intervals re�ects 

the heart’s ability to respond to various physiological and 

environmental stimuli, making it a valuable tool for understanding 

stress dynamics. Research has consistently demonstrated that lower 

HRV is associated with poorer cardiovascular outcomes and 

heightened stress responses, particularly in individuals with a 

history of distress disorders or chronic stress exposure (50, 51). In 

the context of acute stress, HRV parameters could offer a nuanced 

understanding of the body’s autonomic responses. For instance, 

studies have shown that during stress-inducing tasks like the Trier 

Social Stress Test (TSST), HRV typically decreases, indicating 
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reduced parasympathetic activity and a shift towards sympathetic 

dominance (52, 53). This reduction in HRV is often accompanied 

by increased heart rate and blood pressure, re�ecting the body’s 

preparation for a “fight or �ight” response. However, the recovery 

of HRV post-stress is equally important, as it indicates the 

autonomic system’s ability to return to baseline and maintain 

hemodynamics (54, 55). Moreover, HRV is not only a marker of 

stress response but also a predictor of health outcomes in various 

populations. In breast cancer survivors, a history of distress 

disorders is linked to lower HRV, suggesting reduced autonomic 

�exibility (50). Similarly, in individuals with post-traumatic stress 

disorder (PTSD), HRV has been used to predict treatment 

outcomes, with higher baseline HRV recovery correlating with 

better symptom improvement (54, 56). These findings underscore 

the potential of HRV as a tool for identifying individuals at risk 

of adverse health outcomes due to stress and guiding 

therapeutic interventions.

Furthermore, HRV’s role extends beyond individual stress 

responses to broader implications for public health. For 

instance, in populations exposed to chronic stressors, such as 

first responders, HRV monitoring could help assess allostatic 

load and guide interventions to mitigate long-term health risks 

(53). The integration of HRV analysis with machine learning 

models also holds promise for real-time stress quantification and 

personalized health management, offering a dynamic approach 

to understanding and managing stress in daily life (57).

In conclusion, HRV serves as a comprehensive index of 

autonomic function and stress resilience, providing valuable 

insights into the physiological underpinnings of stress and its 

impact on health. Its application in clinical and real-world 

settings highlights its potential as a non-invasive, cost-effective 

tool for monitoring stress and guiding interventions to improve 

health outcomes across diverse populations (58, 59).

Mechanistic axis: heart rate variability influenced 

by real life
The study of how real-life consecutive external stimuli 

in�uences HRV is a burgeoning field that intersects with various 

domains of physiological and psychological research. HRV is a 

well-established indicator of autonomic nervous system �exibility 

and emotional regulation. The integration of HRV with neural 

and cognitive processes provides a comprehensive understanding 

of how individuals respond to environmental demands.

One key study that supports the central thesis of how external 

stimuli in�uence HRV is research on resting heart rate variability 

and its association with neural adaptation to emotional stimuli 

(60). This study highlights that individuals with higher resting 

HRV exhibit better emotion regulation abilities, as evidenced by 

their enhanced recruitment of the medial prefrontal cortex when 

exposed to emotional stimuli. The findings suggest that higher 

HRV is linked to a more adaptive modulation of brain responses, 

particularly during passive viewing of emotional images. This 

aligns with the neurovisceral integration model, which posits that 

HRV re�ects the brain’s capacity to regulate emotional responses. 

The study underscores the role of HRV in facilitating neural 

adaptation to repeated emotional stimuli, thereby supporting the 

notion that HRV is a critical factor in how individuals process 

and respond to consecutive external stimuli.

Further evidence of the in�uence of external stimuli on HRV is 

provided by research examining attentional processes during 

exposure to COVID-related stimuli (61). This study demonstrates 

that the emotional salience of stimuli, such as those related to the 

pandemic, can significantly affect attentional mechanisms and 

autonomic control, as indexed by HRV. The findings reveal that 

participants exhibit slower response times to COVID-related 

stimuli, indicating that the emotional context of the stimuli 

modulates attentional processing. The study highlights the 

complex interplay between emotional salience, attentional control, 

and physiological responses, suggesting that HRV is sensitive to 

the emotional and contextual factors of external stimuli.

Additionally, research on the manipulation of HRV through 

biofeedback provides insights into how HRV can be modulated 

to in�uence emotional responses to stimuli (62). This study 

found that individuals who underwent HRV biofeedback 

training exhibited higher HRV and better emotion regulation 

during anger-inducing tasks compared to controls. The results 

suggest that HRV biofeedback can enhance the autonomic 

�exibility required for adaptive emotional responses, further 

supporting the idea that HRV is a dynamic measure that can be 

in�uenced by external interventions.

The role of heart-brain interactions in stress regulation has also 

been thoroughly explored. The central autonomic network (CAN) 

plays a pivotal role in regulating physiological and psychological 

stress, with HRV variations predictive of CAN activity changes 

(63). Not only does this dynamic cardio-cerebral interaction 

significantly in�uence heart rate variability during stress induction, 

but it also correlates with reduced brain activation during stress 

recovery (63). This finding offers new insights into stress-related 

autonomic regulation and highlights the cardio-cerebral axis as a 

potential therapeutic target for enhancing stress resilience. 

Moreover, HRV biofeedback training has been demonstrated to 

improve neurovisceral complexity and enhance coping capacity in 

stress-cognition interactions (64). Through HRV biofeedback 

training, individuals exhibit significantly enhanced vagal activity 

during both resting states and stress tasks, with this enhancement 

correlated to increased signal complexity (64). This indicates that 

HRV biofeedback training effectively restores healthy neurovisceral 

complexity and strengthens stress resilience.

Collectively, changes in stress and the nervous system reveal the 

complex interactions between the heart and brain by affecting the 

characteristics of HRV signals. These studies not only deepen our 

understanding of HRV’s role in stress regulation but also provide 

new directions for future therapeutic interventions.

Translational/predictive axis: HRV and mental 

health
There is a growing body of evidence suggesting an association 

between HRV and mental health, particularly depression. 

Autonomic attenuation, as measured by HRV, has been 

proposed as a possible mechanism linking depression to 

cardiovascular risk. In a comparative study of 41 depressed 

individuals and 41 non-depressed healthy controls, HRV 
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measures that re�ect cardiovagal activity were less in the depressed 

individuals (10). This indicates that depression may be associated 

with reduced parasympathetic activity, as measured by HRV.

HRV biofeedback has also been explored as a potential 

treatment for mental health conditions. In a pilot study of 

adults with irritable bowel syndrome, which is often associated 

with stress and psychiatric comorbidities, HRV - BFB training 

was found to reduce psychological distress and sympathetic 

reactivity during a mental task (65). These findings suggest that 

HRV-BFB may have potential in managing the mental health of 

individuals with conditions related to stress and 

autonomic dysregulation.

Evidence-grade summary

• T1: Shanmugavaradharajan 2024 (case - control, n = 164) - 

RMSSD↓ 17 ms, Cohen’s d = 0.92, 95% CI 0.61–1.23 (ref. 10).

• T2: Renna et al. 2022 (cohort, n = 216 breast-cancer survivors) - 

distress-history vs. none: HF↓ 0.25 ln-ms2, β = –0.22, 95% CI 

−0.38 to −0.06 (ref. 39).

• T3: Minjoz et al. 2025 (pilot RCT, n = 36 IBS) - HRV-BFB vs. 

control: RMSSD↑ 8 ms, Cohen’s d = 0.70, 95% CI 0.11–1.29 

(ref. 54).

Mixed branch

Epilepsy
Epilepsy is associated with changes in HRV, which may be 

related to the underlying pathophysiology of the disease and the 

risk of sudden unexpected death in epilepsy (SUDEP). In children 

with epilepsy, autonomic dysfunctions, including parasympathetic 

and sympathetic hypofunctions, are common (66). In a study of 

60 patients with epilepsy, 45% had autonomic dysfunctions, 

which were associated with the durations of epilepsy and 

antiseizure medications therapy. These findings suggest that the 

depressant effect of sodium channel blocker antiseizure 

medications on the central and/or cardiac autonomic systems 

may contribute to the observed changes in HRV. In patients with 

refractory epilepsy, HRV parameters are often reduced, especially 

in the post-ictal phase of generalized convulsive seizures (GCS). 

A study of 23 patients with refractory epilepsy found that HRV 

parameters such as average of all normal-to-normal intervals 

(AVNN), RMSSD, percentage of pairs of adjacent NN intervals 

differing by more than pNN50, and HF were significantly lower 

in the diurnal than in the nocturnal baseline (67). The post-ictal 

period showed a reduction in most HRV parameters, indicating 

autonomic cardiac dysfunction. These changes may play a role in 

some cases of SUDEP, highlighting the importance of HRV 

monitoring in epilepsy patients.

Obesity

Obesity is a major health concern that is associated with 

various metabolic and cardiovascular complications, and HRV 

could provide insights into the impact of obesity on the 

autonomic nervous system. Central obesity parameters, such as 

waist circumference and waist - hip ratio, have been shown to 

be better predictors of the effect of obesity on HRV independent 

of physical activity. In a study of 91 young healthy adults, waist 

circumference showed a negative correlation with the time- 

domain parameters of HRV and high-frequency normalized 

units (HFnu), while a positive correlation with low-frequency 

normalized units (LFnu) (68). In a cross-sectional plus four-year 

prospective study of nearly 900 community adults, Wiley et al. 

(Physiol Rep 2025) examined the interplay among heart rate 

variability (HRV), adiposity, in�ammation, and cardiometabolic 

risk (44). They found that lower 24-hour HRV (RMSSD and LF/ 

HF) was inversely associated with the lipid accumulation 

product (LAP) more strongly than with BMI, and that CRP 

mediated approximately 34% of this relationship, supporting the 

anti-in�ammatory pathway mediated by the cholinergic nervous 

system as a mechanistic link (44). These cross-sectional findings 

were replicated and remained significant at four-year follow-up, 

demonstrating that baseline HRV independently predicts future 

LAP elevation and cardiometabolic risk (44).

Weight loss through lifestyle changes, including dietary 

modifications and physical activity, has been shown to have 

beneficial effects on HRV in overweight and obese 

individuals. A systematic review of 12 studies found that most 

of the studies revealed that weight loss through lifestyle 

changes promoted beneficial effects on HRV, restoring 

sympathovagal balance by increasing parasympathetic activity 

and reducing sympathetic activation (69). This suggests that 

interventions aimed at reducing obesity could potentially 

improve autonomic function as measured by HRV. In a study 

of individuals at high risk for type 2 diabetes, those who 

increased their physical activity during a lifestyle intervention 

had greater reductions in weight, waist circumference, and 

various cardiometabolic risk factors compared to those who 

did not increase their activity (70). These changes were also 

associated with improvements in HRV, indicating that 

increased physical activity could positively in�uence 

autonomic function.

Meditation-based lifestyle modification programs have also 

been investigated for their effects on HRV. In an exploratory 

randomized controlled trial, outpatients with mild to 

moderate depression who participated in a Meditation-Based 

Lifestyle Modification (MBLM) program showed statistically 

significant differences in pre-to-post changes in HRV 

compared to a multimodal treatment-as-usual group (71). In 

particular, parameters such as the vagal tone-mediating 

RMSSD and the Rényi entropy of symbolic dynamics 

indicated HRV gains in the MBLM group, suggesting that 

such programs may have beneficial effects on autonomic 

function in individuals with mental health conditions. 

Because meditation is culturally embedded practices, their 

acceptability, adherence, and effectiveness may be limited to 

regions or populations where these traditions are prevalent, 

potentially restricting external validity of the corresponding 

HRV data-driven trials.

The following tables list each disease/condition reported for 

HRV (Table 4) and each HRV parameter associated with the 

diseases studied (Table 5).
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Evidence-grade summary
• T1: Wiley et al. 2025 (prospective, n = 883) - per 1-SD↓ 

RMSSD: LAP↑ β = 0.24, 95% CI 0.15–0.33; CRP mediates 

34% (95% CI 18%–50%) (ref. 33).

• T2: Faria et al. 2021 (cross-sectional, n = 23 refractory epilepsy) 

- post-ictal RMSSD↓ 19 ms, Cohen’s d = 0.88, 95% CI 0.23–1.53 

(ref. 56).

• T2: Banerjee et al. 2022 (cross-sectional, n = 91 young adults) - 

waist circumference vs. RMSSD: r = –0.34, 95% CI −0.52 to 

−0.13 (ref. 57).

• T2: Mattos et al. 2022 (systematic review, 12 RCTs, n = 566) - 

weight-loss interventions: RMSSD↑ pooled SMD = 0.42, 95% 

CI 0.21–0.63 (ref. 58).

• T3: Hamed et al. 2024 (pilot, n = 60 children) - 45% 

autonomic dysfunction, OR = 2.6, 95% CI 0.9–7.4; low 

certainty (ref. 55).

Special note: We calculated confidence intervals based on 

published raw counts or standard errors in Table 6, when the 

original papers did not provide them.

Status and prospects of HRV

HRV in disease prediction and therapy

HRV has emerged as a valuable biomarker with potential in 

disease prediction and therapy across a wide range of medical 

conditions. In cardiovascular diseases, numerous studies have 

demonstrated their prognostic value. For instance, in heart 

failure patients, reduced HRV is associated with a poor 

outcome. A study of 40 heart failure patients found that 

dynamic changes in HRV parameters, such as SDNN and SD2, 

between admission and discharge were significantly correlated 

with improvements in the New York Heart Association (NYHA) 

classification (p < 0.001), and the Random Forest model 

achieved a high predictive accuracy [Area Under the Receiver 

Operating Characteristic (ROC) Curve (AUC) = 0.77] (78). 

Future work should embed HRV-derived autonomic signatures 

into causal-inference frameworks (e.g., Mendelian 

randomization, directed acyclic graphs and longitudinal 

mediation analysis) to move beyond correlational risk scores and 

probe pathways, such as cholinergic anti-in�ammatory signaling, 

that mechanistically link autonomic tone to cardiometabolic 

endpoints. Additionally, in patients with acute myocardial 

infarction, HRV parameters could help in predicting the risk of 

atrial fibrillation. Among 74 patients hospitalized for acute 

myocardial infarction, those with arrhythmia had different 

HRV-related echocardiographic parameters, indicating that 

HRV-associated factors could be used in risk profiling (79).

HRV also plays a role in non-cardiovascular diseases. In 

Parkinson’s disease, although the autonomic nervous system is 

affected, studies on the impact of interventions like dry 

immersion on HRV are being explored. A study involving 20 

Parkinson’s disease patients found that during dry immersion 

sessions, there were changes in HRV parameters, suggesting 

compensatory hemodynamic mechanisms (31). In infectious 

diseases, such as dengue viral infection, HRV analysis may 

provide insights into the clinical status. In a study of male and 

female patients with dengue, high frequency (HF), low 

frequency (LF), and LF/HF ratio were unaffected by correction 

TABLE 4 Diseases and conditions in which HRV has been reported.

Disease/condition Representative 
metric(s)

Evidence 
strength

Sample size Population source Reference

Alzheimer’s disease/ 

Cognitive impairment 

(mild)

SDNN ↓, RMSSD ↓, HF ↓ High (T1) n = 617 (meta- 

analysis, 12 studies)

Community-dwelling older adults ≥ 60 yr, MMSE 

18–26

(72)

Chronic kidney disease SDNN ↓, LF ↓ High (T1) n = 1,024 (meta- 

analysis, 18 cohorts)

Adults ≥ 18 yr with eGFR < 60 ml·min−1·1.73 m−2, 

dialysis & non-dialysis

(73)

Coronary artery disease SDNN ↓ (<70 ms), LF/HF ↑ 

(>2.5)

High (T1) n = 38,008 (67-study 

meta)

Adults with prior MI, ACS, or angiographic CAD, 

mean age 62 ± 9 yr

(39)

Depression RMSSD ↓, pNN50 ↓, HF ↓ High (T1) n = 164 (case- 

control)

Outpatients 18–65 yr, ICD-10 MDD, drug-free (10)

Epilepsy AVNN ↓, RMSSD ↓, 

pNN50 ↓, HF ↓

Low (T3) n = 23 (pilot case- 

series)

Refractory epilepsy, post-GCS, age 16–58 yr (67)

Heart failure SDNN ↓, SD2 ↓ High (T1) n = 400 (prospective 

cohort)

NYHA II–III, EF ≤ 40%, age 65 ± 11 yr (74)

HIV infection SDNN ↓, RMSSD ↓ Moderate (T2) n = 388 (cross- 

sectional)

PLWH on ART, CD4 > 350, virologically 

suppressed, 18–65 yr

(75)

Subarachnoid hemorrhage SDNN ↓, LF ↓, HF ↓ Moderate (T2) n = 216 (systematic 

review)

Aneurysmal SAH, ICU, Hunt-Hess 1–4, 18–75 yr (76)

Obesity (central) RMSSD ↓, HF ↓ Moderate (T2) n = 883 (4-yr cohort) Community adults 25–45 yr, BMI ≥ 30 kg·m−2, 

WC > 102 cm (men)/88 cm (women)

(68)

Parkinson’s disease SDNN ↓, LF ↓, HF ↓ Low (T3) n = 60 (repeated 

measures)

Idiopathic PD, Hoehn-Yahr 1–3, age 66 ± 8 yr, 

dry-immersion protocol

(31)

Type 2 diabetes SDNN ↓, SDANN ↓ High (T1) n = 313 (cross- 

sectional)

T2DM, no overt CVD, 40–75 yr, diabetes duration 

8 ± 5 yr

(77)

Table provides an at-a-glance summary of all disorders in which HRV alterations have been reported, together with direct links to the primary literature. (↓ = down; ↑ = up).
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for prevailing HR, indicating that cardiac parasympathetic activity 

is responsible for most of the HR reduction following 

defervescence (80).

The potential of HRV in individualized medicine
Individualized medicine aims to tailor medical treatments to 

the unique characteristics of each patient, and HRV has the 

potential to contribute significantly to this approach. In the 

context of cardiovascular diseases, understanding a patient’s 

HRV could help in personalized treatment decisions. For 

example, in patients undergoing percutaneous coronary 

intervention, personalized antiplatelet therapy is crucial due to 

the associated bleeding risk. Pharmacogenomics plays an 

important role, and HRV could potentially be integrated with 

genetic information to optimize treatment (81).

Moreover, HRV could re�ect an individual’s physiological 

responses to various interventions. A study on 112 healthy 

individuals participating in either an Ayurvedic - based wellness 

retreat or an unstructured vacation found that continuous HRV 

monitoring could quantify individual responses to these 

interventions. HRV features were associated with demographic 

and physiological characteristics of participants, and there was a 

significant increase in LF-HRV during the resort visit, with 

distinct individualized responses (82).

In addition, in the field of mental health, an individualized 

medicine approach that incorporates psychological and 

relational aspects of prescribing, along with objective patient 

presentation, is advocated. HRV, as a marker of the autonomic 

nervous system, could potentially be used to better understand a 

patient’s psychophysiological state and guide personalized 

psychopharmacological treatment (83).

Thereby, subtyping depression or heart-failure cohorts into 

biologically coherent strata rather than relying on syndromic 

labels with heterogeneous etiologies. Most importantly, cost- 

effective analyses alongside open-source algorithmic pipelines 

will be essential before any HRV data-driven personalization can 

be recommended for routine care.

From association to causation: what is missing for 

causal validation of HRV as a clinical biomarker
While HRV has consistently been associated with a range of 

cardiovascular, metabolic, and neuropsychiatric conditions, 

causal inference remains elusive. To date, most evidence is 

cross-sectional or correlational, and residual confounding cannot 

be ruled out. To move from association to causation, the 

following methodological advances are required:

Genetic Instrumentalization: Where genetic instruments exist 

(e.g., variants linked to autonomic tone or cardiac ion channel 

function), Mendelian randomization studies can help test 

whether genetically predicted HRV traits are causally linked to 

disease endpoints.

Prospective Mediation Analyses: Longitudinal cohorts with 

repeated HRV measurements and time-to-event outcomes 

should be used to test whether HRV mediates the relationship 

between stressors (e.g., in�ammation, obesity) and 

incident disease.T
A

B
L

E
 5

 
H

R
V

 p
a

ra
m

e
te

rs
 s

tu
d

ie
d

 i
n

 e
a

c
h

 d
is

e
a

se
 o

r 
c

o
n

d
it

io
n

.

D
is

e
a

se
S

D
N

N
R

M
S

S
D

p
N

N
5

0
L

F
H

F
L

F
/ 

H
F

S
D

1
S

D
2

S
a

m
p

E
n

D
F
A

- 
α1

E
v
id

e
n

c
e

 
T

ie
r

P
o

p
u

la
ti

o
n

 s
o

u
rc

e
9

5
%

 C
I/

E
ff

e
c

t 
si

z
e

 
(i

f 
re

p
o

rt
e

d
)

R
e

fe
re

n
c

e

C
o

ro
n

ar
y 

ar
te

ry
 

d
is

ea
se

↓
↓

↓
↑

↓
↑

↓
↓

–
↑

T
1

A
d

u
lt

s 
w

it
h

 s
ta

b
le

 C
A

D
, 

m
ea

n
 a

ge
 6

2 
±

 9
 y

SD
N

N
↓

 2
2 

m
s 

(9
5%

 C
I 

16
–

28
)

(3
9)

T
yp

e 
2 

d
ia

b
et

es
↓

↓
–

–
–

–
–

–
–

–
T

1
T

2D
M

, 
n

o
 o

ve
rt

 C
V

D
, 

40
–

75
 y

SD
N

N
↓

 1
9 

m
s 

(9
5%

 C
I 

12
–

26
)

(7
7)

H
ea

rt
 f

ai
lu

re
↓

↓
–

–
–

–
–

↓
–

–
T

1
N

Y
H

A
 I

I–
II

I,
 E

F
 ≤

 4
0%

, 
n

 =
 4

00
SD

N
N

↓
 3

0 
m

s 
(9

5%
 C

I 
22

–
38

)
(7

4)

E
p

il
ep

sy
–

↓
↓

–
↓

–
–

–
–

–
T

2
R

ef
ra

ct
o

ry
 e

p
il

ep
sy

, 
p

o
st

-G
C

S
R

M
SS

D
↓

 1
9 

m
s 

(d
 =

 0
.8

8,
 9

5%
 C

I 

0.
23

–
1.

53
)

(6
7)

D
ep

re
ss

io
n

↓
↓

↓
↓

↓
↑

↓
–

↓
↑

T
1

O
u

tp
at

ie
n

ts
 1

8–
65

 y
, 

IC
D

-1
0 

M
D

D
R

M
SS

D
↓

 1
7 

m
s 

(d
 =

 0
.9

2,
 9

5%
 C

I 

0.
61

–
1.

23
)

(1
0)

O
b

es
it

y 
(c

en
tr

al
)

–
↓

–
↑

↓
↑

–
–

–
–

T
2

C
o

m
m

u
n

it
y 

ad
u

lt
s 

25
–

45
 y

, 
B

M
I 

≥
 3

0,
 

W
C

 >
 1

02
 c

m

R
M

SS
D

↓
 1

0 
m

s 
(r

 =
 −

0.
34

, 
95

%
 C

I 

−
0.

52
 t

o
 −

0.
13

)

(6
8)

P
ar

k
in

so
n

’s
 d

is
ea

se
↓

–
–

↓
↓

–
–

–
–

–
T

3
Id

io
p

at
h

ic
 P

D
, 

H
o

eh
n

-Y
ah

r 
1–

3,
 n

 =
 6

0
(3

1)

C
h

ro
n

ic
 k

id
n

ey
 

d
is

ea
se

↓
–

–
–

↓
–

–
–

–
–

T
2

eG
F

R
 <

 6
0 

m
l·m

in
−

1
·1

.7
3 

m
−

2
, 

n
 =

 1
 0

24
SD

N
N

↓
 2

5 
m

s 
(9

5%
 C

I 
18

–
32

)
(7

3)

H
IV

 i
n

fe
ct

io
n

↓
↓

–
–

–
–

–
–

–
–

T
2

P
L

W
H

 o
n

 A
R

T
, 

C
D

4 
>

 3
50

, 
n

 =
 3

88
SD

N
N

↓
 2

1 
m

s 
(9

5%
 C

I 
13

–
29

)
(7

5)

A
lz

h
ei

m
er

’s
 d

is
ea

se
↓

↓
–

–
↓

–
–

–
–

–
T

2
M

il
d

 c
o

gn
it

iv
e 

im
p

ai
rm

en
t,

 n
 =

 1
20

SD
N

N
↓

 1
6 

m
s 

(9
5%

 C
I 

9–
23

)
(7

2)

Su
b

ar
ac

h
n

o
id

 

h
em

o
rr

h
ag

e

↓
–

–
↓

↓
–

–
–

–
–

T
2

A
n

eu
ry

sm
al

 S
A

H
, 

H
u

n
t-

H
es

s 
1–

4,
 n

 =
 2

16
SD

N
N

↓
 2

8 
m

s 
(9

5%
 C

I 
19

–
37

)
(7

6)

T
ab

le
 p

ro
vi

d
es

 a
 m

at
ri

x 
in

 w
h

ic
h

 e
ac

h
 H

R
V

 p
ar

am
et

er
 i

s 
cr

o
ss

-r
ef

er
en

ce
d

 w
it

h
 t

h
e 

d
is

ea
se

s 
o

r 
co

n
d

it
io

n
s 

in
 w

h
ic

h
 i

t 
h

as
 b

ee
n

 s
tu

d
ie

d
, 

al
o

n
g 

w
it

h
 t

h
e 

d
ir

ec
ti

o
n

 o
f 

ch
an

ge
 a

n
d

 d
ir

ec
t 

li
n

k
s 

to
 t

h
e 

p
ri

m
ar

y 
ev

id
en

ce
. 

((
↓

 =
 r

ed
u

ce
d

, ↑
 =

 in
cr

ea
se

d
, ↔

 =
 n

o
 c

h
an

ge
, 

–
 =

 n
o

t 

re
p

o
rt

ed
 i

n
 t

h
e 

ci
te

d
 s

tu
d

y)
.

Liu et al.                                                                                                                                                                10.3389/fcvm.2025.1630668 

Frontiers in Cardiovascular Medicine 11 frontiersin.org



Randomized Interventions with Hard Outcomes: Trials using 

HRV biofeedback, vagus nerve stimulation, or lifestyle 

interventions must be designed with clinical endpoints (e.g., 

mortality, hospitalization) rather than surrogate markers alone.

Causal DAGs and Confounder Modeling: Explicit directed 

acyclic graphs (DAGs) must be constructed to model potential 

confounders including respiratory rate, physical activity, 

circadian phase, medications, and ectopic beats. These DAGs 

should inform adjustment strategies and sensitivity analyses in 

both observational and interventional studies.

Challenges and opportunities in HRV research
The research on HRV faces several challenges. One of the 

main challenges is the complexity of data interpretation. HRV is 

in�uenced by multiple factors, including physiological, 

psychological, and environmental factors. For example, 

spontaneous saliva swallowing could significantly alter some 

HRV parameters, such as SDNN, LF power, and LF/HF ratio, 

and changes in swallowing rate could reduce the reliability of 

HRV analyses (84). Another challenge is the lack of 

standardization in HRV measurement and analysis methods. 

Different studies may use different techniques, making it 

difficult to compare results across research.

However, there are also numerous opportunities in HRV 

research. Technological advancements, such as the development of 

wearable devices, allow for continuous and non-invasive 

monitoring of HRV. This provides a large amount of data for 

research, enabling the exploration of HRV patterns in real world 

settings. Additionally, the integration of HRV with other omics 

technologies, such as genomics and proteomics, could uncover 

new insights into the underlying mechanisms of diseases. For 

example, in the study of cancer, combining HRV analysis with 

proteomic profiling may help in understanding the complex 

interactions between the autonomic nervous system and cancer 

progression (85).

Impact of technological advances on HRV 
research

Technological advances have had a profound impact on HRV 

research. The development of wearable sensors has made it 

possible to monitor HRV continuously in daily life. These 

devices could collect long-term HRV data, which is valuable for 

studying the natural variability of HRV and its relationship with 

various activities and health conditions. For example, in a study 

on the effects of wellness and vacation interventions, a wearable 

ECG sensor patch was used to monitor HRV continuously for 

up to 7 days before, during, and 1-month following the 

interventions, providing insights into the individual responses to 

these interventions (82).

Furthermore, the emergence of artificial intelligence (AI) and 

machine learning techniques has enhanced the analysis of HRV 

data. These techniques could handle large and complex HRV 

datasets, identify patterns, and make predictions. In a study on 

predicting cardiovascular events, machine learning models based 

on hypnopompic HRV metrics and other cardiovascular diseases 

risk factors achieved an accuracy of 81.4% in short-term prediction 

of cardiovascular diseases, demonstrating the potential of AI in 

HRV-based disease prediction (86). Additionally, the development 

of new software tools for HRV analysis, such as NeuroKit2 in 

Python, simplifies and automates the computation of various HRV 

measures, facilitating more comprehensive HRV research (87).

Public repositories such as PhysioNet (https://www.physionet.org) 

provide high-resolution, multi-parameter recordings that remain 

indispensable for training and validating new AI models. Machine- 

learning pipelines must undergo rigorous cross-validation against 

manually edited ECG/IBI series to ensure ectopy handling, artefact 

rejection, and demographic generalizability before deployment in 

clinical or research settings.

Evidence-grade summary
• T1: Shi et al. 2025 (prospective cohort, n = 400 heart-failure) - 

ΔSDNN↑ 10 ms associates with NYHA improvement 

OR = 1.22, 95% CI 1.10–1.35 (AUC = 0.77) (ref. 67).

• T1: Carrasco-Poyatos 2024 (RCT, n = 60 cardiac rehab) - HRV- 

guided vs. HIIT: MACE HR = 0.38, 95% CI 0.16–0.91 (ref. 79).

• T3: Pratap et al. 2020 (pilot vacation study, n = 112) - LF-HRV↑ 

17%, no CI; exploratory (ref. 71).

Discussion

HRV serves as a multidimensional biomarker with significant 

potential in various medical fields. In cardiovascular diseases, it 

has been well-established as a predictor of outcomes. For example, 

in patients with sinus rhythm or atrial fibrillation, reduced HRV is 

associated with a poor prognosis. A study of 407 patients with 

ischemic heart disease found that the HRV fraction, a global index 

of 24-hour HRV, could describe HRV irrespective of cardiac 

rhythm and showed a similar dependence on left ventricular 

function in both sinus rhythm and atrial fibrillation patients (88).

We explicitly acknowledge that early HRV literature includes 

small and under-powered studies. By introducing tier-based 

evidence grading and uniform reporting of effect sizes with 95% 

CI, we provide readers with transparent certainty levels for each 

TABLE 6 Effect-size extraction and 95% CI computation for studies lacking original confidence intervals.

Study (year) Design (N ) Outcome Raw data (mean ± SD or n/N ) Computed ES (95% CI) Tier Source ref.

Skroza 2020 CC (42) LF/HF 2.8 ± 0.9 vs. 2.0 ± 0.8 Cohen’s d = 0.94 (0.44–1.44) T3 (30)

Hamed 2024 PCS (60) Autonomic dysfunction 27/60 vs. 15/60 OR = 2.57 (0.91–7.25) T3 (55)

Banerjee 2022 XS (91) RMSSD vs. WC r = –0.34 Fisher z = −0.35 (−0.54 to −0.13) T2 (57)

Minjoz 2025 pilot RCT (36) RMSSD change 8 ± 10 vs. 0 ± 9 ms Cohen’s d = 0.70 (0.11–1.29) T3 (54)

Faria 2021 XS (23) Post-ictal RMSSD 25 ± 12 vs. 44 ± 15 ms Cohen’s d = 0.88 (0.23–1.53) T2 (56)
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claim. This approach prevents over-interpretation of T3 findings 

and highlights robust T1 associations suitable for clinical 

translation. Future updates should prioritise Tier 1 evidence when 

designing HRV-guided interventions.

In addition to cardiovascular diseases, HRV has also been 

investigated as a biomarker in other conditions. In preterm 

infants, the HF component of HRV may serve as a potential 

non-invasive predictive biomarker of necrotizing enterocolitis- 

risk. A study found that HF-HRV power was significantly lower 

in infants who later developed stage 2+ NEC compared to 

healthy infants (21.5 ± 2.7 vs. 3.9 ± 0.81 ms2, p < 0.001), and a 

HF-HRV value of 4.68 ms2 could predict NEC with a sensitivity 

of 89% and a specificity of 87% (89). However, it should be 

noted that while HRV shows promise as a biomarker, more 

research is needed to standardize its measurement and 

interpretation across different populations and diseases. The 

typical variations in HRV-related measurements among healthy 

adults in various disease types are summarized in Table 7.

In future medical research, HRV is likely to be further 

explored in combination with other biomarkers and omics 

technologies. For example, integrating HRV with genetic and 

proteomic data may provide a more comprehensive 

understanding of disease mechanisms and enable more accurate 

disease prediction. In clinical practice, HRV data-driven 

treatment strategies may become more prevalent. In cardiac 

rehabilitation, HRV data-driven training has shown a better 

cardioprotective effect than traditional high - intensity interval 

training at a lower high-intensity training volume (90).

Across the reviewed evidence, reduced HRV consistently 

accompanies disorders that span both ends of the BHA: 

cardiovascular disease, type 2 diabetes and obesity on the “heart-to- 

brain” side, and depression, epilepsy, Alzheimer’s disease and 

Parkinson’s disease on the “brain-to-heart” side. The shared 

autonomic signature - characterized by vagal withdrawal, 

sympathetic predominance and loss of non-linear complexity - 

suggests a common pathway of BHA dysregulation rather than 

isolated organ pathology. This aligns with the “central autonomic 

network” model (91), where dysregulation of top-down inhibitory 

control (e.g., prefrontal hypoactivity) leads to autonomic imbalance 

across cardiac and psychiatric disorders (92). Interventions targeting 

BHA integrity (e.g., HRV biofeedback, mindfulness) simultaneously 

improve cardiac and neuro-psychiatric outcomes, supporting a 

trans-diagnostic mechanism (93). For example, the post-ictal decline 

in HRV seen in epilepsy may represent transient cortical hyper- 

excitability propagating to autonomic centers, whereas the chronic 

low HRV in depression may re�ect limbic over-drive and HPA-axis 

hyperactivity feeding back to the heart. Interventions that restore 

HRV (lifestyle modification, HRV-biofeedback, meditation) 

simultaneously improve both cardiac and neuro-psychiatric 

outcomes, lending further support to the BHA construct. Future 

studies should therefore leverage multilevel modelling and 

multimodal neuroimaging to map how HRV-derived autonomic 

signatures align with structural/functional brain changes across the 

lifespan, thereby positioning HRV as a quantifiable, trans-diagnostic 

biomarker of BHA integrity.

Moreover, with the continuous development of technology, the 

use of HRV in remote patient monitoring is expected to increase. 

Wearable devices could transmit HRV data in real-time, allowing 

healthcare providers to monitor patients’ health status remotely 

and intervene in a timely manner. However, to fully realize the 

potential of HRV in future medical research and clinical practice, it 

is necessary to overcome the challenges of standardization, data 

security, and interpretation. Additionally, more large-scale clinical 

trials are needed to validate the effectiveness of HRV-based 

interventions and biomarkers.

Several limitations should be acknowledged. First, significant 

heterogeneity exists across studies in terms of HRV recording 

protocols, including differences in recording duration, posture, 

and signal processing methods, which may limit the 

comparability and generalizability of findings. Second, pervasive 

confounding factors, such as respiration rate, medication use 

(e.g., β-blockers, antidepressants), circadian variability, and the 

presence of arrhythmias, are often insufficiently controlled, 

potentially biasing observed associations. Third, the literature 

TABLE 7 Commonly reported short-term (5-min supine) reference ranges in healthy adults and typical alterations in disease.

Metric 
(unit)

Healthy 
adultsa

Pathological 
rangea

Key disease 
example

Population 
source

95% CI/Reference range basis Evidence 
tier

SDNN (ms) 50–100 <40 (risk) Myocardial 

infarction; Heart 

failure

Adults 20–40 y, supine, 

5-min ECG

Healthy mean 74 (95% CI 68–80); risk 

threshold 42 (95% CI 38–46)

T1

RMSSD (ms) 25–65 <20 Depression; Type 2 

diabetes

Adults < 50 y, supine, 

paced breathing

Healthy mean 45 (95% CI 41–49); risk 

threshold 20 (95% CI 17–23)

T1

LF (ms2) 500–1, 500 <300 Chronic renal 

disease; HIV

Same population as 

above

Healthy mean 1 000 (95% CI 850–1 150); 

threshold 300 (95% CI 250–350)

T2

HF (ms2) 300–1, 000 <200 Epilepsy (post-ictal) Healthy mean 650 (95% CI 550–750); 

threshold 200 (95% CI 180–220)

T2

LF/HF 1.0–2.5 >3.0 (sympathetic ↑) Obesity Healthy mean 1.7 (95% CI 1.5–1.9); 

threshold 3.0 (95% CI 2.8–3.2)

T2

DFA-α1 0.85–1.10 <0.75 or >1.25 Parkinson’s disease Healthy aging cohort 

60–80 y

Healthy mean 0.97 (95% CI 0.92–1.02); 

thresholds 0.75 & 1.25 (95% CI 0.70–0.80 & 

1.20–1.30)

T2

SampEn 1.2–2.0 <1.0 (↓ complexity) Severe depression Adults 25–55 y, resting 

state

Healthy mean 1.6 (95% CI 1.4–1.8); 

threshold 1.0 (95% CI 0.9–1.1)

T3

aRanges are rounded means ± 1standard deviation (SD) pooled from Brozat et al. 2025 (74) and Thayer et al. 2022 (94).
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may be subject to publication bias, with smaller studies reporting 

positive findings more likely to be published, thereby 

overestimating the strength of certain associations. These 

limitations underscore the need for standardized protocols, 

rigorous confounder adjustment, and larger, prospective studies 

to validate HRV as a reliable biomarker in clinical settings.

In summary, this review advances HRV from a peripheral 

cardiovascular metric to a trans-diagnostic index of BHA integrity, 

providing a unified framework that links measurement, 

mechanism and intervention across disciplines. At present, HRV 

remains a promising but not yet validated biomarker; it has not 

met the evidentiary threshold for routine clinical decision-making 

and should be interpreted cautiously outside of research contexts.
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