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Background: Deep vein thrombosis (DVT) is a common and potentially life- 

threatening complication after gastrointestinal surgery. Traditional risk 

assessment tools rely on static variables and may not effectively capture 

dynamic perioperative changes.

Methods: Clinical data from 596 Chinese patients undergoing gastrointestinal 

surgery were retrospectively collected. Patients were randomly divided into 

training and validation sets (7:3 ratio). Five machine learning algorithms— 

logistic regression (LR), Extreme Gradient Boosting (XGBoost), multilayer 

perceptron (MLP), random forest (RF), and elastic net (ENet)—were applied to 

identify key predictive features and build risk prediction models. The optimal 

model was visualized using a nomogram and validated through calibration 

curves, receiver operating characteristic (ROC) curves, and decision curve 

analysis (DCA).

Results: Among the five models, the RF model achieved the best predictive 

performance. Postoperative Day-7 D-dimer, Day-1 D-dimer, and Day-5 

D-dimer were identified as the most important predictive features. The 

calibration curve and DCA further confirmed the nomogram’s predictive 

accuracy and clinical utility.

Conclusion: We developed a novel machine learning–based model for 

predicting postoperative DVT in Chinese patients after gastrointestinal surgery. 

Integrating dynamic biomarkers and nonlinear modeling, the tool enhances 

early identification of high-risk individuals. Multicenter validation is warranted 

to further strengthen the model’s applicability.
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1 Introduction

Venous thromboembolism (VTE), including deep vein 

thrombosis (DVT) and pulmonary embolism (PE), is a common 

and severe complication following abdominal surgery (1). Surgical 

procedures and hospitalization are significant risk factors for VTE, 

with major surgeries considered independent risk factors due to 

prolonged immobilization, vascular injury, and increased 

hypercoagulability induced by surgical stress (2). Among VTE, 

DVT is the most frequent manifestation, characterized by abnormal 

blood coagulation within deep veins, lumen obstruction, and 

subsequent impairment of venous return. Although approximately 

half of DVT patients may be asymptomatic, nearly one-third are at 

risk of developing PE, a potentially fatal complication (3).

Systematic reviews have shown that the incidence of 

perioperative DVT in gastrointestinal surgery generally remains low 

but varies significantly based on surgical approach and procedure 

type. Specifically, major open abdominal surgeries, particularly 

those involving oncologic resections or emergency procedures, 

carry a higher risk of DVT, whereas minimally invasive techniques 

have relatively lower risks (4, 5). Current evidence suggests that 

prophylactic anticoagulant strategies combining mechanical and 

pharmacological methods effectively reduce postoperative DVT in 

selected patients (6). However, in patients with very low baseline 

risk, the hemorrhagic complications associated with routine 

anticoagulant prophylaxis may outweigh its clinical benefits (5).

Despite these findings, existing risk assessment tools for 

perioperative DVT remain limited in predictive accuracy and 

generalizability. Traditional scoring systems, such as the Caprini or 

Padua scores, primarily rely on static preoperative variables and 

may not fully capture dynamic perioperative changes in 

coagulation status, in1ammatory response, and hemodynamics 

(7, 8). Moreover, their applicability to diverse populations, 

including Chinese patients undergoing gastrointestinal surgery, 

remains uncertain. Consequently, there is a pressing need for more 

precise and individualized risk stratification models that integrate a 

broader range of clinical, laboratory, and procedural data.

At present, there is no robust predictive model specifically 

designed for assessing the risk of perioperative DVT in Chinese 

patients undergoing gastrointestinal surgery. To address this gap, 

we developed a novel machine learning-based prediction model 

tailored to this patient population. This model incorporates patient 

demographics, laboratory biomarkers, and perioperative metrics 

measured at multiple time points. The model aims to facilitate early 

risk stratification, optimize thromboprophylaxis strategies, and 

improve overall patient outcomes.

2 Materials and methods

2.1 Data sources and study population

Between January 2024 and January 2025, clinical data were 

retrospectively collected from patients who underwent 

gastrointestinal surgery at The First Hospital of Putian, Fujian 

Province, China. The study protocol was reviewed and approved by 

the Ethics Committee of The First Hospital of Putian (Approval 

No: 2023-121). The data collection window fell entirely within the 

period covered by this ethics approval. All procedures adhered to 

the principles outlined in the Declaration of Helsinki and relevant 

guidelines governing research involving human participants. Given 

the retrospective nature of the study, the requirement for informed 

consent was waived.

Patients were eligible for inclusion if they met all of the following 

criteria: (1) absence of preoperative deep vein thrombosis confirmed 

by ultrasonography, with available postoperative ultrasound 

assessments within seven days following surgery; (2) complete D- 

dimer measurements at baseline and on postoperative days 1, 3, 5, 

and 7. For all other critical clinical variables, patients with a per- 

patient missingness rate >20% were excluded; and (3) no recent use 

of medications known to in1uence coagulation or anticoagulation 

functions. The patient inclusion and modeling process was 

illustrated in Figure 1.

2.2 Diagnostic criteria for DVT

Preoperative and postoperative assessments of deep vein 

thrombosis were performed using lower extremity venous 

ultrasonography. All examinations were independently conducted 

by two qualified attending sonographers from the Department of 

Ultrasound at The First Hospital of Putian. In cases of discrepancy 

between the two assessors, the final diagnosis was determined by a 

senior ultrasound specialist holding the title of associate chief 

physician or higher. All biochemical tests and physical examinations 

were completed prior to the ultrasonographic assessments.

Prior to surgery, all patients underwent standardized bilateral 

lower limb venous ultrasonography to exclude the presence of pre- 

existing DVT. To ensure consistency in outcome assessment, all 

patients underwent repeat standardized bilateral lower limb 

ultrasonography on postoperative Day 7 to detect newly developed 

DVT. The diagnostic criteria for DVT were based on the 

international consensus guidelines for ultrasound evaluation (9) 

and included the following three key findings: (1) incomplete 

compressibility of the vein under probe pressure; (2) presence of 

abnormal hyperechoic intraluminal structures suggestive of 

thrombus; and (3) absence or significant reduction of blood 1ow 

signals on color Doppler imaging at the suspected thrombus site. 

The occurrence of DVT within seven days postoperatively was 

designated as the primary outcome of the study and served as the 

basis for model development and risk prediction analyses.

2.3 Data preprocessing

A total of 48 clinical parameters were collected from 596 patients, 

including age, gender, body mass index (BMI), history of alcohol 

consumption, smoking history, history of infection, preoperative 

comorbidities such as diabetes, hypertension or other underlying 

diseases (cardiovascular disease, fracture, and bedrest ≥3 Days), 

previous surgical history, and history of malignancy. Preoperative 

clinical data included total cholesterol (TC), triglycerides (TG), 
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low-density lipoprotein (LDL), high-density lipoprotein (HDL), 

creatinine (Cr), and D-dimer. Postoperative clinical data included 

TC, TG, LDL, HDL, Cr, D-dimer, C-reactive protein (CRP), 

D-dimer postoperative Day-1, −3, −5, and −7, systolic blood 

pressure, and diastolic blood pressure. Surgical and pathological 

data included American Society of Anesthesiologists (ASA) score, 

anesthesia method, Fibrinogen, activated partial thromboplastin 

time (APTT) seconds, prothrombin time (PT) seconds, 

hemoglobin, platelet count, surgery site, surgery position, 

temperature, pulse, respiration, blood infusion warming, surgery 

duration, intraoperative blood loss, internal jugular catheter, and 

radial artery catheter. Missing data were imputed using the 

multivariate imputation by chained equations (MICE) method, 

which models each variable with missing values as a function of the 

other variables in an iterative manner.

2.4 Model development and optimization

Patients were randomly divided into training and testing cohorts 

at a 7:3 ratio. Five machine learning methods, including Logistic 

regression (LR), Extreme Gradient Boosting (XGBoost), Multilayer 

Perceptron (MLP), Random Forest (RF) and Elastic Net (ENet), 

were used to construct a prediction model for DVT in patients 

following gastrointestinal surgery. Through ten-fold cross- 

validation, we determined the optimal hyperparameters of the 

models (Supplementary Table S1). Additionally, multiple 

evaluation parameters, including the area under the receiver 

operating characteristic (ROC) curve (AUC), accuracy, precision, 

F1-score, and sensitivity, as well as the confusion matrix were used 

to assess the performance of different machine learning algorithms.

Based on the optimal model, the importance of features was 

evaluated in the training cohort. Finally, based on selected 

clinical features, a nomogram was developed using the rms 

package and validated with the AUC value of ROC, calibration 

and DCA.

2.5 Statistical analysis

All quantitative variables were assessed for their distributional 

characteristics and were found to be non-normally distributed. 

Therefore, continuous variables were summarized as medians 

with interquartile ranges (IQR) and compared between groups 

using the Wilcoxon rank-sum test. To preserve the completeness 

of the data and avoid introducing bias, no transformations or 

manual categorization were applied. All continuous variables 

were retained in their original scale for statistical comparisons 

and model development. Categorical variables were expressed as 

frequencies and percentages and compared between groups 

using the chi-square (χ2) test. A two-sided P-value < 0.05 was 

considered statistically significant. Data preprocessing and model 

construction were performed using R (version 4.1.3), Python 

(version 3.9.7), and TensorFlow (version 2.5.0). Model training 

was executed on a workstation equipped with an NVIDIA RTX 

3070 Ti GPU, 64 GB RAM, and an 11th Gen Intel(R) Core(TM) 

i5-11400 @ 2.60 GHz CPU. The operating system was Windows 

10 Professional 64-bit (Version 21H1; DirectX 12).

FIGURE 1 

Study flowchart.
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3 Results

3.1 Baseline characteristics of DVT and 
non-DVT groups

In terms of baseline characteristics, it was found that age, 

history of alcohol, FIB, hemoglobin, CRP, preoperative D-dimer, 

and D-dimer postoperative Day-1, −3, −5, and −7 were 

statistically different between the patients in the DVT and non- 

DVT groups (P < 0.05, Table 1). Specifically, hemoglobin and 

history of alcohol were higher in the DVT group compared to 

non-DVT group, while age, FIB, CRP, preoperative D-dimer, 

and D-dimer postoperative Day-1, −3, −5, and −7 were higher 

in DVT group than these of non-DVT group.

3.2 RF model was the optimal model in 
predicting postoperative DVT

Using the above 10 clinical parameters, we subsequently 

employed five machine learning algorithms to develop a reliable 

model for predicting the risk of postoperative DVT. Firstly, 

patients were divided into training (N = 416) and testing 

(N = 180) sets. The training set was used to train different 

machine learning algorithms, and the testing set was used to 

evaluate the performance of these algorithms. As shown in 

Table 2, the AUC values of RF, Elastic Net, and XGBoost were 

0.719, 0.728, and 0.720, respectively. But the accuracy of MLP 

(0.63) and XGBoost (0.69) did not perform well according to 

the results of confusion matrix (Figure 2A). Finally, RF model 

was identified as the optimal model for DVT risk prediction and 

was used for subsequent analysis. To better explain the RF 

model, the importance of variables in RF was analyzed. We 

found that D-dimer postoperative Day-7 contributed most, 

followed by D-dimer postoperative Day-1 and −5 (Figure 2B). 

Across a range of high-risk threshold probabilities, decision 

curve analysis demonstrated that all machine learning models 

provided greater net benefit compared to the “All” and “None” 

strategies. Among the evaluated models, RF consistently 

achieved the highest net benefit across most thresholds. LR and 

ENet exhibited comparable performance, whereas MLP yielded 

slightly lower net benefits but remained superior to baseline 

strategies. These findings indicate that RF may offer enhanced 

clinical utility for risk stratification (Figure 2C).

3.3 A reliable nomogram with good clinical 
utility was developed for predicting 
postoperative DVT

To enhance interpretability and facilitate clinical application, we 

constructed the nomogram using a logistic regression model based on 

the top-ranked features identified by the Random Forest model. As 

alcohol history contributed very little to the model, the remaining 

nine variables were selected for constructing the nomogram, 

including age, postoperative CRP, preoperative D-dimer, 

hemoglobin, and D-dimer postoperative Day-1, −3, −5, and −7 

(Figure 3A), in which a higher score indicates an increased 

likelihood of DVT. Furthermore, the calibration curve showed that 

predicted results were close to actual probabilities (Figure 3B), 

indicating predicted probability is in good agreement with the 

actual probability. The AUC value of this nomogram is 0.729 

(Figure 3C), further demonstrating its accuracy in predicting 

DVT. At last, we performed DCA to analyze its clinical utility 

(Figure 3D), and found that the result of DCA underscored the 

robust predictive efficiency of the nomogram.

4 Discussion

Postoperative DVT is a significant and potentially life- 

threatening complication in patients undergoing gastrointestinal 

surgery. Despite the routine implementation of preventive 

measures, accurately identifying high-risk individuals remains a 

clinical challenge due to the multifactorial nature of thrombosis 

and the variability in patient characteristics. Our study aimed to 

address this issue by developing a machine learning–based 

predictive model tailored to the Chinese population undergoing 

gastrointestinal surgery, thereby facilitating early identification of 

DVT and personalized prevention strategies.

By analyzing clinical data from 596 patients, we constructed and 

evaluated five machine learning models. Among them, the Random 

Forest model demonstrated the most balanced and robust predictive 

performance, with an AUC of 0.719 and relatively high values for 

precision, sensitivity, and F1-score. It is worth noting, however, that 

an AUC of 0.719 re1ects only moderate discriminatory ability. 

While this level of performance may be acceptable in a clinical 

context, further improvements could be achieved by incorporating 

more granular variables or larger, more diverse datasets. Variable 

importance analysis identified key predictors: age, fibrinogen, 

hemoglobin, postoperative CRP, preoperative D-dimer, and 

D-dimer levels on postoperative days 1, 3, 5 and 7. Compared with 

traditional risk assessment tools—such as the Caprini Risk 

Assessment Model, which is widely used to predict VTE risk in 

surgical patients—our machine learning model offers several critical 

advantages. Although the Caprini score has been validated and is 

commonly adopted, it relies on predefined static clinical variables 

and expert consensus, lacking the ability to incorporate dynamic 

postoperative biomarkers or capture complex nonlinear interactions 

among predictors. In contrast, our model integrates both static 

features and dynamic variables, thereby providing a more 

comprehensive and individualized risk profile. Furthermore, 

whereas the Caprini model stratifies patients into broad risk 

categories, our model yields continuous probability estimates, 

potentially supporting more nuanced clinical decisions and 

personalized thromboprophylaxis. These findings highlight the 

potential of artificial intelligence–driven approaches to complement 

or even surpass traditional scoring systems in perioperative 

risk stratification.

Postoperative in1ammation and coagulation activation are 

believed to play key roles in the development of DVT. CRP, as a 
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TABLE 1 Comparison of patients’ general information.

Characteristics Subgroup Positive (n = 128) Negative (n = 468) P-value

Age (years) 69.00 [62.75, 74.00] 66.00 [59.00, 71.00] 0.001

Gender Female 51 (39.8) 182 (38.9) 0.925

Male 77 (60.2) 286 (61.1)

BMI (kg/m2) 22.45 [20.12, 24.20] 22.50 [20.40, 24.80] 0.285

ASA score I 2 (1.6) 12 (2.6) 0.573

II 76 (59.4) 294 (62.8)

III 48 (37.5) 159 (34.0)

IV 2 (1.6) 3 (0.6)

Anesthesia method GA with Double-Lumen Tube + Epidural 7 (5.5) 28 (6.0) 0.934

GA with Intubation 22 (17.2) 95 (20.3)

GA with Intubation + Epidural 89 (69.5) 310 (66.2)

GA with Intubation + Nerve Block 6 (4.7) 23 (4.9)

others 4 (3.1) 12 (2.6)

Surgery site Abdominal 120 (93.8) 437 (93.4) 0.958

Others 1 (0.8) 5 (1.1)

Thoracoabdominal 7 (5.5) 26 (5.6)

Surgery position Lithotomy 10 (7.8) 52 (11.1) 0.517

Others 7 (5.5) 21 (4.5)

Supine 111 (86.7) 395 (84.4)

Blood infusion warming No 13 (10.2) 32 (6.8) 0.284

Yes 115 (89.8) 436 (93.2)

Internal jugular catheter Yes 67 (52.3) 203 (43.4) 0.088

No 61 (47.7) 265 (56.6)

Radial artery catheter Yes 118 (92.2) 411 (87.8) 0.219

No 10 (7.8) 57 (12.2)

Smoking history No 119 (93.0) 450 (96.2) 0.195

Yes 9 (7.0) 18 (3.8)

Alcohol history No 125 (97.7) 467 (99.8) 0.045

Yes 3 (2.3) 1 (0.2)

Past surgical history No 86 (67.2) 327 (69.9) 0.635

Yes 42 (32.8) 141 (30.1)

History of cardiovascular disease No 120 (93.8) 438 (93.8) 1

Yes 8 (6.2) 29 (6.2)

History of malignancy No 122 (95.3) 440 (94.2) 0.794

Yes 6 (4.7) 27 (5.8)

History of diabetes No 107 (83.6) 389 (83.1) 1

Yes 21 (16.4) 79 (16.9)

History of hypertension No 86 (67.2) 318 (67.9) 0.955

Yes 42 (32.8) 150 (32.1)

History of fracture No 126 (98.4) 460 (98.3) 1

Yes 2 (1.6) 8 (1.7)

History of bedrest No 126 (98.4) 466 (99.8) 0.229

Yes 2 (1.6) 1 (0.2)

History of infection No 127 (99.2) 458 (97.9) 0.523

Yes 1 (0.8) 10 (2.1)

Temperature (°C) 36.50 [36.40, 36.50] 36.50 [36.40, 36.50] 0.932

Pulse (beats per minute) 75.00 [67.00, 82.00] 74.00 [66.75, 83.00] 0.754

Respiration (breaths per minute) 18.00 [18.00, 18.00] 18.00 [18.00, 18.00] 0.083

Surgery duration (hours) 6.53 [5.57, 7.62] 6.00 [5.00, 7.00] <0.001

Intraoperative blood loss (mL) 100.00 [50.00, 200.00] 100.00 [50.00, 100.00] 0.005

Fibrinogen (g/L) 3.33 [2.88, 3.92] 3.19 [2.70, 3.77] 0.067

APTT (s) 24.55 [22.17, 26.83] 24.80 [22.78, 27.20] 0.333

PT (s) 11.20 [10.80, 11.70] 11.20 [10.80, 11.70] 0.56

Hemoglobin (g/L) 117.50 [100.00, 131.00] 123.00 [109.00, 134.00] 0.01

Platelet Count (×109 /L) 227.50 [177.75, 270.75] 215.00 [178.00, 264.00] 0.586

Preoperative triglycerides (mmol/L) 1.10 [0.83, 1.41] 1.17 [0.86, 1.68] 0.084

Postoperative triglycerides (mmol/L) 0.66 [0.50, 1.15] 0.72 [0.53, 1.12] 0.686

Preoperative total cholesterol (mmol/L) 4.78 [4.20, 5.31] 4.80 [4.05, 5.53] 0.957

Postoperative total cholesterol (mmol/L) 3.72 [3.16, 4.24] 3.71 [3.07, 4.37] 0.827

(Continued) 
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classic marker of systemic in1ammation, re1ects the physiological 

response to surgical trauma and stress. Several prospective studies 

have demonstrated a strong association between elevated CRP 

levels and increased VTE risk. For example, Folsom et al. found 

that individuals in the highest decile of CRP levels had a 

1.76-fold higher risk of VTE than those in the lowest decile 

(10). A meta-analysis by Kunutsor et al. involving 81,625 

participants reported that each 5 mg/L increment in CRP was 

associated with a 23% increased risk of VTE (11). Although 

Mendelian randomization studies have not confirmed a direct 

causal relationship between CRP and VTE (12), elevated CRP 

remains a sensitive indicator of the hypercoagulable state during 

the postoperative period. Thus, dynamic monitoring of CRP 

during the perioperative period may aid in early risk 

identification of DVT.

Simultaneously, D-dimer, a fibrin degradation product, is a well- 

established biomarker re1ecting coagulation and fibrinolytic activity. 

Khaira et al. reported that D-dimer testing had a sensitivity of 96% 

and a negative predictive value of 95% for ruling out DVT, 

significantly reducing the need for invasive venography (13). In the 

PROLONG study, Palareti et al. found that patients with abnormal 

D-dimer levels one month after discontinuing anticoagulation had 

a significantly increased risk of VTE recurrence, supporting the 

value of serial D-dimer monitoring in postoperative management 

(14). From a mechanistic perspective, Adam et al. described the 

sequential enzymatic processes leading to D-dimer formation— 

namely the actions of thrombin, factor XIIIa, and plasmin on 

crosslinked fibrin—further reinforcing its biological relevance in 

thrombosis assessment (15).

Nonetheless, postoperative D-dimer elevations are frequently 

confounded by surgical trauma and in1ammation, particularly in 

the early postoperative phase, leading to potential false positives 

(16). To address this, our study incorporated both preoperative and 

postoperative D-dimer levels to capture dynamic patterns, and 

employed machine learning to model nonlinear risk evolution over 

time, thereby improving prediction accuracy. Moreover, several 

studies have advocated the use of age-adjusted D-dimer thresholds 

to improve specificity in elderly populations, which may further 

enhance future model optimization (17).

In addition to CRP and D-dimer, age, fibrinogen, and hemoglobin 

were also identified in this study as key predictive variables, each of 

which has shown significant associations with DVT risk through 

distinct biological mechanisms and supported by growing clinical 

evidence. Age is a well-established and unmodifiable risk factor for 

VTE. Advancing age contributes to a prothrombotic state through 

multiple mechanisms, including endothelial dysfunction, decreased 

fibrinolytic activity, and the accumulation of comorbid conditions 

such as immobility, cardiovascular disease, and malignancy (18, 19). 

A recent prospective study using phenotypic age acceleration from 

the UK Biobank further confirmed that biological aging significantly 

increases DVT risk, particularly when combined with genetic 

susceptibility (20).

Fibrinogen, a pro-coagulant acute-phase reactant in plasma, 

plays a pivotal role in thrombus formation and stabilization. It 

is considered valuable for detecting VTE or postoperative DVT, 

particularly when measured alongside D-dimer levels (21). 

Multiple studies have demonstrated that elevated postoperative 

fibrinogen levels are associated with an increased risk of DVT. 

TABLE 1 Continued

Characteristics Subgroup Positive (n = 128) Negative (n = 468) P-value

Preoperative HDL (mmol/L) 1.38 [1.17, 1.65] 1.40 [1.18, 1.63] 0.754

Postoperative HDL (mmol/L) 1.10 [0.94, 1.29] 1.12 [0.96, 1.30] 0.371

Preoperative LDL (mmol/L) 2.79 [2.36, 3.25] 2.81 [2.32, 3.38] 0.939

Postoperative LDL (mmol/L) 2.17 [1.77, 2.52] 2.15 [1.73, 2.56] 0.802

Preoperative Creatinine (μmol/L) 65.50 [55.75, 79.00] 69.00 [55.75, 82.25] 0.213

Postoperative Creatinine (μmol/L) 70.00 [57.00, 83.00] 69.00 [55.75, 82.00] 0.489

Postoperative CRP (mg/L) 37.70 [21.03, 64.20] 25.91 [16.90, 42.40] <0.001

Preoperative D-Dimer (μg/mL) 0.58 [0.32, 1.16] 0.39 [0.23, 0.79] <0.001

Postoperative D-Dimer Day1 (μg/mL) 5.48 [3.31, 9.08] 3.20 [1.83, 5.26] <0.001

Postoperative D-Dimer Day3 (μg/mL) 3.45 [2.26, 5.92] 2.20 [1.41, 3.72] <0.001

Postoperative D-Dimer Day5 (μg/mL) 3.82 [2.57, 5.98] 2.35 [1.55, 3.69] <0.001

Postoperative D-Dimer Day7 (μg/mL) 3.93 [2.62, 6.02] 2.01 [1.10, 3.46] <0.001

Systolic blood pressure (mmHg) 136.00 [126.00, 150.75] 136.00 [124.00, 150.00] 0.338

Diastolic blood pressure (mmHg) 75.00 [69.00, 81.25] 76.00 [69.00, 84.00] 0.337

Continuous variables are presented as median (interquartile range) due to non-normal distributions, and were compared using the Wilcoxon rank-sum test. Categorical variables are 

presented as counts (percentages) and compared using the chi-square test or Fisher’s exact test, as appropriate.

TABLE 2 Prediction efficiency of different models.

Models AUC Accuracy Sensitivity Precision F1 score

Random forest 0.719 0.772 0.847 0.865 0.856

Elastic net 0.728 0.778 0.830 0.901 0.864

Extreme Gradient Boosting 0.720 0.694 0.858 0.730 0.789

Multilayer perceptron 0.689 0.633 0.832 0.667 0.740

Logistic regression 0.673 0.789 0.808 0.957 0.877
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For instance, a retrospective analysis by Fang et al. involving 842 

patients with spontaneous intracerebral hemorrhage confirmed 

that fibrinogen levels were significantly higher in patients with 

DVT than those without. Moreover, the combination of 

fibrinogen, D-dimer, and Caprini score substantially improved 

DVT prediction accuracy (22). Another study also reported that 

fibrinogen levels above 4.145 g/L independently predicted the 

presence of residual venous thrombosis after trauma (23).

Hemoglobin, a key indicator of systemic oxygen-carrying 

capacity and metabolic status, has also demonstrated potential 

predictive value in DVT risk stratification. Recent studies suggest 

that low hemoglobin levels may be associated with increased DVT 

risk, particularly among high-risk populations such as patients 

undergoing surgery, trauma, or cancer treatment. A large 

multicenter study involving 1,596 patients with traumatic fractures 

identified low hemoglobin as an independent preoperative 

risk factor for DVT (24). Similarly, in a retrospective analysis of 

3,147 ovarian cancer patients, low hemoglobin levels were 

significantly associated with preoperative DVT and remained 

statistically significant in multivariate analysis, further supporting 

the role of hemoglobin as a useful predictive marker (25). 

Additionally, a study by Fendri et al. observed that approximately 

one-quarter of patients with DVT also presented with anemia. 

Some of these cases were accompanied by folate deficiency 

and hyperhomocysteinemia, potentially contributing to 

thrombogenesis through endothelial dysfunction and coagulation 

pathway modulation (26).

To enhance clinical applicability, we translated the RF model into 

a user-friendly nomogram for bedside risk assessment, bridging the 

gap between complex modeling techniques and practical decision- 

FIGURE 2 

The comparison of machine learning. (A) Confusion matrix of five machine learning models; (B) Variable importance of random forest models; 

(C) decision curve analysis of five models.
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making. Decision curve analysis (DCA) further confirmed the model’s 

clinical utility, demonstrating net benefit across a wide range of risk 

thresholds. This supports the integration of our tool into 

perioperative work1ows to guide personalized thromboprophylaxis 

strategies, such as tailoring anticoagulation intensity or initiating 

early mobilization protocols for high-risk patients.

Despite these strengths, several limitations should be 

acknowledged. First, our study was conducted using data from a 

single institution, which may limit the generalizability of the model. 

Although the sample size was relatively large, external validation 

using multicenter cohorts is essential to confirm model robustness. 

Second, although we incorporated a broad set of clinical variables, 

some potentially relevant features—such as genetic predisposition, 

postoperative mobility, or medication adherence—were not fully 

captured. Third, the DVT outcome was assessed within a limited 

postoperative time window using ultrasound, which may 

underestimate delayed thrombotic events. Fourth, heterogeneity 

within the study population—such as variations in comorbidities, 

baseline risk factors, or perioperative management—may have 

in1uenced the model’s predictive performance across different 

subgroups. Fifth, the class imbalance between DVT and non-DVT 

cases may have in1uenced the model’s performance. Although we 

attempted to mitigate this by applying SMOTENC for resampling, 

no significant improvement in predictive performance was 

observed. This suggests that future studies should consider 

incorporating a larger number of positive DVT cases to enhance 

model training and robustness. Future studies incorporating real- 

time monitoring data and expanding the model to account for 

long-term thromboembolic outcomes may further improve 

predictive performance and clinical value.

FIGURE 3 

Nomogram establishment and its accuracy analysis. (A) Nomogram construction of feature variables; The calibration curve (B), ROC curve (C), and 

(D) decision curve analysis of Nomogram.

Huang et al.                                                                                                                                                           10.3389/fcvm.2025.1630099 

Frontiers in Cardiovascular Medicine 08 frontiersin.org



5 Conclusion

In conclusion, this study developed and validated a machine 

learning–based prediction model for assessing the risk of 

postoperative deep vein thrombosis (DVT) in Chinese patients 

undergoing gastrointestinal surgery. By integrating static and 

dynamic clinical variables—particularly serial D-dimer levels and 

postoperative CRP—the model demonstrated superior predictive 

performance compared to traditional risk scoring systems. The 

Random Forest model, translated into a nomogram and supported 

by decision curve analysis, offers a practical tool for individualized 

thromboprophylaxis decision-making. Key predictors, including 

CRP, D-dimer, fibrinogen, and hemoglobin, underscore the central 

roles of in1ammation, coagulation, and metabolic status in DVT 

pathogenesis. While the findings highlight the promise of data- 

driven approaches in perioperative risk stratification, external 

validation and inclusion of additional dynamic and behavioral 

factors are needed to enhance generalizability and clinical utility in 

broader populations.

Data availability statement

The datasets presented in this article are not readily available 

because the raw clinical dataset contains direct personal identifiers 

such as names, national identification numbers, and hospital 

admission numbers, as well as other information that could 

potentially reveal participant identity. Our institutional ethics 

approval does not allow public sharing of these data. To protect 

participant privacy and comply with local data protection 

regulations, we can share a deidentified dataset and the analysis 

code. Requests to access the datasets should be directed to the 

corresponding authors after a simple data use agreement and 

institutional approval.

Ethics statement

The studies involving humans were approved by the Ethics 

Committee of The First Hospital of Putian. The studies were 

conducted in accordance with the local legislation and 

institutional requirements. The ethics committee/institutional 

review board waived the requirement of written informed consent 

for participation from the participants or the participants’ legal 

guardians/next of kin because given the retrospective nature of 

the study, the requirement for informed consent was waived.

Author contributions

LH: Funding acquisition, Project administration, Resources, 

Supervision, Writing – original draft. LG: Writing – review & 

editing, Data curation. JC: Data curation, Writing – review & 

editing. XC: Writing – review & editing, Data curation. BY: 

Data curation, Writing – review & editing. ZW: Writing – 

review & editing, Data curation. SW: Software, Visualization, 

Writing – review & editing, Validation, Conceptualization, 

Methodology, Data curation, Investigation.

Funding

The author(s) declare that financial support was received for 

the research and/or publication of this article. This research 

received no external funding. Article processing charges were 

supported by The First Hospital of Putian City, which had no 

role in the study design, data collection, analysis, decision to 

publish, or preparation of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the 

absence of any commercial or financial relationships that could 

be construed as a potential con1ict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this 

article has been generated by Frontiers with the support of 

artificial intelligence and reasonable efforts have been made to 

ensure accuracy, including review by the authors wherever 

possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 

authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 

reviewers. Any product that may be evaluated in this article, or 

claim that may be made by its manufacturer, is not guaranteed 

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found 

online at: https://www.frontiersin.org/articles/10.3389/fcvm.2025. 

1630099/full#supplementary-material

Huang et al.                                                                                                                                                           10.3389/fcvm.2025.1630099 

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcvm.2025.1630099/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1630099/full#supplementary-material


References

1. Ortel TL, Neumann I, Ageno W, Beyth R, Clark NP, Cuker A, et al. American 
Society of Hematology 2020 guidelines for management of venous 
thromboembolism: treatment of deep vein thrombosis and pulmonary embolism. 
Blood Adv. (2020) 4(19):4693–738. doi: 10.1182/bloodadvances.2020001830

2. Heit JA, Silverstein MD, Mohr DN, Petterson TM, Lohse CM, O’Fallon WM, 
et al. The epidemiology of venous thromboembolism in the community. Thromb 
Haemost. (2001) 86(1):452–63. doi: 10.1055/s-0037-1616243

3. Buesing KL, Mullapudi B, Flowers KA. Deep venous thrombosis and venous 
thromboembolism prophylaxis. Surg Clin North Am. (2015) 95(2):285–300. doi: 10. 
1016/j.suc.2014.11.005

4. Lavikainen LI, Guyatt GH, Sallinen VJ, Karanicolas PJ, Couban RJ, Singh T, et al. 
Systematic reviews and meta-analyses of the procedure-specific risks of thrombosis and 
bleeding in general abdominal, colorectal, upper gastrointestinal, and 
hepatopancreatobiliary surgery. Ann Surg. (2024) 279(2):213–25. doi: 10.1097/SLA. 
0000000000006059

5. Tan SJJ, Tan EK, Ng YYR, Sultana R, Allen JC, Seow-En I, et al. Venous 
thromboembolism among Asian populations with localized colorectal cancer 
undergoing curative resection: is pharmacological thromboprophylaxis required? 
A systematic review and meta-analysis. Ann Coloproctol. (2024) 40(3):200–9. doi: 10. 
3393/ac.2022.01046.0149

6. Xiang L, Jin S, Yu Y, Wang D, Chen H. Risk of venous thromboembolism in 
patients undergoing gastric cancer surgery: a systematic review and meta-analysis. 
BMC Cancer. (2023) 23(1):933. doi: 10.1186/s12885-023-11424-x

7. Caprini JA. Thrombosis risk assessment as a guide to quality patient care. Dis 
Mon. (2005) 51(2-3):70–8. doi: 10.1016/j.disamonth.2005.02.003

8. Barbar S, Noventa F, Rossetto V, Ferrari A, Brandolin B, Perlati M, et al. A risk 
assessment model for the identification of hospitalized medical patients at risk for 
venous thromboembolism: the Padua prediction score. J Thromb Haemost. (2010) 
8(11):2450–7. doi: 10.1111/j.1538-7836.2010.04044.x

9. Needleman L, Cronan JJ, Lilly MP, Merli GJ, Adhikari S, Hertzberg BS, et al. 
Ultrasound for lower extremity deep venous thrombosis: multidisciplinary 
recommendations from the society of radiologists in ultrasound consensus conference. 
Circulation. (2018) 137(14):1505–15. doi: 10.1161/CIRCULATIONAHA.117.030687

10. Folsom AR, Lutsey PL, Astor BC, Cushman M. C-reactive protein and venous 
thromboembolism. A prospective investigation in the ARIC cohort. Thromb 
Haemost. (2009) 102(4):615–9. doi: 10.1160/TH09-04-0274

11. Kunutsor SK, Seidu S, Blom AW, Khunti K, Laukkanen JA. Serum C-reactive 
protein increases the risk of venous thromboembolism: a prospective study and 
meta-analysis of published prospective evidence. Eur J Epidemiol. (2017) 
32(8):657–67. doi: 10.1007/s10654-017-0277-4

12. Zacho J, Tybjaerg-Hansen A, Nordestgaard BG. C-reactive protein and risk of 
venous thromboembolism in the general population. Arterioscler Thromb Vasc Biol. 
(2010) 30(8):1672–8. doi: 10.1161/ATVBAHA.109.198473

13. Khaira HS, Mann J. Plasma D-dimer measurement in patients with suspected 
DVT–a means of avoiding unnecessary venography. Eur J Vasc Endovasc Surg. 
(1998) 15(3):235–8. doi: 10.1016/s1078-5884(98)80182-2

14. Palareti G, Cosmi B, Legnani C, Tosetto A, Brusi C, Iorio A, et al. D-dimer 
testing to determine the duration of anticoagulation therapy. N Engl J Med. (2006) 
355(17):1780–9. Erratum in: N Engl J Med. 2006 December 28;355(26):2797. 
doi: 10.1056/NEJMoa054444

15. Adam SS, Key NS, Greenberg CS. D-dimer antigen: current concepts 
and future prospects. Blood. (2009) 113(13):2878–87. doi: 10.1182/blood-2008-06- 
165845

16. Brotman DJ, Segal JB, Jani JT, Petty BG, Kickler TS. Limitations of D-dimer 
testing in unselected inpatients with suspected venous thromboembolism. Am 
J Med. (2003) 114(4):276–82. doi: 10.1016/s0002-9343(02)01520-6

17. Wu JX, Qing JH, Yao Y, Chen DY, Jiang Q. Performance of age-adjusted 
D-dimer values for predicting DVT before the knee and hip arthroplasty. J Orthop 
Surg Res. (2021) 16(1):82. doi: 10.1186/s13018-020-02172-w

18. Tang W, Bell EJ, Roetker NS, Folsom AR, Cushman M. Epidemiology of 
thrombosis in aging. Blood. (2015) 126(23):SCI-6-SCI. doi: 10.1182/blood.V126.23. 
SCI-6.SCI-6

19. Machlus KR, Aleman MM, Wolberg AS. Update on venous thromboembolism: 
risk factors, mechanisms, and treatments. Arterioscler Thromb Vasc Biol. (2011) 
31(3):476–8. doi: 10.1161/ATVBAHA.111.223008

20. Hu Z, Xu J, Shen R, Lin L, Su Y, Xie C, et al. Combination of biological aging 
and genetic susceptibility helps identifying at-risk population of venous 
thromboembolism: a prospective cohort study of 394 041 participants. Am 
J Hematol. (2025) 100(4):575–83. doi: 10.1002/ajh.27605

21. Refaai MA, Riley P, Mardovina T, Bell PD. The clinical significance of 
fibrin monomers. Thromb Haemost. (2018) 118(11):1856–66. doi: 10.1055/s-0038- 
1673684

22. Fang X, Shen Y, Wang M, Dai L, Shi L, Zhang F, et al. Predictive value of 
caprini risk assessment model, D-dimer, and fibrinogen levels on lower extremity 
deep vein thrombosis in patients with spontaneous intracerebral hemorrhage. Front 
Neurol. (2024) 15:1370029. doi: 10.3389/fneur.2024.1370029

23. Liu Y, Deng X, Zhu F, Zhu W, Wang Z. High fibrinogen and mixed proximal 
and distal thrombosis are associated with the risk of residual venous thrombosis in 
patients with posttraumatic deep vein thrombosis. Front Cardiovasc Med. (2023) 
10:1003197. doi: 10.3389/fcvm.2023.1003197

24. Zhang W, Su Y, Liu L, Zhao H, Wen M, Zhao Y, et al. Fibrinolysis Index as a 
new predictor of deep vein thrombosis after traumatic lower extremity fractures. Clin 
Chim Acta. (2020) 511:227–34. doi: 10.1016/j.cca.2020.10.018

25. Shim H, Lee YJ, Kim JH, Lim MC, Lee DE, Park SY, et al. Preoperative 
laboratory parameters associated with deep vein thrombosis in patients with 
ovarian cancer: retrospective analysis of 3,147 patients in a single institute. 
J Gynecol Oncol. (2024) 35(4):e38. doi: 10.3802/jgo.2024.35.e38

26. Fendri S, Mariem B, Raida BS, Kamel J, Zouheir B. PB2331: in front of a deep 
venous thrombosis, look at the hemoglobin!. HemaSphere. (2022) 6:2200–1. doi: 10. 
1097/01.HS9.0000852148.28479.76

Huang et al.                                                                                                                                                           10.3389/fcvm.2025.1630099 

Frontiers in Cardiovascular Medicine 10 frontiersin.org

https://doi.org/10.1182/bloodadvances.2020001830
https://doi.org/10.1055/s-0037-1616243
https://doi.org/10.1016/j.suc.2014.11.005
https://doi.org/10.1016/j.suc.2014.11.005
https://doi.org/10.1097/SLA.0000000000006059
https://doi.org/10.1097/SLA.0000000000006059
https://doi.org/10.3393/ac.2022.01046.0149
https://doi.org/10.3393/ac.2022.01046.0149
https://doi.org/10.1186/s12885-023-11424-x
https://doi.org/10.1016/j.disamonth.2005.02.003
https://doi.org/10.1111/j.1538-7836.2010.04044.x
https://doi.org/10.1161/CIRCULATIONAHA.117.030687
https://doi.org/10.1160/TH09-04-0274
https://doi.org/10.1007/s10654-017-0277-4
https://doi.org/10.1161/ATVBAHA.109.198473
https://doi.org/10.1016/s1078-5884(98)80182-2
https://doi.org/10.1056/NEJMoa054444
https://doi.org/10.1182/blood-2008-06-165845
https://doi.org/10.1182/blood-2008-06-165845
https://doi.org/10.1016/s0002-9343(02)01520-6
https://doi.org/10.1186/s13018-020-02172-w
https://doi.org/10.1182/blood.V126.23.SCI-6.SCI-6
https://doi.org/10.1182/blood.V126.23.SCI-6.SCI-6
https://doi.org/10.1161/ATVBAHA.111.223008
https://doi.org/10.1002/ajh.27605
https://doi.org/10.1055/s-0038-1673684
https://doi.org/10.1055/s-0038-1673684
https://doi.org/10.3389/fneur.2024.1370029
https://doi.org/10.3389/fcvm.2023.1003197
https://doi.org/10.1016/j.cca.2020.10.018
https://doi.org/10.3802/jgo.2024.35.e38
https://doi.org/10.1097/01.HS9.0000852148.28479.76
https://doi.org/10.1097/01.HS9.0000852148.28479.76

	Machine learning-based risk prediction of postoperative deep vein thrombosis in Chinese patients undergoing gastrointestinal surgery
	Introduction
	Materials and methods
	Data sources and study population
	Diagnostic criteria for DVT
	Data preprocessing
	Model development and optimization
	Statistical analysis

	Results
	Baseline characteristics of DVT and non-DVT groups
	RF model was the optimal model in predicting postoperative DVT
	A reliable nomogram with good clinical utility was developed for predicting postoperative DVT

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


