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Introduction: Fluid-induced variations in central venous oxygen saturation (ΔScvO2) and central venous-to-arterial carbon dioxide tension difference [ΔP(cv-a)CO2] have been proposed to define fluid responsiveness. This study aimed to determine whether their diagnostic accuracies are affected by baseline values or oxygen consumption (VO2) responsiveness.



Materials and methods: This prospective observational study enrolled mechanically ventilated patients with circulatory shock. Hemodynamic variables and blood gas analysis were measured before and after a fluid challenge. Fluid responsiveness and VO2 responsiveness were defined as a ≥10% increase in cardiac index and VO2, respectively. The Spearman's rank correlation coefficient (rho) was computed to evaluate the association between variables. The diagnostic accuracy was assessed using the area under the receiver operating characteristic curve (AUC), with subgroup analyses based on baseline ScvO2 and P(cv-a)CO2 values and VO2 responsiveness.



Results: Out of 58 patients enrolled, 30 were fluid responders. The fluid-induced changes in cardiac index were significantly correlated with ΔScvO2 (rho = 0.36, P = 0.006) and ΔP(cv-a)CO2 (rho = −0.35, P = 0.006). ΔScvO2 and ΔP(cv-a)CO2 defined fluid responsiveness with AUC values of 0.76 [95% confidence interval (CI): 0.63–0.86, P < 0.001] and 0.72 (95% CI: 0.59–0.83, P < 0.001), respectively. A cutoff value of 5% for ΔScvO2 and −2 mmHg for ΔP(cv-a)CO2 yielded positive predictive values of 88% and 75%, and negative predictive values of 63% and 61%, respectively. The gray zones for ΔScvO2 (−3 to 4.6%) and ΔP(cv-a)CO2 (−2.7 to 1 mmHg) comprised 51.7% and 48.3% of the patients, respectively. In the subgroup analyses, ΔScvO2 potentially exhibited better accuracy for assessing fluid responsiveness in VO2 non-responders (AUC of 0.91, 95% CI: 0.78–0.98; 40 patients) and patients with a baseline ScvO2 < 70% (AUC of 0.84, 95% CI: 0.67–0.95; 32 patients). Meanwhile, the diagnostic accuracy of ΔP(cv-a)CO2 was slightly improved in VO2 non-responders (AUC of 0.78, 95% CI: 0.62–0.90; 40 patients) and patients with a baseline P(cv-a)CO2 ≥ 6 mmHg (AUC of 0.78, 95% CI: 0.62–0.90; 39 patients).



Conclusion: ΔScvO2 and ΔP(cv-a)CO2 are potential indicators of fluid responsiveness in mechanically ventilated patients with circulatory shock, especially those with abnormal baseline values or VO2 unresponsiveness.
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Introduction

In the intensive care unit (ICU), volume expansion represents the most commonly used measure to correct hypotension and hypoperfusion, aiming to improve oxygen delivery (DO2) by increasing cardiac output (CO), thereby ameliorating tissue perfusion. Whether volume expansion can elevate CO depends on whether the heart functions on the steep portion of the Frank-Starling curve, indicating fluid responsiveness (1). In recent years, the study of oxygen and carbon dioxide (CO2) metabolism has gained attention for assessing fluid responsiveness (2–4). From a physiological perspective, oxygen and CO2 metabolism are closely related to blood flow, as it provides oxygen to the tissues and removes CO2 produced by them (5, 6).

In recent studies, variations in central venous oxygen saturation (ScvO2) (ΔScvO2) and central venous-to-arterial carbon dioxide tension difference (P(cv-a)CO2) [ΔP(cv-a)CO2] during volume expansion have been confirmed to assess fluid responsiveness (2–4). Indeed, according to the Fick principle, ΔScvO2 during volume expansion can track changes in CO if oxygen content and oxygen consumption (VO2) remain stable, and ΔP(cv-a)CO2 during volume expansion is inversely proportional to the CO changes under consistent CO2 production (5–8). However, VO2 and CO2 production may not always remain unchanged during volume expansion due to the VO2/DO2 dependency phenomenon and anaerobic CO2 production (9–11). Furthermore, whether the diagnostic accuracies of ΔScvO2 and ΔP(cv-a)CO2 depend on their baseline values remains unknown, even though the baseline ScvO2 and P(cv-a)CO2 seem unable to identify fluid responsiveness (2). This study aimed to determine whether their diagnostic accuracies are affected by baseline ScvO2 and P(cv-a)CO2 values or the fluid-induced VO2 responsiveness.



Materials and methods

This prospective observational study was conducted in the ICU of Ningbo No. 2 Hospital from January 2024 to December 2024. It was part of a study program registered with the Chinese Clinical Trial Registry (ChiCTR2100053665) and approved by the local institutional ethics committee (YJ-NBEY-KY-2022-147-01). This manuscript adheres to the applicable STROBE guidelines (12). Written informed consent was obtained from the patients’ relatives. This study was conducted in compliance with the Declaration of Helsinki.


Patients

The eligible subjects were mechanically ventilated adults (age ≥ 18 years) with circulatory shock and without spontaneous respiratory efforts, for whom the attending physician decided to perform a fluid challenge, where circulatory shock was defined as the presence of one or more of the following signs: 1) systolic arterial pressure < 90 mmHg, mean arterial pressure < 65 mmHg, or requiring vasopressor administration; 2) skin mottling; 3) urine output < 0.5 mL/kg/h for ≥ 2 h; 4) lactate level > 2 mmol/L. Patients would be excluded if they met the following criteria: no indwelling arterial or central venous catheterization, aortic valve surgery, equipped with extracorporeal membrane oxygenation or a pacemaker, contraindications to fluid challenge, poor echogenicity, atrial fibrillation, refractory shock expected to die within 24 h, or decline to participate.



Study protocol

All eligible patients received invasive radial arterial monitoring and central venous catheterization, with the catheter tip positioned in the superior vena cava or the right atrium. Pressure calibration was performed in the supine position, with pressure transducers zeroed at the phlebostatic axis, a position corresponding to the right atrium's level (the midpoint of the fourth intercostal space at the midaxillary line) (13). A pressure-controlled ventilation mode was set, and sedative and analgesic medications were continuously administered to avoid spontaneous breathing efforts. Once enrollment was confirmed, a baseline set of hemodynamic variables was measured, and transthoracic echocardiography (TTE) was performed. Meanwhile, arterial and central venous blood gases were simultaneously sampled and analyzed using a GEM Premier 3,500 blood gas analyzer (Instrumentation Laboratory Company, Bedford, MA, USA). Immediately after that, a fluid challenge test was conducted by administering a pressurized bolus of 500 mL of Ringer's solution over 15 min in the 45° semi-recumbent position. Immediately after the fluid challenge, a second set of the above measurements was taken. During the study period, no adjustments were made to body position, ventilator settings, vasopressors, inotropes, or sedative and analgesic drugs. Figure 1 illustrates the detailed process of this study.


[image: Flowchart illustrating a fluid challenge test process for mechanically ventilated patients with circulatory shock. Out of 194 patients, 136 were excluded due to various criteria. The remaining 58 underwent a fluid challenge for 15 minutes. The outcome measured a greater than ten percent increase in cardiac index post-challenge, resulting in 30 responders and 28 non-responders. Icons depict hemodynamic monitoring, transthoracic echocardiography (TTE), blood gas measurement, and fluid challenge administered at initiation and completion of the test.]
FIGURE 1
Illustration of study selection and fluid challenge test. ECMO, extracorporeal membrane oxygenation; TTE, transthoracic echocardiography.




Data collection

We collected demographic information (including age, gender, body mass index, and comorbidities), causes of shock, ventilator-related parameters (including tidal volume, positive end-expiratory pressure, driving pressure, respiratory rate, and fraction of inspired oxygen), acute physiology and chronic health evaluation II score, sequential organ failure assessment score, sedative and analgesic drugs, and vasoactive agents at the time of enrollment. We measured and recorded hemodynamic variables [including heart rate (HR), central venous pressure, systolic arterial pressure, diastolic arterial pressure, and mean arterial pressure], echocardiographic parameters [including stroke volume (SV), cardiac index, and velocity-time integral (VTI)], arterial and central venous blood gases parameters (including potential of hydrogen (PH), arterial lactate level, arterial partial pressure of carbon dioxide (PaCO2), arterial oxygen saturation (SaO2), central venous partial pressure of carbon dioxide (PcvCO2), and ScvO2), and oxygen-CO2 derived variables (including DO2, VO2, and P(cv-a)CO2) at baseline and after the fluid challenge. The hemoglobin (Hb) concentration was measured together with arterial blood gas analysis using the GEM Premier 3,500 blood gas analyzer (Instrumentation Laboratory Company, Bedford, MA, USA). Patients were followed up until ICU discharge.

SV was computed as: VTI × LVOT area, where VTI was measured via continuous Doppler transaortic flow on an apical five-chamber view, and LVOT area was calculated as π × (LVOT diameter/2)2 (LVOT refers to the left ventricular outflow tract). Then, cardiac index was calculated as (SV × HR)/body surface area. TTE examination was conducted with the CX50 ultrasound system (Philips Medical System, Suresnes, France), which was performed by an independent ICU physician who was blinded to the study outcomes. The representative value of echocardiographic parameters was obtained by averaging three consecutive measurements, regardless of the respiratory cycle.



Definition

ΔScvO2 and ΔP(cv–a)CO2 induced by volume expansion were calculated as absolute changes, that is, subtracting the baseline value from the value after volume expansion. The fluid-induced changes in cardiac index and VO2 were calculated as relative changes: (the value after fluid infusion – the baseline value)/ the baseline value×100%. Fluid responsiveness and VO2 responsiveness were defined by a ≥10% increase in cardiac index and VO2 in response to volume expansion, respectively. According to the Fick principle, DO2 was calculated as (SV × HR) × (1.34 × Hb × SaO2 + 0.003 × PaO2), and VO2 was calculated as (SV × HR) × [(1.34 × Hb × SaO2 + 0.003 × PaO2) − (1.34 × Hb × ScvO2 + 0.003 × PcvO2)], where PaO2 is the arterial oxygen tension, and PcvO2 is the central venous oxygen tension.



Statistical analysis

Statistical analyses were performed using SPSS version 17.0 (IBM, New York, USA). The normal distribution of continuous variables was assessed using the Kolmogorov–Smirnov test. Normally distributed variables are presented as means ± standard deviation (SD), and skewed variables are reported as medians with interquartile ranges (IQR). Categorical variables are described as frequencies and percentages. For the continuous data, either the Student's t-test or the Mann–Whitney test was used for inter-group comparison, depending on the data distribution, and the Student's paired t-test was applied for the intra-group comparisons. The Chi-squared test or Fisher's exact test was utilized to compare categorical variables. The Spearman's rank correlation coefficient (rho) was computed to evaluate the association between the fluid-induced changes in cardiac index and ΔScvO2 and ΔP(cv–a)CO2.

The MedCalc Statistical Software (MedCalc Software bvba, Ostend, Belgium) was employed to construct ROC curves for assessing the diagnostic accuracy of ΔScvO2 and ΔP(cv–a)CO2 for fluid responsiveness. The optimal cutoff value was determined by maximizing the Youden index, while taking into account the smallest detectable differences (SDD) of ScvO2 (±3%) and P(cv–a)CO2 (±2 mmHg), as previously reported (14). Additionally, the gray zone approach was used to avoid the binary constraint of a “black-or-white” decision of the optimal cutoff value (15). We calculated the gray zone for ΔScvO2 and ΔP(cv–a)CO2 based on values that did not allow for having 10% of diagnosis tolerance (i.e., a sensitivity of <90% or a specificity of <90%) (15). To identify potential factors affecting the diagnostic accuracy, we performed subgroup analyses based on baseline ScvO2 value (≥70% or <70%), baseline P(cv–a)CO2 value (≥6 mmHg or <6 mmHg), and fluid-induced VO2 responsiveness (yes or no). The DeLong's test was used to determine the difference in AUC between subgroups with a minimum calculated sample size (16).

The Power Analysis and Sample Size software (NCSS, LLC, Kaysville, UT, USA) was utilized to determine the statistical power. Previous studies indicated that both ΔScvO2 and ΔP(cv–a)CO2 had an area under the receiver operating characteristic (ROC) curve (AUC) of approximately 0.8 (2, 3). To achieve a power of 80% with an alpha risk of 0.05, it was determined that 26 subjects would be sufficient. Therefore, at least 52 patients were required to ensure adequate statistical power for each arm in the subgroup analyses. In addition, we randomly selected 10 patients to calculate the coefficient of variation (CV) and the least significant change (LSC) to assess the intra-operator reproducibility for VTI. A two-tailed P-value of less than 0.05 was considered statistically significant.




Results

A total of 58 consecutive patients were enrolled over one year, and 30 (51.7%) of them were classified as fluid responders (Figure 1). Distributive shock represented the primary cause of hypotension in this study (79.3%, 46/58), and the baseline characteristics and clinical outcomes were comparable between the responders and non-responders. Of note, all patients but one received norepinephrine infusion during the study period, and the intra-operator reproducibility for VTI was deemed acceptable with a CV of 4.0% [95% confidence interval (CI): 1.4%–6.6%] and a LSC of 6.4% (95% CI: 2.2%–10.5%). Table 1 presents the baseline characteristics of the patients.



TABLE 1 Baseline characteristics.



	Variables
	Responders (n = 30)
	Non-responders (n = 28)
	P-value





	Age (years), median (IQR)
	73 (56, 78)
	71 (56, 78)
	0.864



	Male, n (%)
	18 (60.0)
	18 (64.3)
	0.791



	Body mass index (kg/m2), mean ± SD
	22.5 ± 3.8
	24.0 ± 3.6
	0.136



	Concurrent diseases, n (%)



	 Hypertension
	14 (46.7)
	20 (71.4)
	0.056



	 Diabetes
	8 (26.7)
	6 (21.4)
	0.641



	 Coronary heart disease
	7 (23.3)
	4 (14.3)
	0.380



	 Chronic kidney disease
	2 (6.7)
	3 (10.7)
	0.665



	Causes of hypotension, n (%)



	 Distributive
	23 (76.7)
	23 (82.1)
	0.607



	 Hypovolemic
	5 (16.7)
	2 (7.1)
	0.425



	 Cardiogenic
	2 (6.7)
	3 (10.7)
	0.665



	Tidal volume (mL/kg of PBW), mean ± SD
	8.0 ± 1.9
	7.8 ± 1.3
	0.684



	Driving pressure (cmH2O), median (IQR)
	12 (10, 13)
	13 (10, 14)
	0.334



	PEEP (cmH2O), median (IQR)
	5 (5, 8)
	5 (5, 8)
	0.745



	FiO2 (%), median (IQR)
	45 (39, 50)
	40 (31, 60)
	0.370



	Respiratory rate (breaths/min), median (IQR)
	17 (15, 22)
	16 (15, 18)
	0.663



	Analgesia and sedation, n (%)



	 Midazolam
	19 (63.3)
	21 (75.0)
	0.337



	 Propofol
	11 (36.7)
	8 (28.6)
	0.512



	 Fentanyl
	8 (26.7)
	10 (35.7)
	0.457



	 Butorphanol
	9 (30.0)
	8 (28.6)
	0.905



	APACHE II score, mean ± SD
	19 ± 6
	21 ± 5
	0.197



	SOFA score, mean ± SD
	9 ± 3
	10 ± 3
	0.094



	Dose of norepinephrine (μg/kg/min), median (IQR)
	0.24 (0.10, 0.34)
	0.22 (0.17, 0.27)(n = 27)
	0.879



	Inotropic agents, n (%)
	9 (30.0)
	10 (35.7)
	0.643



	Duration of invasive mechanical ventilation (days), median (IQR)
	11 (5, 18)
	9 (4, 17)
	0.858



	Length of ICU stay (days), median (IQR)
	13 (6, 24)
	11 (6, 22)
	0.767



	ICU mortality, n (%)
	8 (26.7)
	5 (17.9)
	0.421




	SD, standard deviation; IQR, interquartile range; PBW, predicted body weight; APACHE, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment; PEEP, positive end-expiratory pressure; FiO2, fraction of inspired oxygen; ICU, intensive care unit.








Hemodynamic changes induced by fluid expansion

Before the fluid challenge, no significant differences in the baseline hemodynamic variables were observed between the responders and non-responders. After the fluid challenge, SV, cardiac index, and DO2 were remarkably increased in the responders, but not in the non-responders. Hemoglobin was significantly decreased after fluid expansion in both groups. In the responders, volume expansion led to an elevated ScvO2 and a reduced P(cv–a)CO2, whereas these values remained unchanged in the non-responders. Table 2 shows the fluid-induced changes in hemodynamic variables in detail.



TABLE 2 Changes in hemodynamic variables induced by volume expansion.



	Variables
	Responders (n = 30)
	Non-responders (n = 28)
	P-valuea
	P-valueb



	Before
	After
	Before
	After





	HR (beats/min)
	88 (74, 112)
	91 (78, 110)
	95 (85, 125)
	95 (89, 113)
	0.085
	0.181



	CVP (mmHg)
	9 (7, 11)
	11 (10, 13)*
	11 (8, 14)
	15 (12, 17)*
	0.093
	0.002



	SAP (mmHg)
	108 ± 14
	116 ± 17*
	102 ± 11
	115 ± 15*
	0.098
	0.736



	DAP (mmHg)
	55 ± 8
	62 ± 10*
	57 ± 7
	58 ± 7
	0.243
	0.096



	MAP (mmHg)
	71 ± 8
	80 ± 11*
	72 ± 6
	76 ± 7*
	0.588
	0.067



	SV (mL)
	48 ± 10
	60 ± 13*
	50 ± 13
	50 ± 14
	0.523
	0.012



	Cardiac index (L/min/m2)
	2.60 (2.25, 3.03)
	3.35 (2.78, 4.03)*
	2.70 (2.23, 3.30)
	2.80 (2.23, 3.40)
	0.523
	0.017



	Hemoglobin (g/L)
	113 ± 25
	104 ± 24*
	100 ± 30
	96 ± 27*
	0.082
	0.236



	Arterial PH
	7.39 ± 0.10
	7.38 ± 0.09
	7.40 ± 0.06
	7.39 ± 0.06*
	0.423
	0.468



	PaCO2
	40 (34, 43)
	40 (37, 43)
	38 (33, 45)
	38 (34, 43)
	0.749
	0.468



	SaO2 (%)
	99 (97, 100)
	99 (98, 100)
	99 (98, 100)
	99 (98, 100)
	0.345
	0.743



	Arterial lactate
	1.5 (1.2, 2.0)
	1.3 (0.9, 1.9)*
	1.6 (1.0, 2.6)
	1.6 (1.0, 2.4)*
	0.668
	0.450



	Central venous PH
	7.34 ± 0.10
	7.33 ± 0.09*
	7.36 ± 0.07
	7.35 ± 0.06
	0.463
	0.311



	PcvCO2
	48 ± 10
	46 ± 8*
	46 ± 9
	46 ± 8
	0.371
	0.784



	ScvO2 (%)
	66 ± 15
	72 ± 13*
	68 ± 14
	68 ± 14
	0.571
	0.365



	P(cv-a)CO2
	8 (6, 10)
	6 (5, 8)*
	6 (4, 9)
	7 (5, 10)
	0.135
	0.551



	VO2 (mL/min)
	159 (120, 270)
	172 (122, 259)
	168 (112, 250)
	139 (111, 236)
	0.756
	0.335



	DO2 (mL/min)
	609 (497, 759)
	723 (600, 880)*
	683 (450, 754)
	612 (444, 758)
	0.803
	0.029




	All data were presented as mean ± standard deviation or median with interquartile range.


	HR, heart rate; CVP, central venous pressure; SAP, systolic arterial pressure; DAP, diastolic arterial pressure; MAP, mean arterial pressure; SV, stroke volume; PH, potential of hydrogen; PaCO2, arterial partial pressure of carbon dioxide; SaO2, arterial oxygen saturation; PcvCO2, central venous partial pressure of carbon dioxide; ScvO2, central venous oxygen saturation; P(cv-a) CO2, central venous to arterial carbon dioxide tension difference; VO2, consumption of oxygen; DO2, oxygen delivery.


	aP-value for the comparison between responders and non-responders before volume expansion;


	bP-value for the comparison between responders and non-responders after volume expansion;


	*P < 0.05 for the intra-group comparison before vs. after volume expansion.









Relationship between fluid responsiveness and ΔScvO2, and Δp(cv–a)CO2

Spearman correlation analyses revealed that the fluid-induced changes in cardiac index were positively correlated with ΔScvO2 (rho = 0.36, P = 0.006) and were negatively correlated with ΔP(cv–a)CO2 (rho = −0.35, P = 0.006) (Figure 2).


[image: Scatter plot graphs A and B show correlations between variables and ΔCI (%). Graph A plots ΔScvO2 (%) against ΔCI (%), showing a positive Spearman correlation (Rho = 0.36, P-value = 0.006). Graph B plots ΔP(cv-a)CO2 (mmHg) against ΔCI (%), indicating a negative correlation (Rho = -0.35, P-value = 0.006). Each graph includes a trend line with confidence intervals, and data points are represented by circles.]
FIGURE 2
Correlation between the fluid-induced cardiac index and ΔScvO2 (panel A) and ΔP(cv-a)CO2 (panel B).


ΔScvO2 and ΔP(cv-a)CO2 defined fluid responsiveness with AUC values of 0.76 (95% CI: 0.63–0.86; P < 0.001) and 0.72 (95% CI: 0.59–0.83; P < 0.001) (Figure 3), respectively. Based on the Youden index, the optimal cutoff value of ΔScvO2 was 2%, with a sensitivity of 76.7% and a specificity of 75.0%. However, considering the repeatability of ScvO2 (a SDD of ±3%), the optimal cutoff value was 5%, yielding a sensitivity of 50%, a specificity of 92.9%, a positive predictive value (PPV) of 88%, and a negative predictive value (NPV) of 63%. The gray zone approach identified a ΔScvO2 range of −3% to 4.6%, which included 51.7% of the patients (Figure 3). According to the Youden index, the optimal cutoff value of ΔP(cv-a)CO2 was −2 mmHg, which exceeded the SDD of P(cv-a)CO2 (±2 mmHg). Thus, the optimal cutoff value of −2 mmHg yielded a sensitivity of 50%, a specificity of 82.1%, a PPV of 75%, and an NPV of 61%. A range of −2.7 mmHg to 1 mmHg represented the gray zone for ΔP(cv-a)CO2 that comprised 48.3% of patients (Figure 3).


[image: Panel A shows a comparison of ROC curves for ΔScvO2 and ΔP(cv-a)CO2, plot outlines sensitivity against 100-specificity. Panel B illustrates sensitivity and specificity based on cutoff values of ΔScvO2, indicating percentages and sample sizes for specific cutoff points. Panel C displays sensitivity and specificity concerning cutoff values of ΔP(cv-a)CO2, also detailing percentages and sample sizes at designated cutoff points. Each panel includes labeled axes and various plotted lines.]
FIGURE 3
Receiver operating characteristic curves (panel A) and the gray zone for ΔScvO2 (panel B) and ΔP(cv-a)CO2 (panel C).




Subgroup analyses

Given the minimum calculated sample size, the findings from the subgroup analysis with a sample size of 26 cases or more were considered statistically valid. Subgroup analyses demonstrated that ΔScvO2 potentially exhibited better accuracy for assessing fluid responsiveness in VO2 non-responders and patients with a baseline ScvO2 < 70%. Meanwhile, the diagnostic accuracy of ΔP(cv-a)CO2 was slightly improved in VO2 non-responders and patients with a baseline P(cv-a)CO2 ≥ 6 mmHg (Table 3). The AUC of ΔScvO2 in the subgroup with a baseline ScvO2 < 70% was slightly higher than that in the subgroup with a baseline ScvO2 ≥ 70%, despite no statistical significance (P = 0.219). However, the comparisons of AUC in other subgroups were not conducted because the minimum sample size in some subgroups was not reached.



TABLE 3 Subgroup analyses for diagnostic accuracies of ΔScvO2 and ΔP(cv-a)CO2 in assessing fluid responsiveness.



	Variables
	AUC
	P-value
	Cutoff valuea
	Sensitivity (%)
	Specificity (%)





	ΔScvO2 (%) (n = 58)
	0.76 (0.63, 0.86)
	<0.001
	2
	76.7 (57.7, 90.1)
	75.0 (55.1, 89.3)



	VO2 non-responders (n = 40)
	0.91 (0.78, 0.98)
	<0.001
	2
	100 (82.4, 100)
	66.7 (43.0, 85.4)



	VO2 responders (n = 18)
	–
	–
	–
	–
	–



	Baseline ScvO2 ≥ 70% (n = 26)
	0.67 (0.46, 0.84)
	0.147
	2
	53.8 (25.1, 80.8)
	100 (75.3, 100)



	Baseline ScvO2 < 70% (n = 32)
	0.84 (0.67, 0.95)
	<0.001
	5
	70.6 (44.0, 89.7)
	86.7 (59.5, 98.3)



	ΔP(cv-a)CO2 (mmHg) (n = 58)
	0.72 (0.59, 0.83)
	<0.001
	−2
	50.0 (31.3, 68.7)
	82.1 (63.1, 93.9)



	VO2 non-responders (n = 40)
	0.78 (0.62, 0.90)
	<0.001
	−2
	63.2 (38.4, 83.7)
	81.0 (58.1, 94.6)



	VO2 responders (n = 18)
	–
	–
	–
	–
	–



	Baseline P(cv-a)CO2 ≥ 6 mmHg (n = 39)
	0.78 (0.62, 0.90)
	<0.001
	−2
	65.2 (42.7, 83.6)
	75.0 (47.6, 92.7)



	Baseline P(cv-a)CO2 < 6 mmHg (n = 19)
	–
	–
	–
	–
	–




	Data were not presented when the sample size were less than 26 cases.


	ΔScvO2, the variation in central venous oxygen saturation; ΔP(cv-a)CO2, the variation in central venous to arterial carbon dioxide tension difference; VO2, consumption of oxygen; AUC, area under the receiver operating characteristic curve.


	aCutoff value determined by identifying the maximum from the Youden index.










Discussion

In this perspective observational study, the principal findings demonstrated that ΔScvO2 and ΔP(cv-a)CO2 during volume expansion possessed an acceptable diagnostic accuracy for identifying fluid responsiveness, and the diagnostic accuracies of ΔScvO2 and ΔP(cv-a)CO2 were likely associated with their baseline values and the fluid-induced VO2 responsiveness.

Consistent with the optimal CI of ΔScvO2 (3% to 5%) identified in our recent meta-analysis (3), we determined the optimal cutoff value for ΔScvO2 as 5% in the current study, yielding a high PPV (88%) and a relatively low NPV (63%). Thus, we can almost confirm that a patient can benefit from volume expansion if the measured ΔScvO2 is greater than 5%. However, we cannot make any decisions if the measured ΔScvO2 is less than 5%, due to the low NPV. Indeed, a low ΔScvO2 does not necessarily indicate a small change in CO induced by fluid challenge. According to the Fick principle, the close relationship between ScvO2 and CO depends on stable oxygen content and VO2 during volume expansion (7). However, a potential decrease in Hb concentration could somewhat reduce oxygen content. We observed a median reduction in Hb of 5.9% after volume expansion across the entire population studied, which was consistent with a recent meta-analysis (17). Furthermore, VO2 does not always remain constant during volume expansion because of the VO2/DO2 dependency phenomenon. The VO2/DO2 dependency phenomenon refers to a linear correlation between DO2 and VO2 when DO2 decreases below the critical value (18), which implies that VO2 will change linearly with DO2, thus resulting in a relatively constant oxygen extraction and ScvO2 (3). In these situations, ScvO2 would not change significantly (i.e., a low ΔScvO2) despite a noticeable increase in CO and DO2. This could explain why the diagnostic accuracy of ΔScvO2 was improved considerably after excluding the VO2 responders. Additionally, subgroup analysis revealed that the AUC of ΔScvO2 was increased after excluding patients with a baseline ScvO2 ≥ 70% (see Table 3), which suggested that the baseline ScvO2 may be a determinant of the diagnostic accuracy of ΔScvO2, even though the baseline ScvO2 seems unable to identify fluid responsiveness (2, 19). Indeed, a normal or supranormal ScvO2 value typically indicates an adequate CO to provide sufficient oxygen delivery and/or mitochondrial dysfunction or microcirculatory shunting. In this case, the magnitude of ΔScvO2 induced by volume expansion may be limited and may not be parallel to the fluid-induced increases in CO.

In addition, we also confirmed the ability of ΔP(cv-a)CO2 to define fluid responsiveness. However, the diagnostic accuracy of ΔP(cv-a)CO2 (AUC of 0.72) in our study appears to be lower than that in a previous study (AUC of 0.831) (2). This discrepancy is not surprising given the complex relationship between ΔP(cv-a)CO2 and CO. It should be recognized that the close association between ΔP(cv-a)CO2 and CO relies on a stable CO2 content-CO2 partial pressure relationship, as well as a stable relationship between P(cv-a)CO2 and CO (5, 20). However, the curvilinear CO2 content-CO2 partial pressure relationship can be influenced by metabolic acidosis, hematocrit, or the Haldane effect, which refers to the effect of oxygen saturation on CO2 transport (5, 20). Consequently, varying baseline values for these variables may result in differing diagnostic accuracies of ΔP(cv-a)CO2 across various studies. Furthermore, the relationship between P(cv-a)CO2 and CO is also curvilinear. This means that for a constant total CO2 production, fluid-induced changes in CO can cause a more significant alteration in P(cv-a) CO2 at a low CO value than at a normal or high CO value (5). This may explain why ΔP(cv-a)CO2 was more effective in defining fluid responsiveness in patients with a baseline P(cv-a)CO2 ≥ 6 mmHg, as a high P(cv-a)CO2 level typically indicates a low baseline CO. Similarly, a previous study found that fluid-induced CO increases engendered a reduction in P(cv-a) CO2 only in patients with elevated baseline P(cv-a)CO2 values (≥6 mmHg), but not in those with normal baseline levels (21). The subgroup analysis also revealed an improved diagnostic accuracy of ΔP(cv-a)CO2 when excluding patients with VO2 responsiveness. This finding aligns with the study conducted by Nassar et al. (4). Specifically, CO2 production associated with anaerobic metabolism tends to occur at the VO2/DO2 dependency stage (5, 6). This phenomenon may attenuate the relationship between ΔP(cv-a)CO2 and fluid-induced CO increases.

Our findings provide a clinical implication: when the CO measurement is not available, measuring ScvO2 or P(cv-a)CO2 before and after volume expansion can help identify which patients are likely to benefit from fluid therapy, particularly for patients with abnormal baseline values or with VO2 unresponsiveness. However, several limitations in this study should be highlighted. First, the limited sample size in this study could overestimate the effect sizes, especially hampering us from drawing a firm conclusion in the subgroup analysis. Second, ScvO2 was measured in this study instead of the mixed venous oxygen saturation. As ScvO2 primarily reflects the DO2-VO2 relationship in the upper side of the body, it may not inform about the local perfusion disturbances in regional septic conditions (5). Despite this, the changes in ScvO2 can track the global DO2 changes, given the equivalent changing trend of ScvO2 and the mixed venous oxygen saturation (22). Finally, there may be mathematical coupling issues in the estimation of DO2 and VO2 based on the Fick method, which may introduce bias in the results of subgroup analysis.



Conclusion

In mechanically ventilated patients, ΔScvO2 and ΔP(cv-a)CO2 induced by volume expansion are potential indicators for assessing fluid responsiveness and may be routinely measured to indicate fluid responsiveness in the absence of CO measurement. The diagnostic accuracies of ΔScvO2 and ΔP(cv-a)CO2 were likely associated with the baseline ScvO2 and P(cv-a)CO2 values and the fluid-induced VO2 responsiveness.
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