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Pulmonary arterial hypertension (PAH) is a subtype of pulmonary hypertension
(PH), characterized by pulmonary arterial remodeling. This disease frequently
progresses to right heart failure and can result in patient mortality. Research
at the cellular and molecular level is gradually revealing the mechanism
underlying the development of pulmonary arterial hypertension, providing
new avenues for treatment by identifying potential therapeutic targets.
Contact between the endoplasmic reticulum and mitochondria has been
recognized for several decades. And an increasing number of laboratory and
clinical studies are beginning to elucidate the relationship between PAH and
the interplay involving mitochondria and the endoplasmic reticulum. In this
review, we first introduce the basic normal biological functions and processes
of MAM-based mitochondrial-endoplasmic reticulum interactions. We then
discuss how the dysfunction contributes to pulmonary arterial hypertension
(PAH), focusing on three key aspects, mitochondrial dynamics, calcium
homeostasis, and endoplasmic reticulum stress. Clarifying these issues may
provide important insights for therapeutic interventions in PAH.

KEYWORDS
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membranes, mitochondrial dynamics, calcium, ER stress

1 Introduction

Pulmonary arterial hypertension is a life-threatening disorder characterized by
elevated pressure in the pulmonary arteries due to increased pulmonary vascular
resistance (1). PAH is a clinical subtype of PH (pulmonary hypertension), and the
remaining four types include PH due to left heart disease, PH due to chronic lung
disease, chronic thromboembolic pulmonary hypertension, and PH with unclear
mechanisms and/or multifactorial causes (2). Currently, the international definition for
pulmonary hypertension (PH) is an average pulmonary artery pressure exceeding
20 mmHg during right heart catheterization while the patient is at rest (3). Although
PAH is considered a relatively rare disease, its incidence and prevalence have been
increasing in recent years (4). According to a large epidemiological analysis of
pulmonary arterial hypertension based on the Global Burden of Disease Study, from
1990-2021, the total number of DALYs (disability-adjusted life years) caused by
pulmonary arterial hypertension worldwide decreased by 6.6%. Despite an overall
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reduction in burden, PAH-related DALY increased by 13.9% in
high SDI (socio-demographic index) countries. Meanwhile,
global deaths due to PAH rose by 48.5% during this period (5).
Although  the
hypertension (PAH) remains incompletely understood, scientists

pathophysiology of pulmonary arterial
have made progress in several areas, such as metabolic
effects  (7),

communication (8), microRNAs (9), and ferroptosis (10). Given

reprogramming (6), inflammatory organelle
the crucial roles these targets play in the development of PAH,
new drug strategies and delivery methods are continuously
being developed and are showing improvements in both animal
models and human trials (11).

Mitochondria are continually being explored for their functions
and behaviors, and their roles in diseases such as cancer, diabetes,
and vascular disorders have been extensively studied (12-14). The
endoplasmic reticulum (ER) is a cellular organelle responsible for
protein synthesis, folding, and transport, as well as lipid
metabolism and calcium storage (15). In recent decades, research
into interorganelle communication has become increasingly
sophisticated, even evolving into a new field of study known as
In this

endoplasmic reticulum (ER) have long been considered functional

Contactology (16). theory, mitochondria and the
and structural units (8, 16, 17). Together, these two organelles are
involved in a variety of biological functions, such as the regulation
of mitochondrial dynamics, metabolic regulation and maintenance
of calcium homeostasis, as well as biological responses such as ER
MAMs

endoplasmic reticulum membranes),

stress and inflammation. (Mitochondria-associated
initially viewed as key
membrane structures for lipid synthesis and transport between the
endoplasmic reticulum and mitochondria, are increasingly
recognized as linking these two organelles in multiple biological
functions, thereby maintaining cellular homeostasis (18, 19). The
role of MAMs in neurological disorders, endocrine disorders, and

cancer has been extensively studied, and drugs targeting them are
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relatively well established (13, 20, 21). This review aims to provide
an overview of the normal biological functions of mitochondria
and endoplasmic reticulum interaction, as well as their roles in
pulmonary arterial hypertension.

2 ER-mitochondria interactions in
normal cellular functions

Mitochondrial-endoplasmic reticulum coupling was originally
discovered in a teleost (22). Furthermore, in the 1950s, scientists
used electron microscopy to observe two organelles spatially
connected in rat liver cells (23). At that time, MAMs were initially
thought to be key sites of lipid synthesis, a specific membrane
structure and protein enrichment site that scientists called fraction
X (24). Since then, Innovations and applications in biochemical
techniques and research methodologies have enhanced our
understanding of the structure and function of MAMs. These
advancements have provided deeper insights into the critical roles
that MAMs play in regulating cellular homeostasis and their
involvement in various pathological conditions (25, 26). More than
1,000 distinct proteins may localize to the ER-MAMs, forming
complexes that regulate the structure and function of these
subcompartments (27). In the following section, we will discuss
several key biological processes
endoplasmic reticulum interactions, with a focus on MAMs, in a

involving  mitochondria-

point-by-point manner. And we summarize here a table to show
the biological roles of MAMs and their key proteins, as well as to
complement the sections not detailed in the main text (Table 1).

2.1 Mitochondrial dynamics

Having an evolutionary relationship with an ancient
bacterium, mitochondria are semiautonomous organelles (28).
Mitochondrial dynamics refer to the processes of fission, fusion,
mitophagy, and transport, which are crucial for optimal
signaling and metabolic functions (29). These dynamic processes
are believed to be closely related to the membrane contact sites
with the endoplasmic reticulum, and scientists believe that the
contact site is the regulatory and participatory node for the

bidirectional dynamics of mitochondrial fission and fusion (30).

TABLE 1 Biological role of MAMs and their key proteins

Biological Key proteins References
function

Lipid Metabolism and | PSS1/2, ORP5/8, Mfn2, CDS2, (134-136)
Transportation VAPB-PTPIP51, ACAT1, Caveolin 1

IP3R, RyR, GRP75, VDAC, MCU, (48)
Mfn2, Sig-1R, VAPB, PTPIP51

Ca** transfer

Mitochondrial Mfn1/2, Drpl, Opal, FUNDCI1 (137, 138)
dynamics

ER stress Mfn2, IRE1, PERK, ATF6 (139)
Inflammation VDAC, PACS2, FUNDCI1, (140, 141)
Autophagy ATG14, STX17, ERLIN1-AMBRA1 (139, 142, 143)
Apoptosis Mifn2, Fisl, PACS2, Bcl-xL (43, 144, 145)
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Mitochondrial fission is essential for regulating mitochondrial
morphology, distribution, and quality control, enabling the
segregation and removal of damaged mitochondria through
mitophagy, and plays critical roles in apoptosis, cellular
(31). The
mitochondrial fission occurs in MAMs. Using tomography and

metabolism, and development initiation  of
fluorescence microscopy, Friedman et al. directly observed the
specific structures of these contacts and concluded that the ER
contact with the
(32).
Mitochondrial fission mainly involves three steps: (a) marking
site, (b) (Drpl)
assembling into a helical superstructure around the marked

marks the division site and maintains

mitochondria throughout the entire fission process

the fission Dynamin-related protein 1
fission site, and (c) GTP hydrolysis subsequently causing Drpl
helical contraction, thereby triggering mitochondrial fission (33).
The ER-bound protein INF2 and the mitochondrial actin-
nucleator SpirelC form a complex that promotes Myosin Ila
assembly to generate the mechanical force for pre-constriction,
followed by recruitment of Drpl—via receptors MFF, MiD49,
and MiD51—to the constricted site for further membrane
constriction and division, with dynamin 2 (DYN2) potentially
contributing to the final scission step, though its essential role
remains debated (34, 35).

Mitochondrial fusion forms a continuous mitochondrial
network to maintain mitochondrial functional homeostasis,
promote metabolic coordination, and DNA complementation
(36). Similarly, researchers have discovered that mitochondrial
fusion is closely associated with contact sites on the
endoplasmic reticulum, as evidenced by the co-localization of
related proteins and ER tubules at mitochondrial fusion sites
(37). The mitochondrial fusion process involves fusion of the
outer membrane and fusion of the inner membrane. The fusion
of the outer mitochondrial membrane (OMM) and inner
(IMM) is
membrane proteins that form a dimeric antiparallel structure,
with OMM fusion primarily mediated by Mfnl(Mitofusin 1)
and Mfn2, and IMM fusion mainly dependent on OPAI1 (14).

To reflect the rigor and completeness of the review, specific

mitochondrial membrane driven by integral

proteins and detailed processes regarding mitochondrial fission
and fusion will be given in the supplementary figure and their
accompanying explanations (Figure 1).

2.2 Calcium homeostasis and calcium
communication

Calcium (Ca®") functions as a critical second messenger
involved in the regulation of diverse intracellular processes.
Intracellular Ca®>* levels influence a wide range of biological
functions, including metabolic regulation, gene transcription,
cell proliferation, migration, and apoptosis (38, 39). ER acts as
the main intracellular Ca®* reservoir and is structurally
connected to the outer mitochondrial membrane (OMM) via
MAMs (40). The efficiency of Ca*>* transfer between the ER and
mitochondria is influenced by the physical distance between the
two organelles. Studies have shown that when this distance
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increases to approximately 15 nm, Ca®" transfer becomes more
efficient (41, 42). For IP3Rs-
GRP75-VDACs complex is considered a critical component

specific  proteins, the

involved in calcium ion transfer from the endoplasmic
reticulum to the mitochondria in MAMs (13, 43). IP3Rs serve
as channels for calcium efflux from the endoplasmic reticulum
(44, 45). VDACs are localized in the outer mitochondrial
membrane and mediate the exchange of substances across the
mitochondria, including calcium ions (46, 47). IP3R and VDAC
(48).
Additionally, the GRP78 protein in MAMs forms a complex

with sig-IR on the ER, which under certain conditions

physically and functionally interact through GRP75

dissociates to increase Ca®>" transfer via the IP3R pathway
(49, 50). In addition to IPs;Rs, ryanodine receptors (RYRs)—
another class of Ca®" release channels—are also present at
MAMs and contribute significantly to inter-organelle Ca®"
signaling (51, 52). Notably, IP3R-mediated Ca’*" signaling has
also been linked to other MAM-resident proteins, such as
vesicle-associated membrane protein-associated protein B
(VAPB) and PTPIP51, both of which are
maintaining ER-mitochondria tethering and regulating Ca** flux

involved in

under various cellular conditions (53). Key proteins involved in
Ca’" handling also include sarco/endoplasmic reticulum Ca*'-
ATPase (SERCA) pumps, which actively transport Ca®>" from the
cytoplasm into the ER lumen to maintain ER Ca*" homeostasis
(54). Upon Ca’" release from the ER, a rapid increase in
cytoplasmic Ca** occurs, triggering immediate buffering by both
cytoplasmic and organelle Ca>" uptake systems (55).

The mitochondrial calcium uniporter (MCU) is a highly
selective calcium channel embedded in the inner mitochondrial
membrane (IMM) that constitutes the primary pathway for
calcium entry into mitochondria. The MCU complex forms a
multimeric protein complex with regulatory subunits that fine-
tune its activity according to cellular energy demands and
calcium signaling requirements (56). The core MCU protein
forms the conductive pore, while essential regulatory subunits
include Mitochondrial Calcium Uptake 1 and 2 (MICUL,
MICU2) and the Essential MCU Regulator (EMRE). Also,
Mitochondrial calcium efflux is equally crucial for maintaining
appropriate matrix calcium levels and is primarily mediated by
sodium-calcium exchange mechanisms (57). For decades, the
molecular identity of the mitochondrial Na®/Ca** exchanger
(mito-NCX) remained controversial, with NCLX proposed as a
candidate but failing to fully explain observed physiological
behaviors due to its lack of Na" binding sites and inconsistent
knockout phenotypes (58).

Calcium signaling within mitochondria directly regulates key
metabolic enzymes that control flux through the tricarboxylic
(TCA) Three
dehydrogenases show particular sensitivity to calcium-mediated

acid cycle and electron transport chain.

activation. Pyruvate dehydrogenase phosphatase (PDP) activates
(PDC)  through
dephosphorylation, allowing increased conversion of pyruvate to

the pyruvate dehydrogenase complex
acetyl-CoA (59). Calcium binding to PDP enhances its activity,
thereby promoting glycolysis-derived entry into the TCA cycle

during increased energy demand. Isocitrate dehydrogenase
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FIGURE 1

Specific processes and involved proteins in mitochondrial fission and fusion. The schematic illustrates the specific proteins and processes involved in
mitochondrial division and fusion, and is used to supplement the section in the main text on mitochondrial dynamics overview. The relevant proteins
and organelles involved are displayed in the upper right corner of the image. It is well known that the accumulation of Drpl at mitochondrial
endoplasmic reticulum contact sites is a central mechanism for mitochondrial contraction and division. Previously, mitochondrial precontraction
was not possible without the ER-bound protein inverted form 2 (INF2) and the actin-nucleating mitochondrial anchor SpirelC. SpirelC and INF2
form a complex that enhances the assembly of Myosin lla in the contact site, which provides the critical mechanical contractile force. The
mitochondrial Drpl receptors are MFF, MiD49, and MiD51. After Drpl is recruited and assembled, further contraction of the membrane is carried
out. Some scientists have also suggested that the endocytic-related dynamin 2 (DYN2) protein is also involved in this final step of division,
although the necessity of a related mechanism remains questionable. During mitochondrial fusion, it is clear that the outer membrane is
preferred over the inner membrane and different proteins are involved. The fusion of the outer membrane is involved by Mfnl, Mfn2, while the
fusion of the inner membrane is mediated by OPALl. We have made clear the importance of the ER in this, in particular by demonstrating that
Mfns are localized to membrane contacts and that ER tubules mark sites of mitochondrial fusion. To represent this bidirectional mitochondrial
dynamic process, we use black arrows to form a loop to indicate this.

10.3389/fcvm.2025.1623775

(NAD+-ICDH) and a-ketoglutarate dehydrogenase (OGDH) are
both activated by increased mitochondrial calcium, enhancing
reducing equivalent (NADH and FADH,) production and thus
stimulating electron transport and ATP synthesis (60). The
coordinated activation of these enzymes by calcium ensures that
energy production matches cellular activation states. The FAD-

Frontiers in Cardiovascular Medicine

dependent glycerol phosphate dehydrogenase (FAD-GPDH)
shuttle, which transfers reducing equivalents from cytosol to
mitochondria, is also calcium-sensitive, allowing integrated
regulation of cytosolic and mitochondrial metabolic processes.
The F,-F, ATP synthase complex, which catalyzes the final step
of oxidative phosphorylation by producing ATP from ADP and
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inorganic phosphate, is similarly regulated by calcium signaling
(61).
through effects on the electrochemical gradient and substrate
though
regulatory mechanisms may exist.

Calcium indirectly modulates ATP synthase activity

availability, recent evidence suggests more direct

Mitochondrial metabolism is closely intertwined with the
regulation of calcium ions. Calcium homeostasis in both the
mitochondria and cytoplasm plays a crucial role in modulating
enzyme activity, including those involved in glucose metabolism
(62). Another example is that VAPB and PTPIP51, mentioned
earlier, play a key role in calcium signaling and affect energy

production in mitochondria (63).

2.3 ER stress

The endoplasmic reticulum (ER) is a central organelle
responsible for protein folding, lipid synthesis, and calcium
homeostasis in eukaryotic cells. ER stress refers to the
accumulation of unfolded or misfolded proteins within the ER,
which occurs when the cellular demand for protein processing
exceeds the capacity of the ER quality control machinery. This
pathological condition can be triggered by various physiological
and pathological insults, including nutrient deprivation,
metabolic disturbances, oxidative stress, DNA damage, and
certain infections. If unresolved, ER stress leads to cellular

inflammation,
(62-64). Three

endoplasmic reticulum transmembrane proteins act as sensors of

dysfunction through mechanisms such as

apoptosis, and mitochondrial impairment
endoplasmic reticulum stress: activating transcription factor 6
(ATF6), inositol-requiring enzyme 1 alpha (IRE1 a) and
PRKR-like (PERK). Under

normal conditions, the molecular chaperone BiP (Binding

endoplasmic reticulum kinase
Immunoglobulin Protein; also known as GRP78) binds to ER
stress sensors (e.g., IREla, PERK, and ATF6), maintaining their
inactive state. During endoplasmic reticulum (ER) stress, BiP
dissociates from these sensors due to the accumulation of
misfolded proteins in the ER (65). PERK is uniquely enriched in
MAMs and is also closely associated with ROS-mediated stress
(66). Similarly, the mitochondrial ubiquitin ligase (MITOL)
inhibits ER stress-induced apoptosis by ubiquitinating IREla at
MAMs (67). Traditionally considered closely related to MAMs,
Nogo B can be activated by the ATF6 pathway, leading to
increased expression and disruption of MAMs (68).

2.4 Lipid synthesis and transfer

Phosphatidylserine (PS), an essential anionic phospholipid for
the structural and functional integrity of cell membranes, is
synthesized by two distinct enzymes, phosphatidylserine
synthases-1 (PSS1) and -2 (PSS2), which are located in MAMs
(69, 70). In addition to its synthesis, PS transport at the MAM
interface oxysterol-binding protein (OSBP)-related
proteins ORP5 and ORP8. These proteins are thought to
mediate PS transfer between membranes and interact with

involves
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PTPIP51, a mitochondrial outer

contributes to ER-mitochondria tethering (71). Another key

membrane protein that

player in lipid metabolism within MAMs is acetyl-CoA
cholesterol acyltransferase 1 (ACAT1), which plays a central role
in cholesterol esterification and homeostasis. ACAT1 is highly
enriched in MAMs, where it facilitates cholesterol storage and
trafficking (72, 73). Furthermore, caveolin 1 is also enriched in
MAMs. Caveolin 1 interacts closely with ACATI, inserts into
the endoplasmic reticulum membrane, and participates in
cholesterol transport. In addition, it contributes to the formation
of cholesterol-rich signaling platforms, thereby influencing lipid
signaling and membrane organization (27, 74).

2.5 Inflammation

The link between MAMs and inflammation lies in the
activation of the NOD-like receptor protein 3 (NLRP3)
inflammasome (75). Calcium signaling plays a crucial role in the
activation of the NLRP3 inflaimmasome (76). Studies have
shown that mitochondrial dynamics also contribute to this
inflammatory response. For instance, Misawa et al. found that
microtubule-driven mitochondrial migration is relevant (77).
Additionally, the Mfn2 protein has been associated with NLRP3
inflammasome activation following viral infection (78). In
addition to Mfn2, VDAC has also been proposed to participate
in NLRP3 inflammasome assembly. VDAC may facilitate the
cross-talk between ER-derived Ca*' signals and mitochondrial
thereby
formation and downstream pro-inflammatory signaling (79).

stress responses, contributing to inflammasome

3 Dysregulated mitochondrial-ER
interplay in PAH

3.1 Inappropriate mitochondrial dynamics

Many studies have focused on the role of imbalanced
mitochondrial dynamics in PAH (14, 80). In this section, we
describe two key proteins involved in division and fusion-Drpl
and Mfn2. A significant portion of current research centers on
Drpl. Excessive Drpl-mediated mitochondrial fission has been
found in cells associated with pulmonary arterial hypertension,
including pulmonary artery smooth muscle cells (PASMCs) (81)
(82).
therapeutic effects have been reported in animal models. In rats

and pulmonary artery adventitial fibroblasts Similar
co-administered with Mdivi-1 and CoCl,, not only was there a
recovery of exercise capacity, but there was also a significant
improvement in PAAT (pulmonary arterial acceleration time)
(83). Drpl requires association with adapter proteins to trigger
initiate fission (84). One key mechanism involved in the
pathogenesis of PAH is that decreased expression of miR-34a-3p
leads to upregulation of MiD, which in turn increases mitosis in
PASMC, driving pathological proliferation and resistance to cell
apoptosis, and simultaneously, the effectiveness of in vivo
nebulization of MiDs and miR-34a-3p was demonstrated,
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showing their ability to attenuate experimental PAH and reduce
cell proliferation (85). In addition to MiD, Huang et al. reported
that miR-340-5p regulates the MFF-SIRT1/3 axis to improve
mitochondrial homeostasis and increase the imbalance between
apoptosis in hypoxia-treated PAMSCs,
providing a theoretical basis for the prevention and treatment of
PAH (86). Drpl, when phosphorylated through the activation of
extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by
HMGBI1 (high mobility group box 1), increases mitochondrial
fission, subsequently triggering autophagy activation, which

proliferation and

further leads to lysosomal degradation of bone morphogenetic
protein receptor 2 (BMPR2) and downregulation of inhibitor of
DNA-binding 1 (Idl), ultimately promoting the proliferation
and migration of PASMCs (87). The resulting mitochondrial
fragments also increase endoplasmic reticulum (ER) stress,
further impairing PASMC function (88).

Growing experimental evidence has highlighted the
involvement of Mfns, particularly Mfn2, in the development of
PAH, largely due to their

mitochondrial fusion. Ryan et al. discovered that PGC-lo, an

critical role in regulating
Mifn2 transcriptional coactivator, mediates Mfn2 deficiency in
and human PASMCs,

fragmentation and a proliferation-apoptosis imbalance (89).

female rats causing mitochondrial
Researchers have also found a close association between PGC-1a
and PPARy, with the latter’s deficiency being viewed as a trigger
for insulin resistance, thus linking mitochondrial dynamics
dysfunction to metabolic disorders at the molecular level (90).
And phosphorylation of Mfn2 is induced by PINK1 (PTEN-
induced putative kinase 1) at serine 442, leading to its
proteasomal degradation and promoting cell proliferation in
PASMC (91). Although Mfnl and Mfn2 share structural and
similarities, they differ in their

(92). Regulated by miR-125a, Mifnl
proliferative in hypoxia-induced PASMCs, whereas most Mfns

functional regulatory

mechanisms is pro-
are generally antiproliferative in other vascular beds (14, 92, 93).

In PAH, the balance between mitochondrial fission and fusion
is disrupted, resulting in excessive fragmentation. However, we
cannot view mitochondrial dynamics solely as an isolated
contributor to PAH pathogenesis. Rather, dysregulation of
mitochondrial dynamics also affects normal cellular metabolism,
maintenance of the cell cycle, and organelle communication. For
example, as key regulators of mitochondrial dynamics, Mfns
have recently been linked to mitochondrial biogenesis and
mitochondrial metabolism (94). Additionally, a 2024 study
that
mitochondrial fission, suggesting a potential mechanism for fatty

reported long-chain acyl-coenzyme A can induce
acid-induced fission and expanding our understanding of Drpl
activation (95). Moreover, other regulatory factors, such as
microRNAs, play deeply integrated roles in these processes,
offering novel therapeutic targets and opening up promising
avenues for the future treatment of PAH.

The pathogenesis of PAH involves dynamic interactions
between PASMCs, PAECs, and fibroblasts, driven by ER stress
The

abnormalities of PAECs include imbalance in the secretion of

and mitochondrial dysfunction. main  functional

vasoactive substances, resistance to apoptosis and reorganization
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of energy metabolism; PASMCs exhibit abnormal proliferation,
metabolic transformation;
fibroblasts through
inflammatory activation and extracellular matrix remodeling.

reprogramming and phenotypic

participate in the disease process
The endoplasmic reticulum-mitochondria interaction plays a
crucial role in these cells’ pathological changes, including
mechanisms such as calcium signal disorder, lipid metabolism
abnormality, mitochondrial dynamics imbalance and unfolded

protein response.

3.2 Dysregulated calcium homeostasis and
metabolic reprogramming

MAMs serve as critical hubs for regulating mitochondrial
calcium homeostasis (43). VAPB-PTPIP51 tethering proteins
regulate  autophagy
mitochondria-associated membranes (MAMs), and enhanced

by modulating Ca®" exchange at
ER-mitochondria tethering inhibits mTOR-induced autophagy.
This mechanism plays an important role in the proliferation of
PASMCs (53, 96). It has been shown that in lung fibroblasts,
enhanced interaction of VAPB with PTPIP51 helps to restore
of MAMs, thereby
reticulum stress and mitochondrial metabolic abnormalities

the structure reversing endoplasmic
triggered in fibroblast activation (97). And fibroblasts are also
considered to be important players in the development of
pulmonary hypertension (98). And the dysfunction of SERCA
promotes PASMC proliferation by activating the IRElo/XBP1
pathway in ER stress (99). The same situation occurs in Nogo.
The protein modulates the structural organization of the
endoplasmic reticulum (ER) and mediates the spatial separation
between mitochondria and the ER, thereby regulating inter-
organelle communication and functional coordination (32, 100).
Its dysregulation can increase this distance, disrupt MAMs, and
consequently affect mitochondrial calcium, contributing to
metabolic alterations (101). Another mitochondrial protein
implicated in calcium transport is UCP2. Its deficiency affects
metabolism by inhibiting key calcium-dependent enzymes (102).
Additionally, UCP2 deficiency is linked to increased reactive
oxygen species generation and reduced NO production in the
endothelium, which may be relevant to the pathogenesis of PAH
(103). Also, there exists a novel and critical interaction between
VDAC2 and eNOS in PAECs, reduced VDAC2
expression and disruption of the VDAC2-eNOS interaction lead

where

to impaired NO production (104). Changes in intracellular Ca**
homeostasis have also been linked to apoptotic pathways in
PAH. For instance, a calcium-activated chloride channel, ANOI,
has been identified on the mitochondrial membrane of
pulmonary artery endothelial cells (PAECs). Its activation
enhances mitochondrial reactive oxygen species (mROS)
production, thereby promoting apoptosis (105).

Many researchers compare pulmonary arterial hypertension to
cancer, not only because of the cancer-like proliferation of cells
and their resistance to apoptosis but also because of the high
degree of metabolic similarity between the two (56, 106). We
here the main metabolic

summarize reprogramming
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TABLE 2 Main metabolic reprogramming in pulmonary arterial hypertension (PAH).

Metabolic Key enzymes or Changes in PAH Regulatory mechani References
pathway proteins
Glycolysis PDH, PDK, Hk2, PTBP1, | Increased glycolysis to pyruvate and lactate in PAECs and | BMPR2 mutations — miR-124/, (9, 146-148)
PASMCs PTBP11.
HIF-1a activates PDKs and inhibits
PDH.
Fatty Acid CD36, CPT1, ACACA, Decreased mitochondrial fatty acid oxidation; Increased | BMPR2 mutations — CD361. (149-151)
Metabolism BMPR2, fatty acid uptake and storage CPT1 upregulation in MAMs.
Glutaminolysis GLS Increased glutamine metabolism. HIF-1a activation. (152-154)
SIRT3 regulates.
Arginine Metabolism | eNOS, ARG1, ARG2 Reduced NO bioavailability; Elevated arginase expression. | Competition between NOS and ARG (155-159)

manifestations in PAH and their key enzymes and mechanisms in
a table (Table 2). Initially, described to characterize the features of
cancer cells, the Warburg effect refers to the shift from
mitochondrial oxidative phosphorylation to aerobic glycolysis.
This phenomenon has been repeatedly mentioned in research
related to pulmonary arterial hypertension (6). Alterations in
glucose metabolism in PAH are largely attributed to pyruvate
dehydrogenase (PDH) dysfunction. Importantly, mitochondrial
Ca®" has been shown to regulate PDH activity (56, 107, 108).
This regulatory process involves key proteins such as uncoupling
protein 2 (UCP2) and Nogo B (reticulon family member 4B),
which modulate mitochondrial Ca** handling and energy
metabolism (101, 109). However, we cannot simply summarize
the relationship between calcium and metabolism as a
unidirectional mechanism. A study revealed that in the
microvascular endothelial cells of PAH patients, elevated ketone
levels sensitizes the key calcium signaling channel TRPV4
(transient receptor potential vanilloid 4), thereby disrupting
calcium homeostasis (110).

The altered metabolic phenotypes observed in PAH are
systemic and multifaceted, extending beyond mitochondrial
solely to energy supply
mechanisms. A critical step in the future development of

dysfunction and not limited

targeted therapies will be to fully elucidate the interconnections

among  metabolic  pathways, genetic regulation, and

substrate utilization.

3.3 ER stress

ER stress has emerged as a key player in the pathogenesis of
pulmonary arterial hypertension (PAH) (111). Hypoxia and
inflammation in PAH can induce ER stress in PASMCs, altering
sarcoplasmic and

reticulum  morphology increasing  its

separation from  mitochondria, ultimately leading to
mitochondrial dysfunction (56, 70, 101). Dysregulation of the
(UPR), has

implicated in PAH progression. Zhuan et al. also found that

unfolded protein response been increasingly
mitochondrial disruption contributes to PASMCs dysfunction by
enhancing endoplasmic reticulum stress (88). In addition, ERS-

induced inflammation contributes to the development of
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for arginine.

HIF-2a-arginase axis.

pulmonary arterial hypertension by promoting pulmonary
vascular remodeling, which involves the activation of the PERK/
eIF20/NF-«B signaling pathway (112). IREla protein levels were
upregulated in hypoxia-induced PASMCs, thereby affecting the
role of IREla/XBP1
binding protein 11] pathway in hypoxia-induced proliferation,
(113).
Activation of ATF6 causes increased levels of Nogo B to further

[inositol-requiring enzyme 1(a)/x box

migration enhancement, and apoptosis inhibition
exacerbate endoplasmic reticulum stress-related damage, causing
disruption of the mitochondria-endoplasmic reticulum unit
(114). HIF-la, an important factor in the progression of
pulmonary arterial hypertension, can exacerbate endoplasmic
reticulum stress, while endoplasmic reticulum stress can in turn
stabilize HIF-1a, forming a pathogenic feedback loop (56). This
interaction severely damages the mitochondria-associated
endoplasmic reticulum membrane (MAMs), hinders inter-
organelle communication, and accelerates the fragmentation of
(115). The
transmembrane proteins have also been utilized as biomarkers
for PAH (116). For instance, elevated GRP78 levels have been

associated with increased mortality risk in PAH patients,

the mitochondrial network aforementioned

suggesting its potential utility as a prognostic marker (117).

For greater clarity, we used a supplemental figure to express
the role of three specific MAMs involved processes in PAH
pathogenesis in PASMC, including mitochondrial dynamics,
calcium homeostasis, and endoplasmic reticulum stress (Figure 2).

4 Therapeutic targets

To provide a comprehensive introduction to mitochondrial-

endoplasmic reticulum interactions as potential future
therapeutic targets in pulmonary arterial hypertension (PAH),
we summarize the currently available pharmacological agents
used in PAH treatment in table (Table 3). Over the past few
decades, significant progress has been made in developing drugs
targeting the three classical dysfunctional signaling pathways in
PAH: the prostacyclin, endothelin, and nitric oxide pathways
(112). Drugs targeting mitochondrial endoplasmic reticulum
interplay in pulmonary arterial hypertension are still mostly

studied in cell or animal experiments. However, drug research
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Mitochondria

FIGURE 2

The role of MAMs in PAH in PASMC. This figure is divided into three endoplasmic reticulum modules, each representing a major mechanism:
mitochondrial dynamics, calcium homeostasis (metabolism), and endoplasmic reticulum stress (counterclockwise from the upper left corner).
Upward arrows indicate an increase, downward arrows indicate a decrease or channel closure, and black arrows connecting different proteins
and other substances indicate interactions. The specific mechanisms involved are mentioned in the main text, with corresponding content in
Section 3. Mitochondrial dynamics: We continue to focus on two key proteins, Mfn2 and Drpl, and detail the specific signaling pathways they
participate in within the figure. Calcium(metabolism): The figure lists MAM-localized proteins involved in calcium homeostasis and outlines the
functional outcomes of different pathways, including their effects on enzyme activity, apoptosis, autophagy, and endoplasmic reticulum stress.
Endoplasmic reticulum stress: The figure depicts the three classic pathways of endoplasmic reticulum stress and their downstream effectors.
Additionally, we emphasize two key contributing factors—hypoxia and inflammation.
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targeting MAMs has advanced rapidly in other disease contexts,
particularly in oncology and neurodegenerative disorders,
offering valuable insights into potential molecular targets and
therapeutic strategies for PAH (118, 119). Scientists have made
progress in regulating mitochondrial function and apoptosis by
targeting calcium channel-associated proteins, such as GRP75,
IP3R-VDACI1, and MCU (120-122). Other metabolic diseases
such as NAFLD (Nonalcoholic fatty liver disease) and PAH have
similar dysregulation of calcium homeostasis, disruption of
MAMs and endoplasmic reticulum stress (123). For instance,
metformin and sulfonamides can improve ER-mitochondrial
interactions and structural integrity of MAMSs (124, 125).

Frontiers in Cardiovascular Medicine

A widely used drug for diabetes treatment, the glucagon-like
peptide-1 (GLP-1) receptor agonist liraglutide, has been shown
to inhibit PDGF-BB-induced proliferation,
dedifferentiation of PASMCs by attenuating pathways such as
autophagy, mitochondrial ROS production, and mitochondrial

migration, and

fission. These findings suggest the potential of enhancing
mitochondrial and endoplasmic reticulum functional coupling as
a therapeutic approach for PAH (126). As mentioned repeatedly
previously, pyruvate dehydrogenase, the key enzyme for altered
PAH metabolism, was found to reduce mean pulmonary artery
pressure and pulmonary vascular resistance, and improve
functional capacity after its inhibitor was given to patients with
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TABLE 3 Current treatment of PAH.

| Category ___Drug name ___ Mechanism/Target

Current PDES5i NO-cGMP (160)
soluble guanylyl cyclase stimulator
Endothelin receptor antagonists Endothelin-1 (161)

Prostacyclin (162)

PGI2 receptor (163)

ACVR2A (164)

Prostacyclin analogues
Selexipag
Sotatercept

idiopathic PAH (IPAH) in a 4-month study (127). A 2025 study
revealed that a Chinese herbal compound, CPG, inhibit
(PAH) progression by
modulating the Mfn2-IP3R3 signaling axis, which regulates ER

pulmonary arterial hypertension
stress, mitochondrial Ca** homeostasis, and autophagy (128).
Furthermore, exogenous hydrogen sulfide (H2S) has been shown
to reverse PAH by alleviating endoplasmic reticulum stress in
both in vitro and in vivo experimental models (129). Chemical
chaperone drugs [e.g., PBA(4-phenylbutyrate) and TUDCA
(Tauroursodeoxycholic acid)] are effective in preventing and
reversing pulmonary hypertension by inhibiting ATF6-mediated
endoplasmic reticulum stress signaling and ameliorating ER-
mitochondrial dysfunction and metabolic abnormalities (130).
Similarly, the use of fibroblast growth factor (FGF) 21 can
alleviate endoplasmic reticulum stress and its impact on
endothelial cell apoptosis and dysfunction in hypoxia-induced
pulmonary hypertension (131). In addition to these pathways,
emerging evidence highlights the complex and often divergent
roles of microRNAs and their target gene in the progression of
pulmonary arterial hypertension, offering new insights into
potentially promising therapeutic strategies (132).

Collectively, accumulating evidence supports the notion that
targeting MAMs—particularly through modulation of calcium
signaling, metabolic reprogramming, ER stress, and redox
balance—holds great promise for the development of novel
therapeutics in PAH. As our understanding of MAM structure
and function continues to evolve, so too will the potential for
designing specific and effective interventions tailored to this
critical interface in cellular physiology.

5 Future outlook

An improved understanding of the mechanisms regulating
MAM integrity or the identification of specific MAMs targets
could offer significant therapeutic strategies for PAH. New
technologies such as SPLICS (split-GFP-based contact site
sensors) allow us to visualize the structure of MAMs more
directly and monitor them in real time in vitro, potentially
opening up new avenues for research (133, 134). It has already
shown promise in research on both the SARS-CoV-2 infection
(135) and Alzheimer’s disease (136). The application of STED
(stimulated emission depletion) super resolution microscope in
MAM research holds great promise, as its combination with
observation and

computational modeling enables the

reconstruction of more microscopically detailed structures (137,
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138). Further development of such tools to study MAM
formation in a systemic setting will be invaluable for gaining
new insights into the mechanisms controlling MAMs in both
health and disease.

6 Conclusion

Mitochondria and the endoplasmic reticulum (ER) are
intracellular organelles that promote cellular homeostasis by
These
influence the pathogenesis of pulmonary arterial hypertension

regulating multiple signaling pathways. interactions
from multiple angles. MAMs (mitochondria-associated ER
membranes) serve as bridges between two organelles, are
constructed around key proteins, and possess complex functions.
Before it can become a new therapeutic target for PAH, further
in-depth research into its mechanism is necessary, and this
continue in the with  the

research  will coming years

development of new technologies.
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