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platelet-albumin-bilirubin score
and all-cause mortality in ICU-
admitted heart failure patients: a
retrospective cohort analysis and
machine learning-based
prognostic modeling
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Kailin Zheng, Yunsu Wang®* and Zhonghui Lin*

Department of Cardiology, Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese
Medicine, Xiamen, Fujian, China

Background: The platelet-albumin-bilirubin (PALBI) score has shown
prognostic value across multiple medical conditions; nevertheless, its
effectiveness in forecasting prognoses among severely ill heart failure (HF)
patients treated in Intensive Care Unit (ICU) has yet to be fully established.
This study explores the relationship between PALBI scores at ICU admission
and all-cause mortality in HF patients admitted to the ICU.

Methods: Drawing on records from the MIMIC-IV version 3.1 critical care
database, we included ICU-admitted HF patients and calculated their PALBI
scores at admission. Kaplan—Meier survival curves and log-rank tests were used
to assess differences in overall mortality at 30 and 360 days across the PALBI
tertile groups. Cox regression models based on the proportional hazards
assumption were utilized to control for possible confounding variables. In
addition, predictive models based on machine learning were constructed using
PALBI alongside other clinical features to estimate 30-day mortality, with
model performance evaluated through the area under the ROC curve (AUC).
Results: A total of 4,318 participants were included in the study cohort (57%
male; median age 73 years). The cumulative incidence of all-cause mortality
was 24% at 30 days and 44% at 360 days. Individuals in the top PALBI tertile
exhibited markedly higher mortality rates compared to those in the lowest
tertile (30% vs. 20% at 30 days and 52% vs. 39% at 360 days). Multivariate Cox
regression analysis revealed significant associations of elevated PALBI scores
with higher mortality risk at both 30 days (HR: 1.36; 95% CI: 1.12-1.64;
p=0.002) and 360 days (HR: 1.22; 95% Cl: 1.03-1.44; p =0.019). Machine
learning models effectively discriminated patients at risk of 30-day mortality,
with the best performance achieved by Ridge regression (AUC = 0.76).
Conclusion: The PALBI score independently predicts 30-day and 360-day all-
cause mortality among ICU-admitted HF patients. These findings suggest that
the PALBI score has potential utility for risk stratification and for guiding
treatment decisions in the intensive care management of HF.
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1 Introduction

Heart failure (HF) is a multifaceted syndrome marked by
impaired cardiac output, which results in reduced blood flow to
vital organs and tissues. HF poses a major public health
challenge worldwide, currently impacting around 6.7 million
adults in the U.S., with estimates suggesting this number could
rise to 8.7 million by 2030 (1). Patients with HF frequently
with
approximately 14% of admissions to cardiac intensive care units

present severe conditions requiring intensive care;
(CICU) are primarily due to HF, with a subsequent mortality or
rehospitalization rate of 52.8% within one year among ICU HF
patients (2, 3).

HF often involves multi-organ dysfunction, particularly
hepatic impairment. Liver dysfunction in HF occurs through
pathophysiological processes such as congestive hepatopathy and
acute cardiogenic liver injury. Moreover, liver disease may
exacerbate cardiac dysfunction, establishing a bidirectional
cardio-hepatic interaction (4). Abnormalities in hepatic markers,
including bilirubin and albumin, frequently occur in patients
with HF and are associated with adverse prognoses. For
example, increased bilirubin concentrations have been
recognized as independent indicators of adverse prognosis in
individuals with HF (5).

thrombocytopenia are more prevalent among HF patients and

Likewise, hypoalbuminemia and

significantly correlate with increased mortality risk (6, 7).
Collectively, these findings underscore the importance of
comprehensive hepatic function assessments in evaluating
prognostic outcomes in HF.

Recent studies have demonstrated that the albumin-bilirubin
(ALBI) score, a measure of liver function, is a powerful
predictor of prognosis in ICU-admitted HF patients, with each
unit increase in the ALBI score associated with a 24% rise in
mortality risk (8). Nonetheless, the ALBI score is confined to
measurements of albumin and bilirubin alone and may not fully
capture disease severity, particularly concerning inflammatory
and coagulation factors integral to HF pathogenesis. Platelets
play a critical role in HF by contributing to inflammation and
microthrombi formation, exacerbating myocardial injury and
cardiac dysfunction. Prior evidence has shown that platelet
indices are closely related to HF severity, with low platelet
counts and abnormal platelet-to-leukocyte ratios predicting
worse outcomes (9). Moreover, composite coagulation scores
incorporating platelet count have been associated with a
markedly increased short-term mortality risk in critically ill HF
patients (10). These findings suggest that platelet abnormalities
not only reflect impaired hemostasis but also indicate ongoing
inflammation and thrombosis in HF. Thus, the platelet-albumin-
bilirubin (PALBI) score integrates platelet counts to potentially
offer a more comprehensive prognostic assessment.

Originally developed for hepatocellular carcinoma to predict
hepatic functional reserve and survival outcomes (11), recent
research indicates PALBI’s prognostic utility extends to other
elevated PALBI scores have been
strongly linked to higher

conditions. For instance,
30-day mortality rates

individuals suffering from acute respiratory distress syndrome

among
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(12). However, the predictive value of the PALBI score in HF
patients admitted to the ICU has not been clearly established.

This study, therefore, sought to assess the ability of the PALBI
score to predict both short-term and long-term mortality in ICU-
admitted HF patients, offering clinicians a more accurate
prognostic tool.

2 Materials and methods
2.1 Data source

This retrospective analysis utilized data extracted from the
MIMIC-IV v3.1 database, a widely recognized public ICU
dataset managed by the Laboratory for Computational
Physiology at MIT. It provides comprehensive, high-quality
clinical data from patients admitted to the ICUs at Beth Israel
Deaconess Medical Center (13). One of the study authors,
Zhantao Cao, data

(Certification number: 14336451) and conducted data extraction

obtained authorized access to the

in compliance with established data usage guidelines.

2.2 Participants

Patients included were those with a first ICU admission and a
HF diagnosis identified using ICD-9 and ICD-10 codes. Exclusion
was based on the following conditions: (1) patients aged less than
18 years at initial admission; (2) patients hospitalized in the ICU
for under 24 h; (3) patients without key laboratory results
(albumin, bilirubin, or platelet counts). In total, 4,318 patients
were included in the study and categorized into three groups
based on PALBI score tertiles. The patient selection process is
illustrated in Figure 1.

2.3 Data collection

Data were extracted using Structured Query Language (SQL) via
pgAdmin (version 4). The following variables were collected within
the first 24 h of ICU admission: (1) demographic information: age,
gender, and ethnicity; (2) vital signs: heart rate, respiratory rate
(RR), systolic blood pressure (SBP), diastolic blood pressure (DBP),
body temperature, and peripheral oxygen saturation (SpO2); (3)
comorbid conditions: myocardial infarction (MI), atrial fibrillation
(AF), (CeVD),
pulmonary disease (COPD), acute kidney injury (AKI), diabetes,
and hypertension; (4) laboratory values: red blood cells (RBC),
white blood cells (WBC), platelets, red blood cell distribution
width (RDW), total
bilirubin, blood urea nitrogen (BUN), creatinine, anion gap,

cerebrovascular  disease chronic  obstructive

sodium, potassium, calcium, albumin,
international normalized ratio (INR), prothrombin time (PT),
partial thromboplastin time (PTT), and wurine output; (5)
prescribed medications: angiotensin-converting enzyme inhibitors
(ACEI), angiotensin II receptor blockers (ARB), beta-blockers, and

statins; (6) medical interventions: mechanical ventilation (MV) and
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First ICU admission for
diagnosed Heart Failure
(n=16,581)
Excluded total(n=12,263)
Age <18 (n=0)
ICU stay less than 24 hours
(n=2,741)
Missing albumin, bilirubin, or
platelet count (n=9,522)
Final analysis
cohort (n=4,318)
Tertile 1 Tertile 2 Tertile 3
N=1,425 N = 1,468 N = 1,425
FIGURE 1

Patient screening flow from the MIMIC database.

continuous renal replacement therapy (CRRT); and (7) assessment
scores: Charlson Comorbidity Index (CCI), Oxford Acute Severity
of Illness Score (OASIS), Sequential Organ Failure Assessment
(SOFA), and Left Ventricular Ejection Fraction (LVEF). The
PALBI score was calculated as: PALBI score=2.02 x log;o
bilirubin — 0.37 x (logo bilirubin)? — 0.04 x albumin — 3.48 x logio
platelets + 1.01 x (log;o platelets)2 (14), with bilirubin (pmol/L),
albumin (g/L), and platelet counts (k/pl) (12).

To reduce possible bias, variables with over 20% missing values
were excluded, whereas those missing less than 20% were imputed
using the “mice” package in R (Supplementary Table SI).
Considering the clinical importance of LVEF, we adopted the
missing-indicator method despite the relatively high proportion of
missing values: LVEF was entered into the regression model as a
four-category variable (>50%, 40%-49%, <40%, missing).

2.4 Clinical outcomes

The main outcome assessed was all-cause mortality within 30
days after ICU admission, while the secondary endpoint was
overall mortality at 360 days post-admission.

2.5 Statistical analysis

Continuous variables were presented as the mean * standard
deviation (mean +SD) when normally distributed, and as the
median with interquartile range (IQR) for non-normally
distributed data. Categorical variables were expressed as
frequencies and percentages. The normality of continuous
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variables was tested using the Kolmogorov-Smirnov test. For
normally distributed data, group comparisons were performed
using independent t-tests or one-way ANOVA. For non-
normally distributed variables, the Mann-Whitney U test or
Kruskal-Wallis test was used as appropriate.

Kaplan-Meier survival curves were constructed to evaluate
cumulative event rates across different PALBI score groups, with
differences between groups assessed using the log-rank test.
Additionally, univariate Cox regression analysis based on the
proportional hazards model was performed to identify potential
predictors of all-cause mortality.

Cox proportional hazards models were used to calculate
hazard ratios (HRs) and 95% confidence intervals (CIs) to assess
the relationship between PALBI scores and overall mortality,
with adjustments for potential confounding factors. Variables
with p<0.05 in univariate analysis were included in the
multivariate analysis. Clinically relevant variables with significant
prognostic implications were also included in multivariate
models as follows: Model 1 included no covariate adjustments;
Model 2 accounted for age, gender, and race; Model 3
incorporated additional adjustments for age, gender, race, SBP,
MI, AF, CeVD, AKI, WBC count, serum potassium, creatinine,
INR, beta-blocker use, and LVEF categories.

To assess potential multicollinearity among covariates, we
calculated the generalized variance inflation factor (GVIF) for all
variables included in the multivariable models. A GVIFA(1/
2Df) <2 was considered acceptable, indicating no concerning
collinearity. Detailed results are provided in Supplementary Table S2.

In addition, restricted cubic spline (RCS) regression with three
knots was applied to investigate possible nonlinear associations
between baseline PALBI scores and the risk of all-cause
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mortality at both 30 and 360 days. PALBI scores were analyzed as
continuous and ordinal categorical variables, the lowest tertile was
designated as the reference category in comparisons.To assess the
reliability of the PALBI score in forecasting overall mortality,
stratified analyses were conducted by gender, ethnicity, CeVD,
COPD, MV and LVEF categories. Interaction effects between
the PALBI score and the stratification variables were evaluated
using likelihood ratio tests. A two-sided p-value of less than 0.05
was regarded as statistically significant. All statistical analyses
were conducted using R software (version 4.4.2).

2.6 Construction and assessment of the
prognostic models

The data were randomly split into training and validation sets in a
7:3 ratio. To manage a large number of features, the least absolute
shrinkage and selection operator (LASSO) was used for feature
selection in the training set. A five-fold cross-validation method was
employed to determine the optimal regularization parameter. By
shrinking coefficients, LASSO selects features with greater predictive
contributions and eliminates redundant variables, thereby effectively
achieving feature selection and dimensionality reduction.

The chosen variables were then fed into multiple machine
learning models to estimate the 30-day all-cause mortality risk
among HF patients. Specifically, each selected feature set was
applied to multiple models including decision tree (DT), ridge
classifier (Ridge, a linear model with L2 regularization),
K-nearest neighbors (KNN), light gradient boosting machine
(LightGBM), random forest (RF), extreme gradient boosting
(XGBoost), support vector machine (SVM), and multilayer
perceptron (MLP). Hyperparameter tuning was conducted to
optimize model performance. Model training was conducted on
the training dataset, while the validation dataset was employed
to evaluate predictive accuracy. The discriminative ability of
each model was evaluated using the area under the receiver
operating characteristic curve (AUC-ROC). To assess the clinical
applicability of the models, decision curve analysis (DCA) was
conducted, and calibration plots were used to compare the
predicted probabilities with the actual outcomes.

3 Results

A total of 4,318 HF patients admitted to the ICU were
included in the study. The median age was 73.25 years
[interquartile range (IQR): 62.98-82.38], and 57% were male.
The overall median PALBI score was —6.05 (IQR: —6.60 to
—5.41). The all-cause mortality rates at 30 and 360 days were
observed to be 24% and 44%, respectively (Table 1).

3.1 Baseline characteristics

Table 1 presents the baseline characteristics of ICU-admitted
HF patients, stratified by PALBI tertiles. Based on PALBI scores

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1622554

at ICU admission, patients were categorized into three groups:
T1 (-848 to —6.41), T2 (-6.41 to —5.65), and T3 (~5.65 to
—0.62). The median PALBI scores for the T1, T2, and T3
groups were —6.81 (IQR: —7.12 to —6.60), —6.05 (IQR: —6.22 to
—5.87), —5.03 (IQR: —540 to —4.44),
Compared to individuals in the lowest PALBI tertile, those in

and respectively.
the highest tertile were generally older and more frequently
male, had lower systolic and diastolic blood pressures, reduced
oxygen saturation, and elevated SOFA, OASIS, and CCI scores.
In terms of cardiac function, there was a statistically significant
difference in the distribution of LVEF categories among the
groups (p=0.010), with patients in the highest PALBI tertile
showing a higher proportion of LVEF <40% compared to those
in the lowest tertile. The prevalence of AF and AKI was notably
higher in the high PALBI group, whereas the prevalence of MI,
CeVD, COPD, diabetes, and hypertension was lower. In terms
of laboratory findings, individuals in the high PALBI group
showed reduced platelet counts, lower serum albumin and
calcium levels, alongside elevated RDW, WBC, total bilirubin,
BUN, creatinine, INR, PT, and PTT. With respect to treatment
modalities, a higher proportion of patients in this group
underwent CRRT, whereas the use of ACEI/ARB, beta-blockers,
and statins was markedly lower. Clinically, those in the highest
PALBI tertile experienced significantly greater all-cause mortality
at both 30 days (20% vs. 23% vs. 30%, p <0.001) and 360 days
(39% vs. 42% vs. 52%, p <0.001) compared with patients in the
lower tertiles.

3.2 Clinical outcomes

Figure 2 presents Kaplan-Meier survival curves depicting
primary outcomes across different PALBI tertiles. Patients in the
highest PALBI tertile exhibited significantly reduced survival
probabilities at both 30 days (Figure 2A) and 360 days (Figure 2B)
compared to those in the lowest tertile (log-rank test, p < 0.001).

Supplementary Table S3 summarizes the univariate Cox
regression findings for all-cause mortality among ICU-admitted
Variables with P-values below 0.05 in the
univariate analysis, together with clinically significant predictors

HF patients.

identified by physicians, were incorporated into the multivariate
The final
multivariate model revealed several independent factors that

Cox regression model for further assessment.

were significantly linked to all-cause mortality, including age,
gender, race, SBP, MI, AF, CeVD, AKI, WBC count, serum
potassium, creatinine, INR, beta-blocker use, and LVEF categories.

To examine the relationship between PALBI score and all-
cause mortality, multivariable Cox regression analysis was
performed, as shown in Table 2. When analyzed as a
continuous variable, the PALBI score was significantly associated
with 30-day mortality risk across all models: in the unadjusted
model [HR=1.24; 95% CIL: 1.18-1.31; p<0.001], the partially
adjusted model [HR=1.28; 95% CI: 1.21-1.36; p <0.001], and
the fully adjusted model [HR=1.30; 95% CI. 1.17-1.44;
p <0.001]. A comparable pattern was seen for 360-day mortality.
When the PALBI score was analyzed as a categorical variable
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TABLE 1 Characteristics and outcomes of participants categorized by PALBI tertiles.

Characteristic

T1

T2

10.3389/fcvm.2025.1622554

T3

N = 1,425

N =1,468

N =1,425

Age, Median (Q1, Q3) 73.25 (62.98, 82.38) 72.33 (62.49, 81.26) 74.36 (63.86, 83.36) 73.08 (62.30, 82.20) <0.001
Gender, n (%) <0.001
Female 1,860 (43%) 755 (53%) 614 (42%) 491 (34%)

Male 2,458 (57%) 670 (47%) 854 (58%) 934 (66%)

Race, n (%) 0.095
Other 1,426 (33%) 440 (31%) 507 (35%) 479 (34%)

White 2,892 (67%) 985 (69%) 961 (65%) 946 (66%)

Heart rate (bpm) 89.00 (76.00, 104.00) 90.00 (76.00, 105.00) 88.00 (74.00, 102.00) 89.00 (77.00, 105.00) 0.018
SBP (mmHg) 120.00 (103.00, 137.00) 123.00 (107.00, 141.00) 121.00 (104.00, 139.00) 114.00 (100.00, 132.00) <0.001
DBP (mmHg) 67.00 (56.00, 79.00) 68.00 (56.00, 81.00) 68.00 (56.00, 79.50) 66.00 (55.00, 78.00) 0.003
RR (bpm) 20.00 (17.00, 25.00) 20.00 (17.00, 25.00) 20.00 (17.00, 24.00) 20.00 (16.00, 25.00) 0.339
Temperature (°C) 36.67 (36.39, 37.06) 36.72 (36.39, 37.06) 36.67 (36.44, 37.06) 36.67 (36.39, 37.00) 0.152
SpO2 (%) 97.00 (94.00, 99.00) 97.00 (94.00, 99.00) 97.00 (94.00, 99.00) 97.00 (94.00, 100.00) 0.044
SOFA 1.00 (0.00, 4.00) 1.00 (0.00, 3.00) 1.00 (0.00, 3.00) 2.00 (1.00, 5.00) <0.001
OASIS 34.00 (28.00, 40.00) 33.00 (28.00, 40.00) 33.00 (28.00, 39.00) 34.00 (28.00, 42.00) <0.001
CCI 7.00 (5.00, 9.00) 7.00 (5.00, 9.00) 7.00 (5.00, 9.00) 7.00 (5.00, 9.00) 0.012
ML n (%) 1,522 (35%) 544 (38%) 525 (36%) 453 (32%) 0.002
AF, n (%) 2,181 (51%) 624 (44%) 789 (54%) 768 (54%) <0.001
CeVD, n (%) 631 (15%) 221 (16%) 230 (16%) 180 (13%) 0.035
COPD, n (%) 1,454 (34%) 544 (38%) 477 (32%) 433 (30%) <0.001
AKI, n (%) 3,697 (86%) 1,185 (83%) 1,276 (87%) 1,236 (87%) 0.005
Diabetes, n (%) 1,767 (41%) 658 (46%) 590 (40%) 519 (36%) <0.001
Hypertension, n (%) 3,315 (77%) 1,126 (79%) 1,160 (79%) 1,029 (72%) <0.001
RBC (IOQ/L) 3.55 (3.01, 4.16) 3.55 (3.08, 4.11) 3.68 (3.08, 4.28) 3.43 (2.79, 4.07) <0.001
WBC (109/L) 11.10 (7.90, 16.00) 12.50 (9.10, 17.10) 10.80 (7.80, 15.20) 10.10 (7.00, 15.30) <0.001
Platelet (109/L) 197.00 (142.00, 267.00) 284.00 (229.00, 347.00) 193.00 (160.00, 237.00) 127.00 (88.00, 165.00) <0.001
RDW 15.20 (14.00, 17.00) 14.90 (13.90, 16.70) 15.00 (13.90, 16.50) 15.80 (14.50, 17.90) <0.001
Sodium (mmol/L) 138.00 (135.00, 141.00) 138.00 (135.00, 141.00) 138.00 (135.00, 141.00) 138.00 (134.00, 141.00) 0.202
Potassium (mmol/L) 4.30 (3.80, 4.80) 4.30 (3.90, 4.90) 4.30 (3.80, 4.70) 4.20 (3.80, 4.80) 0.024
Calcium (mmol/L) 8.40 (7.90, 8.90) 8.50 (8.00, 9.00) 8.50 (8.00, 9.00) 8.30 (7.70, 8.80) <0.001
Albumin (g/L) 3.20 (2.80, 3.60) 3.20 (2.80, 3.60) 3.30 (2.90, 3.60) 3.10 (2.70, 3.50) <0.001
Bilirubin total (umol/L) 0.70 (0.40, 1.23) 0.40 (0.30, 0.50) 0.70 (0.50, 0.94) 1.60 (1.00, 2.80) <0.001
PALBI —6.05 (—6.60, —5.41) —6.81 (—7.12, —6.60) —6.05 (—6.22, —5.87) —5.03 (—5.40, —4.44) <0.001
BUN (mg/dl) 30.00 (19.00, 48.00) 28.00 (19.00, 46.00) 29.00 (18.00, 46.00) 33.00 (21.00, 52.00) <0.001
Creatinine (mg/dl) 1.40 (0.90, 2.20) 1.30 (0.90, 2.20) 1.30 (0.90, 2.20) 1.50 (1.00, 2.30) <0.001
Anion gap (mmol/L) 15.00 (13.00, 18.00) 15.00 (13.00, 18.00) 15.00 (13.00, 18.00) 15.00 (13.00, 19.00) 0.008
INR 1.30 (1.20, 1.70) 1.20 (1.10, 1.50) 1.30 (1.20, 1.60) 1.60 (1.30, 2.10) <0.001
PT (S) 14.80 (12.90, 19.00) 13.80 (12.30, 16.50) 14.30 (12.70, 17.75) 17.00 (14.30, 22.90) <0.001
PTT (S) 33.10 (28.40, 43.30) 31.80 (27.80, 41.30) 32.60 (28.05, 43.30) 34.90 (29.90, 45.70) <0.001
Urine Output (ml) 1,375.00 (747.00, 2,385.00) | 1,500.00 (850.00, 2,460.00) | 1,416.50 (796.50, 2,445.00) | 1,230.00 (600.00, 2,152.00) <0.001
LVEE, n (%) 0.010
>50% 1,016 (23.53) 347 (24.35) 349 (23.77) 320 (22.46)

40%-49% 328 (7.60) 113 (7.93) 117 (7.97) 98 (6.88)

<40% 647 (14.98) 172 (12.07) 231 (15.74) 244 (17.12)

Missing 2,327 (53.89) 793 (55.65) 771 (52.52) 763 (53.54)

ACEI/ARB n (%) 1,451 (34%) 543 (38%) 529 (36%) 379 (27%) <0.001
Beta-blockers n (%) 2,948 (68%) 1,015 (71%) 1,055 (72%) 878 (62%) <0.001
Statin # (%) 2,095 (49%) 762 (53%) 753 (51%) 580 (41%) <0.001
MV 1 (%) 3,706 (86%) 1,230 (86%) 1,259 (86%) 1,217 (85%) 0.781
CRRT, n (%) 427 (10%) 103 (7%) 128 (9%) 196 (14%) <0.001
Hospital stay (day) 9.99 (5.99, 16.97) 9.80 (5.88, 16.74) 9.74 (6.01, 16.45) 10.72 (6.08, 18.65) 0.036
Hospital mortality n (%) 878 (20%) 231 (16%) 274 (19%) 373 (26%) <0.001
ICU stay (day) 3.35 (1.95, 6.31) 3.17 (1.91, 6.01) 3.40 (1.94, 6.27) 3.53 (1.98, 6.86) 0.108
ICU mortality n (%) 607 (14%) 154 (11%) 191 (13%) 262 (18%) <0.001
30-day all-cause Mortality n (%) 1,048 (24%) 285 (20%) 334 (23%) 429 (30%) <0.001
360-day all-cause Mortality n (%) 1,902 (44%) 557 (39%) 611 (42%) 734 (52%) <0.001

T1 (—8.48 to —6.41), T2 (—6.41 to —5.65), T3 (=5.65 to —0.62).
Bold values indicate statistically significant results.

SBP, systolic blood pressure; DBP, diastolic blood pressure; RR, respiratory rate; SpO2, peripheral capillary oxygen saturation; SOFA, Sequential Organ Failure Assessment; OASIS, Oxford
Acute Severity of Illness Score; CCI, Charlson Comorbidity Index; MI, myocardial infarction; AF, atrial fibrillation; CeVD, cerebrovascular disease; COPD, chronic obstructive pulmonary
disease; AKI, acute kidney injury; RBC, red blood cell count; WBC, white blood cell count; RDW, red cell distribution width; BUN, blood urea nitrogen; INR, international normalized ratio;
PT, prothrombin time; PTT, partial thromboplastin time; LVEF, Left Ventricular Ejection Fraction; ACEI/ARB, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; MV,
mechanical ventilation; CRRT, continuous renal replacement therapy; PALBI, platelet-albumin-bilirubin score.
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FIGURE 2

Kaplan—Meier survival curves for 30-day (A) and 360-day (B) all-cause mortality across PALBI score tertiles in ICU heart failure patients.

TABLE 2 Association between PALBI score and 30-day and 360-day all-cause mortality. .

Variables Model 1 Model 2 Model 3
HR (95% ClI) HR (95% ClI) HR (95% Cl)
30-day Mortality
PALBI | 1.24 (1.18-1.31) \ <.001 | 1.28 (1.21-1.36) | <001 \ 1.30 (1.17-1.44) | <.001
PALBI Tertile
T1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
T2 1.17 (1.01-137) 0.049 1.10 (0.94-1.29) 0.228 0.99 (0.82-1.19) 0.902
T3 1.62 (1.40-1.88) <.001 1.58 (1.36-1.84) <.001 1.36 (1.12-1.64) 0.002
360-day Mortality
PALBI 1.22 (1.17-1.27) \ <.001 1.25 (1.20-1.31) | <.001 1.19 (1.09-1.31) | <.001
PALBI Tertile
T1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
T2 111 (0.99-1.24) 0.080 1.06 (0.94-1.19) 0.344 0.98 (0.83-1.15) 0.781
T3 1.49 (1.34-1.67) <.001 147 (131-1.64) <.001 1.22 (1.03-1.44) 0.019

Model 1: Crude.
Model 2: Adjust for Age, Gender, Race.

Model 3: Adjust for Age, Gender, Race, SBP, Myocardial infarct, AF, Cerebrovascular disease, AKI, WBC, Potassium, Creatinine, INR, Beta blockers, LVEF category.

Bold values indicate statistically significant results.

PALBI, platelet-albumin-bilirubin score; HR, hazard ratio; CI, confidence interval; SBP, systolic blood pressure; AF, atrial fibrillation; AKI, acute kidney injury; WBC, white blood cell count;

INR, international normalized ratio; LVEF, Left Ventricular Ejection Fraction.

based on tertiles, patients in the highest tertile (T3) faced a
substantially greater risk of 30-day all-cause death than those in
the lowest tertile (T1), across all models: Model 1 [HR =1.62;
95% CI: 1.40-1.88; p<0.001], Model 2 [HR=1.58; 95% CI:
1.36-1.84; p<0.001], and Model 3 [HR=1.36; 95% CI: 1.12-
1.64; p=0.002]. A similar gradient was noted for 360-day
mortality, with the PALBI score displaying a progressive
increase in death risk: Model 1 [HR=1.49; 95% CI: 1.34-1.67;
p<0.001], Model 2 [HR=1.47; 95% CIL: 1.31-1.64; p <0.001],
and Model 3 [HR=1.22; 95% CI: 1.03-1.44; p=0.019]. These
results support a dose-response association between the PALBI
score and all-cause mortality among ICU HF patients.

In addition, RCS regression analysis demonstrated a nonlinear
relationship between the PALBI score and all-cause mortality at
both 30 and 360 days. As the PALBI score increased, the risk of
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death escalated significantly. This nonlinear association was
statistically significant for both 30-day mortality (p for nonlinear
<0.001) and 360-day mortality (p for nonlinear <0.001), as shown in
Figure 3.

3.3 Subgroup analysis

Subgroup analyses reinforced the stability of the link between
higher PALBI scores and elevated mortality risk across various
clinical subgroups, as depicted in Figure 4. In the analysis of
mortality at 30 and 360 days, the association remained significant
across strata defined by gender, race, presence of CeVD, COPD, and
MV use. When stratified by LVEF, patients with reduced LVEF
(<40%) showed a more pronounced association between PALBI and
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FIGURE 3

Restricted cubic spline (RCS) analysis of the association between PALBI score and 30-day (A) and 360-day (B) all-cause mortality

mortality compared with those with preserved LVEF, although no
statistically significant interaction was observed.

Among patients who died within 30 days, the association was
more pronounced in males [HR = 1.31; 95% CI: 1.22-1.42] than in
females [HR = 1.15; 95% CI: 1.05-1.26], with a statistically notable
interaction by gender (interaction p-value=0.026). Similar
consistent trends were observed within the CeVD, COPD, and
MYV subgroups; however, no statistically significant interactions
were identified, as all interaction p-values exceeded 0.05.

For 360-day mortality, the relationship between PALBI score
and death
subgroups, with no indication of significant interaction effects.

risk remained consistent across all examined
These results suggest that the PALBI score serves as a reliable
and robust predictor of all-cause mortality among ICU-admitted

HF patients, irrespective of their clinical subgroup features.

3.4 Feature selection

Feature selection using LASSO regression was performed in
the training cohort, as illustrated in Figure 5. Five-fold cross-
validation was employed to identify the optimal penalization
parameter (lambda) during model construction. Ultimately, 20
variables were selected as most predictive of all-cause mortality:
age, SBP, RR, temperature, OASIS score, CCI, CeVD, AKI,
ACEI/ARB use, beta-blocker use, CRRT, WBC, RDW, PALBI
score, BUN, PTT, urine output, SpO2, PT, and LVEF category.

3.5 Construction and validation of the risk
prediction model

Figure 6A displays the ROC curves corresponding to each
machine learning algorithm, with performance assessed by the
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AUC. The AUC values were as follows: Ridge (0.760), RF
(0.751), XGBoost (0.748), LightGBM (0.743), SVM (0.737),
KNN (0.724), MLP (0.701), and DT (0.666). Figure 6B illustrates
the calibration plots for each model evaluated on the test
dataset. Calibration curves indicated that ensemble models (RF,
XGBoost, and LightGBM) and Ridge provided closer agreement
between predicted and observed probabilities. Based on the
decision curve analysis shown in Supplementary Figure SI, most
models, particularly Ridge, RF, XGBoost, and LightGBM,
exhibited evident net clinical benefit across a wide range of
threshold  probabilities,
clinical applicability.

suggesting strong potential for

4 Discussion

This investigation examined the association between PALBI
scores and all-cause mortality in ICU-admitted patients with
HE. The results indicated that higher PALBI scores were
strongly associated with increased 30-day and 360-day all-cause
mortality. In our study, patients in the highest PALBI tertile had
approximately 1.36 times higher risk of 30-day mortality and
1.22 times higher risk of 360-day mortality compared with those
in the lowest tertile. RCS analysis confirmed a nonlinear
relationship between PALBI and mortality risk at both 30 and
360 days, with risk rising steeply at higher PALBI scores. The
machine-learning suite identified patients at risk of 30-day
mortality with favorable accuracy, led by Ridge regression
(AUC=0.76). These findings suggest that incorporating PALBI
into risk stratification may improve prognostic assessment in
critically ill HF patients.

The PALBI score, which integrates platelet count, serum
albumin, and total bilirubin, was initially designed to evaluate
hepatic function and forecast outcomes in individuals with
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FIGURE 4
Subgroup analysis of the association between PALBI score and 30-day (A) and 360-day all-cause mortality (B)

hepatocellular carcinoma (15). While its initial application was in
hepatic diseases, the use of PALBI in the context of HF represents
a promising approach. Prior studies have validated the ALBI
score’s prognostic utility in HF across diverse populations,
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including acute HF (16), elderly with decompensated HF (17),
ICU admissions (8), reduced ejection fraction (18), CRT
recipients (19), and in-hospital mortality prediction alongside
N-terminal pro-B-type natriuretic peptide (NT-pro BNP) (20),
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underscoring  hepatic  dysfunction’s prognostic  relevance.
However, emerging evidence suggests that PALBI may offer
prognostic advantages in HF beyond those of ALBIL In HF,
platelet indices have been repeatedly linked to disease severity
and outcomes, and composite coagulation scores that include
platelet count strongly stratify mortality. For example, Noeva
et al. showed that worse cardiac function and higher HF event

rates were associated with low platelet count and high platelet-

Frontiers in Cardiovascular Medicine

to-leukocyte ratios (9). Similarly, Tang et al. found that a higher
“coagulation disorder” score (based on platelet count, INR, and
APTT) predicted nearly double the 30-day mortality in critically
ill CHF patients (10). By contrast, ALBI (bilirubin + albumin)
omits this dimension. Empirically, PALBI has shown broader
predictive accuracy than ALBI in analogous settings. In
transcatheter aortic valve replacement patients (a population
with cardiohepatic interactions), Duan et al. found that adding
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the PALBI score to the standard STS risk model significantly
improved discrimination of mortality (21). They noted that
most cardiac risk scores do not explicitly account for liver
function or coagulopathy—gaps that PALBI helps to fill.
However, studies specifically evaluating the utility of the PALBI
score in HF remain limited. Our findings suggest that PALBI
holds independent prognostic significance in ICU-admitted
patients with HF, thus extending its potential application
beyond liver-related conditions.

The relationship of elevated PALBI values with mortality
among individuals with HF may be explained by multiple
underlying pathophysiological mechanisms. Fundamentally, the
PALBI score is a composite marker that reflects hepatic
dysfunction—through albumin and bilirubin—and hematologic
status via platelet count. HF often gives rise to what is known as
cardiohepatic syndrome or congestive hepatopathy, a condition
marked by persistently elevated central venous pressure and
output, which
congestion, inadequate perfusion, and hepatic damage (4, 22).

diminished cardiac in turn causes liver
A direct consequence of this process is elevated serum bilirubin

levels, which are indicative of cholestasis and have been
associated with poor outcomes in HF, even with modest
increases (23). Serum albumin levels are often decreased in HF
patients due to factors such as hemodilution from fluid
overload, malnutrition, and impaired hepatic synthesis. Earlier
research has established hypoalbuminemia as a powerful
indicator of adverse prognosis in HF. For instance, Chao and
colleagues reported that lower albumin levels were significantly
correlated with short-term mortality among ICU-admitted HF
patients (24). In addition to bilirubin and albumin, the PALBI
score incorporates platelet count. Thrombocytopenia in HF may
result from several mechanisms, with a prominent one being
portal hypertension and splenic sequestration due to cardiogenic
cirrhosis, leading to reduced circulating platelet levels (25).
Wang et al. reported that among ICU patients with acute HF,
lower baseline platelet counts independently predicted in-
hospital mo2rtality, and both markedly low and unusually high
platelet levels were associated with unfavorable outcomes (26).

In our study, elevated PALBI scores may result from various

combinations of these abnormalities. For instance,
thrombocytopenia combined with hypoalbuminemia and
hyperbilirubinemia likely indicates severe HF with overt

congestive hepatopathy. Alternatively, patients with moderately
preserved platelet counts but profoundly low albumin and
elevated bilirubin may also exhibit high PALBI scores. Both
patterns reflect significant multisystem involvement. This may
explain why PALBI, which includes platelet count, provides
greater prognostic accuracy than ALBI in certain settings.
Essentially, the PALBI score serves as a surrogate marker for the
systemic burden of HF, capturing the extent of hepatic
dysfunction (bilirubin), protein synthesis or nutritional reserve
(albumin), and hematologic compromise (platelet count). Severe
derangements in these parameters often indicate advanced
disease with multiorgan involvement, which corresponds to
elevated mortality risk. In summary, the link between PALBI
and mortality in HF patients may stem from its ability to
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encapsulate key elements of hepatic injury, malnutrition, and
potential coagulation abnormalities—all of which contribute
synergistically to poor clinical outcomes.

In our subgroup analysis, we found a significant sex-PALBI
interaction on 30-day mortality in HF: the hazard ratio was
higher in men (HR=1.31) than in women (HR=1.15),
suggesting increasing PALBI more strongly predicts mortality in
men. This may be explained by that women with HF often have
better outcomes and distinct clinical features (27). Men more
commonly have ischemic HF with reduced ejection fraction,
while women more often have HFpEF (28). Ischemic HF may
exacerbate liver dysfunction via inflammation and oxidative
stress, worsening outcomes in men. Hormonal differences (e.g.,
estrogen vs. testosterone) and immune responses also affect
cardiac remodeling and prognosis (29). Men also have higher
rates of alcohol misuse and metabolic syndrome (30, 31), which
can further impair liver function. Clinically, an elevated PALBI
in men may flag a high-risk subgroup requiring aggressive
intervention, whereas PALBI is less predictive in women.
Biologically, the known protective effects of estrogen may
explain better outcomes in women, while the stronger systemic
inflammatory response in men can exacerbate liver injury (32).
These findings suggest a clinical need for different PALBI risk
thresholds
personalized care,

for male and female patients, guiding more

such as emphasizing anti-inflammatory
management in men.Therefore, further multicenter trials are
needed to validate these sex-based differences and mechanisms.

Our by

identifying the PALBI score as a robust and easily calculable

study carries important clinical implications
prognostic tool for ICU HF patients. HF has long been
acknowledged as a condition affecting multiple organ systems,
and our findings reinforce the necessity of incorporating
assessments of liver function and nutritional status into
comprehensive risk stratification. One of the major advantages
of the PALBI score is its simplicity—it is derived from routine
laboratory tests, including platelet count, albumin, and bilirubin,
all of which are commonly measured in hospitalized patients.
This enables immediate application in clinical settings without
additional cost or testing burden. To facilitate its clinical
implementation for risk stratification in the ICU, we propose a
specific cut-off value. Based on ROC curve analysis for 30-day
mortality, a PALBI score threshold of —2.45 was identified
(Youden’s index). This threshold falls within the third tertile of
our cohort. Using this ROC-derived value, patients can be
dichotomized into high-risk (PALBI>-2.45) and low-risk
(PALBI < —2.45) The wuse of this

calculable threshold can provide clinicians with an immediate

groups. single, readily
and objective means to identify high-risk HF patients upon ICU
admission, potentially triggering closer monitoring or more
intensive therapy. For ICU-admitted HF patients, a high PALBI
score upon admission may alert clinicians to an elevated risk of
mortality, warranting closer hemodynamic monitoring, more
aggressive diuresis, or early multidisciplinary interventions, such
as consultation with hepatology or nutritional support services.
Such approaches may offer considerable benefit, since promptly
high-risk could enable the

recognizing individuals
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implementation of focused interventions—like nutritional support
or anti-inflammatory treatments—that have the potential to
enhance clinical outcomes. Another advantage of the PALBI
score is its objectivity. Unlike other clinical scoring systems that
incorporate subjective assessments—such as the Child-Pugh
score or the NYHA classification for HF—the PALBI score is
entirely laboratory-based, thereby minimizing interobserver
variability and enhancing reproducibility.

Our study is the first to assess PALBI in ICU HF patients,
extending its use beyond liver disease. Incorporating platelet
count, PALBI remains a strong prognostic marker and may
enhance risk stratification when combined with tools like
APACHE 1II or BNP. Despite these strengths, our study has
several limitations. First, the retrospective design based on a
single-center database may introduce selection bias and limits
causal inference. Second, while we accounted for numerous
confounding factors in our multivariable models, residual
confounding cannot be entirely ruled out. Third, due to the
intrinsic limitations of the database, we were unable to include
BNP or NT-pro BNP levels in our primary analysis, which may
have affected the accuracy of both the association estimates and
model predictions. Fourth, the database did not provide
of death
(cardiovascular vs. non-cardiovascular), so our endpoints were

information on rehospitalization or causes
restricted to all-cause mortality. This limited the scope of
clinical interpretation. Another limitation is that our study was
based on a single-center database from the United States, which
may reduce the generalizability of the findings to other ethnic
groups and healthcare systems. Therefore, future research should
aim to validate these results in multicenter studies or
prospective cohorts to confirm their broader applicability.
Finally, New York Heart Association (NYHA) class was not
available in the MIMIC-IV database. Although this is a
limitation, the inclusion of LVEF and other objective covariates

provided reasonable adjustment for cardiac function.

5 Conclusion

In conclusion, our study demonstrates that the PALBI score
serves as an independent prognostic marker for ICU-admitted
HEF patients. Elevated PALBI scores were significantly linked to
higher all-cause mortality at both 30 and 360 days. Additionally,
machine learning models incorporating PALBI showed good
performance in predicting 30-day mortality. These findings
suggest that the PALBI score may be a valuable tool for risk
stratification and supporting treatment decisions in the intensive
care management of HF.
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