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platelet-albumin-bilirubin score 
and all-cause mortality in ICU- 
admitted heart failure patients: a 
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machine learning-based 
prognostic modeling
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Kailin Zheng, Yunsu Wang* and Zhonghui Lin*

Department of Cardiology, Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese 

Medicine, Xiamen, Fujian, China

Background: The platelet-albumin-bilirubin (PALBI) score has shown 

prognostic value across multiple medical conditions; nevertheless, its 

effectiveness in forecasting prognoses among severely ill heart failure (HF) 

patients treated in Intensive Care Unit (ICU) has yet to be fully established. 

This study explores the relationship between PALBI scores at ICU admission 

and all-cause mortality in HF patients admitted to the ICU.

Methods: Drawing on records from the MIMIC-IV version 3.1 critical care 

database, we included ICU-admitted HF patients and calculated their PALBI 

scores at admission. Kaplan–Meier survival curves and log-rank tests were used 

to assess differences in overall mortality at 30 and 360 days across the PALBI 

tertile groups. Cox regression models based on the proportional hazards 

assumption were utilized to control for possible confounding variables. In 

addition, predictive models based on machine learning were constructed using 

PALBI alongside other clinical features to estimate 30-day mortality, with 

model performance evaluated through the area under the ROC curve (AUC).

Results: A total of 4,318 participants were included in the study cohort (57% 

male; median age 73 years). The cumulative incidence of all-cause mortality 

was 24% at 30 days and 44% at 360 days. Individuals in the top PALBI tertile 

exhibited markedly higher mortality rates compared to those in the lowest 

tertile (30% vs. 20% at 30 days and 52% vs. 39% at 360 days). Multivariate Cox 

regression analysis revealed significant associations of elevated PALBI scores 

with higher mortality risk at both 30 days (HR: 1.36; 95% CI: 1.12–1.64; 

p = 0.002) and 360 days (HR: 1.22; 95% CI: 1.03–1.44; p = 0.019). Machine 

learning models effectively discriminated patients at risk of 30-day mortality, 

with the best performance achieved by Ridge regression (AUC = 0.76).

Conclusion: The PALBI score independently predicts 30-day and 360-day all- 

cause mortality among ICU-admitted HF patients. These findings suggest that 

the PALBI score has potential utility for risk stratification and for guiding 

treatment decisions in the intensive care management of HF.
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1 Introduction

Heart failure (HF) is a multifaceted syndrome marked by 

impaired cardiac output, which results in reduced blood �ow to 

vital organs and tissues. HF poses a major public health 

challenge worldwide, currently impacting around 6.7 million 

adults in the U.S., with estimates suggesting this number could 

rise to 8.7 million by 2030 (1). Patients with HF frequently 

present with severe conditions requiring intensive care; 

approximately 14% of admissions to cardiac intensive care units 

(CICU) are primarily due to HF, with a subsequent mortality or 

rehospitalization rate of 52.8% within one year among ICU HF 

patients (2, 3).

HF often involves multi-organ dysfunction, particularly 

hepatic impairment. Liver dysfunction in HF occurs through 

pathophysiological processes such as congestive hepatopathy and 

acute cardiogenic liver injury. Moreover, liver disease may 

exacerbate cardiac dysfunction, establishing a bidirectional 

cardio-hepatic interaction (4). Abnormalities in hepatic markers, 

including bilirubin and albumin, frequently occur in patients 

with HF and are associated with adverse prognoses. For 

example, increased bilirubin concentrations have been 

recognized as independent indicators of adverse prognosis in 

individuals with HF (5). Likewise, hypoalbuminemia and 

thrombocytopenia are more prevalent among HF patients and 

significantly correlate with increased mortality risk (6, 7). 

Collectively, these findings underscore the importance of 

comprehensive hepatic function assessments in evaluating 

prognostic outcomes in HF.

Recent studies have demonstrated that the albumin-bilirubin 

(ALBI) score, a measure of liver function, is a powerful 

predictor of prognosis in ICU-admitted HF patients, with each 

unit increase in the ALBI score associated with a 24% rise in 

mortality risk (8). Nonetheless, the ALBI score is confined to 

measurements of albumin and bilirubin alone and may not fully 

capture disease severity, particularly concerning in�ammatory 

and coagulation factors integral to HF pathogenesis. Platelets 

play a critical role in HF by contributing to in�ammation and 

microthrombi formation, exacerbating myocardial injury and 

cardiac dysfunction. Prior evidence has shown that platelet 

indices are closely related to HF severity, with low platelet 

counts and abnormal platelet-to-leukocyte ratios predicting 

worse outcomes (9). Moreover, composite coagulation scores 

incorporating platelet count have been associated with a 

markedly increased short-term mortality risk in critically ill HF 

patients (10). These findings suggest that platelet abnormalities 

not only re�ect impaired hemostasis but also indicate ongoing 

in�ammation and thrombosis in HF. Thus, the platelet-albumin- 

bilirubin (PALBI) score integrates platelet counts to potentially 

offer a more comprehensive prognostic assessment.

Originally developed for hepatocellular carcinoma to predict 

hepatic functional reserve and survival outcomes (11), recent 

research indicates PALBI’s prognostic utility extends to other 

conditions. For instance, elevated PALBI scores have been 

strongly linked to higher 30-day mortality rates among 

individuals suffering from acute respiratory distress syndrome 

(12). However, the predictive value of the PALBI score in HF 

patients admitted to the ICU has not been clearly established.

This study, therefore, sought to assess the ability of the PALBI 

score to predict both short-term and long-term mortality in ICU- 

admitted HF patients, offering clinicians a more accurate 

prognostic tool.

2 Materials and methods

2.1 Data source

This retrospective analysis utilized data extracted from the 

MIMIC-IV v3.1 database, a widely recognized public ICU 

dataset managed by the Laboratory for Computational 

Physiology at MIT. It provides comprehensive, high-quality 

clinical data from patients admitted to the ICUs at Beth Israel 

Deaconess Medical Center (13). One of the study authors, 

Zhantao Cao, obtained authorized access to the data 

(Certification number: 14336451) and conducted data extraction 

in compliance with established data usage guidelines.

2.2 Participants

Patients included were those with a first ICU admission and a 

HF diagnosis identified using ICD-9 and ICD-10 codes. Exclusion 

was based on the following conditions: (1) patients aged less than 

18 years at initial admission; (2) patients hospitalized in the ICU 

for under 24 h; (3) patients without key laboratory results 

(albumin, bilirubin, or platelet counts). In total, 4,318 patients 

were included in the study and categorized into three groups 

based on PALBI score tertiles. The patient selection process is 

illustrated in Figure 1.

2.3 Data collection

Data were extracted using Structured Query Language (SQL) via 

pgAdmin (version 4). The following variables were collected within 

the first 24 h of ICU admission: (1) demographic information: age, 

gender, and ethnicity; (2) vital signs: heart rate, respiratory rate 

(RR), systolic blood pressure (SBP), diastolic blood pressure (DBP), 

body temperature, and peripheral oxygen saturation (SpO2); (3) 

comorbid conditions: myocardial infarction (MI), atrial fibrillation 

(AF), cerebrovascular disease (CeVD), chronic obstructive 

pulmonary disease (COPD), acute kidney injury (AKI), diabetes, 

and hypertension; (4) laboratory values: red blood cells (RBC), 

white blood cells (WBC), platelets, red blood cell distribution 

width (RDW), sodium, potassium, calcium, albumin, total 

bilirubin, blood urea nitrogen (BUN), creatinine, anion gap, 

international normalized ratio (INR), prothrombin time (PT), 

partial thromboplastin time (PTT), and urine output; (5) 

prescribed medications: angiotensin-converting enzyme inhibitors 

(ACEI), angiotensin II receptor blockers (ARB), beta-blockers, and 

statins; (6) medical interventions: mechanical ventilation (MV) and 
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continuous renal replacement therapy (CRRT); and (7) assessment 

scores: Charlson Comorbidity Index (CCI), Oxford Acute Severity 

of Illness Score (OASIS), Sequential Organ Failure Assessment 

(SOFA), and Left Ventricular Ejection Fraction (LVEF). The 

PALBI score was calculated as: PALBI score = 2.02 × log10 

bilirubin − 0.37 × (log10 bilirubin)2 
− 0.04 × albumin − 3.48 × log10 

platelets + 1.01 × (log10 platelets)2 (14), with bilirubin (μmol/L), 

albumin (g/L), and platelet counts (k/μl) (12).

To reduce possible bias, variables with over 20% missing values 

were excluded, whereas those missing less than 20% were imputed 

using the “mice” package in R (Supplementary Table S1). 

Considering the clinical importance of LVEF, we adopted the 

missing-indicator method despite the relatively high proportion of 

missing values: LVEF was entered into the regression model as a 

four-category variable (≥50%, 40%–49%, <40%, missing).

2.4 Clinical outcomes

The main outcome assessed was all-cause mortality within 30 

days after ICU admission, while the secondary endpoint was 

overall mortality at 360 days post-admission.

2.5 Statistical analysis

Continuous variables were presented as the mean ± standard 

deviation (mean ± SD) when normally distributed, and as the 

median with interquartile range (IQR) for non-normally 

distributed data. Categorical variables were expressed as 

frequencies and percentages. The normality of continuous 

variables was tested using the Kolmogorov–Smirnov test. For 

normally distributed data, group comparisons were performed 

using independent t-tests or one-way ANOVA. For non- 

normally distributed variables, the Mann–Whitney U test or 

Kruskal–Wallis test was used as appropriate.

Kaplan–Meier survival curves were constructed to evaluate 

cumulative event rates across different PALBI score groups, with 

differences between groups assessed using the log-rank test. 

Additionally, univariate Cox regression analysis based on the 

proportional hazards model was performed to identify potential 

predictors of all-cause mortality.

Cox proportional hazards models were used to calculate 

hazard ratios (HRs) and 95% confidence intervals (CIs) to assess 

the relationship between PALBI scores and overall mortality, 

with adjustments for potential confounding factors. Variables 

with p < 0.05 in univariate analysis were included in the 

multivariate analysis. Clinically relevant variables with significant 

prognostic implications were also included in multivariate 

models as follows: Model 1 included no covariate adjustments; 

Model 2 accounted for age, gender, and race; Model 3 

incorporated additional adjustments for age, gender, race, SBP, 

MI, AF, CeVD, AKI, WBC count, serum potassium, creatinine, 

INR, beta-blocker use, and LVEF categories.

To assess potential multicollinearity among covariates, we 

calculated the generalized variance in�ation factor (GVIF) for all 

variables included in the multivariable models. A GVIF^(1/ 

2Df) < 2 was considered acceptable, indicating no concerning 

collinearity. Detailed results are provided in Supplementary Table S2.

In addition, restricted cubic spline (RCS) regression with three 

knots was applied to investigate possible nonlinear associations 

between baseline PALBI scores and the risk of all-cause 

FIGURE 1 

Patient screening flow from the MIMIC database.
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mortality at both 30 and 360 days. PALBI scores were analyzed as 

continuous and ordinal categorical variables, the lowest tertile was 

designated as the reference category in comparisons.To assess the 

reliability of the PALBI score in forecasting overall mortality, 

stratified analyses were conducted by gender, ethnicity, CeVD, 

COPD, MV and LVEF categories. Interaction effects between 

the PALBI score and the stratification variables were evaluated 

using likelihood ratio tests. A two-sided p-value of less than 0.05 

was regarded as statistically significant. All statistical analyses 

were conducted using R software (version 4.4.2).

2.6 Construction and assessment of the 
prognostic models

The data were randomly split into training and validation sets in a 

7:3 ratio. To manage a large number of features, the least absolute 

shrinkage and selection operator (LASSO) was used for feature 

selection in the training set. A five-fold cross-validation method was 

employed to determine the optimal regularization parameter. By 

shrinking coefficients, LASSO selects features with greater predictive 

contributions and eliminates redundant variables, thereby effectively 

achieving feature selection and dimensionality reduction.

The chosen variables were then fed into multiple machine 

learning models to estimate the 30-day all-cause mortality risk 

among HF patients. Specifically, each selected feature set was 

applied to multiple models including decision tree (DT), ridge 

classifier (Ridge, a linear model with L2 regularization), 

K-nearest neighbors (KNN), light gradient boosting machine 

(LightGBM), random forest (RF), extreme gradient boosting 

(XGBoost), support vector machine (SVM), and multilayer 

perceptron (MLP). Hyperparameter tuning was conducted to 

optimize model performance. Model training was conducted on 

the training dataset, while the validation dataset was employed 

to evaluate predictive accuracy. The discriminative ability of 

each model was evaluated using the area under the receiver 

operating characteristic curve (AUC-ROC). To assess the clinical 

applicability of the models, decision curve analysis (DCA) was 

conducted, and calibration plots were used to compare the 

predicted probabilities with the actual outcomes.

3 Results

A total of 4,318 HF patients admitted to the ICU were 

included in the study. The median age was 73.25 years 

[interquartile range (IQR): 62.98–82.38], and 57% were male. 

The overall median PALBI score was −6.05 (IQR: −6.60 to 

−5.41). The all-cause mortality rates at 30 and 360 days were 

observed to be 24% and 44%, respectively (Table 1).

3.1 Baseline characteristics

Table 1 presents the baseline characteristics of ICU-admitted 

HF patients, stratified by PALBI tertiles. Based on PALBI scores 

at ICU admission, patients were categorized into three groups: 

T1 (–8.48 to −6.41), T2 (–6.41 to −5.65), and T3 (–5.65 to 

−0.62). The median PALBI scores for the T1, T2, and T3 

groups were −6.81 (IQR: −7.12 to −6.60), −6.05 (IQR: −6.22 to 

−5.87), and −5.03 (IQR: −5.40 to −4.44), respectively. 

Compared to individuals in the lowest PALBI tertile, those in 

the highest tertile were generally older and more frequently 

male, had lower systolic and diastolic blood pressures, reduced 

oxygen saturation, and elevated SOFA, OASIS, and CCI scores. 

In terms of cardiac function, there was a statistically significant 

difference in the distribution of LVEF categories among the 

groups (p = 0.010), with patients in the highest PALBI tertile 

showing a higher proportion of LVEF <40% compared to those 

in the lowest tertile. The prevalence of AF and AKI was notably 

higher in the high PALBI group, whereas the prevalence of MI, 

CeVD, COPD, diabetes, and hypertension was lower. In terms 

of laboratory findings, individuals in the high PALBI group 

showed reduced platelet counts, lower serum albumin and 

calcium levels, alongside elevated RDW, WBC, total bilirubin, 

BUN, creatinine, INR, PT, and PTT. With respect to treatment 

modalities, a higher proportion of patients in this group 

underwent CRRT, whereas the use of ACEI/ARB, beta-blockers, 

and statins was markedly lower. Clinically, those in the highest 

PALBI tertile experienced significantly greater all-cause mortality 

at both 30 days (20% vs. 23% vs. 30%, p < 0.001) and 360 days 

(39% vs. 42% vs. 52%, p < 0.001) compared with patients in the 

lower tertiles.

3.2 Clinical outcomes

Figure 2 presents Kaplan–Meier survival curves depicting 

primary outcomes across different PALBI tertiles. Patients in the 

highest PALBI tertile exhibited significantly reduced survival 

probabilities at both 30 days (Figure 2A) and 360 days (Figure 2B) 

compared to those in the lowest tertile (log-rank test, p < 0.001).

Supplementary Table S3 summarizes the univariate Cox 

regression findings for all-cause mortality among ICU-admitted 

HF patients. Variables with P-values below 0.05 in the 

univariate analysis, together with clinically significant predictors 

identified by physicians, were incorporated into the multivariate 

Cox regression model for further assessment. The final 

multivariate model revealed several independent factors that 

were significantly linked to all-cause mortality, including age, 

gender, race, SBP, MI, AF, CeVD, AKI, WBC count, serum 

potassium, creatinine, INR, beta-blocker use, and LVEF categories.

To examine the relationship between PALBI score and all- 

cause mortality, multivariable Cox regression analysis was 

performed, as shown in Table 2. When analyzed as a 

continuous variable, the PALBI score was significantly associated 

with 30-day mortality risk across all models: in the unadjusted 

model [HR = 1.24; 95% CI: 1.18–1.31; p < 0.001], the partially 

adjusted model [HR = 1.28; 95% CI: 1.21–1.36; p < 0.001], and 

the fully adjusted model [HR = 1.30; 95% CI: 1.17–1.44; 

p < 0.001]. A comparable pattern was seen for 360-day mortality. 

When the PALBI score was analyzed as a categorical variable 
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TABLE 1 Characteristics and outcomes of participants categorized by PALBI tertiles.

Characteristic Overall 
N = 4,318

T1 
N = 1,425

T2 
N = 1,468

T3 
N = 1,425

p-value

Age, Median (Q1, Q3) 73.25 (62.98, 82.38) 72.33 (62.49, 81.26) 74.36 (63.86, 83.36) 73.08 (62.30, 82.20) <0.001

Gender, n (%) <0.001

Female 1,860 (43%) 755 (53%) 614 (42%) 491 (34%)

Male 2,458 (57%) 670 (47%) 854 (58%) 934 (66%)

Race, n (%) 0.095

Other 1,426 (33%) 440 (31%) 507 (35%) 479 (34%)

White 2,892 (67%) 985 (69%) 961 (65%) 946 (66%)

Heart rate (bpm) 89.00 (76.00, 104.00) 90.00 (76.00, 105.00) 88.00 (74.00, 102.00) 89.00 (77.00, 105.00) 0.018

SBP (mmHg) 120.00 (103.00, 137.00) 123.00 (107.00, 141.00) 121.00 (104.00, 139.00) 114.00 (100.00, 132.00) <0.001

DBP (mmHg) 67.00 (56.00, 79.00) 68.00 (56.00, 81.00) 68.00 (56.00, 79.50) 66.00 (55.00, 78.00) 0.003

RR (bpm) 20.00 (17.00, 25.00) 20.00 (17.00, 25.00) 20.00 (17.00, 24.00) 20.00 (16.00, 25.00) 0.339

Temperature (°C) 36.67 (36.39, 37.06) 36.72 (36.39, 37.06) 36.67 (36.44, 37.06) 36.67 (36.39, 37.00) 0.152

SpO2 (%) 97.00 (94.00, 99.00) 97.00 (94.00, 99.00) 97.00 (94.00, 99.00) 97.00 (94.00, 100.00) 0.044

SOFA 1.00 (0.00, 4.00) 1.00 (0.00, 3.00) 1.00 (0.00, 3.00) 2.00 (1.00, 5.00) <0.001

OASIS 34.00 (28.00, 40.00) 33.00 (28.00, 40.00) 33.00 (28.00, 39.00) 34.00 (28.00, 42.00) <0.001

CCI 7.00 (5.00, 9.00) 7.00 (5.00, 9.00) 7.00 (5.00, 9.00) 7.00 (5.00, 9.00) 0.012

MI, n (%) 1,522 (35%) 544 (38%) 525 (36%) 453 (32%) 0.002

AF, n (%) 2,181 (51%) 624 (44%) 789 (54%) 768 (54%) <0.001

CeVD, n (%) 631 (15%) 221 (16%) 230 (16%) 180 (13%) 0.035

COPD, n (%) 1,454 (34%) 544 (38%) 477 (32%) 433 (30%) <0.001

AKI, n (%) 3,697 (86%) 1,185 (83%) 1,276 (87%) 1,236 (87%) 0.005

Diabetes, n (%) 1,767 (41%) 658 (46%) 590 (40%) 519 (36%) <0.001

Hypertension, n (%) 3,315 (77%) 1,126 (79%) 1,160 (79%) 1,029 (72%) <0.001

RBC (109/L) 3.55 (3.01, 4.16) 3.55 (3.08, 4.11) 3.68 (3.08, 4.28) 3.43 (2.79, 4.07) <0.001

WBC (109/L) 11.10 (7.90, 16.00) 12.50 (9.10, 17.10) 10.80 (7.80, 15.20) 10.10 (7.00, 15.30) <0.001

Platelet (109/L) 197.00 (142.00, 267.00) 284.00 (229.00, 347.00) 193.00 (160.00, 237.00) 127.00 (88.00, 165.00) <0.001

RDW 15.20 (14.00, 17.00) 14.90 (13.90, 16.70) 15.00 (13.90, 16.50) 15.80 (14.50, 17.90) <0.001

Sodium (mmol/L) 138.00 (135.00, 141.00) 138.00 (135.00, 141.00) 138.00 (135.00, 141.00) 138.00 (134.00, 141.00) 0.202

Potassium (mmol/L) 4.30 (3.80, 4.80) 4.30 (3.90, 4.90) 4.30 (3.80, 4.70) 4.20 (3.80, 4.80) 0.024

Calcium (mmol/L) 8.40 (7.90, 8.90) 8.50 (8.00, 9.00) 8.50 (8.00, 9.00) 8.30 (7.70, 8.80) <0.001

Albumin (g/L) 3.20 (2.80, 3.60) 3.20 (2.80, 3.60) 3.30 (2.90, 3.60) 3.10 (2.70, 3.50) <0.001

Bilirubin total (μmol/L) 0.70 (0.40, 1.23) 0.40 (0.30, 0.50) 0.70 (0.50, 0.94) 1.60 (1.00, 2.80) <0.001

PALBI −6.05 (−6.60, −5.41) −6.81 (−7.12, −6.60) −6.05 (−6.22, −5.87) −5.03 (−5.40, −4.44) <0.001

BUN (mg/dl) 30.00 (19.00, 48.00) 28.00 (19.00, 46.00) 29.00 (18.00, 46.00) 33.00 (21.00, 52.00) <0.001

Creatinine (mg/dl) 1.40 (0.90, 2.20) 1.30 (0.90, 2.20) 1.30 (0.90, 2.20) 1.50 (1.00, 2.30) <0.001

Anion gap (mmol/L) 15.00 (13.00, 18.00) 15.00 (13.00, 18.00) 15.00 (13.00, 18.00) 15.00 (13.00, 19.00) 0.008

INR 1.30 (1.20, 1.70) 1.20 (1.10, 1.50) 1.30 (1.20, 1.60) 1.60 (1.30, 2.10) <0.001

PT (S) 14.80 (12.90, 19.00) 13.80 (12.30, 16.50) 14.30 (12.70, 17.75) 17.00 (14.30, 22.90) <0.001

PTT (S) 33.10 (28.40, 43.30) 31.80 (27.80, 41.30) 32.60 (28.05, 43.30) 34.90 (29.90, 45.70) <0.001

Urine Output (ml) 1,375.00 (747.00, 2,385.00) 1,500.00 (850.00, 2,460.00) 1,416.50 (796.50, 2,445.00) 1,230.00 (600.00, 2,152.00) <0.001

LVEF, n (%) 0.010

≥50% 1,016 (23.53) 347 (24.35) 349 (23.77) 320 (22.46)

40%–49% 328 (7.60) 113 (7.93) 117 (7.97) 98 (6.88)

<40% 647 (14.98) 172 (12.07) 231 (15.74) 244 (17.12)

Missing 2,327 (53.89) 793 (55.65) 771 (52.52) 763 (53.54)

ACEI/ARB n (%) 1,451 (34%) 543 (38%) 529 (36%) 379 (27%) <0.001

Beta-blockers n (%) 2,948 (68%) 1,015 (71%) 1,055 (72%) 878 (62%) <0.001

Statin n (%) 2,095 (49%) 762 (53%) 753 (51%) 580 (41%) <0.001

MV n (%) 3,706 (86%) 1,230 (86%) 1,259 (86%) 1,217 (85%) 0.781

CRRT, n (%) 427 (10%) 103 (7%) 128 (9%) 196 (14%) <0.001

Hospital stay (day) 9.99 (5.99, 16.97) 9.80 (5.88, 16.74) 9.74 (6.01, 16.45) 10.72 (6.08, 18.65) 0.036

Hospital mortality n (%) 878 (20%) 231 (16%) 274 (19%) 373 (26%) <0.001

ICU stay (day) 3.35 (1.95, 6.31) 3.17 (1.91, 6.01) 3.40 (1.94, 6.27) 3.53 (1.98, 6.86) 0.108

ICU mortality n (%) 607 (14%) 154 (11%) 191 (13%) 262 (18%) <0.001

30-day all-cause Mortality n (%) 1,048 (24%) 285 (20%) 334 (23%) 429 (30%) <0.001

360-day all-cause Mortality n (%) 1,902 (44%) 557 (39%) 611 (42%) 734 (52%) <0.001

T1 (−8.48 to −6.41), T2 (−6.41 to −5.65), T3 (−5.65 to −0.62).

Bold values indicate statistically significant results.

SBP, systolic blood pressure; DBP, diastolic blood pressure; RR, respiratory rate; SpO2, peripheral capillary oxygen saturation; SOFA, Sequential Organ Failure Assessment; OASIS, Oxford 

Acute Severity of Illness Score; CCI, Charlson Comorbidity Index; MI, myocardial infarction; AF, atrial fibrillation; CeVD, cerebrovascular disease; COPD, chronic obstructive pulmonary 

disease; AKI, acute kidney injury; RBC, red blood cell count; WBC, white blood cell count; RDW, red cell distribution width; BUN, blood urea nitrogen; INR, international normalized ratio; 

PT, prothrombin time; PTT, partial thromboplastin time; LVEF, Left Ventricular Ejection Fraction; ACEI/ARB, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; MV, 

mechanical ventilation; CRRT, continuous renal replacement therapy; PALBI, platelet–albumin–bilirubin score.
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based on tertiles, patients in the highest tertile (T3) faced a 

substantially greater risk of 30-day all-cause death than those in 

the lowest tertile (T1), across all models: Model 1 [HR = 1.62; 

95% CI: 1.40–1.88; p < 0.001], Model 2 [HR = 1.58; 95% CI: 

1.36–1.84; p < 0.001], and Model 3 [HR = 1.36; 95% CI: 1.12– 

1.64; p = 0.002]. A similar gradient was noted for 360-day 

mortality, with the PALBI score displaying a progressive 

increase in death risk: Model 1 [HR = 1.49; 95% CI: 1.34–1.67; 

p < 0.001], Model 2 [HR = 1.47; 95% CI: 1.31–1.64; p < 0.001], 

and Model 3 [HR = 1.22; 95% CI: 1.03–1.44; p = 0.019]. These 

results support a dose–response association between the PALBI 

score and all-cause mortality among ICU HF patients.

In addition, RCS regression analysis demonstrated a nonlinear 

relationship between the PALBI score and all-cause mortality at 

both 30 and 360 days. As the PALBI score increased, the risk of 

death escalated significantly. This nonlinear association was 

statistically significant for both 30-day mortality (p for nonlinear 

<0.001) and 360-day mortality (p for nonlinear <0.001), as shown in 

Figure 3.

3.3 Subgroup analysis

Subgroup analyses reinforced the stability of the link between 

higher PALBI scores and elevated mortality risk across various 

clinical subgroups, as depicted in Figure 4. In the analysis of 

mortality at 30 and 360 days, the association remained significant 

across strata defined by gender, race, presence of CeVD, COPD, and 

MV use. When stratified by LVEF, patients with reduced LVEF 

(<40%) showed a more pronounced association between PALBI and 

FIGURE 2 

Kaplan–Meier survival curves for 30-day (A) and 360-day (B) all-cause mortality across PALBI score tertiles in ICU heart failure patients.

TABLE 2 Association between PALBI score and 30-day and 360-day all-cause mortality. .

Variables Model 1 Model 2 Model 3

HR (95% CI) p HR (95% CI) p HR (95% CI) p

30-day Mortality

PALBI 1.24 (1.18–1.31) <.001 1.28 (1.21–1.36) <.001 1.30 (1.17–1.44) <.001

PALBI Tertile

T1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

T2 1.17 (1.01–1.37) 0.049 1.10 (0.94–1.29) 0.228 0.99 (0.82–1.19) 0.902

T3 1.62 (1.40–1.88) <.001 1.58 (1.36–1.84) <.001 1.36 (1.12–1.64) 0.002

360-day Mortality

PALBI 1.22 (1.17–1.27) <.001 1.25 (1.20–1.31) <.001 1.19 (1.09–1.31) <.001

PALBI Tertile

T1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

T2 1.11 (0.99–1.24) 0.080 1.06 (0.94–1.19) 0.344 0.98 (0.83–1.15) 0.781

T3 1.49 (1.34–1.67) <.001 1.47 (1.31–1.64) <.001 1.22 (1.03–1.44) 0.019

Model 1: Crude.

Model 2: Adjust for Age, Gender, Race.

Model 3: Adjust for Age, Gender, Race, SBP, Myocardial infarct, AF, Cerebrovascular disease, AKI, WBC, Potassium, Creatinine, INR, Beta blockers, LVEF category.

Bold values indicate statistically significant results.

PALBI, platelet–albumin–bilirubin score; HR, hazard ratio; CI, confidence interval; SBP, systolic blood pressure; AF, atrial fibrillation; AKI, acute kidney injury; WBC, white blood cell count; 

INR, international normalized ratio; LVEF, Left Ventricular Ejection Fraction.
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mortality compared with those with preserved LVEF, although no 

statistically significant interaction was observed.

Among patients who died within 30 days, the association was 

more pronounced in males [HR = 1.31; 95% CI: 1.22–1.42] than in 

females [HR = 1.15; 95% CI: 1.05–1.26], with a statistically notable 

interaction by gender (interaction p-value = 0.026). Similar 

consistent trends were observed within the CeVD, COPD, and 

MV subgroups; however, no statistically significant interactions 

were identified, as all interaction p-values exceeded 0.05.

For 360-day mortality, the relationship between PALBI score 

and death risk remained consistent across all examined 

subgroups, with no indication of significant interaction effects. 

These results suggest that the PALBI score serves as a reliable 

and robust predictor of all-cause mortality among ICU-admitted 

HF patients, irrespective of their clinical subgroup features.

3.4 Feature selection

Feature selection using LASSO regression was performed in 

the training cohort, as illustrated in Figure 5. Five-fold cross- 

validation was employed to identify the optimal penalization 

parameter (lambda) during model construction. Ultimately, 20 

variables were selected as most predictive of all-cause mortality: 

age, SBP, RR, temperature, OASIS score, CCI, CeVD, AKI, 

ACEI/ARB use, beta-blocker use, CRRT, WBC, RDW, PALBI 

score, BUN, PTT, urine output, SpO2, PT, and LVEF category.

3.5 Construction and validation of the risk 
prediction model

Figure 6A displays the ROC curves corresponding to each 

machine learning algorithm, with performance assessed by the 

AUC. The AUC values were as follows: Ridge (0.760), RF 

(0.751), XGBoost (0.748), LightGBM (0.743), SVM (0.737), 

KNN (0.724), MLP (0.701), and DT (0.666). Figure 6B illustrates 

the calibration plots for each model evaluated on the test 

dataset. Calibration curves indicated that ensemble models (RF, 

XGBoost, and LightGBM) and Ridge provided closer agreement 

between predicted and observed probabilities. Based on the 

decision curve analysis shown in Supplementary Figure S1, most 

models, particularly Ridge, RF, XGBoost, and LightGBM, 

exhibited evident net clinical benefit across a wide range of 

threshold probabilities, suggesting strong potential for 

clinical applicability.

4 Discussion

This investigation examined the association between PALBI 

scores and all-cause mortality in ICU-admitted patients with 

HF. The results indicated that higher PALBI scores were 

strongly associated with increased 30-day and 360-day all-cause 

mortality. In our study, patients in the highest PALBI tertile had 

approximately 1.36 times higher risk of 30-day mortality and 

1.22 times higher risk of 360-day mortality compared with those 

in the lowest tertile. RCS analysis confirmed a nonlinear 

relationship between PALBI and mortality risk at both 30 and 

360 days, with risk rising steeply at higher PALBI scores. The 

machine-learning suite identified patients at risk of 30-day 

mortality with favorable accuracy, led by Ridge regression 

(AUC = 0.76). These findings suggest that incorporating PALBI 

into risk stratification may improve prognostic assessment in 

critically ill HF patients.

The PALBI score, which integrates platelet count, serum 

albumin, and total bilirubin, was initially designed to evaluate 

hepatic function and forecast outcomes in individuals with 

FIGURE 3 

Restricted cubic spline (RCS) analysis of the association between PALBI score and 30-day (A) and 360-day (B) all-cause mortality.
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hepatocellular carcinoma (15). While its initial application was in 

hepatic diseases, the use of PALBI in the context of HF represents 

a promising approach. Prior studies have validated the ALBI 

score’s prognostic utility in HF across diverse populations, 

including acute HF (16), elderly with decompensated HF (17), 

ICU admissions (8), reduced ejection fraction (18), CRT 

recipients (19), and in-hospital mortality prediction alongside 

N-terminal pro–B-type natriuretic peptide (NT-pro BNP) (20), 

FIGURE 4 

Subgroup analysis of the association between PALBI score and 30-day (A) and 360-day all-cause mortality (B).
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underscoring hepatic dysfunction’s prognostic relevance. 

However, emerging evidence suggests that PALBI may offer 

prognostic advantages in HF beyond those of ALBI. In HF, 

platelet indices have been repeatedly linked to disease severity 

and outcomes, and composite coagulation scores that include 

platelet count strongly stratify mortality. For example, Noeva 

et al. showed that worse cardiac function and higher HF event 

rates were associated with low platelet count and high platelet- 

to-leukocyte ratios (9). Similarly, Tang et al. found that a higher 

“coagulation disorder” score (based on platelet count, INR, and 

APTT) predicted nearly double the 30-day mortality in critically 

ill CHF patients (10). By contrast, ALBI (bilirubin + albumin) 

omits this dimension. Empirically, PALBI has shown broader 

predictive accuracy than ALBI in analogous settings. In 

transcatheter aortic valve replacement patients (a population 

with cardiohepatic interactions), Duan et al. found that adding 

FIGURE 5 

Lasso regression-based variable screening.

FIGURE 6 

Receiver operating characteristic (ROC) curves of different machine learning models for predicting all-cause mortality on the test dataset (A), with 

ridge regression showing the best performance (AUC = 0.76). Calibration curves of different machine learning models for predicting all-cause 

mortality (B).
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the PALBI score to the standard STS risk model significantly 

improved discrimination of mortality (21). They noted that 

most cardiac risk scores do not explicitly account for liver 

function or coagulopathy—gaps that PALBI helps to fill. 

However, studies specifically evaluating the utility of the PALBI 

score in HF remain limited. Our findings suggest that PALBI 

holds independent prognostic significance in ICU-admitted 

patients with HF, thus extending its potential application 

beyond liver-related conditions.

The relationship of elevated PALBI values with mortality 

among individuals with HF may be explained by multiple 

underlying pathophysiological mechanisms. Fundamentally, the 

PALBI score is a composite marker that re�ects hepatic 

dysfunction—through albumin and bilirubin—and hematologic 

status via platelet count. HF often gives rise to what is known as 

cardiohepatic syndrome or congestive hepatopathy, a condition 

marked by persistently elevated central venous pressure and 

diminished cardiac output, which in turn causes liver 

congestion, inadequate perfusion, and hepatic damage (4, 22). 

A direct consequence of this process is elevated serum bilirubin 

levels, which are indicative of cholestasis and have been 

associated with poor outcomes in HF, even with modest 

increases (23). Serum albumin levels are often decreased in HF 

patients due to factors such as hemodilution from �uid 

overload, malnutrition, and impaired hepatic synthesis. Earlier 

research has established hypoalbuminemia as a powerful 

indicator of adverse prognosis in HF. For instance, Chao and 

colleagues reported that lower albumin levels were significantly 

correlated with short-term mortality among ICU-admitted HF 

patients (24). In addition to bilirubin and albumin, the PALBI 

score incorporates platelet count. Thrombocytopenia in HF may 

result from several mechanisms, with a prominent one being 

portal hypertension and splenic sequestration due to cardiogenic 

cirrhosis, leading to reduced circulating platelet levels (25). 

Wang et al. reported that among ICU patients with acute HF, 

lower baseline platelet counts independently predicted in- 

hospital mo2rtality, and both markedly low and unusually high 

platelet levels were associated with unfavorable outcomes (26). 

In our study, elevated PALBI scores may result from various 

combinations of these abnormalities. For instance, 

thrombocytopenia combined with hypoalbuminemia and 

hyperbilirubinemia likely indicates severe HF with overt 

congestive hepatopathy. Alternatively, patients with moderately 

preserved platelet counts but profoundly low albumin and 

elevated bilirubin may also exhibit high PALBI scores. Both 

patterns re�ect significant multisystem involvement. This may 

explain why PALBI, which includes platelet count, provides 

greater prognostic accuracy than ALBI in certain settings. 

Essentially, the PALBI score serves as a surrogate marker for the 

systemic burden of HF, capturing the extent of hepatic 

dysfunction (bilirubin), protein synthesis or nutritional reserve 

(albumin), and hematologic compromise (platelet count). Severe 

derangements in these parameters often indicate advanced 

disease with multiorgan involvement, which corresponds to 

elevated mortality risk. In summary, the link between PALBI 

and mortality in HF patients may stem from its ability to 

encapsulate key elements of hepatic injury, malnutrition, and 

potential coagulation abnormalities—all of which contribute 

synergistically to poor clinical outcomes.

In our subgroup analysis, we found a significant sex–PALBI 

interaction on 30-day mortality in HF: the hazard ratio was 

higher in men (HR = 1.31) than in women (HR = 1.15), 

suggesting increasing PALBI more strongly predicts mortality in 

men. This may be explained by that women with HF often have 

better outcomes and distinct clinical features (27). Men more 

commonly have ischemic HF with reduced ejection fraction, 

while women more often have HFpEF (28). Ischemic HF may 

exacerbate liver dysfunction via in�ammation and oxidative 

stress, worsening outcomes in men. Hormonal differences (e.g., 

estrogen vs. testosterone) and immune responses also affect 

cardiac remodeling and prognosis (29). Men also have higher 

rates of alcohol misuse and metabolic syndrome (30, 31), which 

can further impair liver function. Clinically, an elevated PALBI 

in men may �ag a high-risk subgroup requiring aggressive 

intervention, whereas PALBI is less predictive in women. 

Biologically, the known protective effects of estrogen may 

explain better outcomes in women, while the stronger systemic 

in�ammatory response in men can exacerbate liver injury (32). 

These findings suggest a clinical need for different PALBI risk 

thresholds for male and female patients, guiding more 

personalized care, such as emphasizing anti-in�ammatory 

management in men.Therefore, further multicenter trials are 

needed to validate these sex-based differences and mechanisms.

Our study carries important clinical implications by 

identifying the PALBI score as a robust and easily calculable 

prognostic tool for ICU HF patients. HF has long been 

acknowledged as a condition affecting multiple organ systems, 

and our findings reinforce the necessity of incorporating 

assessments of liver function and nutritional status into 

comprehensive risk stratification. One of the major advantages 

of the PALBI score is its simplicity—it is derived from routine 

laboratory tests, including platelet count, albumin, and bilirubin, 

all of which are commonly measured in hospitalized patients. 

This enables immediate application in clinical settings without 

additional cost or testing burden. To facilitate its clinical 

implementation for risk stratification in the ICU, we propose a 

specific cut-off value. Based on ROC curve analysis for 30-day 

mortality, a PALBI score threshold of −2.45 was identified 

(Youden’s index). This threshold falls within the third tertile of 

our cohort. Using this ROC-derived value, patients can be 

dichotomized into high-risk (PALBI > −2.45) and low-risk 

(PALBI ≤ −2.45) groups. The use of this single, readily 

calculable threshold can provide clinicians with an immediate 

and objective means to identify high-risk HF patients upon ICU 

admission, potentially triggering closer monitoring or more 

intensive therapy. For ICU-admitted HF patients, a high PALBI 

score upon admission may alert clinicians to an elevated risk of 

mortality, warranting closer hemodynamic monitoring, more 

aggressive diuresis, or early multidisciplinary interventions, such 

as consultation with hepatology or nutritional support services. 

Such approaches may offer considerable benefit, since promptly 

recognizing high-risk individuals could enable the 
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implementation of focused interventions—like nutritional support 

or anti-in�ammatory treatments—that have the potential to 

enhance clinical outcomes. Another advantage of the PALBI 

score is its objectivity. Unlike other clinical scoring systems that 

incorporate subjective assessments—such as the Child-Pugh 

score or the NYHA classification for HF—the PALBI score is 

entirely laboratory-based, thereby minimizing interobserver 

variability and enhancing reproducibility.

Our study is the first to assess PALBI in ICU HF patients, 

extending its use beyond liver disease. Incorporating platelet 

count, PALBI remains a strong prognostic marker and may 

enhance risk stratification when combined with tools like 

APACHE II or BNP. Despite these strengths, our study has 

several limitations. First, the retrospective design based on a 

single-center database may introduce selection bias and limits 

causal inference. Second, while we accounted for numerous 

confounding factors in our multivariable models, residual 

confounding cannot be entirely ruled out. Third, due to the 

intrinsic limitations of the database, we were unable to include 

BNP or NT-pro BNP levels in our primary analysis, which may 

have affected the accuracy of both the association estimates and 

model predictions. Fourth, the database did not provide 

information on rehospitalization or causes of death 

(cardiovascular vs. non-cardiovascular), so our endpoints were 

restricted to all-cause mortality. This limited the scope of 

clinical interpretation. Another limitation is that our study was 

based on a single-center database from the United States, which 

may reduce the generalizability of the findings to other ethnic 

groups and healthcare systems. Therefore, future research should 

aim to validate these results in multicenter studies or 

prospective cohorts to confirm their broader applicability. 

Finally, New York Heart Association (NYHA) class was not 

available in the MIMIC-IV database. Although this is a 

limitation, the inclusion of LVEF and other objective covariates 

provided reasonable adjustment for cardiac function.

5 Conclusion

In conclusion, our study demonstrates that the PALBI score 

serves as an independent prognostic marker for ICU-admitted 

HF patients. Elevated PALBI scores were significantly linked to 

higher all-cause mortality at both 30 and 360 days. Additionally, 

machine learning models incorporating PALBI showed good 

performance in predicting 30-day mortality. These findings 

suggest that the PALBI score may be a valuable tool for risk 

stratification and supporting treatment decisions in the intensive 

care management of HF.
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