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Calcific aortic valve disease (CAVD) is characterized by a fibrocalcific
remodeling of the aortic valve. This pathology is the most prevalent
valvular heart disease worldwide and is associated with a poor prognosis.
Despite extensive research, no pharmacological treatments are available to
slow or reverse valvular degeneration, making aortic valve replacement the
only current therapeutic option. This lack of clinical success may stem
from an incomplete understanding of the disease’s mechanisms and the
limitations of current preclinical models, which do not fully replicate the
complexity of CAVD and its associated risk factors and comorbidities.
Indeed, while existing models offer valuable insights, a deeper
understanding of CAVD requires incorporating comorbidities, gender-
specific mechanisms, and dynamic cellular and tissue-level changes. This
review aims to provide the reader with an overview of preclinical models
developed in recent years to study CAVD, assessing their strengths and
limitations. We review how these models can be used to mimic and/or
investigate the cellular and molecular mechanisms involved in CAVD
development, and highlight how key risk factors and comorbidities can be
incorporated to enhance the translational potential of research. We hope
that this approach will help guide researchers in selecting the most
appropriate model for their studies, with the goal of advancing the
identification of effective therapeutic candidates.

KEYWORDS
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1 Introduction

Calcific aortic valve disease (CAVD) is the most common valvular disease worldwide,
affecting approximately 10% of individuals over 65 years old (1, 2). It begins with aortic
sclerosis, a mild thickening of the aortic valve (AV) leaflets without significant blood flow
obstruction, and may progress to severe calcification, restricting leaflet motion. Over
time, this remodeling narrows the AV opening, leading to aortic stenosis (AS), which
impedes outflow from the left ventricle, increases afterload, and disrupts
hemodynamics. Untreated AS causes left ventricular hypertrophy and dysfunction,
resulting in symptoms such as dyspnea, angina, and syncope, ultimately leading to
heart failure (HF) and death.
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Transthoracic Doppler echocardiography is the standard
method for assessing AS severity. Hallmark features include
reduced aortic valve area (AVA), increased peak aortic
transvalvular velocity, and elevated mean pressure gradient.
Based on these parameters, AS is classified as mild, moderate,
or severe (3). Computed tomography of aortic valve
calcification (CT-AVC) complements echocardiography by
enabling quantification and grading of calcification, with sex-
specific thresholds for severe AS set at >1,300 Agatston units
(AU) in women and >2,000 AU (3-5).

symptomatic, severe AS has a ~50% two-year mortality if left

in men Once
untreated (6). To date, aortic valve replacement (AVR), either
surgical (SAVR) or transcatheter (TAVR), remains the only
curative therapy for CAVD (6-8), as no pharmacological
treatment can prevent its onset or progression. While
preclinical studies have yielded encouraging results, none
have translated into clinically effective interventions. This
persistent translational gap likely reflects the limitations of
current experimental models, which do not fully capture the
multifactorial nature of CAVD or its frequent association
with
applicability of preclinical findings.

comorbidities, thereby hampering the clinical

This review provides an overview of the current preclinical
models used to study CAVD, emphasizing their strengths,
limitations, and ability to replicate key cellular mechanisms, risk
factors, and comorbidities. Our goal is to share perspectives that
may help researchers select suitable models and enhance the
relevance of preclinical findings,

ultimately accelerating

therapeutic development.

2 Pathophysiology of CAVD
2.1 Structure of the aortic valve

The healthy AV is an avascular structure, composed of three
individual leaflets, located at the junction between the left
ventricle and the aorta. Each leaflet contains three distinct
extracellular matrix (ECM) layers—fibrosa, spongiosa and
ventricularis—lined by valvular endothelial cells (VECs). The
fibrosa (~40% of valve volume), on the aortic side, is rich in
fibronectin (FN) and densely packed type I and type III
collagen fibrils, providing resistance to mechanical stress and
pressure. The spongiosa (~30% of valve volume), is the
layer. It contains (GAGs),
(PGs), shock
absorption and efficient cusp opening during systole. The

central glycosaminoglycans

proteoglycans and collagen, allowing for
ventricularis (~20%-30% of valve volume), adjacent to the
left ventricle, is enriched in elastin for flexibility and collagen
types I, II and III for structural reinforcement (Figure 1). The
outer layer of VECs, continuous with the endothelium of the
aorta and the left ventricular myocardium, regulates paracrine
signaling and exerts antithrombotic effects, maintaining
proper valvular function. The three layers are primarily
interstitial cells (VICs), whose

populated by valvular
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phenotype and activity are crucial to maintaining structural
integrity (9).

2.2 Mechanistic insights into CAVD
development

2.2.1 Overview of the main mechanisms driving
CAVD

Early CAVD begins with endothelial injury or dysfunction,
triggered by mechanical or metabolic stress. This injury
promotes lipid deposition and upregulation of adhesion
molecules like E-Selectin, VCAM-1 and ICAM-1 on VECs,
facilitating immune cell adhesion, rolling and infiltration (10).
Cytokines and growth factors released by both immune cells
and dysfunctional VECs drive VICs activation (9, 11-13). In

particular, TGF-B induces quiescent VICs (qVICs) to
differentiate into activated VICs (aVICs), characterized by
a-smooth muscle actin  (a-SMA) expression and a

myofibroblastic phenotype. Inflammation further promotes their

proliferation, =~ migration, and  secretion  of  matrix
metalloproteinases (MMPs), contributing to leaflet fibrosis,
thickening, and stiffening. In early CAVD, elevated TGF-B also
promotes the formation of myofibroblasts from VECs via
(EndMT) (14, 15).
During EndMT, VECs downregulate endothelial markers (e.g.,
CD31 and VE-Cadherin) and upregulate a-SMA. This process
can also be triggered by inflammatory cytokines (IFNy, IL-6,
TNF-0, or LPS) (15), disturbed flow (16), or metabolic factors
(oxLDL, HDL, hyperglycaemia) (17). Over time, aVICs and

aVECs can transition into osteoblast-like cells (obVICs and

endothelial-to-mesenchymal  transition

obVECs), characterized by decreased o-SMA expression and
upregulation of osteogenic markers such as bone morphogenetic
protein-2 (BMP2), Runt-related transcription factor-2 (Runx2),
(ALP), thereby
cell-mediated fibro-calcific

and alkaline phosphatase
This

ultimately stiffens the valve and leads to AS. The main

promoting
mineralization. remodeling

mechanisms driving CAVD are illustrated in Figure 2.
2.2.2 Mechanisms driving mineral deposition

Aortic valve calcification generally reflects an imbalance
between inhibitors that prevent calcium-phosphate deposition

(mineral phase) and activators that promote VIC/VEC
osteogenic transition (cellular phase) (Figure 2).
Among the inhibitors, pyrophosphate (PPi) prevents

mineralization by directly interfering with the physicochemical
process of hydroxyapatite formation. PPi can be hydrolyzed by
ALP, making ALP activity a key regulator of PPi availability.
Calcifying VICs show increased ALP activity and decreased PPi
levels (18). Other inhibitors include matrix Gla protein (MGP)
and fetuin A, which bind calcium and stabilize nascent calcium-
phosphate clusters into amorphous, proteinaceous spherical
structures known as primary calciprotein particles (CPP), which
facilitate calcium-phosphate clearance and prevent ectopic
calcification (19-21). MGP expression is significantly reduced in
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FIGURE 1

Schematic representation of aortic valve structure. Each leaflet consists of three distinct layers: the fibrosa (rich in fibronectin and collagen type 1
fibers), the spongiosa [composed of glycosaminoglycans [GAGs] and proteoglycans [PGsll and the ventricularis (rich in elastin). Valvular
endothelial cells (VECs) cover both the aortic and ventricular surfaces, while valvular interstitial cells (VICs) are distributed throughout all layers.

Illustration created with BioRender.

diseased VICs (22) and stenotic AV (23), and circulating Fetuin-A
levels are lower in patients with CAVD (24).

On the cellular side, two distinct cell-driven mechanisms are
recognized in valve calcification: osteogenic and dystrophic
calcification. Osteogenic calcification occurs when VICs and
VECs acquire an osteoblast-like phenotype, expressing bone-
related markers such as RUNX2, BMP2, and ALP,
producing an osteoid-like ECM that subsequently mineralizes.
RUNX2 is a key transcription factor driving osteoblastic

and

commitment by regulating genes such as ALP, osteopontin
(OPN), type I collagen, and osteocalcin (OCN). BMP2 promotes
osteogenic differentiation by enhancing RUNX2 expression and
acetylation, thereby increasing its stability and transcriptional
activity. Akin to bone, obVICs release small extracellular vesicles
(EVs) enriched in ectonucleotidases that promote calcium-
phosphate nucleation (25, 26). Several of these ectonucleotidases,
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including ALP, are overexpressed in human CAVD samples
(27-29). In contrast, dystrophic calcification involves the
activation of VICs and VECs into a myofibroblast-like
phenotype followed by apoptosis, leading to the formation of
apoptotic bodies that closely resemble calcifying EVs and serve
as initial nucleation sites for nodule formation. This apoptosis-
dependent process is strongly influenced by the mechanical
stiffness and ECM composition of the microenvironment,
which modulate cytoskeletal tension and thereby the extent
of calcification.

Over the years, multiple signaling pathways have been
identified as regulators of VIC osteogenic reprogramming. NF-
kB signaling induces BMP2 (30) and RUNX2 (31) expression in
VICs. This effect involves NF-kB-mediated upregulation of
TERT, which binds STAT5 to activate the RUNX2 promoter
and drive osteogenic reprogramming (32). The MAPK/ERK

3 frontiersin.org
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balance between inducers and inhibitors of the mineralization process.

Overview of the main mechanisms driving CAVD development. The schematic illustrates how major risk factors and comorbidities influence the
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pathway also contributes to RUNX2 induction, either through
TNF-a stimulation (33, 34) or via complement crosstalk with
H-K-ATPase (35, 36). Similarly, NLRP3 activation promotes
RUNX2 and ALP expression in VICs (37). Wnt signaling
enhances both RUNX2 expression and ALP activity (38), and
several of its key components—including the receptor LRP5, the
agonist WNT3a,
overexpressed in CAVD samples (39). By contrast, activation of

and the nuclear effector B-catenin—are

Notchl suppresses BMP2 and RUNX2 expression in cultured
VICs (40, 41), consistent with the inverse correlation between
Notchl and RUNX2 observed in CAVD samples (42).

In addition to these signaling pathways, recent studies have
demonstrated that dysregulation of miRNAs also contributes to the
osteogenic reprogramming of VICs in AS (43). For instance, miR-
664a-3p, which is downregulated in mineralized AV, inhibits VICs
osteogenic  differentiation by directly binding to BMP2 and
repressing its expression (44). MiR-30b, which expression is also
downregulated in mineralized AV, suppresses VICs osteogenic
differentiation by directly inhibiting RUNX2 expression (45, 46).
Conversely, miR-23a, which is upregulated in mineralized AV,
promotes VIC mineralization by enhancing RUNX2 activation
through the suppression of Notchl expression (42). Recently,
Goody et al. observed that miR-145-5p is one of the most strongly
upregulated miRNAs in CAVD, with its vesicular content increased
in the disease. In vitro calcification experiments demonstrated that
EV-mediated transfer of miR-145-5p promotes ALP expression by
suppressing ZEB2, a negative regulator of the ALPL gene (47).
Interestingly, circ-CCNDI1, whose expression is upregulated in
CAVD samples, was shown to promote osteogenic transition of
VICs by sponging miR-138-5p, thereby activating the osteogenic
CCND1/P53/P21 pathway (48). By contrast, LncRNA FGD5-AS1,
which is downregulated in CAVD patients, sponges miR-497-5p to
regulate BIRC5, thereby repressing osteogenic differentiation and
alleviating CAVD (49). The main signaling pathways involved in
VIC phenotypic changes are summarized in Table 1.

2.3 Risk factors and comorbidities

Older age is the strongest risk factors for AS. Indeed, severe AS
affects approximately 3.4% of individuals aged 75 years and older,

10.3389/fcvm.2025.1621990

with symptoms present in 75% of cases (1, 2). Bicuspid aortic
valve (BAV), which is a common congenital defect in which the
AV has two leaflets rather than three, represents a significant
risk factors for AS. Patients with BAV typically develop AS
10-20 years earlier than those with a tricuspid AV, and their
lifetime risk of developing the disease is approximately 50%.
Although the prevalence of BAV in the general population is
estimated at 0.5%-1.0%, it accounts for nearly half of all AVs
surgically replaced due to AS in the United States (50). The
increased susceptibility to calcification observed in BAVs can be
attributed to a combination of hemodynamic and structural
factors. Abnormal, turbulent, and asymmetric blood flow
generates altered shear stress patterns that promote VIC
activation. In parallel, structural abnormalities such as thickened
or disorganized valve leaflets and the presence of a raphe—an
incomplete separation between cusps—further predispose BAVs
to pathological calcification.

Additional clinical factors associated with AS largely overlap
with atherosclerosis risk and include male sex, smoking, and
metabolic syndrome (e.g., hypercholesterolemia, hypertension,
obesity, and diabetes).

Indeed, the risk of AS is twice higher in men compared to
women (51, 52). Moreover, men with AS tend to exhibit greater
calcification (53), whereas women show increased fibrosis
despite similar disease severity (54), highlighting the importance
of considering sex as a biological variable in preclinical research.
Oxidized LDL (OxLDL) levels correlate with AV inflammation
and fibro-calcific remodelling (55, 56), and recent studies
implicate the LPA gene, encoding apolipoprotein(a), in AS
pathogenesis (57-59). Besides, elevated lipoprotein(a) [Lp(a)]
(Ox-PL) are independently
(60). Secondary
hyperparathyroidism and renal failure are also associated with

and oxidized phospholipids

associated with faster AS progression

AS progression (61).

3 In vitro modeling of CAVD

To investigate the mechanisms driving CAVD, researchers
commonly use in vitro models based on VICs and VECs

from various species. These «cells can be cultured

TABLE 1 Main markers used to identify the phenotypic states of VICs and VECs.

Markers for VECs

Markers for VICs

ECM composition

Healthy VECs aVECs (EndMT) obVEC aVICs | obVICs | Fibrosa Spongiosa Ventricularis
vWEF+ | vVWF | aSMA vWE- | aSMA Fibronectin | Glycosaminoglycans | Elastin
CD31+ | CD31 | SM22-a CD31- | SM22-a Collagen I (hyaluronic acid, Collagen T
VE-Cadherin+ | VE-Cadherin | Calponin VE- | Calponin Collagen IIT | chondroitin sulfate) Collagen IT
CD105+ | CD105 |} Vimentin | Cadherin- | Vimentin Proteoglycans Collagen III
aSMA- 1 aSMA 1 RUNX2 CD105- 17 RUNX2 (versican, decorin)
SM22-a- Calponin- 1 SM22-a. 1 BMP2 aSMA+ 1 BMP2
Vimentin- 1 Calponin 1 OSX SM22-a+ 1 OSX
1 Vimentin 1 OCN Calponin+ 1 OCN
1 ALP Vimentin+ 1 ALP
1 OPN 1 OPN
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independently or in co-culture, in 2D or 3D systems. The
selection of cell type and culture conditions should be
carefully tailored to each study’s objectives to ensure relevant
and reproducible results.

3.1 Main sources of VICs/VECs for in vitro
studies

3.1.1 Human VICs/VECs
3.1.1.1 Main sources and challenges

Most primary VICs and VECs are isolated from AVs of
patients undergoing SAVR. However, these tissues are often
extensively remodeled, and the resident cells already display
features of the disease. To better investigate early mechanisms of
AS, valvular cells can instead be isolated from AVs of patients
with idiopathic dilated cardiomyopathy or post-infarction heart
failure, as well as from non-transplantable donor hearts or
accident victims. When working with such primary cultures, it
is important to keep in mind that variations in sex, age, and
clinical background, along with donor-specific genetic and
epigenetic factors, can lead to substantial heterogeneity in
cellular responses. While often viewed as a limitation, this
variability accurately reflects population diversity and thus
enhances the physiological relevance and translational value of
in vitro findings. In such contexts, access to key donor
information (such as sex, age, and comorbidities) is particularly
valuable for conducting comparative studies (e.g., male vs.
female, young vs. old, tricuspid vs. bicuspid, or diabetic vs.
non-diabetic).

3.1.1.2 hVICs/hVECs isolation and culture

Valve retrieval should ideally be performed rapidly to preserve
cell viability. Leaflets should be placed immediately in cold saline,
PBS, or DMEM, stored at 4°C, and processed within 12 h.
Interestingly, Cuevas et al. demonstrated that, if valve samples
are stored in a cold storage solution suitable for organ
transplantation, viable VECs and VICs can still be obtained
from leaflets processed between 24 and 61 h post-extraction.
This information is particularly relevant for centers that do not
have immediate access to the medical facilities where valve
excision is performed (62).

Although there is some variability in the methods used by
researchers to isolate valvular cells, the general approach
typically involves a brief enzymatic digestion to remove human
VECs (hVECs), followed by a longer digestion to release human
VICs (hVICs) (62-66). Most protocols begin with a 10-min
incubation of valve tissue in collagenase at 37 °C. The hVECs
are then collected by gentle scraping or vortexing, followed by
centrifugation and filtration before being seeded onto FN-coated
T25 flasks (64, 65). In culture, VECs form rosette-like colonies,
reach confluence in about a week, and are passaged at a 1:3
ratio. For VIC isolation, the remaining valve fragments are
rinsed with saline, cut into ~2 mm? pieces, and incubated with
collagenase under gentle agitation. Two main protocol variations
are described in the literature: short incubations (45 min to 3 h)
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with high collagenase concentrations (~1,000 U/ml) (66-68),
and longer or overnight digestions with lower concentrations
(250-600 U/ml) (64, 65, 69). The strained cell suspension is
then centrifuged, and seeded at 800,000 cells per 75 cm? flask.
VICs are typically cultured in DMEM supplemented with 10%-
15% FBS and antibiotics, displaying a fibroblast-like morphology
after 24 h. They are passaged at 90%-95% confluence and
seeded at a 1:2 ratio, with medium changes twice weekly.
According to Ground et al., successful hVIC culture is more
likely when starting with a sufficient amount of tissue, typically
greater than 500 mg, and when the initial digestion yields a
substantial number of cells, generally exceeding 100,000. They
also demonstrated that patient pathology is not predictive of cell
culture success, and that a seeding density of 10,000 cells/cm? is
ideal for experiments lasting less than 5 days (66).

The purity of cultured cells is a key concern in valvular cell
studies, given its impact on experimental outcomes. Cell purity
is usually assessed using immunohistochemistry or flow
cytometry. VECs should be aSMA-negative and positive for
endothelial markers [CD31, VE-cadherin, von Willebrand factor
(vWf)], while VICs should show the opposite profile. The
presence of aSMA-positive cells in VEC cultures indicates VIC
contamination, and double-positive cells (endothelial markers
and aSMA) suggests EndMT. To ensure purity, freshly isolated
VECs may be labeled with anti-CD31 or anti-CD105 magnetic
beads and sorted via Magnetic-Activated Cell Sorting, before
first seeding (54, 55). The presence of endothelial markers in
VIC cultures suggests VEC contamination. Additional markers
like calponin (myofibroblast) and vimentin (mesenchymal stem
cell) may help refine phenotypic identification (64, 65, 70, 71).
Over successive passages, VICs tend to differentiate into
myofibroblasts, characterized by an increased expression of
aSMA (70), a process likely driven by the stiffness of plastic
culture surfaces (72). Therefore, experiments on VICs are best
conducted between passages 2 and 6. According to Ground
et al,, optimizing the VIC isolation protocol using 1,000 U/ml
collagenase for 2h resulted in the highest number of viable
VICs while minimizing aberrant aVIC differentiation (66). The
main markers used to identify the different phenotypic states of
VICs and VECs are summarized in Table 1.

Until recently, most VICs used in research were derived from
primary cultures. However, in 2025, Wang et al. established and
characterized a novel immortalized hVIC line (73). They
achieved immortalization of primary VICs through lentiviral
transduction with SV40 large T antigen (pGMLV-SV40T-
PURO), followed by puromycin selection to establish stable cell
lines. Compared with primary VICs, these immortalized cells
viability, stable
transcriptomic profiles across multiple passages, and preserved

showed  higher reduced  senescence,
responsiveness to several osteogenic inducers. RNA-seq analyses
further

pathways in driving their osteogenic transformation, suggesting

revealed the central role of inflammation-related
that this model may be ideally suited to investigate the
contribution of inflammation to VIC phenotypic changes. In the
future, this immortalized VIC line could become a valuable and

standardized in vitro tool for studying AV calcification,
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particularly for laboratories without easy access to surgical
AV specimens.

3.1.2 VICs/VECs from other species

Cells from porcine AVs, which closely resemble human AVs in
structure and composition, are a valuable alternative to human
cells. Being free of disease, porcine AVs provide an interesting
source of cells for studying early CAVD events. Moreover, swine
naturally develop atherosclerotic valve lesions, mirroring early
human valvular calcification (74). Their large size allows for
efficient enzymatic digestion and isolation of pure cell
populations. Porcine AVs can be sourced from slaughterhouses,
where swine hearts are typically discarded, aligning with the
ethical principle of reduction in animal experimentation.
Porcine VICs and VECs (pVICs/pVECs) can be isolated using
the same protocol as for human cells (64). While porcine and
human valvular cells share similarities, there are also notable
(64). For

expression is higher in pVECs than in pVICs, which is the

differences between them instance, vimentin
opposite of what is seen in humans. Compared to hVECs,
pVECs also show reduced migratory capacity. Additionally,
while pVECs respond to high doses of TNF-a by undergoing
myofibroblastic transition (15), low doses—effective in hVECs—
fail to induce a-SMA and vimentin expression in pVECs (64).
Similarly, TGF-B, which induces 0-SMA in hVECs, has no such
effect in pVECs (75). These interspecies differences, along with
the limited availability of molecular tools for the porcine
models, should be carefully considered when using swine-
derived cells.

In recent years, rodent AVs have gained interest as a source of
VICs due to several advantages, including low cost, ease of
handling, short lifespan, genetic manipulability of rodents, and
access to extensive molecular tools. However, isolation of VICs
and VECs from rodents is not yet a gold standard, likely due to
the technical challenges associated with working on small tissue
samples. Lin et al. showed that VICs can be isolated from rat
AV using careful valve dissection followed by enzymatic
digestion with collagenase II (76). However, due to the small
size of rat AV, approximately 30 leaflets were required to seed a
T25 flask, raising ethical concerns. To address this, the authors
developed immortalized rat VIC (RAVIC) cell lines via lentiviral
transduction with Simian virus (SV40) large T antigen (77).
This model enables mechanistic studies of CAVD, which can
later be validated in primary cultures to reduce animal use.
Primary RAVICs can also be obtained via explant culture, where
cusps stripped of endothelium are incubated in growth medium
until VICs migrate out (78, 79). To date, few studies have been
conducted on RAVICs, so that their phenotypic similarity to
human cells remains difficult to evaluate. More recently, VICs
have been successfully isolated from mice (80), with only 3 AVs
(9 leaflets) required to initiate the culture, opening the door to
studies using VICs from genetically modified models. However,
rodent valves differ markedly from those of humans and pigs.
Their cusps are only ~5-10 cells thick and lack the distinct
trilaminar architecture seen in larger animals (81-83). Moreover,
wild-type rodents on standard diets do not develop age-related
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AV calcification  (81), that AV
mechanisms in mice and rats may not fully replicate those in

suggesting remodeling
humans. Further investigation is needed to clarify these
interspecies differences.

In 2022, Tao et al. successfully isolated rabbit VICs and used
them to investigate how ox-LDL promotes their osteogenic
transformation (84). Rabbits are easy to raise, have a moderate
lifespan, and their size and anatomy make them suitable for
short-term, cost-effective experiments. Despite these advantages,
rabbit VICs remain underused in in vitro studies. Early studies
also used VICs from sheep (85) and dogs (86), but these models
have largely been abandoned, mostly due to limited accessibility
and ethical concerns.

3.2 Inducing phenotypic switching of VICs
and VECs in vitro

3.2.1 Mimicking VIC myofibrobastic transition

In vitro, VIC myofibroblastic differentiation is typically
assessed by monitoring the gradual upregulation of a-SMA,
calponin, and SM22 (87-89). While TGFp-1 is the most
commonly used inducer of myofibroblastic differentiation in
vitro (90-92), the response to TGFp-1 varies across species.
Indeed, o-SMA expression increases within 24 h in ovine VICs
(93), after 4 days in hVICs (13), and up to 5 days in pVICs
(94). In 2004, Walker et al. showed that culturing pVICs at high
density and them with TGF-B1
myofibroblast-like phenotype and promoted the formation of

treating induced a
multicellular aggregates (90). Apoptosis occurred in the central
region of these aggregates, where calcium deposits subsequently
formed. Fisher et al. later demonstrated that combining
stretch with TGF-f1

aggregates; central apoptosis again preceded the formation of

mechanical rapidly produced pVIC
calcific nodules (95). Inhibition of apoptosis using Z-VAD, a
pan-caspase inhibitor that irreversibly blocks caspase activity,
markedly reduced the number of calcific nodules, confirming
the essential role of apoptosis in initiating dystrophic calcification.

3.2.2 Mimicking VIC osteogenic transition and
mineralization

Osteogenic differentiation and mineralization are induced in
vitro by culturing cells in a medium typically supplemented with
fB-glycerophosphate  (B-GP)
inorganic phosphate (Pi) levels. This medium is commonly

and/or elevated calcium and
referred to as osteogenic medium (OM).

B-GP has been widely used because it can be hydrolyzed by
ALP expressed by VICs, releasing Pi that promotes the
expression of osteogenic markers such as RUNX2, ALP, OPN,
and OCN, as well as mineralization. Its efficacy depends on
several factors, including concentration (typically 10 mM),
calcium availability in the medium, and exposure time (usually
around 21 days to achieve significant mineralization in DMEM
containing 1.8 mM calcium). Osteogenic media using B-GP
often include dexamethasone (100 nM) to further promote

osteogenic differentiation, and ascorbic acid (50 pug/ml) to
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support collagen synthesis (9). However, because ALP activity is
crucial for B-GP hydrolysis, this method may be ineffective in
VICs with low ALP further
mineralization, B-GP-based OM can be supplemented with
cytokines such as BMP-2, BMP4, BMP7, TGFB-1 or TGF-3,
which boost ALP expression (96, 97).

Alternatively, mineralization can be induced by directly

expression. To enhance

increasing calcium and/or Pi concentrations in the culture
medium. Calcium-enriched media typically use calcium chloride
(CaCly) at 2.5-5mM (98), while Pi-enriched media rely on
sodium phosphate (Na,HPO, and/or NaH,PO,) at 2-5 mM (99,
100) to mimic hyperphosphatemia, as seen in chronic kidney
disease (CKD). In this type of system, mineralization becomes
detectable within 10-14 days. Combining both ions accelerates
the mineralization process, provided their concentrations remain
below their solubility threshold (around 2.2 mM each); above
this limit, spontaneous precipitation occurs independently of
cellular activity. A preliminary test on a cell-free plate is
therefore recommended to distinguish active, cell-driven
mineralization from passive calcium/phosphate precipitation
caused by supersaturation.

In 2D cultures, VIC and VEC mineralization assays are
typically conducted in 48-well plates. The OM is selected based
on the study’s objectives. Mineralization duration depends on
both OM composition and donor variability, as cells from

different donors show heterogeneous sensitivity to mineralization.

3.2.3 Mimicking VECs phenotypic transition
TGE-B1 is the most commonly used cytokine to induce
EndMT in VECs in vitro. Typical concentrations range from 1
to 5 ng/ml for long-term exposure (1-14 days) to 100 ng/ml for
short-term treatments (15, 101-103). TGF-B1 rapidly (2-5 days)
and persistently (up to 14 days) increases o-SMA while
progressively downregulating endothelial markers like VE-
Cadherin. After 14 days, it also enhances ALP activity and
upregulates osteogenic markers such as OPN, OCN, and
RUNX2 (102). Similarly, IL-6 and TNF-a (100 ng/ml) promote
EndMT an Akt/NF-kB-dependent (15).
Interestingly, culturing VECs in OM induces a myofibroblastic

through pathway
phenotype within 7 days, followed by a gradual osteogenic
transition by day 14 (102).

3.3 Reproducing comorbidities in vitro

In vitro models can integrate patient comorbidities to improve
translational relevance. For example, VICs and VECs can be
compared based on donor sex (79, 104), age (78), or valve
morphology (bicuspid vs. tricuspid) (89, 105) to investigate how
these variables influence valvular cell physiology and drug
response. In addition, the effects of circulating factors can be
evaluated by exposing healthy cells to patient-derived serum
(106). Indeed, we observed that serum from AS patients
increases VIC calcification compared to non-stenotic controls,
thereby providing a relevant system to evaluate the protective
effects of new drug candidates (100). This strategy is particularly
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valuable for modeling comorbidities like CKD or diabetes,
where circulating toxic compounds present in the serum—such
as uremic toxins, phosphate, glucose, or advanced glycation end-
products—contribute to valvular degeneration. In our hands,
adding 1%-2% human serum to OM supports mineralization,
while exceeding 10% compromises cell viability. The specific
effects of pathological factors—including inflammatory cytokines
(100), advanced glycation end-products (107), glucose (108),
uremic toxins (109), hypoxia (110), neutrophil extracellular traps
(NETs) (111) and oxidized lipoproteins (112)—can be evaluated
by exposing VICs or VECs to each factor, with or without OM.

3.4 Mimicking cellular interactions

3.4.1 VICs-VECs interactions

VICs-VECs communication is essential for maintaining leaflet
homeostasis. Using a transwell co-culture system (without direct
contact), Hjortnaes et al. showed that VICs attenuate TGEF-
Bl-induced EndMT in VECs, evidenced by reduced a-SMA
expression. Similar results were observed when VECs were
exposed to VIC-conditioned medium (CM) (102). When co-
VICs inhibited the
under suggesting a

also
OM,
protective role in VEC physiology. Conversely, VECs not only

cultured in Transwell systems,

osteogenic transition of VECs

failed to inhibit, but actually promoted OM-induced osteogenic
differentiation and calcification in VICs (102). These findings
highlight the value of in vitro systems that incorporate
intercellular communication for advancing our understanding of
AS pathophysiology.

3.4.2 VICs-macrophages interactions

Co-culture systems and CM have also helped to elucidate VIC-
macrophage communication. In 2017, Li et al. showed that CM
from pro-inflammatory macrophages enhances VIC osteogenic
transition. This effect was blocked when antibodies targeting
TNF-a or IL-6 were added to the system; demonstrating the role
of inflammation in this process (113). In 2020, Raddatz et al.
demonstrated that direct co-culture with macrophages elevated
RUNX2 expression in VICs compared to transwell co-cultures,
highlighting the role of physical contact between cells in AS
pathogenesis (114). More recently, Xia et al. found that EVs
from pro-inflammatory macrophages, once internalized by VICs
promote osteogenic transition and mineralization more strongly
than EVs from control macrophages (115). These models
influence VIC
phenotype via cytokines, contact, and EVs and how in vitro

collectively demonstrate how macrophages

systems can dissect these complex interactions.

3.5 Three-dimensional (3D) models

Mechanical cues from the ECM (including its composition,
stiffness and stretch) influence VIC phenotype and disease
progression (116). VICs sense stiffness via focal adhesions,
adjusting integrin expression and cytoskeletal organization to
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(117,
processes also modulate intracellular signaling, making VICs

maintain force balance 118). These mechanosensing
highly responsive to their mechanical environment (119).
While widely used, 2D cultures fail to replicate the complexity
of the
mechanotransduction and cell-ECM

native  tissue  microenvironment, particularly

interactions, which are
critical for VIC regulation. In addition, culturing VICs on
polystyrene triggers spontaneous activation and pathological
differentiation, limiting the physiological relevance of 2D models
in CAVD research. To address these shortcomings, 3D culture

systems-with or without scaffolds-have been developed (Table 2).

3.5.1 Scaffold-free 3D models
3.5.1.1 Spheroids

Spheroids are three-dimensional, self-assembled cell
aggregates that mimic tissue-like interactions. In recent years,
these systems have been used to study how VIC myofibroblastic
differentiation and apoptosis drive dystrophic calcification. In
2017, Roosen et al. created spheroid structures by seeding
porcine VICs into non-adherent agarose microwells, prepared
using a 3% agarose solution cast into biocompatible silicone
molds, and cultured them in standard medium (122). With this
initial protocol, aggregates rapidly degenerated, showing early
signs of cell death and mineralization. To address this, the
authors supplemented the culture medium with 250 uM ascorbic
acid, an essential nutrient and antioxidant, which enabled the
formation of viable, high-quality aggregates with no signs of
degeneration or calcification. ECM analysis revealed significant
increases in GAG, elastin, reticular fibers, and collagen I over
the culture period. Aggregates also showed enhanced mRNA
expression of Col I/III/V, elastin, hyaluronan, biglycan, decorin,
versican, MMP-1/2/3/9, and TIMP-2 compared to monolayer
cultures. VICs in aggregates displayed lower a-SMA expression,
while osteogenic and chondrogenic markers (OCN, Egr-1, Sox-
9, Runx2) remained unchanged, demonstrating that this 3D
approach overcomes VIC activation in 2D and promotes a
quiescent VIC state. In 2024, Coutts et al. used this model to
study the process of dystrophic calcification (120). They applied
the protocol developed by Roosen et al. without supplementing
the medium with ascorbic acid and observed the formation of
calcium nodules within the spheroids after only a few days.
using Z-VAD markedly
calcification, confirming that the process was dystrophic rather

Inhibition of apoptosis reduced
than osteogenic. In 2017, Cirka et al. used a different technique
to form spheroids, seeding VICs onto collagen-coated micro-
contact printed areas on polyacrylamide gels, where the cells
self-assembled into aggregates with diameters ranging from 50
to 400 um (121). These aggregates exhibited myofibroblastic
markers, apoptosis, and calcium accumulation. Their exposure
to the pan-caspase inhibitor Z-VAD-FMK reduced calcification
by approximately 75%, confirming the dystrophic nature of the
process. Using this system, the authors showed that TGF-B
treatment was not required for calcification itself but primarily
facilitated cell aggregation. Interestingly, the authors observed
that calcification occurred when aggregates were formed on
polyacrylamide gels with stiffness ranging from 9.6 to 76.8 kPa,
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highlighting the importance of substrate rigidity as a tunable
VIC
differentiation, and calcification in this model.

support  influencing aggregation,  myofibroblastic

3.5.1.2 Magnetic levitation

In 2014, Tseng et al. used magnetic levitation (Bio-Assembler
Kit, Nano3D Biosciences) on VICs, VECs, and their co-cultures to
form multilayered cellular constructs, introducing a novel 3D
model for AV research (123). Confluent monolayers were
incubated with magnetic nanoparticles, detached, and then
seeded into ultra-low attachment plates. A magnetic driver
positioned above the plate levitated cells to the air-liquid
interface, forming 3D cultures within 4 h. VIC and VEC layers
were sequentially assembled using a magnetic rod-the VEC
layer first, followed by the VIC layer-to create a co-culture
mimicking AV structure. The construct was stabilized in VEC
medium, then transferred and re-levitated in 24-well plates.
Immunohistochemistry and qRT-PCR confirmed preservation of
cell phenotype, with CD31 (VEC) and aSMA (VIC) expression.
ECM proteins such as collagen type I, laminin, and FN were
detected, though gene expression was lower than in 2D cultures.
Reduced expression of collagen type I, lysyl oxidase, and aSMA
in co-cultures suggested VICs quiescence. Co-localization of
CD31 and oa-SMA hinted at potential EndMT, suggesting that
this model may provide a robust platform for studying AV
biology and disease mechanisms. However, the absence of a
defined scaffold limits its ability to replicate the AV’s complex
structure. Hydrogels partly address this limitation by offering a
that
ECM biofunctionalization.

tunable 3D matrix supports cell interactions and

3.5.2 Hydrogels

Over the last decade, photopolymerizable hydrogels have
gained attention in the field of 3D culture due to their elastic
structure, which allows efficient VIC encapsulation, and their
composition, which provides molecular cues essential for cell
behavior and differentiation. Both natural and synthetic
hydrogels have been explored as cell carriers, considering that
an effective scaffold for valvular cells must support adhesion,
proliferation, ECM production, and allow investigation of VIC/

VEC phenotypic transitions.

3.5.2.1 Naturally derived hydrogels

Naturally derived hydrogels based on gelatin (Gel) and
hyaluronic acid (HA), both key factors for VIC adhesion and
proliferation (124), have been widely used for AV tissue
engineering. Gelatin is a denatured form of collagen, and HA is
the predominant GAG in AV ECM, known for its elasticity and
specific interactions with FN. In their native form, Gel and HA
are soluble and non-crosslinked, limiting their application as
scaffolds. To overcome this, researchers methacrylated (MA)
them into GelMA (143) and HAMA (124), allowing UV-
induced crosslinking into stable 3D structures that preserve their
bioactivity. VICs seeded on HAMA spread, proliferated, and
formed a confluent monolayer within four days. HAMA
preserved HA’s ability to bind FN, enabling the design of gels
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containing both HA and FN, which enhanced ECM production
and supported VIC phenotype maintenance (124). Its slow
(144) makes it
experiments, including those focused on calcifications. Similarly,

degradation rate suitable for long-term
VICs seeded in GelMA regained their native morphology within
2 weeks, a process accelerated by TGF-B1 (125), which also
promotes aVICs formation and collagen-1 synthesis. However,
GelMA alone degrades rapidly, limiting its use in extended
studies. To address this, a hybrid HAMA-GelMA hydrogel was
developed, improving stability and better mimicking the native
AV ECM (127). In this system, VICs remain quiescent unless
stimulated with TGF-B1 and differentiated into first aVICs and
then obVICs when exposed to an OM (128). Silencing a-SMA
reduced both osteogenic differentiation and calcification,
suggesting that the myofibroblast state precedes osteogenesis

in CAVD.

3.5.2.2 Synthetic hydrogels
Natural 3D physiological
environments, supporting VIC viability, remodeling, and acting

matrices  closely  mimic
as reservoirs for bioactive molecules. However, their complexity
may obscure specific cell-matrix interactions.

To overcome this, Benton et al. introduced in 2009 synthetic
hydrogels based on polyethylene glycol (PEG), a synthetic, non-
toxic, non-immunogenic, polymer approved by the FDA, which
can be easily functionalized for cytocompatible encapsulation via
light irradiation. PEG hydrogels are highly hydrated and mimic
the mechanical properties of soft tissues. To enhance cell-matrix
interactions, they incorporated RGD peptide (derived from FN)
and crosslinked the PEG with a MMP-degradable sequence
(GPQGIWGQ), enabling cell-driven remodeling. This system
supported integrin ovf3 binding, as well as cell spreading,
proliferation, migration, and TGF-Bl-induced myofibroblast
differentiation (136). In 2016, Gould et al. encapsulated VICs in
PEG hydrogels functionalized with ligands derived from FN
(RGDS), elastin (VGVAPG), or collagen-1 (P15). VICs cultured
in FN-functionalized hydrogels showed higher MMP activity at
day 2 and exhibited elongation by day 14 compared to those in
The highest of
aSMA + VICs was observed in elastin gels (56%), compared to
FN (33%) or collagen (38%); along with higher collagen-X:
collagen-I ratio, a marker associated with stenotic valves (135).
In 2020, Grim et al. demonstrated using PEG hydrogels that
the
osteogenic transition of activated VICs cultured in 3D (140).

elastin or collagen-1 gels. proportion

CM from pro-inflammatory macrophages promotes
They reported that this effect was mediated by the secretion of
TNF-a, IL-1f, and IL-6, suggesting that macrophages may drive
a myofibroblast-to-osteogenic shift in VICs, thereby linking
fibrosis to calcification in AS. In 2023, Tuscher et al. used PEG
hydrogels to characterize the basal contractile behavior of VICs
from tricuspid AVs. To do so, they tracked VIC-induced gel
displacements and with
Cytochalasin D, that
depolymerizes VIC stress fibers. They demonstrated that VICs

shape changes after treatment

an actin polymerization inhibitor

from the non-calcified region of tricuspid AV were significantly
more activated than those from the corresponding calcified
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regions. Moreover, when studying VICs from bicuspid AVs,
they showed that cells from the raphe region were more
activated than those from non-raphe regions. Changes in VIC
morphology following Cytochalasin D treatment indicated that
cells from tricuspid valves and BAVs possess distinct cytoskeletal
structures, providing new insights into the cellular mechanics
underlying CAVD progression in BAV patients (105). This
model also revealed that VICs from female patients exhibited
higher basal levels than those from

significantly tonus

male patients.

3.5.2.3 Co-cultures in hydrogels

Over the years, hydrogel-based co-culture models have been
developed to better mimic the native AV environment. In 2015,
Puperi et al. created an endothelialized AV model using PEG-
RGDS and PEG-PQ (MMP-2/MMP-9 degradable) hydrogels
seeded with VICs. The surface was functionalized with RKR
(a laminin-derived syndecan-binding peptide) to support VEC
adhesion. In this model, VECs formed a CD31+ monolayer with
minimal aSMA activation within 7 days. VICs in 3D PEG-PQ
showed reduced aSMA expression compared to 2D culture, an
effect amplified in co-culture. By day 28, VECs secreted
basement membrane components (laminin, perlecan, and
collagen type IV), while VICs produced collagen and FN,
In 2022
Bramsen et al. co-cultured VICs and VECs in collagen
I hydrogels enriched with chondroitin sulfate (CS) and HA, two
GAGs typical of the spongiosa (129). CS enhanced VIC
myofibroblast transition, VEC EndMT, and calcific nodule

formation, while HA promoted VEC invasion without triggering

suggesting layer-specific ECM production (137).

EndMT or calcification. This observation underscores the
influence of ECM composition on valvular cell fate, further
supporting the relevance of 3D models for preclinical studies.

In 2014, Gould et al. showed that increasing PEG hydrogel
stiffness by raising crosslinking density promoted VIC
myofibroblast differentiation, an effect abolished by VEC co-
culture due to paracrine NO signaling (139). In contrast, Mabry
et al. found that increasing hydrogel stiffness suppressed VIC
activation (138). This inverse relationship suggests that while
matrix stiffness is a key regulator of VIC phenotype, its effects
are context-dependent and strongly influenced by the method
used to modulate stiffness. Unlike Gould, Mabry et al. increased
stiffness using a secondary non-degradable network in a thiol-
ene hydrogel system, which enabled to decouple stiffness from
network density. This approach provided independent control
over mechanical properties without altering mesh size or cell
morphology—two factors often affected when stiffness is tuned
by increasing crosslinking. By isolating mechanical cues from
structural variables, their system allowed a more precise
investigation of how stiffness influences VIC behaviour and
differentiation. In 2021, Gee et al. studied porcine VEC and VIC
responses under tension using equibiaxially constrained collagen
hydrogels. VICs compacted the matrix, while VECs did not. Co-
culture reduced VIC activation and matrix compaction, though
OM reversed these effects. OM also induced calcified nodule
formation, further enhanced by VEC co-culture. Inhibiting
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canonical NFkB reduced calcification but not fibrosis, indicating
its specific role in osteogenic remodeling. Immunofluorescence
revealed that VECs clustered on calcified nodules and expressed
EndMT markers, suggesting that EndMT contributes to calcific
remodeling (131).

Finally, GeIMA constructs with embedded VICs and surface-
seeded VECs were recently used to model CAVD under diabetic
conditions (126). The use of these models allowed researchers to
demonstrate that high glucose upregulates osteogenic markers
through the TGF-f and BMP-2 pathways in both cell types,
leading to increased calcium deposition. Exposure to OM
further enhanced calcification in VIC-only constructs compared
to VIC-VEC constructs, confirming the protective role of VECs
against VIC osteogenic transformation.

Going further in complexity, Salemizadehparizi et al
established in 2025 a tri-culture model of the fibrosa, in which
THP-1 monocytes or Ml-like macrophages were seeded atop
collagen-I constructs containing embedded VICs and surface-
seeded VECs (130). The VIC/VEC model was pretreated with
H,0, for 7 days before the addition of monocytes or Ml-like
macrophages, and was then maintained for 14 days, allowing
assessment of the combined effects of ROS and immune cells
while avoiding H,0, toxicity to monocytes/macrophages. Using
this system, the authors showed that monocytes and M1-like
macrophages enhanced ROS-induced calcification compared to
co-cultures without immune cells. Monocyte-tri-cultures formed
smaller, more circular nodules, whereas M1-tri-cultures formed
nodules of intermediate size and morphology, indicating that
inflammatory macrophages modulate calcified deposit structure.
Moreover, while H,O, inhibited hydrogel contraction in VIC-
only, co-culture, and monocyte-tri-culture models, contraction
persisted in MI-tri-cultures, suggesting that
macrophages can counteract ROS-induced suppression of VIC-

inflammatory

mediated matrix remodeling.

Data obtained with these co-culture models underscore how
interactions between cells and the ECM shape VEC-VIC
communication and contribute to CAVD development.

3.5.2.4 Toward tri-layered constructs

The tunability of 3D hydrogels offers precise control over
ligand and peptide incorporation, cell-material interactions,
stiffness and matrix degradability. However, most models lack
the AV’s trilayered structure and dynamic complexity. In this
context, Monroe et al. developed in 2019 a 3D laminar paper-
based culture system to dissect how ECM composition directs
VIC behavior in CAVD (141). Porcine VICs were encapsulated
in hydrogels containing either collagen I or hyaluronan, with
both matrices functionalized with PEG-linked peptides and
engineered to have equivalent shear mechanics to isolate
biochemical effects. The gels were polymerized in wax-printed
wells on filter paper sheets, which were then stacked into
multilayer constructs mimicking native leaflet architecture. By
varying the ratio and spatial distribution of collagen and
hyaluronan, the authors recreated “healthy” (HA-rich) vs.
ECM VICs
remained viable and proliferative under both conditions;

“pathological”  (collagen-rich) environments.
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however, collagen-rich, pathological constructs induced higher
a-SMA and RunX2 expression, indicating myofibroblastic
activation and osteogenic differentiation. In contrast, HA-rich,
healthy-like layers preserved cell viability and suppressed the
expression of calcific markers, highlighting the critical influence
of ECM This

demonstrates the power of 3D biomimetic platforms to model

composition on VIC phenotype. system
both normal and disease-like valve microenvironments.

More recently, Immohr et al. introduced a 3D bioprinting
strategy to engineer multicellular, anatomically accurate AV
constructs, providing a promising platform for modeling CAVD
(132, 133). To this, they
encapsulated porcine VICs and/or VECs within alginate- and

and drug screening achieve
gelatin-based hydrogels. These cell-laden hydrogels were then
deposited layer-by-layer using extrusion-based 3D bioprinting
according to defined patterns (parallel lines or honeycomb
structures) to recreate the native three-dimensional architecture
of the AV. After printing, the constructs were stabilized by
crosslinking in a calcium chloride solution and subsequently
cultured for up to 21 days under standard conditions to
maintain cell viability and enable cellular interactions within this
multicellular 3D model. Good long-term cell viability was
confirmed even in thick, multilayered multicellular constructs,
providing proof of principle that 3D bioprinting of VEC- and
VIC-based hydrogels is a feasible approach to design constructs
that mimic the native AV. In 2024, Clift et al. used this type of
3D bioprinting approach to encapsulate human VICs within
GelMA/HAMA-based hydrogels and compare their cellular
proteome and vesiculome with those of human CAVD tissues
(134). spectrometry
analyses showed that the bioprinted model recapitulated 94% of

Liquid chromatography-tandem mass
the CAVD proteomic signature, vs. 70% in traditional 2D
cultures. Integration of cellular and vesicular datasets revealed
both known and previously unrecognized proteins linked to AV
calcification. This study confirms that 3D bioprinted cellular
models more faithfully reproduce human disease biology than
2D systems, offering a robust platform for high-throughput
multiomics studies and drug discovery.

3.5.3 Electospun scaffolds

In addition to hydrogels, cryogenic electrospinning has
recently emerged as a powerful method for creating 3D tissue
models. This technique involves electrospinning fibers onto a
cold drum (—30 °C), where water vapor forms ice crystals that
serve as a temporary void template. Lyophilisation removes the
ice, leaving a loosely packed fiber structure. The resulting
scaffold mimics native tissue mechanics and cell distribution,
offering a more physiologically relevant environment for
studying processes like valve calcification.

In 2022, Stadelmann et al. developed a bi-layered cryogenic
electrospun scaffold using polylactic acid, a biodegradable,
biocompatible polymer commonly used in tissue engineering
(142). The technique produced fibers ranging from nanometers
to micrometers, forming two layers: a bottom infiltration layer
(IL) with large pores, mimicking the spongiosa and promoting
VIC infiltration, and the top non-infiltration layer (n-IL) with
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dense nanofibers, replicating the fibrosa and supporting VEC
adhesion. Both layers were biofunctionalized with ECM proteins
(FN, laminin, collagen type I, and fibrin) to support cell-specific
needs. In co-culture, VICs were seeded on the IL and VECs on
the n-IL, with cultures maintained for 3-6 days and medium
changes every 2-3 days. This scaffold showed excellent stability
for up to 4 weeks. VICs adhered, maintained viable, migrated
into the IL, and displayed fibroblast-like morphology. VECs
retained a cobblestone morphology and stayed on the surface of
the n-IL. By day 6, both cell types formed confluent layers and
expressed appropriate adhesion and cell-contact markers, with
only minor variations compared to monocultures. Under
osteogenic stimulation, VICs
upregulated markers like RUNX2, highlighting the model’s
studying VIC
calcification. This bilayer scaffold, which is compatible with

formed calcific nodules and

suitability ~ for osteogenic transition and
perfused and dynamic systems, provides a promising platform

for studying both early and long-term mechanisms of the disease.

4 Ex vivo modelling of CAVD

While in vitro models have advanced our understanding of
CAVD, they fall short of replicating the multicellular and matrix
complexity of the AV. Ex vivo AV cultures provide a valuable
intermediate, preserving native architecture while eliminating
systemic variables inherent to in vivo models.

4.1 Porcine models

Most ex vivo models use porcine AV due to their structural
and compositional similarities to human valves, their healthy
state, and their larger size, which facilitates gene and protein
expression analysis. Porcine AV mineralization can be induced
ex vivo by culturing AVs for at least 8 days in medium
supplemented with 3.8 mM Pi. The addition of inorganic
PPi, further
mineralization (145). These culture conditions preserve the

pyrophosphatase, which degrades enhances
structural integrity of the valves and maintain cell viability,
supporting the model’s relevance. This model was used in 2021
to evaluate whether etidronate, a PPi analogue, could prevent
The that
effectively inhibited mineralization, confirming the model’s
suitability for In 2014,
Rodriguez et al. used porcine AV cultured ex vivo to evaluate
the role played by the ECM in VIC physiology. To do so, they
enzymatically degraded leaflet collagen and studied the impact

mineralization. study demonstrated etidronate

pharmacological screening (146).

on VIC phenotype. They observed that ECM disruption triggers
VIC proliferation, apoptosis, and the expression of markers like
a-SMA, ALP, and OCN, all
calcification (147).

A key limitation of ex vivo models is maintaining tissue

associated with increased

viability for extended periods, which is often challenged by
ECM degradation, and leaflet
contraction caused by myofibroblast activation. This is why, in

limited nutrient diffusion,
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2020, Zabirnyk et al. chose to optimize the model by culturing
porcine leaflets in an anti-myofibroblastic medium. They
demonstrated that this medium preserved tissue structure and
prevented the typical ball-like contraction observed with
standard media (148), making it suitable to study p-GP-induced
mineralization. Using this model, they showed that SNF472, an
agent inhibiting the formation and growth of hydroxyapatite

crystals, effectively prevents AV mineralization.

4.2 Other models (human, ovine and
murine)

While porcine AVs remain the standard for ex vivo culture,
human and ovine valves can also be used. As with porcine
models, their structure is preserved in antimyofibroblastic
media, and mineralization can be induced with OM and
reversed pharmacologically, highlighting their potential for drug
testing (149, 150). To our knowledge, no standardized model
currently exists for studying the remodeling of rodent AV
cultured ex vivo under static conditions. This may be related to
the small size of murine AV, which complicates dissection,
culture, and downstream gene and protein analyses, thereby
limiting their utility for mechanistic studies. Nevertheless,
developing such models would be useful for mechanistic
investigations and the screening of new therapeutic molecules.
The study by Jenke et al., published in 2020, provides an elegant
example of how ex vivo models can advance our understanding
of CAVD pathophysiology (151). In this study, the authors
exposed ovine AV leaflets, mounted and cultured under passive
tension on synthetic rubber rings, to TGF-B1, in the presence or
absence of OM. Using this protocol, they showed that in a 3D
TGF-B1

leaflet model, completely suppresses OM-induced

mineralization while promoting fibrosis. This effect was
associated with downregulation of osteocalcin and ALP
expression and upregulation of a-SMA and collagen

I expression. By contrast, they reported that in ovine VICs
cultured in 2D, TGF-B1 promoted calcification, demonstrating
that cellular responses differ profoundly between 2D cultures
and native-like 3D tissue environment.

5 Replicating mechanical and
hemodynamic conditions

The AV is a dynamic structure that opens and closes each
cardiac cycle, exposed to a complex mechanical environment
involving cyclic stretch, bending, pressure, and shear stress.
Alterations in these forces contribute to the onset and
progression of AV dysfunction and remodeling. While static in
vitro and ex vivo models have advanced our understanding of
CAVD, they fail to replicate physiological mechanical and
hemodynamic conditions. To address this, researchers have
of
mechanical and hemodynamic influences on valvular cells and

tissues (Table 3).

developed preclinical systems allowing investigation
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5.1 In vitro approaches

To simulate hemodynamic forces, especially shear stress, on
2D cultures of VICs and VECs, flow-based culture systems such
as Bioflux (Fluxion Biosciences) and IBIDI (IBIDI GmbH), have
been developed. These platforms use microchannel plates
through which fluid is pumped at controlled flow rates,
generating shear stress that mimics physiological conditions.
They offer precise control over flow regimes and often integrate
real time imaging tools for dynamic monitoring of cell behavior.
This enables investigation into how mechanical forces affect cell
proliferation, apoptosis, differentiation, and response to
pathophysiological stimuli.

Using this type of system, Butcher et al. showed that aortic
endothelial cells exposed to a steady shear stress of 20 dynes/
cm®—approximating average physiological levels (172)—aligned
the while VECs

perpendicularly, revealing distinct mechanical phenotypes adapted

parallel to direction of flow, aligned
to their respective function (152). Transcriptomic analyses further
confirmed that VECs differ from aortic endothelial cells, notably
in their higher proliferative capacity (173). More recently, Hsu
et al. used this system to investigate how shear stress (1 dyne/
cm’—mimicking an atherogenic environment) affects VIC
calcification (153). To do so, VECs were exposed for 48h to
static, steady, or oscillatory flow (0.25 or 0.5 OSI), and their CM
were then added to VICs cultured in an OM. They found that
VIC calcification was significantly increased in the 0.5 OSI group,
highlighting the pro-calcific effect of oscillatory shear stress. To
increase system complexity, Butcher et al. developed 3D collagen
hydrogel-based AV models to study VEC/VIC interactions under
flow (157). One model contained only VICs, while the other
included a VEC layer on the luminal surface. Both were subjected
to 20 dynes/cm’ shear stress for 96 h. As in 2D cultures, VECs
aligned perpendicularly to flow. Shear stress activated VICs
myofibroblastic differentiation. In this dynamic co-culture model,
VECs reduced VIC proliferation, preserved GAGs, and enhanced
protein synthesis, promoting a quiescent VIC phenotype and
maintaining matrix homeostasis.

In 2012, Quinlan et al. developed a high-throughput system
using collagen-coated polyacrylamide gels with defined stiffness
values ranging from very soft (~150Pa) to levels exceeding
those of diseased aortic valves (~150kPa), to study how
substrate stiffness influences VIC behavior in 2D (156). Porcine
VICs, pre-activated on stiff plastic, were seeded on these
substrates and cultured with or without TGF-B1, and cell
spreading, morphology, and aSMA expression were quantified.
They found that increasing substrate stiffness led to larger cell
spread area, more elongated morphology, and a higher fraction
of VICs displaying pronounced aSMA-positive stress fibers,
indicative of myofibroblastic activation. By contrast, relatively
VICs.
expression,

low stiffness levels sufficient to “deactivate”
Although TGF-p1 aSMA

substrate stiffness was the dominant cue driving myofibroblastic

were
slightly modulated

activation. This study highlights the importance of controlling

substrate stiffness in in vitro models of valve physiology and
tissue engineering.
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In addition, it is also possible to reproduce in vitro the
mechanical strains experienced by AV leaflets to study their
impact on VICs. Using the Flexercell® system, Smith et al.
cultured VICs on flexible collagen-coated membranes (BioFlex™
plates) that can be cyclically deformed by vacuum pressure
(154). This setup applies controlled, cyclic strain (e.g., 5%-20%
at 1Hz), mimicking physiological or pathological mechanical
loading, and allows investigation of downstream effects on gene
expression, protein production, and calcification. Using this
approach, they showed that applying physiological cyclic strain
(15%) to porcine VICs reduced inflammation, as evidenced by
decreased expression of MCP-1, VCAM-1, and GM-CSF (154).
The system also demonstrated that 10% cyclic strain preserved
the integrity of porcine VEC monolayers and limited pro-
inflammatory protein expression, whereas both lower (5%) and
higher (20%) strain levels were detrimental (155).

In 2024, Shih et al. developed a compact 3D mechanically
constrained platform to study how VICs remodel their ECM in
response to biochemical and biomechanical cues (158). To do so,
they encapsulated VICs in collagen hydrogels suspended between
(PDMS)
measurements of tissue compaction, stress (the tension generated

polydimethylsiloxane posts, allowing  real-time
by cell contraction and matrix remodelling on the posts), and
stiffness, as well as visualization of local protein expression via
light  sheet

accelerated neo-tissue compaction, formation of dense surface

microscopy. Osteogenic  stimulation induced
lesions, and disrupted homeostatic stress levels. Both porcine and
human VICs exhibited increased myofibroblastic activity (ACTA2,
TGFB1, CNN1) under osteogenic conditions, with protein
expression localized in banding patterns at the neo-tissue surface
and positively correlated with mechanical stress. The addition of
growth factors (EGF and FGF) modulated gene expression
independently of tissue stress, demonstrating that differentiation
can be biochemically altered without changing mechanical state.
This platform, which allows simultaneous analysis of mechanical
and molecular drivers of pathological remodeling, offers a high-
throughput biologically relevant system to study CAVD
mechanisms and potential pharmacological interventions.

In recent years, the field of preclinical modeling has been
transformed by the emergence of organ-on-chip technology. An
organ-on-chip is a microfluidic device that replicates the
structure and function of a human organ by integrating living
cells within a controlled, dynamic environment, enabling the
study of physiology and disease in vitro. To date, few of these
microfluidic models have been developed to replicate the AV
physiology. In 2024, Tandon et al. developed what currently
represents the most advanced cell-based three-dimensional
valve-on-chip (VOC) microphysiological system (159). The VOC
platform consisted of a rectangular PDMS chamber mounted on
which

controlled mechanical strain. Within this chamber, the valvular

an elastic membrane, allowed the application of
construct was formed by sequentially assembling hydrogel layers
to reproduce the valve’s native architecture. Quiescent pVICs
(1.5 % 10° cells/ml) were first embedded in a collagen-GAG
hydrogel to form a spongiosa-like layer and allowed to gel

overnight. A second collagen-only layer containing quiescent
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pVICs was then added to mimic the fibrosa and left to set for
another night. After polymerization, the bilayer construct was
UV-crosslinked for 1 min to stabilize the matrix. pVECs were
then seeded on the fibrosa surface (300,000 cells/cm?) and
cultured for 48 h to form a confluent endothelial monolayer.
Healthy and diseased valve compositions were simulated by
varying the collagen and GAG content. Healthy constructs
contained ~90% collagen with GAGs restricted to the spongiosa
layer, whereas diseased constructs contained 50% collagen and
fourfold higher GAG concentrations, reproducing the ECM
remodeling characteristic of CAVD. Once assembled, the VOCs
were cultured in either quiescent or pro-osteogenic medium
with
ascorbic acid, and TGF-B1) to induce calcification. The complete

(supplemented B-glycerophosphate, ~ dexamethasone,
construct was then mounted on a custom uniaxial stretcher
applying 10% cyclic strain for 48 h, reproducing physiological
mechanical forces and enabling the study of dynamic 3D valve
responses under healthy and disease-like conditions. While the
healthy hydrogel promoted vimentin expression, maintaining
VICs in a quiescent phenotype, the diseased hydrogel induced
VIC activation into a myofibroblast-like phenotype, as evidenced
by positive aSMA expression. Proteins involved in cellular
processes such as cell cycle progression, cholesterol biosynthesis,
and protein homeostasis were significantly altered and correlated
with metabolic changes in diseased VOCs, suggesting that these
constructs may serve as valuable tools to study the early,
adaptive stages of disease initiation.

5.2 Ex vivo approaches on isolated leaflets

5.2.1 Assessing the impact of shear stress

The biological response of AV leaflets to controlled shear stress can
be assessed by a cone-and-plate system. This setup, composed of a flat
plate and a rotating cone positioned just above it, generates well-defined
shear forces by moving fluid between the two surfaces and allows for
the application of steady or pulsatile flow while minimizing
secondary flow artefacts (174). A more advanced version—the
double cone-and-plate system—allows simultaneous exposure of
both leaflet surfaces (aortic and ventricular), better replicating in vivo
side-specific hemodynamics. In 2018, Mongkoldhumrongkul et al.
used this system to study the effect of side-specific flow on ECM
dynamics in porcine AV leaflets (160). Leaflets were subjected to
oscillatory or laminar flow for 48 h. Laminar flow promoted elastin
synthesis on both sides, while oscillary flow increased collagen and
GAG content specifically on the aortic side, underscoring the
importance of side-dependent flow in ECM regulation. In 2013, Sun
et al. used a double cone-and-plate system to evaluate the sensitivity
of AV leaflets to both the intensity and frequency of shear stress, and
their role in initiating CAVD-related remodeling (161). They
reported that elevated shear magnitude at normal frequency
increased BMP-4 and TGF-Bl expression and triggered ECM
degradation in porcine AVs. Abnormal frequency at physiological
magnitude also induced matrix remodeling. The most pathological
response was observed under sustained supra-physiologic shear,
peaking at 48 h and persisting through 72 h.
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5.2.2 Assessing the impact of pressure

Hypertension is associated with AS in vivo (175). To mimic
hypertensive conditions ex-vivo, AVs can be cultured ex vivo in
specialized pressure chambers (176). In 2011, Warnock et al.
cultured porcine AV leaflets for 24 h under cyclic pressures of
80 mmHg (physiological) or 120 mmHg (hypertensive) in a
(162).
Transcriptomic analysis revealed 56 inflammation-related genes

pressure  chamber mimicking diastolic loading
differentially expressed under hypertensive condition, including
TNF-a, IL-la, IL-1B, and a striking 41-fold upregulation of
PTX3. These findings suggest that pressure-induced activation of
inflammatory pathways in VICs could represent a potential

therapeutic target in hypertensive AS.

5.2.3 Biomechanical testing systems (stretch,
strain and stiffness)

Under physiological conditions, AV leaflets experience ~10%
circumferential and up to 30% radial stretch, which can increase
under elevated pressure. In 2006, Balachandran et al. used an ex
vivo bioreactor with two chambers containing fixed and moving
posts to apply controlled cyclic stretch via an actuator. Porcine
AV leaflets were suspended between the posts and subjected to
15% stretch for 48 h. Compared to fresh or statically cultured
leaflets, stretched tissues exhibited increased collagen, reduced
GAGs and elevated a-SMA expression, indicating a contractile,
fibrotic VIC phenotype. These findings suggest that cyclic
stretch drives ECM remodeling and VIC phenotypic activation
(163). Using the same setup, Merryman et al. demonstrated a
synergistic effect of cyclic stretch and TGF-B1 on VIC activation
(164). In 2010, Balachandran et al. showed that the induction of
a pathological stretch in porcine leaflets cultured in an OM
promoted apoptosis, ALP activity and calcification, along with
early upregulation of BMP-2, BMP-4, and Runx2 on the fibrosa
surface. In this model, inhibition of BMP signaling dose-
dependently reduced calcification and ALP levels, highlighting
BMPs as key mediators of stretch-induced AV calcification
(165). 2009,
micromechanical testing system to investigate how the valve

In El-Hamamsy et al. used a biaxial
endothelium regulates aortic cusp mechanics. Valve samples
were mounted in a Krebs bath at 37 °C with continuous O,/CO,
gassing to mimic physiological conditions. Stainless steel springs
were threaded through each side of the cusp to preserve
endothelial integrity, and four markers tracked deformation
during equibiaxial stretching. Strain was measured using force
transducers and a 2D camera system. Serotonin (5-HT) reduced
cusps stiffness by 25%, an effect reversed by endothelial removal
or L-NAME (a nitric oxide synthase inhibitor). In contrast,
endothelin-1 increased stiffness by 34%, which was blocked by
cytochalasin-B inhibitor). These

findings underscore the endothelium’s key role in modulating

(an actin polymerization

mechanical properties essential for valve function (166).

5.2.4 Toward organ-on-chips
In 2023, Dittfeld et al. developed a microphysiological
with a tissue

platform integrating pulsatile micropumps
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incubation chamber to enable long-term ex vivo culture of porcine
and human AV tissues. When cultured in this device for 14-26
days under dynamic pulsatile conditions, the tissue displayed
increased metabolic  activity, collagen deposition, and
contractility, which are characteristic of early stages of CAVD.
GAGs, endothelial and smooth muscle markers, and calcium
deposition remained stable (160), supporting the relevance of

this platform for preclinical studies.

5.3 Reproducing hemodynamics in
native AV

While earlier models focused on isolated leaflets, recent
advances have enabled ex vivo culture of whole native murine,
porcine, or ovine AVs under flow conditions mimicking
pathophysiological states. In 2021, Kruithof et al. established an
ex vivo calcification model for intact wild-type murine AV using
a miniature tissue culture system. To do so, they perfused mouse
hearts for 7 days, with or without OM. In this model,
calcification occurred exclusively when the AV leaflets were
cultured in an OM supplemented with Pi, whereas treatment with
a cocktail composed of B-GP, ascorbic acid, and dexamethasone
did not induce calcification. By contrast, they observed that
murine VICs cultured in vitro exhibited calcification under both
Pi and the PB-GP-ascorbic acid-dexamethasone cocktail. This
study revealed that significant disparities exist between in vitro
and ex vivo responses of VICs, highlighting the added value of
investigating CAVD in cells embedded within their native
microenvironment (167, 168). However, in this setup, flow was
reversed compared to physiological conditions (i.e., directed from
the aorta to the left ventricle), keeping the valve closed and
continuously exposing the aortic side to hemodynamic stress,
which represents a limitation. In 2025, Garoffolo et al. used this
model to show that SPV106, a histone acetyltransferase activator,
significantly reduced AV calcification and osteogenic marker
expression (ALP, RUNX1/2/3), demonstrating the model’s utility
for preclinical evaluation of anti-calcific strategies (169).

Interestingly, whole AV culture under flow has also been
investigated in larger animal models. Konduri et al. cultured
native porcine AVs for 48 h in a sterile, pulsatile organ culture
(120/80 mmHg,
4.2 L/min). A piston pump circulated fluid through the valve,

system simulating physiological conditions
separated by a latex diaphragm to maintain sterility. The system
replicated left heart function using a compliance tank, mechanical
mitral valve and programmable waveform generator. Continuous
monitoring of flow and pressure ensured physiological accuracy.
Compared to fresh valves, cultured tissues retained ECM
composition (collagen, GAGs, elastin), leaflet morphology, and
cell phenotype. Endothelial integrity was preserved, and apoptosis
levels remained low—comparable to fresh tissue and significantly
lower than in static culture—highlighting the crucial role of
mechanical stimulation in maintaining valve viability (170).
Whole AV culture under flow was also assessed by Niazy et al.
using ovine samples. In their system, native ovine AVs were
cultured for 7 days in a bioreactor providing pulsatile flow with
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controlled pressure, temperature, and pH (171). Flow passed from
the ventricular to the aortic side. Under dynamic conditions, type
I collagen expression was maintained, unlike in static culture.
Interestingly, exposure to an OM induced marked calcification in
the ventricularis, with smaller deposits in the fibrosa, whereas in
human CAVD, calcification typically occurs on the aortic side of
the leaflet, rather than in the fibrosa. This suggests that despite
pulsatile flow, shear stress distribution may not fully replicate
native patterns in this model. Besides, OM exposure did not alter
COL1A1, ALP, or aSMA expression, indicating limited VICs
phenotypic switching in this model.

6 Assessing mineralization

Accurate assessment of mineralization is essential for
characterizing VIC and VEC osteogenic activity and evaluating
the effects of therapeutic interventions. A wide range of
techniques has been developed and adapted to monitor
calcification across experimental settings, including cells cultured
in 2D or 3D, as well as tissue explants. These methods differ in
sensitivity, specificity, quantification capacity, and applicability
An overview of the main
Alizarin Red
staining, OsteoSense, o-cresolphthalein complexone, and **Ca
their
quantification potential, and limitations, is presented in Table 4.

to in vitro or ex vivo studies.
techniques—including Von Kossa staining,

liquid scintillation counting—along with principles,

7 In vivo modeling of CAVD

Unlike in vitro models, which isolate cellular mechanisms, or
ex vivo models, which lack systemic interactions, in vivo studies
capture the full complexity of the disease within an integrated
biological system. These models, which allow the study of
CAVD the
hypercholesterolemia, diabetes, and CKD, are essential for

in presence of key comorbidities such as
developing effective therapies. They also provide insights into
the progressive nature of AV fibrocalcic remodeling and
pathological changes that short-term experiments may miss, and
allow evaluation of the functional impact of AV dysfunction on
hemodynamic parameters and ventricular remodeling and
function via echocardiography. These in vivo models are
essential for evaluating the efficacy and safety of potential
therapies, offering a physiologically relevant platform for testing

pharmacological and interventional strategies before clinical trials.

7.1 Overview of main models

Numerous animal models have been developed to replicate the
pathological conditions leading to CAVD. These models account
for key risk factors and comorbidities, enabling the investigation
such as inflammation,

of mechanisms lipid metabolism,

hemodynamics, and genetic predispositions. They can be

naturally occurring, genetically engineered, diet- or surgically
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TABLE 4 Overview of the main techniques used to detect and quantify calcification in vitro and ex vivo, with emphasis on their specificity, sensitivity,
and limitations depending on the experimental model.

Measurement
type

Non quantitative

Name of
the method

Von Kossa

Principle

Detects anionic calcium salts,
primarily calcium phosphate
deposits. It works by replacing
calcium ions with silver ions,
which are then reduced to
metallic silver under light
exposure, appearing black
(177)

Use on VICs (in vitro)

Use on AV tissue
(ex vivo)

Detection of mineralization in fixed VICs, and AV tissues;
deposits can be visualized and imaged (178)

Pitfalls

AVs, especially in mice,
contain melanin-rich
melanocytes whose black/
brown pigmentation can
mimic mineral deposits
and cause false positives in
Von Kossa staining (81,
179).

Semi-quantitative

Alizarin Red

Binds calcium to form a bright

Detection of mineralization in

Allows detection of

Alizarin Red Staining has

spectrophotometry.

Staining red complex visible to the fixed VIC monolayers. The dye | macrocalcification and limited sensitivity for

naked eye (180) can be solubilized using a buffer | nodules in fixed AV leaflets; | detecting microcrystals
containing NaH,PO; and deposits can be visualized within AV tissue
hexadecylpyridinium chloride, and imaged
followed by absorbance
measurement, providing both
visual and semi-quantitative
assessment (98)

Osteosense Fluorescent bisphosphonate Allows detection of Particularly suited for Osteosense cannot detect
probe that binds specifically to | hydroxyapatite in cell monolayers | detecting and quantifying macrocrystals and nodules
hydroxyapatite, enabling real- | as early as 24 h after osteogenic | microcalcifications in AV within AV leaflets
time imaging of calcification stimulation, with signal intensity | leaflets, which may be
(181) increasing over time. challenging with Alizarin

Quantification of the signal Red (182)
allows semi-quantitative analysis
of mineralization (182)
Quantitative O- Binds calcium under alkaline | This method involves decalcifying VIC monolayers or AV tissue | These techniques are well
cresolphthalein conditions, forming a purple | with HCI to extract calcium. The supernatant containing free | suited for quantifying
complexone complex measurable by calcium ions is then mixed with an o-cresolphthalein complexon | mineralization ex vivo in

reagent under alkaline conditions, forming a purple complex
measurable by spectrophotometry. Results are expressed as
micrograms of calcium per well (for cells) or nanograms per
milligram of dry tissue (for valve samples) (100)

AV from large animals
(human, porcine, etc.).
However, they are not
easily applicable to rat and

*Ca and Liquid
Scintillation

**Ca and Liquid Scintillation
Counting is a technique used to
measure deposition by using
the radioactive calcium isotope
45Ca

Counting

This method involves incubating tissue samples or VIC
monolayers with radioactive **Ca, followed by washing, drying
(and weighing for tissues). Calcium is then extracted by
overnight incubation with HCI, and the supernatant is analyzed
by liquid scintillation counting, a sensitive technique that detects
radioactive decay. Results are expressed as nanomoles of calcium
per well or per milligram of tissue, based on the specific activity
of **Ca in the medium (145)

mouse AV, as residual
myocardium (rich in
calcium) often remains
attached to the aortic
annulus, causing bias and
complicating calcium
measurement

induced, or triggered by pharmacological agents. An overview of
these models and their characteristics is provided in Table 5.

7.2 Relevance of in vivo models

Several critical factors must be considered when using animal
models, starting with species selection. Porcine models are
anatomically and hemodynamically close to humans, making them
highly relevant for CAVD research. However, their use entails high
costs, specialized housing, and often limits sample sizes, impacting
statistical power. Rodents, widely used for their availability and
genetic manipulability, differ fundamentally from humans in key
aspects. For example, mice have lymphocyte-dominant white blood
cells, whereas humans and pigs have neutrophil-dominant profiles,
influencing immune responses (215, 216). Moreover, certain
human cytokines relevant to CAVD, such as IL-8 (100), are not
expressed in mice or rats, limiting the translational potential of
these models. Rodent models also pose technical challenges: their

Frontiers in Cardiovascular Medicine

tiny AV yield limited tissue for molecular analyses (e.g., Western
blot, PCR), and valve isolation without myocardial contamination
is difficult. Nevertheless, they remain valuable for studying
cardiovascular calcification in vivo, including through Osteosense
injection to visualize global cardiovascular calcification. Regardless
of species, in vivo studies increasingly rely on functional imaging
such as translatable
assessment of hemodynamic and functional parameters. This
underscores the importance of interdisciplinary collaboration with
clinicians specialists
meaningful data interpretation. Despite
Table 5 shows that no animal model to date fully recapitulates the

echocardiography, enabling clinically

and imaging to ensure accurate and

significant advances,

complex pathophysiology of CAVD—including fibrosis, lipid
accumulation, calcification, elevated transvalvular gradients, valve
narrowing, and left ventricular remodeling. As a result, we still lack
a reliable preclinical model for testing therapeutic interventions
aimed at preventing the onset or halting the progression of AS,
despite considerable research efforts in this field. Developing such
a model remains a critical need to improve our understanding of
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FIGURE 3

Overview of the main models currently available to study CAVD. In this figure, models are organized by increasing complexity and physiological
relevance from left to right. The upper row illustrates static models, where mechanical and hemodynamic stimuli are absent. The lower row
presents dynamic models, incorporating mechanical forces and flow conditions to better mimic the physiological environment of the aortic
valve. This figure highlights the progressive refinement of experimental systems, from simple 2D in vitro cultures to complex in vivo models, to
guide model selection based on research objectives. Illustration created with BioRender.

disease mechanisms and to enable robust therapeutic screening. To
develop reliable models of valvular calcification, critical details—
such as animal strain, sex, and diet composition—should be
systematically reported in every published study. To this end,
researchers are encouraged to follow the ARRIVE guidelines,
which provide a comprehensive checklist of essential information
for in vivo studies. Adherence to these guidelines allows evaluation
of methodological rigor, facilitates experiment reproducibility, and
ensures accurate interpretation of results. It also promotes complete
reporting of experimental design, randomization, blinding, sample
size justification, and outcome measures, thereby enhancing study
quality and transparency (217). A more standardized approach will
not only enhance reporting consistency but also aid in selecting
appropriate methodologies, ultimately accelerating the identification
of suitable animal models for CAVD.

8 Conclusion

Although no model fully replicates the native AV environment
and the mechanisms driving CAVD, significant efforts have been
made to develop robust experimental systems (Figure 3). Two-
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dimensional in vitro models offer precise control of the cellular

environment, making them useful for studying signaling
pathways and cell-cell interactions. However, they fail to mimic
the native valve’s 3D architecture and cell-matrix interactions.
scaffolds,

leaflet fragments, or whole aortic valves—better address these

Three-dimensional models—based on aggregates,
limitations. The incorporation of hemodynamic flow and
mechanical forces into these in vitro and ex vivo systems
represents a major advance. Despite these improvements, in vivo
models remain essential for studying CAVD progression within
an integrated biological context. In this regard, the development
of a zebrafish model, which would enable high-throughput
compound screening, is highly anticipated (218, 219).

When modeling CAVD, it is important to keep in mind that
each model provides only a partial perspective on disease
mechanisms; thus, combining complementary approaches is
often the most effective strategy for addressing complex research
questions. However, the multifactorial nature of CAVD, which
often requires a focus on specific risk factors, continues to limit
the generalizability of findings and remains a major obstacle to
fully replicate the disease. Among these factors, BAV represents
a major risk for early-onset and accelerated CAVD. Yet, few

frontiersin.org
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preclinical systems have been specifically developed to modelize
this morphological variant. Indeed, the vast majority of existing
models rely on tricuspid valve anatomy, limiting their ability to
reflect the unique hemodynamic and mechanical conditions
associated with BAV. This remains an important gap in the field
and underscores the need for future models tailored to this
clinically significant phenotype. In the future, integrating spatial
scRNA-seq, and
techniques into studies of bicuspid and tricuspid valves, as well

transcriptomics, other  high-resolution
as key comorbidities, is expected to enhance our understanding
of the mechanisms driving AS. The standardization of trilayered
in-flow organoid systems and AV-on-chip platforms still remain
key challenges for the coming years and could significantly

enhance translational potential.
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