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Medicine, Nanjing, Jiangsu, China

Objective: This study aimed to systematically analyze coronary plaque
characteristics in patients with premature coronary artery disease (PCAD)
using optical coherence tomography (OCT) and clarify their associations with
clinical risk factors and major adverse cardiovascular events (MACE).

Methods: A total of 224 patients (men <55 years, women <65 years) with
suspected or confirmed CAD who underwent coronary angiography and OCT
at the First Affiliated Hospital of Nanjing Medical University between February
2022 and February 2024 were enrolled. Among them, 142 were diagnosed
with PCAD (observation group), and 82 had coronary stenosis <50% (control
group). Baseline clinical data, risk factors, and OCT-derived plaque features
were collected. Patients were followed for 12 months to record MACE.
Statistical analyses included independent t-tests, chi-square tests, and
multivariate Cox regression.

Results: The PCAD group exhibited significantly higher prevalence rates of
hypertension (63.38% vs. 47.56%), smoking (30.28% vs. 17.07%), and diabetes
(19.72% vs. 8.54%), along with elevated total cholesterol (4.89 +1.41 vs.
4.41 +1.32 mmol/L), LDL-C (2.91+ 0.98 vs. 2.51 + 0.72 mmol/L), and lipoprotein
(@) (50.2 +28.4 vs. 30.5 +18.7 mg/dl) compared to controls (all p<0.05). OCT
analysis revealed higher vulnerability in PCAD plaques, characterized by thinner
fibrous caps (150.16 + 82.71 vs. 250.71+ 123.53 um, p<0.01), larger lipid arc
(93.21 4+ 36.43° vs. 60.10 + 24.46°, p<0.01), increased macrophage infiltration
(19.01% vs. 4.87%, p<0.01), and more intraplaque microchannels (14.79% vs.
8.53%, p<0.05). During follow-up, MACE incidence was significantly higher in
the PCAD group (12.68% vs. 3.70%, p<0.01). Multivariate Cox regression
identified thin-cap fibroatheroma (HR =2.95), lipid arc >180° (HR=2.61),
macrophage infiltration (HR = 1.98), plaque rupture (HR = 2.82), and thrombosis
(HR = 2.30) as independent predictors of MACE.

Conclusion: Patients with PCAD demonstrate distinct coronary plaque
vulnerability features closely associated with metabolic and lifestyle-related
risk factors. OCT enables precise identification of high-risk plaques, providing
critical insights for early intervention and risk stratification to mitigate acute
cardiovascular events.

KEYWORDS

premature coronary artery disease (PCAD), optical coherence tomography (OCT),
vulnerable plaque, major adverse cardiovascular events (MACE), risk stratification
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1 Introduction

Cardiovascular diseases remain the leading cause of death
worldwide, with coronary artery disease accounting for nearly two-
thirds of cardiovascular-related deaths (1). In recent years, there
has been a trend of younger onset of coronary artery disease.
Premature Coronary Artery Disease (PCAD), characterized by its
distinct pathological features and poor prognosis, has gradually
become a focus of clinical research. PCAD is defined as coronary
artery disease occurring in relatively younger populations, typically
referring to cases developing before age 55 in males and 65
in females, as commonly used in major guidelines and
epidemiological studies (2, 3). Studies indicate that PCAD patients
frequently present with risk factors such as metabolic syndrome
and smoking, and their plaques may exhibit significantly higher
vulnerability compared to typical CAD patients. However,

the precise pathological mechanisms remain incompletely
understood. Optical Coherence Tomography (OCT), with its ultra-
high resolution of 10-15pm, enables precise identification of
microscopic plaque characteristics including fibrous cap thickness,
lipid core distribution, macrophage infiltration, and microchannels,
earning it the designation of “optical biopsy” (4). Multiple studies
have confirmed OCT’s significant value in identifying vulnerable
plaques, guiding interventional therapy, and predicting
cardiovascular events (5, 6). Nevertheless, current research on OCT
characteristics of coronary plaques in PCAD patients remains
scarce, and the relationship between plaque morphology and
clinical outcomes remains unclear.

This study aims to systematically analyze coronary plaque
characteristics in PCAD patients using OCT technology and
investigate their correlations with metabolic risk factors and
major adverse cardiovascular events (MACE). The findings are
expected to provide imaging-based evidence for early risk
stratification, precise intervention, and prognostic evaluation in
PCAD patients, thereby reducing the incidence of acute

cardiovascular events.

2 Methods
2.1 Study population

This single-center prospective study was approved by the Ethics
Committee of the First Affiliated Hospital of Nanjing Medical
University (Approval No.: 2022-SR-529), and written informed
consent was obtained from all participants. Premature coronary
artery disease (PCAD) was defined as coronary stenosis >50% in at
least one major epicardial vessel in men <55 years or women <65
years (2, 3). The inclusion criteria were as follows: (1) Age range:
Males <55 years, females <65 years, consistent with the commonly
used definition of premature CAD; (2) Underwent coronary
angiography with Optical Coherence Tomography (OCT) at our
institution between February 2022 and February 2024; (3) Clinical
diagnosis of suspected or confirmed coronary artery disease.
Exclusion criteria: (1) Severe hepatic or renal dysfunction (eGFR

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1621824

<30 ml/min/1.73 m* or ALT/AST >3x upper limit of normal); (2)
History of coronary artery bypass grafting; (3) Comorbid
malignancies or immune system diseases; (4) OCT image quality
insufficient for analysis (e.g., incomplete vessel visualization or
significant motion artifacts). Clinical indications for coronary
angiography included chest pain symptoms and positive non-
invasive test results to confirm the presence of coronary stenosis or
obstruction. Indications for OCT encompassed angiographically
ambiguous or suspicious lesions, vulnerable plaque identification,
and non-obstructive coronary artery disease. A total of 224 patients
were ultimately enrolled and divided into two groups based on
coronary stenosis severity: Observation group (PCAD group,
n=142): Coronary stenosis >50%, meeting diagnostic criteria for
PCAD (males <55 years, females <65 years); Control group
(n=282): Controls were defined as patients with coronary stenosis
<50% and no history of acute coronary syndrome. Although these
patients underwent angiography and OCT due to clinical suspicion
of CAD, they served as a clinically relevant comparator group to
evaluate plaque characteristics in a lower-risk population within the
same clinical context. This design helps control for referral bias by
ensuring both groups were evaluated under similar clinical
indications. Routine laboratory tests (complete blood count,
routine urinalysis and serum chemistry profile) were performed in
the local laboratories of the participating institutions.

2.2 OCT procedure and coronary plaque
characterization

2.2.1 Equipment and imaging protocol

This study utilized Abbott’s
Coherence Tomography system (OPTIS™ Integrated System,
Model: C408661) with a high-resolution Dragonfly™ OPTIS™
intravascular imaging catheter (Model: C408645). The system

latest-generation  Optical

supports 3D vascular reconstruction and real-time plaque stress
analysis, achieving a spatial resolution of 10-15 um and an axial
scan rate of 75 mm/s, significantly reducing motion artifacts and
optimizing imaging quality.

2.2.2 Standardized protocol
2.2.2.1 Catheter preparation

Adhering to international OCT imaging guidelines (7), the
catheter was activated and flushed with iso-osmolar iodinated
contrast to eliminate air bubbles at the tip.

2.2.2.2 Image acquisition

An automatic pullback mode (25 mm/s) was employed,
synchronized with a contrast injection system (ACIST CVi®)
delivering 4 ml/s (total volume: 8-12ml) to ensure vascular

expansion and continuous imaging.

2.2.2.3 Quality control
Signal intensity was monitored in real time (target >7/10),
cases with  blurred incomplete

excluding images or

vessel visualization.
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2.2.3 Plaque characterization
Based on the EACVI OCT Expert Consensus (8), plaque
classification and parameters were defined as follows:

o Vulnerable Plaque: Meeting >2 criteria:
(1) Fibrous cap thickness (FCT) <65 pum;
(2) Lipid arc >180°%
(3) Macrophage density >10% (quantified via AI algorithm);
(4) Intraplaque microchannels >2.

« Plaque Erosion: Intact fibrous cap with endothelial denudation
and adherent thrombus (length >2 mm).

« Calcified Nodule: Calcium protrusion occupying >50% of the
lumen with overlying cap rupture.

2.2.4 Manual OCT image analysis and
quantification

All OCT image analyses were performed manually by two
experienced and blinded independent analysts using dedicated
offline review software (Abbott OPTIS™ Review Software).
Each plaque parameter was measured in accordance with the
EACVI OCT Expert Consensus guidelines. The following
features were quantitatively assessed:

Fibrous Cap Thickness (FCT): The thinnest part of the fibrous
cap covering a lipid plaque was identified in multiple cross-
sectional frames and measured three times; the minimum
value was recorded (precision: +5 m).

Lipid Arc: The maximum angular extent of the lipid-rich
core was measured in the cross-section with the largest
lipid accumulation.

Macrophage Infiltration: Defined as focal, signal-rich regions
with high attenuation, typically exhibiting a “bright spot”
appearance with backward shadowing.
Identified as
signal-poor voids within the plaque, visible on at least three

Intraplaque Microchannels: well-delineated,

consecutive cross-sectional frames.

Interobserver agreement for all quantitative measurements was
evaluated using Bland-Altman analysis, which demonstrated
excellent  consistency (intraclass  correlation  coefficient,
ICC >0.90). Discrepancies were resolved by consensus with a

third senior analyst.

2.2.5 Data standardization and quality assurance

All images were independently analyzed by two blinded,
experienced analysts. Interobserver agreement was validated
using Bland-Altman analysis (ICC >0.90).

2.3 Study endpoints

2.3.1 Primary endpoint

Major Adverse Cardiovascular Events (MACE), defined as a
death,
infarction, ischemia-driven revascularization, and ischemic stroke.

composite of cardiovascular non-fatal myocardial
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2.3.2 Secondary endpoint

All-cause mortality. Each event was adjudicated by two
independent cardiologists based on clinical, laboratory, and
imaging criteria.

2.4 Follow-up

Patients were followed for 12 months via outpatient visits or
telephone interviews. Medical records, laboratory results, and
imaging reports were reviewed to document any occurrence
of MACE or mortality. Follow-up was completed for all
enrolled patients.

2.5 Adjudication of clinical events

All reported endpoints, including major adverse cardiovascular
events (MACE) and all-cause mortality, were prospectively
adjudicated by an independent Clinical Event Committee (CEC)
comprising two interventional cardiologists and one neurologist.
The CEC members were blinded to the patient’s group allocation
and OCT findings. Event definitions were pre-specified in the study
protocol. Myocardial infarction was defined according to the
Fourth Universal Definition of Myocardial Infarction. Ischemia-
driven revascularization required objective evidence of ischemia on
functional testing or imaging concomitant with angiographic
stenosis >70%. Stroke was confirmed by neurologist assessment
and brain imaging. Discrepancies in adjudication were resolved

by consensus.

2.6 Statistical analysis

Data analysis was performed using SPSS 26.0. Normality
of continuous variables was assessed using the Shapiro-Wilk test
(for sample sizes <50) or the Kolmogorov-Smirnov test (for
sample sizes >50). Continuous variables were expressed as
mean + standard deviation (normally distributed) or median
(interquartile range) (non-normally distributed). For variables
violating normality assumptions (p < 0.05 in normality tests), non-
parametric tests or logarithmic transformations were applied prior
to analysis. Intergroup comparisons utilized independent t-tests
(normal distribution) or Mann-Whitney U-tests (non-normal
distribution). Categorical variables were reported as frequency
(percentage), and group differences were assessed using chi-square
tests or Fisher’s exact tests (for expected cell counts <5).
Multivariable Cox proportional hazards models were applied to
identify independent predictors of major adverse cardiovascular
events (MACE). Variables with p <0.1 in univariate analyses were
included, and results were expressed as hazard ratios (HR) with
95% confidence intervals (CI). Variance inflation factors (VIF)
were calculated to evaluate multicollinearity among covariates (VIF
>5 indicating significant collinearity). Interobserver agreement was
evaluated using Bland-Altman analysis, with intraclass correlation
coefficients (ICC) >0.85 indicating good consistency. A two-tailed
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p-value <0.05 was considered statistically significant. Multivariate
models included adjustment for referral-related variables (e.g.,
symptomatic status, non-invasive test results).

3 Results
3.1 Baseline characteristics

The Premature Coronary Artery Disease (PCAD) group
demonstrated significantly higher serum total cholesterol (TC),
low-density (LDL-C), Lp(a)
smoking rates, prevalence of hypertension, diabetes, and family

lipoprotein  cholesterol levels,
history of coronary artery disease compared to the control

group, as shown in Table I.

3.2 OCT coronary plaque analysis

In the assessment of vulnerable plaque characteristics, the
Premature Coronary Artery Disease (PCAD) group exhibited
significantly thinner fibrous cap thickness (150.16 +82.71 um vs.
250.71 £123.53 pm, p<0.01) and a higher proportion of thin-
cap fibroatheroma [TCFA, defined by FCT <65 um according to
consensus standards (8)] (13.38% vs. 2.43%, p <0.01) compared
to the control group.

Additionally, the PCAD group demonstrated significantly
worse outcomes in lipid-rich plaque prevalence, lipid arc angle,
macrophage infiltration, endothelial erosion, plaque fissures,
intraplaque microchannels, and thrombus formation. A detailed
comparison of plaque characteristics between the control group
and PCAD group is presented in Table 2.

We performed a Pearson correlation analysis between LDL-C
levels and lipid arc in the PCAD group. The results showed a
moderate positive correlation (r=0.42, p<0.01). Smokers had
significantly thinner FCT (132.5+75.2 um vs. 161.8 + 86.4 um,
p=0.02).

TABLE 1 Comparison of baseline characteristics between the premature
coronary artery disease group and the control group.

Premature CAD |2/t p

group
(n=142)

Parameter Control

group
(n=82)

Mean age (years) 48.7+5.3 49.3+6.7 0.695 | 0.488
Male/Female (cases) 58/24 96/46 0.236 | 0.627
TC (mmol/L) 4.41+1.32 4.89+1.41 2.511 | <0.05
LDL-C (mmol/L) 2.51+0.72 291+£0.98 3.226 | <0.01
Lp(a) (mg/dl) 30.5+18.7 50.2 +28.4 6.203 | <0.01
TG (mmol/L) 2.05+0.87 221+1.12 1.114 | 0.267
HDL-C (mmol/L) 1.31+£0.34 1.22+043 1.624 | 0.106
Smoking [n (%)] 14 (17.07%) 43 (30.28%) 4.780 | <0.05
Hypertension [n 39 (47.56%) 90 (63.38%) 5.326 | <0.05
(%)]

Diabetes (%) 7 (8.54%) 28 (19.72%) 4.930 | <0.05
Family history of 5 (6.10%) 22 (15.49%) 4.329 | <0.05
CAD (%)

Continuous variables are expressed as mean + standard deviation; categorical variables are
presented as number (percentage).
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TABLE 2 Comparison of plaque characteristics between the premature
coronary artery disease group and the control group.

Premature
CAD group
(n=142)

Parameter Control

group
(n=282)

Stenosis severity 35.12+11.34 60.15 +21.37 9.831 | <0.01
(% +SD)

Fibrous cap 250.71 £ 123.53 150.16 £ 82.71 7.281 | <0.01
thickness (um + SD)

Thin-cap 2 (2.43) 19 (13.38) 7.324 | <0.01
fibroatheroma

[n (%)]

Fibrous plaque 42 (51.22) 45 (31.69) 8.346 | <0.01
[n (%)]

Calcified plaque 17 (20.73) 38 (26.76) 1.020 | 0.313
[n (%)]

Lipid-rich plaque 23 (28.05) 59 (41.55) 4.083 | <0.05
[n (%)]

Lipid arc (°+ SD) 60.10 + 24.46 93.21 +36.43 15.592 | <0.01
Macrophage 4 (4.87) 27 (19.01) 8.711 | <0.01
infiltration [n (%)]

Plaque erosion 3 (3.65) 22 (15.49) 7.343 | <0.01
[n (%)]

Plaque rupture 0 (0.00) 13 (9.15) - <0.01*
[n (%)]

Intraplaque 7 (8.53) 21 (14.79) 5.149 | <0.05
microvessels [1n (%)]

Thrombus [# (%)] 0 (0.00) 9 (6.33) - <0.05*

*Fisher’s exact test.

3.3 Representative OCT imaging of
coronary plague morphology

Figure 1A. Lipid-rich plaque

o Fibrous cap: Focal high reflectivity (hyperintense regions).
o Lipid with
high attenuation.

core: Homogeneous low-intensity zones

o Ill-defined interface between fibrous cap and lipid core.
Figure 1B. Thrombus

o Irregular luminal mass adherent to the vessel wall or floating
freely.

O Red thrombus: High reflectivity, high attenuation, and
posterior shadowing (obscuring underlying structures).
O White thrombus: High reflectivity, low attenuation, with
preserved visualization of the vessel wall.
Figure 1C. Thin-cap fibroatheroma (TCFA)

« Fibrous cap thickness <65 um.
 Lipid core extending across >2 quadrants.

Figure 1D. Calcified plaque

o Sharply demarcated borders.
o Low reflectivity and attenuation.
o Heterogeneous low-intensity regions.

Figure 1E. Plaque rupture

o Disrupted fibrous cap continuity.
o Cavity formation within the plaque.
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FIGURE 1

image features are indicated by the white arrows. Bar =1 mm.

Representative OCT imaging of coronary plaque morphology. (A) Lipid-rich Plaque, (B) Thrombus (Red Thrombus), (C) Thin-cap Fibroatheroma, (D)
Calcified Plaque, (E) Plaque Rupture, (F) Intraplaque Microvessels, (G) Plaque Erosion, (H) Fibrous Plaque, (I) Macrophage Infiltration. Specific OCT

Figure 1F. Intraplaque microchannels

« Low-intensity, sharply bordered void-like structures.
o Associated with thinner fibrous caps, larger lipid arc angles,
and increased prevalence of TCFA.

Figure 1G. Endothelial erosion

« Intact fibrous cap.
o Overlying thrombus secondary to endothelial dysfunction
or denudation.

Figure 1H. Fibrous plaque

 High reflectivity and low attenuation.
« Smooth, homogeneous hyperintense regions.

Figure 1I. Macrophage infiltration

o Focal or clustered hyperreflective signals characterized by:

Frontiers in Cardiovascular Medicine

O High reflectivity and attenuation.
O Dot- or streak-like patterns with radial light scattering.
« Predictive of clinical instability.

3.4 Major adverse cardiovascular events
(MACE), all-cause mortality, and incidence
rates

MACE was defined as a composite of cardiovascular
death,
revascularization, and ischemic stroke. During the 12-month

non-fatal myocardial infarction, ischemia-driven
follow-up, the PCAD group exhibited a significantly higher total
MACE incidence [12.68% (18/142)] compared to the control

group [3.7% (3/82)] (p<0.01). Secondary endpoint (all-cause
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mortality): PCAD group: 1.41% (2/142), Control group: 0% (0/82).
No statistically significant intergroup difference was observed
(p>0.05). Event type distributions are summarized in Table 3.

3.5 Predictors of MACE events

Multivariable
performed to identify independent predictors of major adverse

Cox proportional hazards regression was

Variables with a univariate
in the
comprehensively adjust for potential confounders, the model

cardiovascular events (MACE).

association of p<0.1 were included model. To
incorporated baseline covariates with significant intergroup
differences (Table 1), including age, sex, lipid profile [total
cholesterol, LDL-C, Lp(a)], hypertension, diabetes, smoking status,
and family history of coronary artery disease. Multicollinearity
among variables was assessed using variance inflation factors (VIF),
with all VIF values <3, indicating no significant collinearity. After
adjusting for clinical risk factors, the following OCT-derived plaque
features remained independent predictors of MACE (Table 4):
Thin-cap fibroatheroma (TCFA) (HR=2.95, 95% CI 1.48-5.88,
p <0.01); Lipid arc >180° (HR =2.61, 95% CI 1.25-5.45, p < 0.05);
Macrophage infiltration (HR=198, 95% CI 1.02-3.85,
P <0.05); Plaque rupture (HR =2.82, 95% CI 1.38-5.76, p < 0.01);

Thrombosis (HR = 2.30, 95% CI 1.10-4.81, p < 0.05).

4 Discussion

Previous studies have established that PCAD is associated with
aggressive plaque phenotypes and poor outcomes. However,

TABLE 3 Comparison of MACE and All-cause mortality between the
premature CAD group and the control group during 12-month follow-Up.

Control

group
(n=82)

Premature CAD

group
(n=142)

Event type

Cardiovascular death 1 (0.70%) 0 (0.00%) 0.999
Non-fatal myocardial 8 (5.63%) 1 (1.22%) <0.05
infarction

Ischemia-driven 9 (6.34%) 2 (2.44%) <0.05
revascularization

Ischemic stroke 0 (0.00%) 0 (0.00%) -
Total MACE 18 (12.68%) 3 (3.70%) <0.01
All-cause mortality 2 (1.41%) 0 (0.00%) 0.532

Intergroup comparisons were performed using the * test or Fisher’s exact test (when
expected event counts <5).

TABLE 4 Independent predictors of MACE (multivariate Cox regression

analysis).

Variable R osncl P
Thin-cap fibroatheroma 2.95 1.48-5.88 <0.01
Lipid arc >180° 2.61 1.25-5.45 <0.05
Macrophage infiltration 1.98 1.02-3.85 <0.05
Plaque rupture 2.82 1.38-5.76 <0.01
Thrombosis 2.30 1.10-4.81 <0.05
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detailed OCT-based characterization of plaque vulnerability in
limited. Our

comprehensive analysis of OCT-derived high-risk features in

this population remains study provides a
PCAD patients and demonstrates their strong association with
metabolic risk factors and 12-month MACE. Furthermore, we
identify specific OCT predictors of events, supporting the use of
intravascular imaging for risk stratification in young patients.
Coronary artery disease (CAD), the leading cause of
cardiovascular mortality worldwide, has shown a rising trend of
earlier onset. Premature coronary artery disease (PCAD),
characterized by its distinct pathological features and poor
prognosis, has become a key focus of clinical research. This
study systematically analyzed coronary plaque characteristics in
PCAD patients using optical coherence tomography (OCT),
revealing significant associations with metabolic risk factors and
major adverse cardiovascular events (MACE). MACE in this
study was strictly defined as cardiovascular-specific endpoints to
reflect the

vulnerability and acute cardiovascular events. The lack of

more precisely relationship  between plaque

significant intergroup differences in all-cause mortality
(a secondary endpoint) suggests that the high-risk profile of
PCAD patients is primarily concentrated in cardiovascular-
specific events.

Fibrous cap thickness (FCT) is a critical determinant of plaque
stability. In this study, the PCAD group exhibited significantly
lower mean FCT and a higher proportion of thin-cap
fibroatheroma (TCFA) compared to controls. We used the
<65 um cutoff for TCFA definition as it remains the most
widely validated and consensus-recommended value for
identifying plaques at the highest risk of rupture, irrespective of
patient age (8). This threshold is prognostically significant, as
plaques with FCT <65 pum are associated with a substantially
increased risk of future MACE. While the mean FCT in our
PCAD group was higher (150.16 + 82.71 um), the critical finding
is the significantly higher prevalence of TCFA (FCT <65 pm) in
PCAD patients compared to controls (13.38% vs. 2.43%). This
indicates that although the average cap may be thicker, a subset
of PCAD patients harbor these very high-risk, rupture-prone
lesions. This dichotomy underscores the value of OCT in
identifying this high-risk subset within a broader population
that may otherwise appear similar based on age or traditional
risk factors alone.Thin fibrous caps are prone to shear stress,
leading to lipid core exposure and subsequent platelet
aggregation and thrombosis. Recent studies have further
elucidated the FCT and the
inflammatory microenvironment: macrophages degrade collagen
fibers via matrix metalloproteinases (MMP-2, MMP-9), while

oxidized low-density lipoprotein (ox-LDL) activates the NLRP3

interplay  between local

inflammasome, promoting IL-18 release and establishing a
“inflammation-fibrous cap degradation” positive feedback loop
(9). A 2023 OCT-based longitudinal study reported that patients
with baseline FCT <65 um had a nearly fourfold increased risk
of plaque rupture within one year, with a post-rupture MACE
rate as high as 32% (10). These findings underscore the
importance of dynamic FCT monitoring and provide a rationale
for intensive lipid-lowering therapy.
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Our results show that PCAD patients exhibit more vulnerable
plaque features—thinner fibrous caps, larger lipid arcs, and higher
rates of macrophage infiltration and thrombosis—than age-
matched controls. These findings are consistent with, yet more
pronounced than, those reported in the CLIMA study (11)
which identified FCT <75 um, lipid arc >180°, MLA <3.5 mm?,
and macrophage infiltration as predictors of cardiac events in an
older cohort. Notably, our PCAD group demonstrated a higher
prevalence of individual high-risk features, underscoring a more
aggressive plaque phenotype likely driven by metabolic and
inflammatory factors prevalent in younger patients. Together,
these findings highlight the utility of OCT in risk stratification
across age groups and support its role in guiding early
intervention in high-risk PCAD patients.

This study also found a significantly higher incidence of
plaque erosion in the PCAD group, often accompanied by
Unlike
characterized by endothelial denudation with mural thrombus

thrombus formation. plaque rupture, erosion is
and is more common in younger patients and women.
Emerging evidence suggests that plaque erosion may be linked
to endothelial dysfunction and vasospasm, driven by reduced
nitric oxide (NO) bioavailability and elevated endothelin-1
(ET-1) levels (12). The EROSION IIT study demonstrated that
OCT-guided

implantation rates by 15%, with 86% of erosion cases and 41%

reperfusion strategies safely reduced stent
of rupture cases avoiding stenting (13). Macrophage infiltration,
a hallmark of inflammation, further influences plaque stability
through phenotypic polarization (pro-inflammatory M1 vs. anti-
inflammatory M2). Single-cell sequencing recently revealed that
M1 macrophages account for 72% of plaque macrophages in
PCAD patients—significantly higher than in older patients—and
correlate positively with MMP-9 and TNF-a expression (14).
M1 macrophages exacerbate oxidative stress via pro-
inflammatory cytokines, while M2 macrophages promote tissue
Additionally,

markers of neovascularization, are closely associated with lipid

repair. intraplaque  microchannels, imaging
core expansion and intraplaque hemorrhage. Studies report that
microchannel density >5 mm? increases intraplaque hemorrhage
risk by 3.5-fold and accelerates progression to complex lesions
(e.g., rupture or calcified nodules) (15). Such plaques exhibit
higher vulnerability, with increased risks of intimal tearing,
rupture, TCFA formation, macrophage clustering, and luminal
thrombosis, alongside elevated slow-flow rates post-stenting (16).
These findings position microchannels as biomarkers for plaque
progression and potential targets for anti-angiogenic therapies.
Thrombus, a direct manifestation of acute thrombosis, may
obstruct the lumen or induce distal embolism, leading to
myocardial infarction or stroke. Its predictive value in this study
aligns with prior research, reinforcing the importance of
antithrombotic therapy in high-risk plaque management.

The PCAD group exhibited significantly higher rates of
hypertension, smoking, diabetes, and dyslipidemia, highlighting
metabolic dysregulation and adverse lifestyles as key drivers of
plaque vulnerability. Chronic hypertension increases vascular shear
stress, impairing endothelial function and promoting LDL
infiltration into the subintima, where oxidation activates monocyte-
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to-macrophage differentiation and foam cell formation (17, 18). In
this study, stenosis severity correlated positively with hypertension
prevalence. Previous studies further demonstrated that intensive
blood pressure lowering significantly reduces plaque lipid content,
increases FCT, and decreases macrophage density (19, 20),
supporting its role in delaying plaque progression. Elevated total
cholesterol (TC) and LDL-C levels directly correlate with lipid arc
enlargement. Lipid core expansion not only increases plaque
volume but also amplifies local inflammation via pro-inflammatory
cytokine release. PCSK9 inhibitors have been shown to reduce
plaque lipid volume and macrophage density after 12 months of
treatment (21, 22). Novel triglyceride (TG)-targeted therapies, such
as APOC3 inhibitors, simultaneously lower TG and suppress
(23),
personalized lipid management.

microchannel formation offering new avenues for

Smoking induces reactive oxygen species (ROS) generation,
accelerating endothelial apoptosis and collagen degradation
while upregulating MMPs to destabilize fibrous caps. In this
study, smoking rates were significantly higher in the PCAD
group. Persistent smoking attenuates statin-induced plaque
TCFA

smoking cessation as critical for long-term prognosis post-PCI

stabilization and increases incidence, emphasizing
in ACS patients (24). Diabetes drives macrophage polarization
toward the

resistance (25). Recent studies show that hyperglycemia activates

pro-inflammatory M1 phenotype via insulin
DNA methyltransferases (DNMTs), inducing hypermethylation
(e.g., KLF4)

perpetuating inflammation (26), suggesting that glycemic control

of anti-inflammatory gene promoters and
may modulate plaque phenotypes through epigenetic mechanisms.

This study has several limitations. First, the single-center
design may limit the generalizability of our findings, although
the use of standardized OCT imaging and analysis protocols
strengthens internal validity. Second, the follow-up duration was
limited to 12 months, which may not capture long-term
cardiovascular outcomes or delayed plaque progression. Third,
our predictive model for MACE lacks external validation in an
independent cohort, which is necessary to confirm its broader
applicability. Future multicenter studies with extended follow-
up, detailed treatment adherence monitoring, and external
validation are warranted to reinforce our conclusions.

In conclusion, PCAD patients exhibit distinct coronary plaque
vulnerabilities strongly linked to metabolic and lifestyle risk factors.
OCT enables precise identification of high-risk features (e.g., thin
caps, macrophage infiltration, microchannels), providing critical
imaging evidence for early risk stratification and personalized
intervention. Integrating artificial intelligence, multimodal imaging,
and novel targeted therapies may advance comprehensive
management from “plaque diagnosis” to “precision intervention”,
ultimately reducing acute cardiovascular events.
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